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Abstract. Bacillus subtilisswarms rapidly over the surface of a synthetic medium creating
remarkable hyperbranched dendritic communities. Models to reproduce such effects have been
proposed under the form of parabolic Partial Differential Equations representing the dynamics
of the active cells (both motile and multiplying), the passive cells (non-motile and non-growing)
and nutrient concentration. We test the numerical behaviorof such models and compare them
to relevant experimental data together with a critical analysis of the validity of the model based
on recent observations of the swarming bacteria which show that nutrients are not limitating but
distinct subpopulations growing at different rates are likely present.

Key words: Dendritic patterns,Bacillus subtilisswarming, Reaction-diffusion equations, Cell
community growth.
AMS subject classification:35K55, 65M60, 92C17

1. Introduction

Communities of cells can exhibit remarkable patterns whichhave attracted the attention of scien-
tists for many years. They result from highly complex but poorly understood interactions between
cells and internal regulatory networks, which involve bothchemical signaling and the effects of
physical factors. Numerous models have been used in attempts to represent some of these bio-
physico-chemical effects and to describe the resulting self-organizing patterns.

∗Corresponding author. E-mail: benoit.perthame@upmc.fr
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Different biophysical factors involved in pattern formation have given rise to various types
of modelling. One class of model concerns auto-chemotaxis (attraction of cells by a chemical
substance emitted by the cells themselves) and gives rise toa Fokker-Planck equation that is com-
monly called the Keller-Segel system after the seminal work[12]. This model is mathematically
very challenging and has motivated numerous studies (see [3, 23] and the references therein); in
particular this kind of model typically leads to cell aggregation in one or several discrete spots
(blow-up of the system as a Dirac mass solution). Several such models and numerical results are
presented in [22].

Other models are based on the multiplication of cells resulting from nutrients initially present
in the medium and consumed by the expanding community, combined with active and random
motion of bacteria. This approach has also been widely used and can generate dendritic patterns in
the absence of oriented drift (preferred direction of motion) in contrast to the Keller-Segel model
which describes cells moving preferentially towards higher concentrations of the chemo-attractant.
Many additional factors have been incorporated into models, such as the observed higher motility
of cells at the tip of the dendrites (region of higher population density and higher nutrient con-
centration) in [11], a surfactant secreted by the cells thatmay change the liquid surface and thus
the migration speed of cells [15, 6], or differentiation from swimmers to swarmers forProteus
mirabilis as modelled in [4, 5].

We are interested in models that can explain the dendritic patterns exhibited by swarming com-
munities ofBacillus subtilis, taking into account possible biophysical effects arisingduring the
migration. We review several such models and show numericalsimulations (Section 2.), summa-
rize some recent experimental observations in Section 3., and discuss in Section 4. the similarities
and differences between simulations and experimental results.

2. Models for self-organizing communities

The mathematical description is performed in two steps. First, a model is proposed based on the
major supposed mechanisms that drive the migration of the cells. We give two such examples: one
is based on nutrient consumption, the other on chemoattraction and chemorepulsion. Secondly, a
numerical simulation is performed that allows us to visualize the approximate solution.

Throughout this section we consider a general situation where the cell community lives in a
domainΩ. For numerical simulations we consider only the case of a disk that represents the usual
experimental domain (a Petri dish). The initial state, mimicking the experimental device, is set
with an initial value for the bacterial population density representing an ‘inoculum’ in the center
of the disk.

2.1. Reaction-diffusion models (nutrient only)

The nutrient-based models used to generate dendritic patterns of cell communities are mostly for-
mulated in terms of three quantities
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• the population densityu(x, t) of active cells at the locationx ∈ Ω. Under the effect of their
flagella, active cells undergo a random movement resulting in a diffusion of intensitydu, and they
multiply according to the nutrient available locally
• the nutrient concentrationv(x, t) diffuses according to Einstein’s rule and, because the nutrient
is limited, it can diminish locally due to its consumption bymultiplying cells
• the population density of passive cellsw(x, t). For these cells the effect of their motion and
multiplication is neglected. Active cells become passive according to some rules that differ from
one model to the other, and then they stay passive, i.e. they do not move or multiply.

These ingredients lead to write general systems of the form



























∂

∂t
u(x, t) − du∆u(x, t) = u[vf(u, v)− g(u, v)],

∂

∂t
v(x, t) − dv∆v(x, t) = −uvf(u, v),

∂

∂t
w(x, t) = ug(u, v).

