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In this paper we present a theoretical investigation for the ground state of an impurity immersed
in a Fermi sea. The molecular regime is considered where a two-body bound state between the
impurity and one of the fermions is formed. Both interaction and exchange of the bound fermion
take place between the dimer and the Fermi sea. We develop a formalism based on a two channel
model allowing us to expand systematically the ground state energy of this immersed dimer with the
scattering length a. Working up to order a3, associated to the creation of two particle-hole pairs,
reveals the first signature of the composite nature of the bosonic dimer. Finally, a complementary
variational study provides an accurate estimate of the dimer energy even at large scattering length.

PACS numbers: 03.75.Ss; 05.30.Fk; 34.50.Cx

I. INTRODUCTION

As demonstrated by Bardeen-Cooper and Schrieffer,
superconductivity arises from the pairing of electrons
with opposite spins into Cooper pairs [1]. A natural
extension of their work to the case where the two spin
populations are imbalanced was proposed by Clogston
and Chandrasekhar [2, 3]: they suggested that when a
magnetic field is a applied, the existence of a pairing gap
in the electron energy spectrum could prevent spin polar-
ization as long as the Zeeman shift was smaller than the
gap, a threshold known as the Clogston-Chandraskhar
(CC) limit. It was later suggested that the superfluid
state could survive beyond the CC limit, into the form of
a non-homogeneous superconducting state known as the
FFLO (Fulde Ferrell Larkin Ovchinnikov) state [4, 5].
However, most superconductors behave like nearly ideal
diamagnetic compounds (Meissner Effect), which forbids
magnetically induced spin polarization in the bulk, see
Ref. [6] for a short review. As a consequence, theses the-
ories were investigated experimentally only very recently
in a series of works performed at Rice [7] and MIT [8] with
ultra-cold Fermi gases trapped in optical potentials. Al-
though some debate on the structure of the normal com-
ponent persists between the two groups, both observe a
shell structure in the density profile, with at center a fully
paired region consistent with the CC scenario of robust
fermionic superfluidity.

The main discrepancy between the two experiments
lies in the polarization of the normal component: In-
deed, while Rice’s group observed that the outer rim was
composed exclusively of majority atoms, the normal com-
ponent obtained at MIT was only partially polarized and
contained also particles of the minority spin species. Re-
cent theoretical work demonstrated that this latter obser-
vation was compatible with the homogeneous phase dia-
gram of a strongly interacting Fermi gas if one assumes
the validity of the Local Density Approximation [9]. In
particular, it was shown that some of the most salient
features could be understood fairly accurately from the

study of the simpler problem of an impurity immersed
in a Fermi sea [10, 11]. At unitarity (scattering length
a = ∞), it was demonstrated that the impurity could
be described as a quasi-particle dressed by particle hole
excitations of the background Fermi sea [11, 12, 13, 14].
Comparison between simplified variational models and
Monte-Carlo simulations have in addition shown that
even in this regime of strong correlation, a single particle-
hole excitation was sufficient to capture quantitatively
the properties of this so-called Fermi polaron [14, 15].
However, the Fermi-polaron picture is valid only for a
negative, and close to unitarity 1/kF |a| ≫ 1. In the
1/kFa <∼ 1 regime, Monte-Carlo simulations have re-
vealed that the Fermi-polaron was not the ground state
of the system anymore [15]. Indeed, for kFa < 1.11, the
ground-state is now described by a bosonic dimer inter-
acting with the background Fermi sea where the atom-
dimer scattering length [16] adm ≃ 1.1786 a was first cal-
culated by Skorniakov and Ter Martirosian [17].

In this paper, we use a combination of perturbative
expansion and variational calculation to draw a simple
and intuitive picture of the molecular sector of the impu-
rity problem and extend diagrammatic calculations pre-
sented in [18, 19]: we show that for a > 0, the molecular
impurity shares several features with the Fermi-polaron
describing the impurity for a < 0. In particular, we
show that the creation of a single particle-hole pair in the
Fermi sea provides an accurate quantitative description
of the system. The paper is organized as follows: Sec. II
presents the main results of the paper. More technical
aspects of this work are then relegated to following sec-
tions, Sec. III for the perturbative calculation and Sec. IV
for the variational approach. Sec. V concludes.

II. MAIN RESULTS

Let us consider an ensemble of spin F = 1/2 fermions
(for instance 6Li in its hyperfine ground state), where
all particles but one are polarized in mF = −1/2. At
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FIG. 1: Our variational scheme takes into account only a
restricted number of particle-hole excitations. First row: no
particle hole excitation. Second row: one particle-hole excita-
tion of momenta q < kF and k > kF . Third row: two particle-
hole excitations of momenta q, q′ < kF and k, k′ > kF .

low temperature, short range interatomic interactions be-
tween identical fermions are suppressed by Pauli exclu-
sion principle, and the system can therefore be described
as a single impurity interacting with a Fermi sea of non-
interacting fermions. We note a the scattering length
between particles of opposite spins. The case a < 0 and
the vicinity of the Feshbach resonance (a → ∞) have
been described in previous works on the Fermi-polaron
[11, 12, 13, 14], and here we concentrate on the molecular
sector corresponding to a small and positive. In this par-
ticular regime the picture is relatively simple, since in the
absence of a surrounding Fermi sea, the two body poten-
tial possesses a deeply bound state of size ∼ a and energy
E = −h̄2/ma2. When one adds a spin mF = +1/2 atom
to the Fermi sea, it will pair up with a majority atom
to form a deeply bound dimer. In the regime kFa ≪ 1,
the size of this molecule is much smaller than the inter-
particle distance, and we can describe the dimer as a
point like boson of mass 2m. In this picture, the energy
shift associated with the addition of the impurity is then
at leading order in kFa

