
Mobility control via passports (Extended abstract)

Samuel Hym

To cite this version:

Samuel Hym. Mobility control via passports (Extended abstract). 18th International Confer-
ence on Concurrency Theory, Sep 2007, Lisbon, Portugal. Springer, 4703, pp.349–363, 2007,
<10.1007/978-3-540-74407-8 24>. <hal-00425188>

HAL Id: hal-00425188

https://hal.archives-ouvertes.fr/hal-00425188

Submitted on 20 Oct 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Hal-Diderot

https://core.ac.uk/display/47111383?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr
https://hal.archives-ouvertes.fr/hal-00425188

Mobility Control via Passports

(Extended Abstract)

Samuel Hym

PPS, Université Paris Diderot (Paris 7) & CNRS

Abstract. Dπ is a simple distributed extension of the π-calculus in
which agents are explicitly located, and may use an explicit migration
construct to move between locations.
We introduce passports to control those migrations; in order to gain ac-
cess to a location agents are now expected to show some credentials,
granted by the destination location. Passports are tied to specific loca-
tions, from which migration is permitted. We describe a type system for
these passports, which includes a novel use of dependent types, and prove
that well-typing enforces the desired behaviour in migrating processes.
Passports allow locations to control incoming processes. This induces
major modifications to the observations which can be made of agent-
based systems. Using the type system we describe these observations,
and use them to build a loyal notion of observational equivalence. Finally
we provide a complete proof technique in the form of a bisimilarity for
establishing equivalences between systems.
Key words: process calculus; control of agent migrations; distributed
computation; observational equivalence

1 Introduction

Dπ [1] is a process calculus designed to reason about distribution of computation.
It is built as a simple extension of the π-calculus in which agents are explicitly
located without nesting so that a system might look like:

l1Jc ! 〈b〉P1K | l2JP2K | (new a : E)(l3JP3K | l1Jc ? (x : T) P4K)

where the li are location names and the Pi are processes located in one of those
locations. Here, P1 and P4 are placed in the same location l1, even if they are
scattered in the term. Channels also are distributed: one channel is anchored in
exactly one location: two processes must be in the same location to communicate.
In our example, the system can evolve into

l1JP1K | l2JP2K | (new a : E)(l3JP3K | l1JP4{b/x}K)

when P1 and P4 communicate. This makes Dπ a streamlined distributed version
of the π-calculus, which allows to concentrate our attention on agent migrations.

Dπ agents can trigger their migration from their current location, say k, to
the location l via the primitive

gotop l

The p, added by the present work, is a passport which must match the actual
migration attempted, from k to l. Those passports are permits, requested when-
ever trying to enter a location and therefore allowing that location to control
which processes should be granted access.

Some other approaches to control migrations have been investigated in pro-
cess calculi. In Ambients-related calculi, the migrations are particularly hard to
control so many works tried to address this problem: in Safe Ambients ([2]),
the destination location must grant access to incoming ambients by using a co-
capability. These co-capabilities have been enriched in [3] with passwords: the
password used to migrate is syntactically checked at runtime when the migra-
tion is to be granted. This idea of passwords was pursued in the NBA calculus
([4]) which combines it with another choice to control behaviours of ambients:
communications across boundaries are allowed so that the troublesome open

primitive from the original Mobile Ambients can be removed without impeding
the expressivity of the calculus. This second approach was also used in different
hierarchical calculi like Seal [5] or Kell [6].

In non-hierarchical calculi, we have a better handle over migrating behaviours
so that more powerful techniques can be employed, for instance leveraging type
systems. The present work is inspired in that direction by [7]. In that work,
access to a location is a capability tied to that location via its type: access is
either always granted or always denied depending on the type used when the
location is generated. Of course, even when access is granted, the location name
can then be transmitted without giving access; nevertheless, this setting lacks
flexibility. In the present work, we refine that approach to be able to grant
access selectively, depending on the origin location and to authorise such access
migrations dynamically, namely after the generation of the location itself. That
is why passport names are added to the calculus to bear those authorisations.
We chose to use regular names to preserve the homogeneity of the calculus: in
particular, they can be exchanged over channels and their scopes are dealt with
in precisely the same way as any other name, including for their extrusions.
Types are then used to tie rights to the names of the passports: for instance,
the type l 7→ k is attached to some passport granting access to k from l. The
typing system will therefore have to include dependent types to describe the link
between passports and the locations they are attached to1. Fortunately, those
dependent types bring little extra complexity to the type system itself and to the
proofs of its properties, including subject reduction. What is more, this approach
to tie rights to types provides type-based tools and techniques to reason about
security properties. We also argue that relying on names to bear access rights
gives a good handle to control those rights.