(2.1)

Figure 1: Dynamics of community growth as given by a numerical simulation of the Gray-Scott
model (2.2) withn = 1. Active cells modelled by the componentu(x, t) are shown (total number of
cell presented in Fig. 2). Three different successive timesare presented. These cells are positioning
where nutrient is available.

Such systems have been introduced to model chemical reactions, and the Gray-Scott system
[7] is a simple and classical example which writes as



























∂

∂t
u(x, t) − du∆u(x, t) = u[unv − µ],

∂

∂t
v(x, t) − dv∆v(x, t) = −un+1v,

∂

∂t
w(x, t) = µu(x, t).

(2.2)
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Figure 2: Same model as in Figure 1, the total population density u + w is shown. The dendritic
pattern is determined by the passive cells in this type of model.

Figure 3: Same model as in Figure 1, the nutrient concentration v is shown (dark represents high
concentration). While moving outwards towards undepletednutrient, the active bacteria consume
the nutrient.
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Heren ≥ 0 is an integer related to the mass action law for the moleculesundergoing the chemical
reaction andµ > 0. Variations around this model can also be interpreted in terms of bacterial
motion as proposed in Kessler and Levine [13], Golding et al [6]; they replace the growth termunv
by h(u)v whereh(·) is a truncation function for small values ofu andh ≈ 1 for large values.

The Gray-Scott model explains the instability that generates the digitation process. It is related
to concentration effects of the equation on active cells; its solutionu exhibits high values on the
tip of the dendrite and move outwards where nutrients are replete (Figure 1). These concentra-
tion points are traveling pulses that undergo secondary instabilities which explain their branching,
see [21, 14]. They leave behind them the column of passive bacteria forming the dendritic pat-
tern shown in Figure 2. In order to run simulations on the normalized unit disk, we have used
parameters given by

n = 1, du = 6.25 10−8, dv = 100du, µ = 0.01, v0 = 1,

wherev0 is the initial constant value ofv.
Rather than a limitation of growth for small values ofu as in the Kessler and Levine model,

Mimura et al [19] proposed a limitation on the transition rate to the passive state for large values
of u or v. The choice of the reaction termsf andg in the general system (2.1) is then given by































∂

∂t
u(x, t) − du∆u(x, t) = u

[

v −
µ

(a + u)(b + v)

]

,

∂

∂t
v(x, t) − dv∆v(x, t) = −uv,

∂

∂t
w(x, t) =

µu

(a + u)(b + v)
.

(2.3)

The resulting dendritic patterns differ slightly from those obtained with the Gray-Scott model. But
the underlying mechanism is very similar, as can be seen in Figure 4 which shows the active cells
and the total population. The simulations are run in the unitdisk and the parameters we have used
for model (2.3) are

du = 1.4 10−7, dv = 20 du, a = 1/2400, b = 1/120, µ = ab, v0 = 0.087.

Other biophysical processes can be taken into account in this kind of models in order to explain
the behaviour of specific bacterial communities. The effectof surfactant has, for instance, been
analysed in [15] and affects the diffusion term by allowing higher motility of cells depending on the
height of the surface liquid. The influence of the reaction terms and analogy with phase transitions
are studied in [26]. The references [6, 22] also contain several other models.

2.2. Chemoattraction, chemorepulsion and Fokker-Planck terms

When the bacteria emit a chemoattractant or chemorepellentsubstance, this results in additional
terms in the reaction diffusion systems described above. Assuming that the medium is rich enough
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Figure 4: Dynamics of the dendritic expansion as given by a numerical simulation of the Mimura
model (2.3). Left: active cells modeled by the componentu(x, t). Right: total populationu + w.

and therefore the nutrient is not limiting, we arrive at systems of the form










































∂

∂t
u(x, t) − du∆u(x, t) + div[u(∇ca −∇cr)] = u[f(u) − g(u, cr)],

∂

∂t
w(x, t) = ug(u, cr),

∂

∂t
ca(x, t) − da∆ca(x, t) + τaca = ρaha(u, w),

∂

∂t
cr(x, t) − dr∆cr(x, t) + τrcr = ρrhr(u, w).

(2.4)

Here ca and cr represent the concentration of chemoattractant and chemorepellent. These are
assumed to diffuse according to Einstein’s rule with coefficientsda anddr, they are degraded with
the ratesτa andτr (depending possibly on the cell population densitiesu andw), and they are
secreted by the cells with ratesρa andρr. Their actions are represented by Fokker-Planck terms in
the equation foru, together with the Keller-Segel model mentioned earlier.