∆E = − h̄2

ma2
− EF + ...,

where the second term corresponds to the removal of

one majority fermion from the Fermi sea to form the
bosonic dimer. The next order in the kFa expansion
comes from the interactions between the bosonic dimer
and the surrounding Fermi sea. Indeed, if the point-like
boson picture is correct, then one should expect a mean-
field energy shift ∆E = gadn, where n is the density
of majority atoms and gad is the atom-dimer coupling
constant given by gad = 3πh̄2aad/m associated with the
atom-dimer scattering length aad ∼ 1.1786a [16, 17]. Al-
though this scenario has been confirmed by Monte-Carlo
simulations [15], the analytic calculation of the mean
field shift is not trivial for two main reasons. First, the
atom-dimer scattering length is obtained by solving the
three body-problem, but here antisymmetrization of the
global wave-function correlates automatically the major-
ity atom bound in the dimer with the surrounding Fermi-
sea, and turns the calculation from three to many-body.
Second, mean field contributions are usually obtained us-
ing a perturbation expansion based on the existence of
a small parameter (here kF a), and in our situation, this
scheme is due to fail. Indeed, in absence of interactions
(a = 0), the system is just an ensemble of non inter-
acting fermions, that cannot form any dimer, which is
contradictory with the intuitive picture we drew above.
To circumvent this latter point, we decided to work in
the two-channel picture [20, 21], where the short-range
two-body bound state responsible for the Feshbach res-
onance is explicitly included in the model as a bosonic
degree of freedom, of mass 2m and bare binding energy
E0. In second quantized form, the Hamiltonian reads

H =
∑

k,σ=↑,↓
ǫka

†
k,σak,σ +

∑

K

(E0 + ǫK/2)b†KbK

+
∑

k,K

Λk√
V

(
b†Kak+K/2,↑a−k+K/2,↓ + h.c.

)
,

(1)

where V is a quantization volume and Λk is the matrix el-
ement coupling fermionic and bosonic degrees of freedom.
If rb is the typical size of the bare molecule, then the
width of Λk is ∼ 1/rb. The fermionic operator ak,σ de-
scribes a momentum-k atom with spin (hyperfine state)
σ. Atoms in the two different spin states, σ =↑, ↓, are
coupled via a molecular closed channel state described by
the boson operator bK with bare energy at rest E0 and
momentum K. With an even (and very weak, see below)
k-dependence for the coupling strength Λk, the resulting
atomic interaction has an s-wave character. In the uni-
versal regime where the properties of the system depend
only on the scattering length, no other ingredient is nec-
essary, as long as E0 and Λk are chosen to reproduce the
actual interatomic scattering length. The Pauli principle
imposes vanishing s-wave interaction for fermions in the
same spin channel and do not require coupling between
same spin particles.

Even in the case where a single spin down particle is
immersed in a Fermi sea of spin up particles, this Hamil-
tonian does not have a complete analytical solution. One
needs to rely on approximations to get some insights on
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the behavior of the system. It can be assumed, in analogy
with the Fermi-polaron problem, that the most salient
features are obtained by taking into account the exci-
tations of a small number of particle-hole pairs of the
background Fermi sea. In the work presented here, we
take into account up to two particle-hole pairs, which re-
veals effects due to the composite nature of the bosonic
dimer. The variational state that we have studied thus
takes the form (see also Fig. 1)

|ψ〉 =

(
βb†K=0 +

∑

k

′
Aka

†
k,↓a

†
−k,↑

−
∑

k,q

′
ϕk,qa

†
k,↓b

†
−k+qaq,↓

−
∑

k,k′,q

′
Φk,k′,qa

†
k,↓a

†
k′,↓a

†
−k′−k+q,↑aq,↓

−
∑

k,k′,q,q′

′
Ψk,k′,q,q′a†k,↓a

†
k′,↓b

†
−k′−k+q+q′aq,↓aq′,↓

−
∑

k,k′,k′′,q,q′

′
χk,k′,k′′,q,q′a†k,↓a

†
k′,↓a

†
k′′,↓

a†−k′−k−k′′+q+q′,↑aq,↓aq′,↓

)
|FS〉,

(2)

where
∑′ means that the sum over the majority parti-

cle (resp. hole) wavevectors k (resp. q) is restricted to
k > kF (resp. q < kF ), and |FS〉 is the noninteracting
Fermi sea of majority atoms, in the absence of minor-
ity particle or short range molecule. Solving exactly the
equations in this restricted subspace is a numerical dif-
ficult task outside the scope of this work. We therefore
simplify the problem in two directions: one leads us to a
systematic perturbative expansion in kF a, the other one
to a variational prediction for the molecule energy.

We first expand the variational equations in power of
kFa. In fact, as it was stressed in [13], an expansion
in kF a is equivalent to an expansion in the number of
excited particle-hole pairs. In particular, the variational
space (2) is sufficient to derive the exact and systematic
expansion of the immersed molecule energy up to order
(kF a)

3. To be more precise, extending the variational
space by allowing additional electron-hole pairs would
lead to corrections that are higher orders in kFa.

Interestingly, the mathematical structure of the per-
turbative equations exhibits a separation of length scales,
kFa≪ 1, which can be given a simple physical interpre-
tation. ϕk,q is seen as the atom-dimer wavefunction when
the Fermi sea is composed of a single majority fermion.
It presents a singularity ∼ 1/k2 at small k corresponding
to the general large distance decay ∼ 1/r for the scat-
tered wave of a short-range potential. The prefactor gives
the renormalized atom-dimer scattering length. Due to
this singular behaviour, the wavefunction ϕk,q is modi-
fied separately at the two length scales a and λF = 1/kF

in the presence of the Fermi sea. It is first modified at
small wavevectors ∼ kF , i.e. close to the singularity, the
stronger effect being Pauli blocking which restricts al-
lowed wavevectors k to lie outside the Fermi sea. The
corresponding contributions to the molecule energy are
the same as in the point-like boson case, like the first two
corrections in Eq. (3) for example. They involve large dis-
tances ∼ λF ≫ a over which the composite nature of the
molecule is not visible. In contrast to that, corrections to
ϕk,q for larger wavevectors ≃ 1/a reveal the composite
structure of the molecule and change the value of α3 in
Eq. (3).