Other type systems have been used to control mobility in Dπ-based calculi.
In [9], access requires the knowledge of a port which also governs subsequent re-

1 Since a passport must grant access to only one location, the one which delivered
that passport, using “groups” ([8]) to try and avoid dependent types would fall back
on defining one group per location. So it would only reduce the expressivity of the
language.

source accesses by typing the migrating processes, using for this complex process
types developed in particular in [10]. This approach is strongly constraining pro-
cesses and requires higher order actions. The present work provides a first-order
theory that aims at becoming a foundation for a fine-grained control of compa-
rable power to [9]: while the passport types developed hereafter correspond to a
simple mobility control, they should leave room to extensions to control resource
accesses.

In [11], access to locations and resources is conditioned by policies based on
the history of migrations of the agent. In the present work, the only location
of the history taken into account to grant access is the origin of the migrating
process: we will define a simple setting in which it is possible to describe “trust
sub-networks” such as an intranet. Furthermore, the origin of a process seems
easier to assert realistically than its full history. The setting we propose here
relies on a simple view of trust: when a location l expresses its trust into another
one k (through a passport valid from k), it also decides to trust k not to relay
any dangerous process from another location.

In the following, we will investigate the notion of typed observational equiv-
alence inherited from [12]. The founding intuition of observational equivalences
is to distinguish two systems only when it is possible to observe a difference be-
tween them through a series of interactions. In a typed observational equivalence
where types represents permissions, the barbs the observer is allowed to see are
conditioned by the permissions he managed to get access to. Since permissions
are represented by types, a normal type environment is used to describe the
observer’s rights.

Control of migrations has a great impact on the set of possible observations:
since all interactions are performed over located channels, permissions to access
these locations, i.e. passports, are mandatory to observe anything if the observer
abides by the rules. We will therefore introduce an intuitive typed congruence
that takes into account the migration rights of such a loyal observer. We argue
that relying on names to bear access rights also gives a clean equivalence the-
ory, in which the rights granted to the observer are easily expressed. As usual,
the closure of the equivalence over all admissible contexts makes this equiva-
lence intractable. So we will provide an alternative coinductive definition for
this equivalence as a bisimilarity based on actions which identify the possible
interactions between the system and its observer. This alternative definition re-
veals a difficulty arising from dependent types: as an artefact of dependencies,
some name scopes must be opened even when the name itself is not revealed to
the observer.

2 Typed Dπ with Passports

We present here a stripped-down version of the Dπ-calculus to focus on migration
control. A more complete description of the specificities of the calculus we use
here can be found in the long version of this work [13] or in [14]. Most of it is
inherited from previous works, like [15], so we will insist mostly on the differences.

Fig. 1 Syntax for the Dπ-calculus

M ::= Systems

lJP K Located process
M1 |M2 Parallel composition
(new a : E) M Name scope
0 Inactive system

P ::= Processes

u ! 〈V 〉P Writing on channel
u ? (X : T) P Reading on channel
if u1 = u2 then P1 else P2 Condition
gotov u. P Migration
newchan c : C in P Channel generation
newloc l, (~c), (~p), (~q) : Lwith Pl in P Location generation
newpass p from ũ⋆ in P Passport generation
P1 |P2 Parallel composition
∗P Replication
stop Termination

Processes are described using names (usually written a, b, . . ., reserving c, d
for channel names, k, l for locations and p, q for passports) and variables (usually
written x, y, . . .). When both names and variables can be used, we will talk of
identifiers and write them u, v, We will write ũ for a set of identifiers and ~u
for a tuple. We will also write ũ⋆ when either ũ or ⋆ is expected (the meaning
of ⋆ will be explained shortly). Finally, we will use capital letters when tuples
are allowed so V can represent (v1, (v2, v3), v4) or any other value, composed of
identifiers and X any pattern, composed of variables.

The syntax of Dπ is given in Figure 1. Our contributions are:

– The migration construct gotov u now mentions the passport v to get access
to the location u.

– The new construct to generate passports, newpass, provides two kinds of
origin control:

• passports that allow migration from a given set of originating locations ũ
are created by newpass p from ũ; thus a location can express its trust in
the sub-network ũ: every process using p will be granted access from any
location in ũ;

• universal passports, that allow migration from any location (for instance
when describing the behaviour of a public server accepting requests from
anywhere) are created by newpass p from ⋆.

Of course, the location a passport grants access to is the location where
the passport is generated: that is the only way to allow locations to control
incoming processes.