In this combination of reaction-diffusion models togetherwith drift terms, the latter represent
chemoattraction/chemorepulsion and have tendency to dominate the dynamics. This yields much
more dynamical profiles and stronger aggregation effects onactive cells as can be seen in Figure
5 where we have assumed a short-range attraction on active cells (u component) and long-range
repulsion on passive cells (w component).

2.3. Numerical method

The numerical solutions we have presented are based on the mixed finite element method (with
Raviart-Thomas elements of lowest degree often denoted byRT0) that has been described in [16,
17]. One of the major ingredients is a change of unknown functions to handle the several decades
in population densities that can occur in different areas ofthe computational domain. This is run
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Figure 5: Dynamics of community expansion as given by a numerical simulation of a model (2.4),
including cell population densities, chemoattractant andchemorepellent factors, but no nutrient
limitation. Left: active cells modeled by the componentu(x, t). Right: total populationu + w.
Compared to Figures 2 and 4, the oriented drift creates more dynamical patterns where active spots
can cross each other leading to an interwoven pattern.

Figure 6: An example of the triangular mesh with 1024 elements. The meshes used for the numer-
ical solutions are obtained by successive subdivisions with similar triangles and adjustment of the
vertices to the curved boundary. Finer grids with up to 600.000 elements have been used.
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on an unstructured triangular grid as shown in Figure 6 whichallows the instabilities to progress
without preferred direction, in contrast to rectangular grids which have the tendency to create mesh
effects.

For numerical purposes the domain is the unit disk (or a sector of it) and the diffusion co-
efficients are small. This forces us to use fine grids (finer as the diffusion coefficients become
smaller).

The dendritic patterns are very dependent on the grid used for computing and convergence is
reached with very fine grids. For this reason the numerical convergence has only been reached for
relatively moderate values ofdu and of the ratiodv/du.

Figure 7: Example of numerical simulations of the Gray-Scott model (2.2) with the same set of
parameters as in Fig. 1–3 , except we have used the ratiodv = 20du (this makes the pattern denser
compared to the ratio 100 used previously), using differenttriangular meshes; from left to right:
65536 elements, 262144 elements, 589824 elements.

3. Experimental results

Bacillus subtilisis a non-pathogenic but important constituent of soil and the plant rhizosphere.
This bacterial species is also one of the major model organisms used in the laboratory throughout
the world to study fundamental questions concerning bacterial growth, metabolism, physiology and
behaviour. B. subtilisis now an important model for studying the life style and social behaviour
of bacteria as large communities – the normal form of most bacteria in nature. A particularly
remarkable form of such community growth is the ability ofB. subtilisto ‘swarm’ over the surface
of low concentration agar (0.7%-1%). Swarming is a process of rapid mass migration of cells over
a surface, involving a co-operative interaction between cells but not necessarily involving cell
aggregation. We are studying the swarming of strains ofB. subtilisover a fully defined medium
(B-medium) in a Petri dish (a swarm plate), in which the bacteria migrate from a central inoculum
as hyper-branching dendrites, forming radiating patternscovering several square centimeters in a
few hours ([9, 10]).
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The presence of flagella and the secretion of a surfactant (surfactin) by the bacteria, plus the
products of at least 15 genes, are absolutely essential for swarming. Following inoculation of the
plate with104 cells, the bacteria multiply with an estimated generation time (doubling time) of
about 90min, compared to 110min when cells are growing in a classical shaking liquid culture.
After 11–12h of growth, the inoculum forms the mother colony (MC), approximately 30µm
thick, 2mm in diameter. This growth period is presumably necessary to build a critical mass and
an accumulation of a chemical signal sufficient to trigger insome cells the ability to form dendrites.
The first visible sign of initiation of swarming is the spreading outwards from the edge of the MC of
a transparent zone of surfactin. Approximately one hour later, hemispherical ‘buds’ approximately
800µm in diameter, abruptly appear (burst) from the edge of the MC.These form the heads (tips)
of the rapidly elongating 10-14 primary dendrites. Surfactin production is essential for formation
of the pre-dendrite buds and experiments suggest that its presence modifies the surface of the agar
gel, presumably by inducing the formation of a thin layer of fluid close to the agar surface [1].
Flagella, whose deployment presumably depends on an appropriate fluid film on the agar surface,
are essential for a later stage in the development of the bud and for driving dendrite migration (see
below). Importantly, the entire process of bud formation and elongation of the radiating dendrites,
up to lengths of 1.5cm, occurs as a monolayer of cells. The cells in dendrites are distributed in an
irregular mesh-like organization, including closely packed but clearly separated cells. Dendrites
can be divided into two distinct regions, a long stem containing largely non-motile cells, which
remarkably are maintained at an overall constant population density, and the extreme 1mm at the
tip where the population density increases sharply. This tip region contains hyper-motile cells that
we term swarmers, which appear to constitute the ’motor’ for elongation. Dead cells in dendrites
or the MC are rare, perhaps less than 1%.