Using the simplifications permitted by the length-scale
separation mentioned above and working out the expan-
sion in xF = kFa to third order yields the following ex-
pression for the molecule energy [26] (see Eq. (55))

E = − h̄2

ma2

(
1 − x3

F ãad

2π
− 2x4

F ã
2
ad

π2
(ln 2 − 3/8)

+ 2x5
Fα3 + ...

)
,

(3)

where ãad = aad/a ∼ 1.1786 is the ratio between the
atom-dimer and atom-atom scattering lengths, and α3 ≃
0.0637 is a numerical coefficient obtained from the for-
malism described in Sec. III. As mentioned above, the
first term of the expansion corresponds to the binding
energy of a single molecule. The next two terms are
obtained by taking into account single particle-hole ex-
citations and depend only on the atom-dimer scattering
length. They are identical to the energy shift obtained for
a point-like boson immersed in a Fermi sea [22] and the
composite nature of the dimers is only revealed by the
last term of the expansion, which is calculated by tak-
ing into account two particle-hole excitations. We stress
again that, although the starting point is a variational
form (2), Eq. (3) is the exact low density expansion of
the molecule energy. For comparison, let us mention that
the energy obtained for a point-like boson immersed in a
Fermi sea with boson-fermion scattering length aad also
expands as Eq. (3) - from which the molecule energy in
vacuum has been subtracted - but with α3 ≃ 0.00025 ã3

ad
instead of α3 ≃ 0.0637 in the composite boson case.

It has been pointed out in [15] that the exact energy
of the molecular impurity was actually very close from
the mean-field correction, up to kF a ∼ 1. Due to its
perturbative nature valid only for kF a ≪ 1, the anal-
ysis presented above cannot explain this intriguing fea-
ture. To address this particular issue and acquire some
insight on the strongly interacting regime where the per-
turbative expansion diverges, we develop a variational
treatment of the impurity problem. In order to get a
simple and tractable calculation, the general variational
form (2) is simplified by allowing only one particle-hole
pair excitation and by suppressing the q dependence in
the wavefunctions. Namely, the variational state takes
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FIG. 2: Perturbative expansion of the energy of a molecular
impurity immersed in a Fermi sea. Square: Monte-Carlo re-
sult of [15]. Black solid line: Free molecule E = −h̄2/ma2.
Red dashed line: single particle hole excitations correspond-
ing to the expansion up to a2. Dotted blue line: expansion up
to a3 taking into account a second particle-hole excitation.

the form

|ψ〉 =

(
βb†K=0 +

∑

k

′
Aka

†
k,↓a

†
−k,↑

−
∑

k,q

′
ϕka

†
k,↓b

†
−k+qaq,↓

−
∑

k,k′,q

′
Φk,k′a†k,↓a

†
k′,↓a

†
−k′−k+q,↑aq,↓

)
|FS〉.

(4)

As shown later, this particular ansatz gives the correct
expansion up to mean-field term. In addition, it can be
extended to strong interactions, and the energy remains
finite even at unitarity. Working out the variational equa-
tions, we reduce the problem to a set of two integral
equations that are solved numerically, see Sec. IV. The
result is displayed in Fig. 3. We observe a remarkable
agreement between our simplified integral equations and
the Monte-Carlo simulations. It demonstrates that, just
like the Fermi-polaron problem, single particle-hole ex-
citations provide an accurate description of the physical
properties of the system.

III. PERTURBATIVE EXPANSION

We shall detail in this Section our perturbative calcu-
lation for the immersed molecule energy. A consistent ex-
pansion at a given order in kF a requires a corresponding
minimal number of particle-hole excitations in the vari-
ational space. We will therefore do the calculation step
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FIG. 3: Variational calculation of the energy of a molecule
immersed in a Fermi sea. Solid line: Variational calcula-
tion including formation of a single particle hole pair. Points:
Monte-Carlo calculation of [15].

by step by increasing the variational space size up to two
particle-hole excitations. The two-body problem is con-
sidered in III A, which helps us to connect the parameters
of our starting Hamiltonian (1) to the scattering length a
in the single-channel limit. A trivial ansatz extending the
two-body wavefunction is proposed, which exhibits the
Pauli blocking effect. Elaborating on this ansatz, single
particle-hole excitations are added in III B yielding the
first (mean-field type) and second order corrections to
the molecule energy. The third order correction requires
two particle-hole excitations that are considered in III C
and allows us to recover Eq. (3).

A. Two-body properties

Insight on the model (1) can be gained by solving
the two-body problem. We look for a bound state of

energy E = − h̄2λ2

m with the ansatz |ψ〉 = (βb†K=0 +∑
k Aka

†
k,↓a

†
−k,↑)|0〉. The Schrödinger equation (H −

E)|ψ〉 = 0 gives simple coupled equations

(q20 +λ2)β+
∑

k

Λ̄kAk = 0, Λ̄kβ+(k2+λ2)Ak = 0, (5)

with Λ̄k =
(

m
h̄2

√
V

)
Λk and E0 =

h̄2q2

0

m . The second equa-

tion allows to express Ak as a function of β. Replacing
Ak in the first equation yields an equation for the bound
state

q20 + λ2 −
∑

k

Λ̄2
k

k2 + λ2
= 0. (6)

Although Λ̄k has a very weak k dependence, the integral
in Eq. (6) has an ultraviolet divergence if this dependence
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is crudely neglected. We therefore define
∑

k

Λ̄2

k

k2 =
V Λ̄2

0

4πℓ ,

then add and substract this integral to Eq. (6). Λ̄k is
replaced by Λ̄0 for the resulting convergent integral. λ is
finally solution of a second order equation

R∗λ2 + λ− 1

a
= 0, (7)

where we define

1

a
=

1

ℓ
− 4πh̄2E0

mΛ2
0

, R∗ =
4πh̄4

m2Λ2
0

. (8)

ℓ acts here as a short-distance cutoff length, it is on
the order of the van der Waals potential size. The two-
channel model Eq. (1) is therefore only valid if R∗ ≫ ℓ
and a≫ ℓ for describing the two-body bound state. The
two-body scattering problem can also be solved using the
same ansatz. One concludes from its solution that a is
the two-body scattering length and R∗ = −re/2 where
re is the effective range. The universal regime, or one-
channel zero range model, is recovered with R∗ → 0 that
is Λk → ∞ at fixed value of a. In particular, Eq. (7)
gives then λ = 1/a as expected.