– The construct to generate new locations, newloc, is enriched: passports to
access the new location (child) or the location where the construct is called
(mother) can be generated on the fly. This is the only way to model all the

Fig. 2 Reduction semantics, extracts

(r-goto) lJgotop k. P K −→ kJP K

(r-newloc) lJnewloc k, (~c), (~p), (~q) :
P

x : loc. Twith Pk in P K
−→ (new

˙

k, ((~c), (~p), (~q)) : T{l/x}
¸

)(kJPkK | lJP K)

(r-newpass) lJnewpass p from k̃⋆ in P K −→ (new p : k̃⋆ 7→ l) lJP K

(r-comm) lJa ! 〈V 〉P1K | lJa ? (X : T) P2K −→ lJP1K | lJP2{V/X}K

possible situations (the child location granting access to processes from the
mother location; or vice versa; and any other variation). Indeed, if passports
to access the child were always created from inside the child itself, some
passports granting access from the child would be needed to export them. . .

Since passports allow a location to accept processes depending on their origin,
they can be delivered for specific communications, for instance the response
awaited from a server: in

clJnewpass pass from sv in

gotopsv
sv. req ! 〈(sv, cl), (quest, res,pass)〉 | . . . res ? (x) P K

the client cl generates a passport specific to the server sv before going there and
requesting some computation while waiting for the result in cl. The correspond-
ing server might look like:

svJ∗req ? ((xsv, xcl), (xquest, xres, xpass) : T) · · · gotoxpass
xcl. xres ! 〈r〉K

Let us consider now the semantics associated with the calculus: the most in-
teresting rules concerning this work are given in Figure 2 (the full set is provided
in appendix). Those rules are fairly unsurprising since passports are homoge-
neously added to the calculus. In the reduction rule for the migration (r-goto),
the passport involved is simply ignored: the verification of the passport will be
performed using types. In the two rules for generation, types are instantiated in
a similar way to what is usually done for channels: when passports are actually
generated in (r-newpass), they are tied to the location to which they will grant
access, by getting the type k̃ 7→ l (from k̃ to l).

The types we can associate with identifiers or values are summed up in Fig-
ure 3. Two major modifications are made here. Firstly, we introduce a new type
for passport: ũ 7→ v will be the type of a passport to access v from one of the
locations in ũ and ⋆ 7→ v of a universal passport to v. Secondly, we add a depen-
dent sum type for values that are transmitted over channels: since the type for
a passport mentions the names of the source and target locations, the depen-
dent sum provides a way to send those names (locations and passport), packed
together. They are also used to describe the tie between the locations and the
passports in the newloc construct. So that the system

lJnewloc k, p, q :
∑

x : loc.
∑

y : loc. x 7→ y, y 7→ xwith Pk inP K

Fig. 3 Syntax of types

E ::= Identifiers types

loc Location
r〈T1〉@u Channel in location u: right to read values of type T1

w〈T2〉@u Channel in location u: right to write values of type T2

rw〈T1, T2〉@u Intersection of the two previous types
ũ⋆ 7→ v Passport

T ::= Transmissible values types

E Identifier
(T1, . . . , Tn) Tuple
P

~x : ~loc. T Dependent sum

L ::= Types to declare locations
P

x : loc.
P

y : loc. (C1@y, . . .), (ũ⋆
1 7→ y, . . .), (ṽ⋆

1 7→ x, . . .)

reduces into

(new k : loc) (new p : l 7→ k) (new q : k 7→ l) kJPkK | lJP K

For space reasons we refer the reader to the long version [13] for the full expla-
nations of the L types, in particular their unwinding into simple types for every
identifiers, as they bring little insight on the actual passports.

Again, we provide here only a simple presentation of the set of types to focus
on passports (in particular, we got rid of the recursive types which are completely
orthogonal to passports types; see [16] for a detailed account of recursive types).
The main property of interest about passport types is subtyping: for instance,
a universal passport to access l allows to come from anywhere so should be a
subtype of any passport to l. The following inference rules sum up subtyping for
passports:

ũ′ ⊆ ũ
(sr-pass)

ũ 7→ v <: ũ′ 7→ v
(sr-pass-*) ⋆ 7→ v <: ũ⋆ 7→ v

We refer the reader to previous works (in particular [16]) for a complete presen-
tation of subtyping in Dπ. Let us simply state here that the property of partial
meets is preserved in this setting:

Theorem 1 (Partial meets). Any two types sharing a subtype have a meet.

As usual, the type system relies on type environments, written Γ,Φ, Ω, which
are lists of hypotheses, i.e. associations of types to identifiers, for instance
l : loc, k : loc, p : ⋆ 7→ k, . . . Those environments are used to prove typing
judgements like Γ ⊢ p : l 7→ k, which states that p can be used to migrate from l
to k according to Γ , or Γ ⊢l P , which states that running the process P in loca-
tion l will require at most the permissions contained in Γ . These judgments are

derived using inference rules: we give here only some rules relevant to passports.