When dendrites reach approximately 1.5cm in length, equivalent to 5-6h following emergence
of pre-dendrite buds, a dramatic switch from monolayered tomultilayered dendrites slowly spreads
progressively from the base of dendrites, as the swarm begins to develop the classical biofilm form
( at least 50µm thick). These observations demonstrate that nutrients arein great excess for at least
24h encompassing the swarming process and subsequent maturation of the bilayer. Moreover, we
have shown that diluting the nutrients in the swarm plates atleast 4-fold, prior to inoculation has
little obvious effect on the pattern of swarming (unpublished data).

Recent studies [8], using genetic analysis and fluorescent microscopy to measure the level of
production (expression) from the gene encoding the major flagellum subunit in situ, have iden-
tified a specific subpopulation of hyper-flagellated cells (‘swarmers’ ). These are dominant in
the formation of buds and then subsequently spearhead dendrites in the tips. These hyper-motile
cells are in contrast to the cells forming the stem of dendrites that we term ‘supporters’. We pro-
pose (manuscript in preparation) that supporters contribute to dendrite elongation by growth and
division (multiplication), while swarmers actively driveextension from the tip, generating hydro-
dynamic forces dependent upon their hyper-motility. Thus,migration of the swarm front results
from the co-operative action of two sub-populations to promote dendrite extension. In contrast to
these mechanical forces, we note, however, that the piloting mechanism or guidance system that
ensures radial migration, likely depends on a self-generated chemical gradient, but so far this
remains completely unknown.
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We shall now summarize a number of notable features of the migration process and consequent
pattern development that should be taken into account when constructing mathematical models, if
these are to describe the swarming process adequately. Migrating dendrites on encountering a
large obstacle (like a cover slip or anE. coli colony) are induced to make a90o turn but then
in most cases these return to the original radial direction.In addition, dentrites rarely merge and
appear to avoid each other. This behaviour is consistent with the diffusion of a chemical repellent
generated by the cells able to keep dendrites well separated. Significantly, the limited number
of primary dendrites established at the initiation of swarming are usually supplemented at much
later times by additional dendrites arising from the MC. This might indicate that the differentiation
event to form swarmers (capable of breaking out of the MC) is based on a stochastic process
that can occur repeatedly over time. In relation to the branching process, we have observed that
branching can occur by tip splitting. However, a significantnumber of branches abort and remain
very short and are often restricted to one side of the dendrite stem. All new branches tend quickly
to adopt a radial direction during subsequent elongation. Importantly, while the overall frequency
of branching increases towards the edge of the swarm plate, dendrite stems progressively become
thinner (Fig. 8).

A surprising characteristic of the swarming process is the paradox that while cells are expected
to grow and divide exponentially, as all cells do in a liquid culture, the rate of swarming migration
remains constant. This, combined with the constant population density over most of the dendrite,
clearly indicates that not all cells in the dendrites can be growing at the same rate. This would
be an extremely unusual behaviour for a bacterial population and it is important to establish now
which subpopulations may be subject to growth rate control.

4. Critical review of the correspondence between experiments
and models

Whereas the models presented here clearly produce dendrites of various shapes, a critical anal-
ysis of the experimental data reveals that many features cannot be explained by these models.
Moreover, as we will now discuss, these observations make itclear that an entirely new class of
models will be needed for a detailed description of swarmingin Bacillus subtilisand probably
other bacteria.