It is instructive to first study a simple ansatz where
the dimer state and the spin ↓ Fermi sea are not coupled,
namely

|ψ〉 = (βb†K=0 +
∑

k

′
Aka

†
k,↑a

†
−k,↓)|FS〉. (9)

|FS〉 denotes the ↓ Fermi sea with Fermi wavevector
kF and density n = k3

F /6π
2 [27]. The Pauli principle

imposes that wavevectors below kF are blocked in the
FS and do not participate to the molecular state. This
ansatz is certainly not an eigenstate of the Hamiltonian
Eq. (1). The calculation that follows is therefore vari-
ational in essence. Projecting the Schrödinger equation
(H−E)|ψ〉 = 0 onto the two relevant sectors, two coupled
equations are derived

(q20 + λ2)β +
∑

|k|>kF

Λ̄kAk = 0, Λ̄kβ + (k2 + λ2)Ak = 0.

(10)
Apart from the wavevector summation restriction, they
are identical to Eqs. (5). The spin ↓ Fermi sea enters
only through Pauli blocking at this stage. The energy
E is measured from the Fermi sea energy. Solving the
system in the universal limit R∗ → 0, we find

λ =
1

a
− 2kF

π

[
1 − λ

kF
atg

(
kF

λ

)]
. (11)

First, we can consider the dilute limit kF a≪ 1, which
yields

E = − h̄2

ma2
+ 2gn+ O(gn(kF a)

2), (12)

where g = 4πh̄2a
m . The first term in Eq. (12), i.e. the

molecule energy in vacuum, is the correct leading result
in a small kFa expansion. The second term, associated
with Pauli blocking, corresponds to a mean field term
treated within the Born approximation and may naively
be interpreted as a first sign of the composite nature of
the dimer. However, as we will see, this result is not
exact, and the correct value of the mean field term re-
quires the resolution of the three body problem. This
can be improved by including particle-hole excitations in
the variational wavefunction as we will show next.

B. First order

Applying two times the Hamiltonian (1) on the simple
previous ansatz Eq. (9), one sees that the space spanned
by the variational wavefunction can be extended to in-
clude states with a molecule and a single particle-hole ex-
citation from the Fermi sea. States with a closed channel
boson and a single particle-hole excitation should also be
included as an intermediate step. The improved ansatz

for the wavefunction reads

|ψ〉 =

(
βb†K=0 +

∑

k

′
Aka

†
k,↓a

†
−k,↑

−
∑

k,q

′
ϕk,qa

†
k,↓b

†
−k+qaq,↓

−
∑

k,k′,q

′
Φk,k′,qa

†
k,↓a

†
k′,↓a

†
−k′−k+q,↑aq,↓

)
|FS〉,

(13)

where, thanks to the linearity of Schrödinger’s equation,
we can take β = 1. Apart from the additional q depen-
dence, Eq. (13) resembles the variational state (4). The
variational space has four different sectors. Projecting
the Schrödinger equation on the first two sectors, we get

(q20 + λ2) +
∑

|k|>kF

Λ̄kAk = 0, (14a)

Λ̄k + (k2 + λ2)Ak +
∑

|q|<kF

Λ̄kϕk,q = 0. (14b)

The aim of this calculation is to determine how the 2gn
term (mean field) in Eq. (12) is modified by the improved
ansatz Eq. (13). Hence the q-dependence of ϕk,q is not
relevant because it leads to corrections of higher order in
kFa. For R∗ → 0 and kF a≪ 1 the modified bound state
equation is found to be

λ =
1

a
− 2k3

Fa
2

3π
+

2k3
F

3π

∑

k

ϕk

k2 + 1/a2
, (15)

where ϕk still has to be determined.
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Again we neglect the q-dependence when projecting
on the last two sectors. Two coupled equations are de-
rived where the anticommuting properties of fermionic
operators are essential

2
∑

k′

′
Λ̄k′+k/2Φk,k′

+

(
q20 + λ2 +

3

4
k2

)
ϕk = −Λ̄0Ak =

Λ̄2
0

k2 + λ2

(16a)

Λ̄k′+k/2 (ϕk − ϕk′) + 2
(
λ2 + k2 + k′2 + k · k′)Φk,k′ = 0.

(16b)

With an additional source term on the right side of
Eq. (16a), this system of equations is the same as the
one derived in the three-body problem [21]. The second
equation is solved readily in Φk,k′ and inserting this re-
sult in the first equation, we obtain for R∗ → 0

(
L̂λ − 1

a

)
ϕk =

4π

k2 + λ2
, (17)

with the usual three-body kernel [16, 17]

L̂λϕk ≡
√
λ2 + 3k2/4ϕk

+
1

2π2

∫
d3k′

ϕk′

k′2 + k2 + k′ · k + λ2
.

(18)

At this order, it is consistent to take λ = 1/a. We proceed
further and make contact to the atom-dimer scattering
problem. Writing ϕk = 4πa

k2 a0(ka) yields the integral
equation

1

π

∫ +∞

0

du′
a0(u

′)

uu′
ln

(
1 + u2 + u′2 + uu′

1 + u2 + u′2 − uu′

)

+
3

4

a0(u)

1 +
√

1 + 3u2/4
=

1

1 + u2
,

(19)

identical to the one that determines the atom-dimer scat-
tering length [16, 17]. In particular a0(0) = aad

a ≃
1.1786 . . .