Γ ⊢ u : w 7→ v
Γ ⊢v P

(t-goto)
Γ ⊢w gotou v. P

Γ ⊢ ũ : ˜loc
Γ ; p : ũ⋆ 7→ w ⊢w P

(t-newpass)
Γ ⊢w newpass p from ũ⋆ inP

Those rules are fairly straightforward and provide the two expected theorems
about the type system: subject reduction and type safety. Let us state here only
the important part for passports using an erroneous reduction of a system M ,
written M err−→Γ , defined by the reduction lJgotop k. P K err−→Γ in any context
whenever Γ 6⊢ p : l 7→ k. A really simple case of erroneous reduction might
look like this (this reduction is erroneous in any well-formed environment, in
particular the empty one):

(new l1, l2, l3 : loc) (new p : l1 7→ l2) l1Jgotop l3. 0K err−→∅

Theorem 2. Γ ⊢ M and M −→∗ N imply N 6err−−→Γ .

3 Loyal Observational Equivalence

The main goal of passports is to allow a location to control the processes it
accepts. Naturally, this implies that the observable behaviour of a system de-
pends on the actual authorisations the observer is granted. Let us then define
an equivalence that takes passports into account drawing inspiration from [17].

For this, we will describe explicitly the knowledge of the observer, includ-
ing his passports, using a type environment written Ω. This type environment
thus describes the observations that can be performed, in a similar way to the
knowledge-indexed relations defined in [7]. The basic observations must be inter-
actions with the studied system, i.e. communications over some channels. Since
channels are located, this will be possible only when the observer is granted
access to their location. To actually allow the system to “choose” which loca-
tions should be reachable, we decided to place the observer into a fresh location.
This implies that the only directly reachable locations are the destinations of the
universal passports in Ω. So we define barbs thus:

Definition 1 (Barbs). M shows a barb on c to Ω, written Ω✄M ⇓ c, whenever
there exist a location l and a passport p such that: Ω ⊢ p : ⋆ 7→ l; Ω ⊢ c : r〈T〉@l,

for some type T; and there exist some P , M ′ and (~a : ~E) with c, l 6∈ ~a and such

that M −→∗≡ (new~a : ~E)(M ′ | lJc ! 〈V 〉P K).

Note that the only control performed in this definition is whether the observer
is able to reach the location where the interaction takes place: since our mobility
control happens only when entering a location, it will always be possible to
report the observation in the observer’s home location.

Some observer knowing Ω will be able to distinguish two systems as soon
as they show different sets of barbs. To get an equivalence out of this simple
property, the observer is usually allowed to test the system by putting it in any
context in order to eventually obtain a distinguishing barb. In our setting, we
should consider only loyal contexts, i.e. contexts which use only rights available
to the observer: they should not try to launch code in unreachable locations
and access channels without the corresponding permissions. We formally define
a location l as reachable knowing Ω when there exist p : ⋆ 7→ l1, p1 : l1 7→ l2,
. . . , pn : ln 7→ l in Ω. We will write RΩ for the set of such reachable locations.
Then a context of the form [·] | lJP K is loyal only when l is reachable and P is
well-typed in Ω. The observer must also be loyal when introducing new names
(for instance to be used in P):

Definition 2 (Loyal extension). Γ ′ is a loyal extension of Γ when:

– Γ ;Γ ′ is a well-formed environment;

– for every u : C@w when w : loc ∈ Γ , we must have w ∈ RΓ ;

– for every u : ṽ⋆ 7→ w ∈ Γ ′ when w : loc ∈ Γ , we must have w ∈ RΓ .

Finally, we define the loyal contextuality of a relation S. writing Ω � M S N
when M and N are in S for an observer knowing Ω. For this we need to extend
subtyping to environments: we will say that Γ is a subtype of Γ ′ as soon as every
typing judgment that can be inferred in Γ ′ can also be inferred in Γ .

Definition 3 (Loyally contextual relation). A relation S is said loyally
contextual only when:

– If Ω � M S N and Ω′ is a loyal extension of Ω such that for every a : E

in Ω′, a is fresh, then Ω;Ω′
� M S N .

– If Ω � M S N , k ∈ RΩ and Ω ⊢ kJP K then Ω � M | kJP K S N | kJP K.

– If Ω; a : E � M S N and both (new a : E) M and (new a : E) N are well-typed
in some subtype environment of Ω, then Ω � (new a : E) M S (new a : E) N .

The loyal barbed congruence follows from the notion of contextuality.

Definition 4 (Loyal barbed congruence). We call loyal barbed congruence,
written ∼=l, the biggest symmetric loyally contextual relation that preserves barbs
and is closed over reductions.