The major point concerns the mechanism of branch formation.The models (2.1), (2.2), and
(2.3), as well as most of the models found in the literature, suppose that the proliferation of the
bacteria is limited by the availability of a chemical nutrient which satisfies a diffusion equation.
In some situations described in the literature this appearsto be true, and convincing agreement
between patterns from models and experiments has been obtained [6]. This however, may be
an illusion. In all standard microbiological media, including Peptone - a so called poor medium
employed in many early swarming studies - in which indeed thegrowth rate of cells is slow because
the amino acids constituting the carbon source are not energy rich, many generations of growth
can nevertheless be supported before nutrients become limiting. For the swarming experiments
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Figure 8: An experimental swarming pattern displayed byB. subtilis168 on B-medium. Bacteria
were inoculated in the centre of the plate and incubated for 24 h. Dendrites elongate radially from
the central mother colony (approximately 3.5mm per h) and begin branching after 1.5cm. Highly
reproducible patterns are obtained, characterized by increased frequency of progressively thinner
branches. Dendrites generally appear to evade each other and rarely fuse. Side branches tend to
be biased to one side and rather frequently abort after a relatively short distance. Interestingly, this
motif, termed domain branching, is observed in mouse lung tissue [18]. Side branches frequently
commence at40 − 90o to the main branch, but then adopt a radial direction.

described in our studies (see Section 3.), certainly, nutrients do not become limiting for growth, as
shown by the continued visible increase in cell numbers for many hours after completion of the
swarming process. Similarly, swarming inProteus mirabilisis not controlled by nutrient limitation
[4, 24].

The importance of this experimental observation stems fromthe fact that gradient in nutrient
concentration is required in these models to create dendrites, since this promotes faster growth of
bacteria in the tips that have easier access to the nutrients. In the absence of nutrient limitation,
the question arises which physical or chemical effect pilots the outward migration of the bacteria
and leads to branch formation. Two different potential alternative mechanisms can be envisaged
for Bacillus subtilis.

A first hypothesis is suggested by the fact that mutants with reduced surfactin production swarm
slowly or do not exhibit swarming. Moreover, the swarming process is accompanied by spatial
gradients of surfactin concentration. Since surfactin is asurfactant, concentration gradients give
rise to Marangoni forces, which have been shown to create branching patterns in the spreading of
liquid droplets [25]. Moreover, many models to explain swarming assume that the surface of the
agar is covered by a thin liquid film [6, 2]. However, the reality is more complex since a simple
experiment shows that a droplet of pure water deposited on the surface of the agar gel does not
spread over the surface, but remains sessile [1]. This obviously implies that the surface of the
agar cannot be covered by a continuous liquid film. Nevertheless, in the presence of surfactin, a
very thin film develops in the vicinity of the deposited droplet and expands slowly (the covered
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distance is approximately∼ t0.45 [1]). While the presence of this film is necessary for swarming,
presumably because this allows the movement of the bacteria, it is unlikely to provide a mechanism
for the formation of dendrites. Indeed, the thickness of thefilm is close to that of prewetting
films and these have never been reported to lead to the formation of dendrites on a solid liquid
interface. Furthermore, the results of [1] clearly indicate that the agar surface has a quite complex
structure and that the wetting phenomena at this surface arenot well understood. Therefore, a better
understanding of these wetting properties is needed beforeincorporating them into new models,
even at a qualitative level.

A second hypothesis, which was the basis for formulating models (2.4), is that the outward
migration of the bacteria is driven by a long-range chemorepellent. Whereas, as yet, no substance
generating such a chemotactic movement of the bacteria has been identified experimentally, the
fact that dendrites avoid each other is consistent with the existence of a chemorepellent. As was
shown in Section 2., simulations of such models can indeed produce dendritic structures. However,
the mechanisms for branching and the overall growth of dendrites are quite different in the model
and in the experiments.

In particular, the models presented here, as well as most of those in the literature, introduce
two ‘states’ of the bacteria: ‘active’ cells which diffuse and reproduce, and ‘passive’ ones that do
neither move nor reproduce. As was shown in Section 2., a characteristic feature of these models
during branch formation are ‘hot spots’ of active bacteria that are located at the tips of the branches,
whereas the main parts of the branches consist exclusively of inactive bacteria. As a consequence,
the elongation of the branches takes place by cell division in the ‘hot spots’. The experimental
observations yield a quite different picture. Although thetips of the dendrites can be described
as ‘hot spots’, characterized by a higher population density of bacteria, which in addition move
much faster than the average population, the doubling time of the bacteria under the conditions
considered here is much longer than the typical time for swarming, indicating that the driving
mechanism for the swarming is cell migration and not cell division. Moreover, although not as
highly motile, the bacteria in the ‘stems’ are by no means inactive. Some cells at least appear to
perform a random-walk type motion with a global drift towards the tips that may support tip motion
since cutting the stem with an obstacle stops the swarming atthe head of the dendrite (unpublished
observations, Orsay).