The last term in Eq. (15) is finally obtained by taking
the k → 0 limit in Eq. (17),

∑

k

ϕk

k2 + 1/a2
= a2

(
1 − 3

8
a0(0)

)
. (20)

This contribution is positive so that the molecule energy
is lowered by improving on the simple ansatz. This is in
fact a consequence of a general variational principle which
states that the ground state energy can only decrease
when the parameter space is extended. Inserting Eq. (20)
into Eq. (15) leads to a final expression for the low density
molecule energy

E = − h̄2

ma2
+ gadn, (21)

where the atom-dimer coupling constant has been defined
as

gad =
2πh̄2aad

(2m/3)
. (22)

Interestingly, the expansion can be pushed to the next
order within the same variational space. Hence, the q

dependence of ϕk,q becomes relevant. Skipping details,
the result for λ reads

λ =
1

a



1 − 2x3
F

3π
+ 16π2

∑

|v|<xF

∑

|u|>xF

ϕ̃u,v

1 + u2



 , (23)

where xF ≡ kFa and
∑

v stands for
∫

d3v
(2π)3 . ϕ̃u,v denotes

a rescaled atom-dimer wavefunction

ϕk,q = 4πa3ϕ̃ka,qa, (24)

solution of the integral equation

1

2π2

∫

|u′|>xF

d3u′
ϕ̃u′,v

1 + u′2 + u2 + u′u − v(u′ + u)

+

(√
1 +

3u2

4
− v2

4
− u · v

2
− 1

)
ϕ̃u,v =

1

1 + u2

(25)

For v = 0, we recover Eq. (19) with ϕ̃u,v = a0(u)/u
2

and therefore Eq. (21) for the energy. A first idea to
treat Eq. (25) is to expand directly in powers of v and
solve it order by order. Note that Eq. (23) involves an
average over the direction of v. This would imply that
the first non-vanishing correction goes as v2 and therefore
x5

F for the energy. However, this approach fails because
the solution of Eq. (25) is singular as u → 0, ϕ̃u,v ≃
a0(0)/u2 for v = 0.

A correct treatment requires a proper description of
ϕ̃u,v as a function of v for u → 0. We therefore write

ϕ̃u,v =
as1(u, v)

u2 − v2/3 − 2u · v/3 , (26)

which translates Eq. (25) to an integral equation for
as1(u, v). The second term in the l.h.s. of Eq. (25) can
then be expanded in v. For the first term in the l.h.s. of
Eq. (25), we add and substract the kernel for v = 0 and
xF = 0. The resulting integral corrections are simplified
by changing variables, u = vx and u = xFx, followed
by an expansion in v and xF . Keeping only first order
corrections, the integral equation reads

∫ +∞

0

du′K0(u, u
′)as1(u

′, v) =

1 + as1(0, v)
[
2xF

π − v
πJ1(v/xF )

]

1 + u2
,

(27)

with the same kernel K0(u, u
′) as Eq. (19). We have

defined

J1(s) =
1

3

∫ s

0

dy

∫ 1

−1

dx
1 + 2x/y

1 − y2/3 − 2xy/3
. (28)
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The solution of Eq. (27) is then simply

as1(u, v) =
a0(u)

1 − a0(0)
(

2xF

π − v
πJ1(v/xF )

) , (29)

and can be expanded to first order in xF and v. The
first outcome of this calculation is that the singular be-
havior of ϕ̃u,v at small u indeed modifies the xF (and v)
expansion.

The solution (29) can be included in Eq. (23). Again
we add and substract the solution at vanishing xF and v
and rescale integral corrections with v and xF . The final
result for the energy is

E = − h̄2

ma2

(
1 − x3

F a0(0)

2π
− 2x4

Fa
2
0(0)

π2
(ln 2 − 3/8)

)
,

(30)
which gives the next order xF = kF a correction to
Eq. (21). We have used the following result

∫ 1

0

ds s3J1(s) =
7

6
− 4

3
ln 2. (31)

A few conclusion can be drawn from this result (30). As
we have mentioned already, the first correction to the
mean field result (21) is linear in xF and not quadratic.

In fact, subtracting the dimer internal energy − h̄2

ma2 ,
the molecule energy (30) can be retrieved from a sim-
pler model. A point-like boson of mass 2m interacting
with a Fermi sea with a boson-fermion scattering length
aad = a0(0)a leads also to Eq. (30). This means that
the composite structure of the boson is not apparent at
this order of the calculation. Actually this first-order
correction stems from small values of k ≃ kF . This orig-
inates from the low k singular behavior in the integral
equation and is outlined by the rescaling of variables per-
formed during the calculation, see above. Hence, low k
corresponds to large distances over which the composite
structure of the boson is smeared out.

C. Two particle-hole excitations

The treatment becomes much more involved when
pushed to next order in kF . First of all, Pauli block-
ing in the two-body problem adds a new contribution to
λ. It corresponds to the ∼ k5

F term in the expansion of
Eq. (11). λ is therefore given by

λ =
1

a



1 − 2x3
F

3π
+

2x5
F

5π
+ 16π2

∑

|v|<xF

∑

|u|>xF

ϕ̃u,v

1 + u2



 ,

(32)
where ϕ̃u,v has to be determined. There are basically
two kinds of contribution for the solution of the inte-
gral equation and consequently for the energy. The first
terms come from low k, i.e. values of k on the order of
kF as in the last subsection. The divergence of ϕk,q in

this regime implies that one has to go to higher orders
in the calculation by including two particle-hole excita-
tions. Nevertheless, only the k → 0 part is kept which
simplifies calculations a lot. The second kind of terms
comes from a direct expansion of the integral equation in
v once singular terms have been carefully treated. They
involve larger values of k, on the order of 1/a.