The contexts considered in this congruence can launch processes in every reach-
able location (to allow more contexts to be used) while barbs can only be ob-
served in directly reachable (to get the simplest notion of observations). Note
though that the congruence obtained does not depend on this choice because it
is closed: it is simple to see that reachable barbs or directly reachable contexts
would end up defining the same equivalence.

Fig. 4 Labelled transition system, most significant rules

(lts-goto) Ω ✄ lJgotop k. P K τ−→ Ω ✄ kJP K

l ∈ RΩ Ω ⊢l a : r〈T〉 where T = Ωr(a)
(lts-w)

Ω ✄ lJa ! 〈V 〉P K a!V−−→ Ω,〈V : T〉 ✄ lJP K

l ∈ RΩ Ω ⊢l a : w〈T′〉 Ω ⊢l V : T′

(lts-r)

Ω ✄ lJa ? (X : T) P K a?V−−→ Ω ✄ lJP{V/X}K

ΩM ✄ M (Φ)a!V−−−−→ Ω′

M ✄ M ′

ΩN ✄ N (Φ)a?V−−−−→ Ω′

N ✄ N ′

(lts-comm)

Ω ✄ M |N τ−→ Ω ✄ (new Φ) M ′ |N ′

Ω ✄ N |M τ−→ Ω ✄ (new Φ) N ′ |M ′

Ω ✄ M (Φ)a!V−−−−→ Ω′
✄ M ′

(lts-open)
b 6= a
b ∈ fn(V) ∪ fn(Φ)Ω ✄ (new b : E) M (b:E;Φ)a!V−−−−−−→ Ω′

✄ M ′

Ω; Ωe ✄ M (Φ)a?V−−−−→ Ω′
✄ M ′

(lts-weak)
dom(Ωe) ∩ ({a} ∪ fn(M)) = ∅
Ωe is a loyal extension of ΩΩ ✄ M (Ωe;Φ)a?V−−−−−−−→ Ω′

✄ M ′

4 Loyal Bisimilarity

The definition given for the loyal barbed congruence is justified by intuitions
but it is highly intractable: every proof of equivalence indeed requires a quan-
tification over all contexts. So we also propose a complete proof technique for
this equivalence: a bisimilarity. The idea of the bisimilarity is to provide an al-
ternative but equivalent definition of the semantics using a Labelled Transition
System (LTS) where the labels represent the possible interactions between the
system and its environment. Then two systems can be distinguished if, after
some preliminary interactions, one can perform a transition the other cannot.

The way the LTS is built is completely standard (see [1]): we associate the
label τ to every internal reduction a system can perform, to indicate that the
environment is not involved. The rule for migration (lts-goto) is an exam-
ple of this. Note that, since the interactions we are characterising are between
some system M and an observer knowing Ω, we define transitions of configura-
tions of the form Ω ✄ M . Also note that the knowledge of the observer is left
untouched in a τ transition since it is not interacting with the system. In this
extended abstract, we present in Figure 4 only the most significant rules, namely
the rules where a message is exchanged with the environment and the rule for
communication. The omitted rules are:

– the two natural contextual rules (for contexts of the forms (new a : E)[·]
and [·] |M);

– and some τ transitions that can be directly derived from the reduction se-
mantics, the way (lts-goto) is obtained from (r-goto).

Let us explain (lts-w). The conditions of this rule are similar to the ones
for barbs. Indeed an observer knowing Ω will be able to interact with a system
outputting a message V on a channel a in a location l only when l is reachable
(l ∈ RΩ) and when the observer can input on that channel (Ω ⊢l a : r〈T〉).
The knowledge of the observer will consequently be enriched by the message:
Ω becomes Ω,〈V : T〉 along that transition. In this expression, the type T indi-
cates all the rights the observer learns, calculated using the meet of the types
associated with the channel. Suppose for instance that the meet of all the types
associated with a in Ω is rw〈T1,T2〉@l; then T1 sums up all the rights that can
be obtained by inputting on a. We denote that type T1 as Ωr(a) in (lts-w).

With those transitions, we would like to define an equivalence R as a standard
bisimulation: when Ω � M R N and Ω ✄ M µ−→ Ω′

✄ M ′ then there must exist
some N ′ such that Ω ✄ N τ−→∗ µ̂−→ τ−→∗ Ω′

✄ N ′ and Ω′
� M ′ R N ′. But this

definition cannot be used right away in our case, because of dependent types. Let
us consider a case where the discrepancy appears. Suppose some channel c in l on
which a passport can be transmitted (so c is of type rw〈

∑
x, y : ~loc. x 7→ y〉@l)

and consider the following two systems:

(new k′ : loc) (new p : k, k′ 7→ l) lJc ! 〈(k, l), (p)〉 d ! 〈k′〉K (1)