These observations have major non-trivial implications for the formulation of new models.
This is related to the structure of the front of the swarm community. In the models presented here,
the diffusion coefficient of the bacteria is always positive. In the ‘hot spot’, the balance between
diffusion and cell division creates a propagating front solution that remains well localized. If the
bacteria were to remain active, as experimentally observed, behind the tips, the diffusion process
would lead to a spreading of the bacteria, and the gaps between the branches would disappear;
only the transition to an inactive state, where bacteria neither move nor divide, maintains the stems
intact. This conclusion remains valid even in models where the diffusivity of the bacteria depends
on the local bacterial population densityu and tends to zero whenu tends to zero [20].

Consequently, a model must yield stable interfaces betweenthe inside and the outside of the
colony, even if all the bacteria are active. This necessarily requires some effect which leads to a
‘cohesion’ of the colony. In the Keller-Segel model, a short-range chemoattractant leads to the
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aggregation of the bacteria, but this model yields spot patterns, whereas stripes of active bacte-
ria are unstable. This model therefore cannot describe stable branches. A class of models which
can describe stable stationary and moving fronts is known from the physical description of phase
transitions, the simplest example being the Cahn-Hilliardequation. In such models, two stable
states (corresponding to the two thermodynamic phases in contact) are connected by a stable front
solution of well-defined width. This front is maintained by the balance between a diffusion coef-
ficient which becomes negative in the front and terms containing higher-order spatial derivatives
to prevent the solution from developing singularities. While such models have numerous poten-
tially useful properties for the description of bacterial community expansion, it is difficult at the
present stage to find a well-justified equivalent to the free energy functional that underlies their
mathematical structure.

In summary, many fundamental aspects of the swarming process are not well reproduced by
the models available at present. Furthermore, as we have discussed above, some experimental ob-
servations indicate that the structure of the models has to be profoundly modified. Thus, dendrite
elongation, involving exhaustion of nutrients by active cells at the swarm front, while attractive
mathematically, appears untenable microbiologically. Onthe other hand, mathematical modelling
has clearly predicted the participation of distinctive cell types involved in swarming, active lead-
ers and passive cells forming the bulk of the dendrite. Experimental evidence from studies in
P. mirabilisand now inB. subtilis(Hamze et al submitted), with the demonstration of distinctive
cell types, swarmers and supporters, equivalent to active and passive types respectively, confirms
the reality of these predictions. In addition, modelling studies more importantly make the exciting
prediction that while active cells multiply, passive cellsdo not. Differential growth regulation of
this type would be a novel concept in the field of bacterial communities. Nevertheless such regula-
tion could explain some, so far, puzzling experimental observations. Future studies will be directed
to testing this hypothesis, in addition to other experiments clearly needed to guide further model
development. In particular, a much better understanding ofthe motion of a single bacterium and
its interplay with the community is required. This necessitates further experiments focused on the
analysis of the trajectories of single bacteria. In addition, a better understanding of the structure
of the agar surface and its consequences for the local motility of the bacteria is desirable. Finally,
models with several different population density fields of bacteria, reflecting distinct cell types,
will certainly be required to account for the full complexity of the swarming process.
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velopment of swarming communities Bacillus subtilis 168 and a natural wild type: critical
effects of surfactin and the composition of the medium. J. Bacteriol. 187 (2005), 65–74.

[11] K. Kawasaki, A. Mochizuki, M. Matsushita, T. Umeda, N. Shigesada.Modeling spatio-
temporal patterns created by Bacillus-subtilis. J. Theor. Biol. 188 (1997), 177–185.

[12] E. F. Keller, L. A. Segel.Model for chemotaxis. J. Theor. Biol., 30 (1971), 225–234.

[13] D. A. Kessler, H. Levine.Fluctuation induced diffusive instabilities. Nature, 394 (1998),
556–558.

[14] T. Kolokolnikov, M. J. Ward, J. Wei.The existence and stability of spike equilibria in the one-
dimensional Gray-Scott model: the pulse-splitting regime. Physica D, 202 (2005), 258–293.

14



A. Marrocco et al. Models of cell colonies self-organisation

[15] Y. Kozlovsky, I. Cohen, I. Golding, E. Ben-Jacob.Lubricating bacteria model for branching
growth of bacterial colony. Phys. Rev. E, Phys. plasmas fluids Relat. Interdisciplinary Topics,
50 (1999), 7025–7035.

[16] A. Marrocco.2D simulation of chemotactic bacteria aggregation. ESAIM: Math. Modelling
and Numerical Analysis, 37 (2003), 617–630.
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