We first need to derive a complete integral equation
that includes all terms relevant at this order of the calcu-
lation. The wavefunction ansatz is extended to describe
two particle-hole excitations. It is given by Eq. (2) that
we recall here,

|ψ〉 =

(
βb†K=0 +

∑

k

′
Aka

†
k,↓a

†
−k,↑

−
∑

k,q

′
ϕk,qa

†
k,↓b

†
−k+qaq,↓

−
∑

k,k′,q

′
Φk,k′,qa

†
k,↓a

†
k′,↓a

†
−k′−k+q,↑aq,↓

−
∑

k,k′,q,q′

′
Ψk,k′,q,q′a†k,↓a

†
k′,↓b

†
−k′−k+q+q′aq,↓aq′,↓

−
∑

k,k′,k′′,q,q′

′
χk,k′,k′′,q,q′a†k,↓a

†
k′,↓a

†
k′′,↓

a†−k′−k−k′′+q+q′,↑aq,↓aq′,↓

)
|FS〉,

(33)

where all q are restricted to the Fermi surface and all
k outside the Fermi surface. With no loss of general-
ity, functions are antisymmetrized with respect to the
k variables as well as with respect to the q. This is of
course consistent with the anticommuting properties of
the fermionic operators.

The Schrödinger equation is projected on the various
subspaces of the ansatz. Eqs. (14) are recovered while
Eqs. (16) are changed to

(
q20 + λ2 + ǫ̃k +

ǫ̃−k+q

2
− ǫ̃q

)
ϕk,q

+ 2
∑

|k′|>kF

Λ̄k′+k/2Φk,k′,q = −Λ̄0Ak,
(34a)

2
(
ǫ̃k + ǫ̃k′ + ǫ̃−k−k′+q − ǫ̃q + λ2

)
Φk,k′,q

+ Λ̄k′+k/2(ϕk,q − ϕk′,q) + 4Λ̄0

∑

|q′|<kF

Ψk,k′,q,q′ = 0,

(34b)

with the notation ǫ̃k = k2/2. The k dependence of Λ̄k

is kept only when necessary to regularize the two-body
problem. To get an integral equation, we proceed as be-
fore. We obtain three new terms compared to Eq. (25).
The first one is a source term proportional to Ψk,k′,q,q′.
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The second comes from the |k′| > kF restriction in
Eq. (34a). Taken for k → 0, it gives a term proportional
to nFϕk,q . The last term stems from the replacement of
Ak using Eqs. (14). Taken for k → 0, it gives a term
proportional to

∑
|q′|<kF

ϕk,q′ .

Performing the change of variable k = λu followed by
the rescaling (24) we obtain the integral equation

1

2π2

∫

|u′|>xF

d3u′
ϕ̃u′,v

1 + u′2 + u2 + u′u − v(u′ + u)

+

(√
1 +

3u2

4
− v2

4
− u · v

2
− 1

aλ
+ 4π

(
x3

F

6π2

))
ϕ̃u,v

− 1

2π2

∫

|v′|<xF

d3v′ϕ̃u,v′ + 4
∑

u′,v′

Ψu,u′,v,v′

1 + u2
=

1

1 + u2
,

(35)

and the energy is given by Eq. (32).
The new corrections that we have included are all

proportional to x3
F and our calculations goes up to

x2
F . Therefore these corrections are negligible except for
k ≃ kF (low k) where they are partially compensated by
ϕk,q ≃ 1/k2

F . This justifies the k → 0 limit that is taken
below.

We now project the Schrödinger equation on the two
remaining subspaces.

(
q20 + λ2 + ǫ̃k + ǫ̃k′ +

ǫ̃−k−k′+q+q′

2
− ǫ̃q − ǫ̃q′

)
Ψk,k′,q,q′

+ 3
∑

k′′

Λ̄k′′+k′/2 χk,k′,k′′,q,q′ =
Λ̄0

2
(Φk,k′,q′ − Φk,k′,q),

(36a)

3(λ2 + ǫ̃k + ǫ̃k′ + ǫ̃k′′ + ǫ̃−k−k′−k′′+q+q′

− ǫ̃q − ǫ̃q′)χk,k′,k′′,q,q′

+ Λ̄k′′+k′/2(Ψk,k′,q,q′ + Ψk′,k′′,q,q′ + Ψk′′,k,,q,q′) = 0.

(36b)

These coupled equations are quite complicated. Never-
theless many simplifications can be done that remain con-
sistent with the order of our calculation. The q (and q′)
dependence can safely be neglected as well as the restric-
tion outside the Fermi sea for the k wavevectors. The
limit k → 0 is also taken. In the source term (r.h.s.) of
Eq. (36a), we can replace Φk,k′,q by using its lowest order
expression from Eq. (34b),

Φk,k′,q =
Λ̄0

2

ϕk′,q − ϕk,q

λ2 + k′2
. (37)

Finally, Eq. (36b) allows to express χk,k′,k′′,q,q′ . Once
incorporated into Eq. (36a), it leads in the universal limit

R∗ → 0 to
(√

λ2 + 3k′2/4 − 1

a

)
Ψk,k′,q,q′

+ 4π
∑

k′′

Ψk,k′′,q,q′ + Ψk′′,k′,q,q′

λ2 + k′2 + k′′2 + k′ · k′′

= π
ϕk′,q′ − ϕk,q′ + ϕk,q − ϕk′,q

λ2 + k′2
.

(38)

The last step is to realize that the singular behavior at
low k, ϕk,q ≃ 1/k2, implies that k-independent terms
become negligible for k → 0. Rescaling variables, e.g.

k = λu with λ = 1/a and Eq. (24), the following integral
equation is obtained

4π
∑

u′′

Ψu,u′′,v,v′

1 + u′2 + u′′2 + u′ · u′′

+
(√

1 + 3u′2/4 − 1
)

Ψu,u′,v,v′ =
4π2(ϕ̃u,v − ϕ̃u,v′)

1 + u′2
.