(new k′ : loc) (new p : k 7→ l) lJc ! 〈(k, l), (p)〉 d ! 〈k′〉K (2)

The only difference is the fact that the passport p can be used also from the new
location k′ in the first system. Since the observer receives p at the type k 7→ l in
both cases, it should not be able to make the difference. But they can perform
the following transitions with distinct labels (for simplicity, we ignore the type
annotations in the labels):

Ω ✄ (1) (k′,p)c!((k,l),(p))−−−−−−−−−−→ Ω, p : k 7→ l ✄ lJd ! 〈k′〉K
d!k′

−−→ Ω, p : k 7→ l, k′ : loc ✄ lJstopK
Ω ✄ (2) (p)c!((k,l),(p))−−−−−−−−−→ Ω, p : k 7→ l ✄ (new k′ : loc) lJd ! 〈k′〉K

(k′)d!k′

−−−−→ Ω, p : k 7→ l, k′ : loc ✄ lJstopK

namely not opening the scope of k′ in the same transition. To avoid this problem,
we annotate configurations with a set of names whose scopes have been opened
because of type dependencies, not because they were revealed. The labels are
modified accordingly to mention only the names that are actually revealed.

Definition 5 (Actions). The annotated configuration Ω ✄ã M can perform
the action µ and become Ω′

✄ã′ M ′ when:

– if µ is τ or (Φ)a?V : the transition Ω ✄ M µ−→ Ω′
✄ M ′ is provable in the

LTS and ã = ã′;
– if µ is (b̃)a!V : the transition Ω ✄ M (Φ)a!V−−−−→Ω′

✄ M ′ is provable in the LTS,
b̃ = fn(V) ∩ (dom(Φ) ∪ ã) and ã′ = (dom(Φ) ∪ ã) \ fn(V).

So, using an empty set as annotation, the first transition of the first system
becomes:

Ω ✄∅ (new k′ : loc) (new p : k, k′ 7→ l) lJc ! 〈(k, l), (p)〉 d ! 〈k′〉K
(p)c!((k,l),(p))−−−−−−−−−→ Ω, p : k 7→ l ✄k′ lJd ! 〈k′〉K

Definition 6 (Loyal bisimilarity). The loyal bisimilarity, written ≈al, is the
largest bisimulation defined in the standard way over actions of annotated con-
figurations.

The rest of this section is devoted to the proof that the two equivalences co-
incide under some conditions to justify that the bisimilarity has been introduced
as a proof technique. The proof of that property is significantly more complex
than its equivalent in the literature: the control of migrations hinders tracking
the knowledge of the observer (apart from the passports, note that we must keep
track of annotations because they hide some names from the observer). We will
describe here only the most interesting aspects of the proof; more details are
provided in [13], the proof is fully developed in [14].

The first step to bridge the gap between the loyal barbed congruence and
the loyal bisimilarity is to account for annotations in configurations. This can
be done by simply defining annotated typed relations, written

Ω � M ãM
S ãN

N

and adapting the notion of contextuality to those relations. It is quite easy to
see that the annotated loyal barbed congruence which ensues coincides with ∼=l

when its annotations are the empty sets of names.
The expected result then amounts to proving that the loyal bisimilarity and

the annotated loyal barbed congruence coincide. The proof that the bisimilarity
is included in the barbed congruence is mainly the proof of the fact that the
bisimilarity is contextual. This is naturally done by checking all three items
defining contextuality, the major property to check being:

Theorem 3 (Bisimilarity is closed on parallel contexts). Ω � M ãM
≈al

ãN

N , l ∈ RΩ, Ω ⊢ lJOK and fn(O) ∩ (ãM ∪ ãN) = ∅ imply Ω � M | lJOK ãM
≈al

ãN

N | lJOK.

Idea of proof. To get this result we simply build a relation and prove that it is
a bisimulation which induces the fact that it is included in the biggest bisimula-
tion, ≈al. Because that relation must be closed on reductions, we will consider
a relation S in which systems have a very general form:

Ω � (new ΦM)(M |
∏

i

liJOiK) ãM
S ãN

(new ΦN)(N |
∏

i

liJOiK)

The main difficulty to tackle is the fact that, along reductions, the knowledge of
the observer, initially completely located in Ω (because lJOK is well-typed in Ω),
is split between Ω and

∏
i liJOiK. In particular, a part of the environments Φ and

annotations ã should be included in the general knowledge of the observer since
they might have been communicated to the processes Oi. A precise account of
this knowledge must be kept to preserve the full-strength of the initial hypothesis
of bisimilarity between M and N . In particular, M and N must be bisimilar for
an observer having access to all the locations li since it has some processes Oi

running there. ⊓⊔

Let us now consider the converse, namely the fact that the congruence is
included in the bisimilarity. The guiding idea of the definition of the actions
was to identify all the possible interactions between a system and its observer.
So the proof of that inclusion can be based on the definition of contexts that
characterise a given action of the system. Those contexts use the fact that we
can put any environment Γ in a normal form looking like:

w1 : loc, . . . , wm : loc,
u1 : w̃i1 7→ wi1 , . . . , un : w̃in

7→ win
,

v1 : C1@wj1 , . . . , vo : Co@wjo

where

– the wk are all distinct;
– uk = uk′ only if k = k′ or if wik

6= wi
k′

;
– vk = vk′ only if k = k′ or if wjk

6= wj
k′

.

So this normal form has the following structure: all the locations are defined first
because types can depend only on location identifiers so that all the locations
can be listed first; and every identifier is attributed exactly one type per location
identifier to which it is attached2. The existence of such a normal form follows
from the property of partial meets (Theorem 1) which ensures that all the types
associated with a given identifier sum up to their meet.

This normal form of environments is relevant for the contexts that char-
acterise the actions of a system because they provide a way to encode every
environment into a value of the calculus.

Definition 7 (Reification of environments). To an environment Γ of the
following (normal) form

w1 : loc, . . . , wm : loc,
u1 : w̃i1 7→ wi1 , . . . , un : w̃in

7→ win
,

v1 : C1@wj1 , . . . , vo : Co@wjo

we associate the value VΓ and the type TΓ such that:

VΓ = ((w1, . . . , wm), (u1, . . . , un, v1, . . . , vo))
TΓ =

∑
x1, . . . , xm : ˜loc. x̃⋆

i1
7→ xi1 , . . . , x̃

⋆
in

7→ xin
,C1@xj1 , . . . ,Co@xjo

Proposition 1 (Soundness of the reification). For any well-formed envi-
ronment Γ and any location w defined in Γ , Γ ⊢w VΓ : TΓ .

Thanks to this reification of environments, we can proceed as usual, namely
we can define some system C

Ω
N ((b̃)c!U) so that M |CΩ

N ((b̃)c!U) will be sending
the value VΩ,〈U :Ωr(c)〉 on some specific channel ω if and only if the system M has

actually sent the message U over the channel c to C
Ω
N ((b̃)c!U). So such a context

2 When typechecking processes, a given channel or passport can be attached to more
than one location variable.

would be of the form lJOK where l is the location of the channel c in which the
action takes place. Note that the observer can launch some process in l since the
action (b̃)c!U is visible to the observer Ω: by rule (lts-w) this implies that l is
in RΩ . Then O performs the following steps.

1. It waits for a message on the channel c and, in parallel, exhibit a barb on
some special channel δ.

2. It checks that the received value matches the expected U : this relies on the
possibility to test the equality and inequality of names; in particular, to
check that the names in b̃ are indeed fresh, the context is parameterised
with a finite set of existing names N which contains all the names that are
known to the observer. This test matches exactly the definition of the set b̃
in output actions: this set contains only the names which were hidden within
the system or the annotation and which are revealed to the observer.

3. It finally cancels the barb on δ and outputs the value VΩ,〈U :Ωr(c)〉 on the
channel ω.

The channel δ used in the context serves only one purpose: to check that the
step 2 has actually been performed: since the detected barbs always allow some
preliminary τ transitions, the barb on ω is visible since the very beginning as
soon as the system can perform the action.

By a very similar technique, it is possible to form contexts that characterise
an input action, so that the following theorem can be proved:

Theorem 4. The loyal annotated barbed congruence is included in the loyal
bisimilarity.

Idea of proof. We simply prove that ∼=p, the biggest annotated relation verify-
ing the conditions of the loyal annotated barbed congruence apart from closure
over (new a : E)[·] contexts, is a bisimulation. For this consider Ω � M ãM

∼=p
ãN

N .
When the configuration Ω ✄ãM

M performs a τ action to Ω ✄ãM
M ′, the

closure of ∼=p on reductions gives a N ′ such that Ω � M ′
ãM

∼=p
ãN

N ′.
For the action Ω ✄ãM

M α−→Ω′
✄ã′

M
M ′, we know that M |CΩ

N (α) can reduce
into some system (new ΦM) M ′ |λJω ! 〈VΩ′〉K. By contextuality and closure on
reductions, N |CΩ

N (α) should reach an equivalent state, with a barb on ω and
no barb on δ. By definition of the context C

Ω
N (α), that equivalent state must be

of the form (new ΦN) N ′ |λJω ! 〈VΩ′〉K with Ω ✄ãN
N α=⇒ Ω′

✄ã′

N
N ′.