(39)

It acts only on u′ and describes a three-body problem
where u, v, v′ are dummy variables. Its solution follows
trivially from the solution of Eq. (19),

Ψu,u′,v,v′ = 4π2(ϕ̃u,v − ϕ̃u,v′)
a0(u

′)

u′2
. (40)

Inserting this solution into Eq. (35) finally leads to the
complete integral equation

1

2π2

∫

|u′|>xF

d3u′
ϕ̃u′,v

1 + u′2 + u2 + u′u − v(u′ + u)

+

(√
1 +

3u2

4
− v2

4
− u · v

2
− 1

)
ϕ̃u,v

− 3a0(0)

16π2

∫

|v′|<xF

d3v′ϕ̃u,v′ =
1

1 + u2
.

(41)

Note that the 1/(aλ) term in Eq. (35) has been compen-
sated inside the parenthesis by using Eq. (21).

We now describe how Eq. (41) is solved perturbatively.
Its solution is written in the form

ϕ̃u,v =
a(u,v)

u2 − v2/3 − 2u · v/3
(

1 − a0(0)

2π2

∫

|v′|<xF

d3v′
1

u2 − v′2/3 − 2u · v′/3

)−1

(42)

leading to a regularized integral equation for a(u,v) that
can be expanded in v. The integral term inside the
parathesis of Eq. (42) is a correction ∼ xF . It is im-
portant only for small u to compensate the last term in
the l.h.s. of Eq. (41).



9

Ordering the different source terms, a(u,v) can be de-
composed as

a(u,v) = as1(u, v) + as2(u, v) + a1(u)(u · v) + v2a2(u),
(43)

where the different terms are to be detailed below.
as1(u, v) is the same as in the last subsection and is given
by Eq. (29). Its lowest order in xF is a0(u), solution of
Eq. (19). The first correction in xF has been calculated
last subsection. The expansion of Eq. (29) also yields a
x2

F correction. Once plugged into Eq. (32), aλ receives
the correction −a3

0(0)x5
F I3 with

I3 =
3

4π3

∫ 1

0

ds s2 [2 − sJ1(s)]
2 ≃ 0.01419, (44)

where J1(s) is given Eq. (28). The second term, as2(u),
corresponds to the last term in the l.h.s. of Eq. (41).
Similarly to as1(u), it stems from low k ≃ kF , and re-
duces, up to an important prefactor in the source term,
to the three-body problem integral equation (19). The
solution can be written as

as2(u, v) = −
(
a0(0)xF

2π2

)2

a0(u)J2

(
v

xF

)
, (45)

where

J2(y) =

∫

x>1

d3x
1

x2 − y2

3 − 2x·y
3

∫

y′<1

d3y′
1

x2 − y′2

3 − 2x·y′

3

.

(46)
The contribution to aλ is given by a3

0(0)x5
F I2 with the

integral

I2 =
3

16π5

∫ 1

0

dy y2J2(y) ≃ 0.014440. (47)

In a way similar to the first order correction, the two
contributions stemming from as1 and as2 are produced
by small wavevectors k ≃ kF and match exactly the total
x2

F correction of the point-like boson model. They cor-
respond to the large distance part for the scattering of
the boson by the Fermi sea. On this scale k ≃ kF , the
composite structure of the boson is not apparent.

This is in contrast with the situation for the last two
terms in Eq. (43). They result from the direct ex-
pansion in v of the integral equation. In that case,
typical wavevectors k are of order 1/a ≫ kF . These
terms involve the whole spatial structure of the composite
molecule. They have no equivalent in the point-like bo-
son model and hence reveal the composite nature of the
molecule. The integral equations that determine a1(u)
and a2(u) follow from a tedious but systematic expan-
sion in v.

∫ +∞

0

du′K1(u, u
′)a1(u

′) = S1(u) (48)

determines a1(u) with the Kernel

K1(u, u
′) =

3

4

δ(u− u′)

1 + E
+

1

π

u′2

B2

[
2 − A

B
ln

(
A+B

A−B

)]
,

(49)

with A = 1 + u2 + u′2, B = uu′ and E =
√

1 + 3u2/4.
Using the same definitions, the source term can be writ-
ten

S1(u) = − 3

16

a0(u)

E(1 + E)2

− 2

π

∫ +∞

0

du′
a0(u

′)

u2

[
u2 −A

A2 −B2
+

1

2B
ln

(
A+B

A−B

)]

− 2

3π

∫ +∞

0

du′
a0(u

′)

B2

[
2 − A

B
ln

(
A+B

A−B

)]
.

(50)

The integral equation for a2(u),

∫ +∞

0

du′K0(u, u
′)a2(u

′) = S
(1)
2 (u) + S

(2)
2 (u), (51)

has the same Kernel as Eq. (19) with two sources terms.
Note that this result has already been averaged over the
directions of v and u since only that component matters
for λ, see Eq. (32).

The first source term, S
(1)
2 (u), depends on a1(u)

S
(1)
2 (u) = − 1

16

u2a1(u)

E(1 + E)2

− 2

3π

∫ +∞

0

du′a1(u
′)

[
u′2 −A

A2 −B2
+

1

2B
ln

(
A+B

A−B

)]

− 2

9π

∫ +∞

0

du′a1(u
′)

1

B
ln

(
A+B

A−B

)
.

(52)

The second source term depends on a0(u),

S
(2)
2 (u) = − 3a0(u)

32E(1 + E)2
− u2(1 + 3E)a0(u)

128E3(1 + E)3

− 26

27π

∫ +∞

0

du′

u′2

[
a0(u

′)

2B
ln

(
A+B

A−B

)
− a0(0)

1 + u2

]

− 4

9π

∫ +∞

0

du′
a0(u

′)

u′2

[
u′2 −A

A2 −B2
+

1

2B
ln

(
A+B

A−B

)]

− 2

3π

∫ +∞

0

du′a0(u
′)

(u2 + u′2)A−B2

(A2 −B2)2
.

(53)

The resulting contribution to aλ, Eq. (32), is added to
the Pauli blocking term (third term inside the parenthesis
of Eq. (32)) to give x5

F I1 with

I1 =
2

5π
− 3a2(0)

20π
− 3a0(0)

320π
− 4

15π2

∫ +∞

0

du
u2a1(u)

(1 + u2)2

− 8

45π2

∫ +∞

0

du
a0(u)(1 + 5u2/2)

(1 + u2)2
≃ 0.063324.

(54)
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Gathering all x2
F corrections to the mean field result,

we finally obtain that Eq. (30) is extended to

E = − h̄2

ma2

(
1 − x3

Fa0(0)

2π
− 2x4

Fa
2
0(0)

π2
(ln 2 − 3/8)

+ 2x5
F [a3

0(0)(I2 − I3) + I1]

)
,

(55)

with Eqs. (54),(47),(44) for I1, I2 and I3. Note that
a3
0(0)(I2 − I3) + I1 ≃ 0.0637. It indicates that the con-

tribution I1, specific to the composite boson, dominates
quantitatively the last term in the energy. The point-like
boson model also leads to Eq. (55) but with I1 = 0. The
final result (55) was announced in Sec. II as Eq. (3).

IV. VARIATIONAL TREATMENT

As mentioned in Sec. II where the main results of this
article are summarized, an alternative way of treating the
problem is to use a variational approach in the restricted
subspace given by Eq. (4). We recall here the variational
form

|ψ〉 =
(
βb†K=0 +

∑

k

′
Aka

†
k,↓a

†
−k,↑

−
∑

k,q

′
ϕka

†
k,↓b

†
−k+qaq,↓

−
∑

k,k′,q

′
Φk,k′a†k,↓a

†
k′,↓a

†
−k′−k+q,↑aq,↓

)
|FS〉,

(56)

where Φk,k′ has been antisymmetrized. As observed in
the previous section III, this ansatz is sufficient to re-
cover the mean-field correction (21) corresponding to the
first order term in the perturbative expansion (55). Min-
imizing the energy with respect to the amplitudes β, Ak,
ϕk and Φk,k′ , while keeping 〈ψ|ψ〉 constant leads to a
set of equations very similar to the one obtained in the
perturbative treatment of the problem

(E0 − E)β +
1√
V

∑

k

′
ΛkAk = 0 (57)

(2εk − E)Ak +
Λk√
V
β +

1√
V

∑

q

′
Λkϕk = 0 (58)

∑

q

′
(E0 + εk + εq−k/2 − εq − E)ϕk+

∑

q

′ Λk√
V
Ak +

2√
V

∑

k′,q

′
Λk′+k/2Φk,k′ = 0

(59)

∑

q′

′
(εk + εk′ + εq−k−k′ − εq − E)Φk,k′+

1

2
√
V

∑

q

′ (
Λk′+k/2 ϕk − Λk+k′/2 ϕk′

)
= 0

(60)

Note that here the energy E appears as the Lagrange
multiplier associated with the constraint on 〈ψ|ψ〉. More-
over, since the equations are linear, we can set β = 1.

The first two equations are identical to those we used
in the perturbative calculation. Introducing λ defined by
E = −h̄2λ2/m, it yields the first variational equation:

λ =
1

a
− 2kF

π

[
1 − λ

kF
arctan(kF /λ)

]
+

2k3
F

3π

∑

k

′ ϕk

k2 + λ2
.

(61)
In Eq. (60), the explicit q dependence vanishes with

the radial sum, and we finally recover the equation

Φk,k′ =
1

2
√
V

(
Λk+k′/2 ϕk′ − Λk′+k/2 ϕk

εk + εk′ + εk+k′ − E

)
. (62)

Inserting Eq. (58) and (62) in (59) finally yields in the
short range limit a closed equation for the field ϕ:

(
− 1

4πa
+ Fk + L̂′

k

)
ϕk =

1

V

1

2εk − E
, (63)

where the function F and the integral kernel L̂′ are de-
fined by

L̂′ϕk =
1

V

∑

k′

′ ϕk′

εk + εk′ + εk+k′ − E
(64)

Fk =
1

V

∑

q

′ 1

E − 2εk
+

1

4π

√
λ2 +

3

4
k2

+
1

V

∑

|k′|<kF

(
1

εk + εk′ + εk+k′ − E

) (65)

Eq. (61) and (63) are then solved numerically, yielding
the result presented in Fig. (3). A good agreement be-
tween our variational ansatz and the exact Monte-Carlo
simulations is obtained. As already noted, it is very close
to the mean-field prediction up to kFa ∼ 1. However, it
stays finite at unitarity, since we have E ≃ 1.1506EF for
kFa = ∞.

V. CONCLUSION

In analogy with the Fermi-polaron system, the work
presented here shows that the molecular sector of the
impurity problem can be described quantitatively as a
molecule dressed by a single particle-hole excitation.
However, two important points are still to be clarified
and will be addressed in future work. First, what is the
effective mass of the quasi-particle ? This property is in
particular important to capture the dynamical behavior
of the system, as suggested [14] and observed recently in
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experiments [23]. Moreover, the bosonic/fermionic na-
ture of the quasi-particle should be clarified by the study
of an ensemble of impurities immersed in a Fermi sea,
that may help clarifying the molecule-polaron transition
scenario. This formalism can also be used to interpret
spectroscopic data obtained for instance in Ref. [24] and
refine the Nozières Schmitt-Rink analysis of Ref. [25].
Another extension of this work deals with mixtures of

particles with unequal masses, for instance the Li-K mix-
ture.
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