A fairly standard scope extrusion lemma (see for instance [1]) bridges the
last gap by concluding Ω′

� M ′
ã′

M

∼=p
ã′

N
N ′ from

λ, ω, π � (new ΦM) M ′ |λJω ! 〈VΩ′〉K ã′

M

∼=p
ã′

N
(new ΦN) N ′ |λJω ! 〈VΩ′〉K

where: π is a universal passport to λ, ã′
M is (ãM ∪ dom(ΦM)) \ dom(Ω) and a

similar formula for ã′
N . ⊓⊔

The results stated above directly entails the expected result:

Theorem 5 (Full abstraction of ≈al for ∼=l). Ω � M ∼=l N if and only if
Ω � M ∅≈

al
∅ N

5 Conclusion & Perspectives

This work presents a new approach to control the migrations of agents in the
context of distributed computation, using simple passports that should corre-
spond to the origin location of the migrating agent. We have developed the full
theory of this idea, with a loyal barbed congruence that takes those passports
into account to distinguish between systems. We have also provided a complete
proof technique for this equivalence as a bisimilarity.

This work provides a solid ground on which to investigate subtler notions of
security like the ones presented in [9] and [18]. We already started to study more
complex passports in which resources that can be accessed after the migration
depend on the passport actually used: when a new passport is generated, its
type also embed all the rights to be granted to incoming processes.

It would also be interesting to refine passports to stricter notions of trust,
where other locations are prevented from relaying processes for instance.

Acknowledgement The author would like to thank Matthew Hennessy for nu-
merous helpful discussions and comments.

References

1. Hennessy, M.: A Distributed Pi-calculus. Cambridge University Press (2007)
2. Levi, F., Sangiorgi, D.: Controlling interference in ambients. In: 27th Annual Sym-

posium on Principles of Programming Languages (POPL) (Boston, MA), ACM
(January 2000) 352–364

3. Merro, M., Hennessy, M.: A bisimulation-based semantic theory of Safe Ambients.
ACM Transactions on Programming Languages and Systems 28(2) (March 2006)
290–330

4. Bugliesi, M., Crafa, S., Merro, M., Sassone, V.: Communication interference in
mobile boxed ambients. In Agrawal, M., Seth, A., eds.: FSTTCS. Volume 2556 of
Lecture Notes in Computer Science., Springer (2002) 71–84

5. Castagna, G., Nardelli, F.Z.: The Seal calculus revisited: Contextual equivalence
and bisimilarity. In Agrawal, M., Seth, A., eds.: FSTTCS. Volume 2556 of Lecture
Notes in Computer Science., Springer (2002) 85–96

6. Schmitt, A., Stefani, J.B.: The Kell calculus: A family of higher-order distributed
process calculi. In Priami, C., Quaglia, P., eds.: Global Computing. Volume 3267
of Lecture Notes in Computer Science., Springer (2004) 146–178

7. Hennessy, M., Merro, M., Rathke, J.: Towards a behavioural theory of access and
mobility control in distributed systems. Theoretical Computer Science 322 (2003)
615–669

8. Cardelli, L., Ghelli, G., Gordon, A.D.: Ambient groups and mobility types. In
van Leeuwen, J., Watanabe, O., Hagiya, M., Mosses, P.D., Ito, T., eds.: IFIP TCS.
Volume 1872 of Lecture Notes in Computer Science., Springer (2000) 333–347

9. Hennessy, M., Rathke, J., Yoshida, N.: SafeDpi: a language for controlling mobile
code. Acta Informatica 42(4-5) (2005) 227–290

10. Yoshida, N.: Channel dependent types for higher-order mobile processes (Septem-
ber 2004)

11. Martins, F., Vasconcelos, V.T.: History-based access control for distributed pro-
cesses. In: TGC. (2005) 98–115

12. Boreale, M., Sangiorgi, D.: Bisimulation in name-passing calculi without matching.
In: Thirteenth Annual Symposium on Logic in Computer Science (LICS) (Indiana),
IEEE, Computer Society Press (July 1998)

13. Hym, S.: Mobility control via passports (2007) Preprint. Available on https:

//hal.archives-ouvertes.fr/hal-00140527 and on http://www.pps.jussieu.

fr/∼hym/r/.
14. Hym, S.: Typage et contrôle de la mobilité. PhD thesis, Université Paris Diderot

– Paris 7 (December 2006)
15. Hennessy, M., Riely, J.: Resource access control in systems of mobile agents.

Information and Computation 173 (2002) 82–120
16. Hym, S., Hennessy, M.: Adding recursion to Dpi. Theoretical Computer Science

373(3) (April 2007) 182–212
17. Milner, R., Sangiorgi, D.: Barbed bisimulation. In Kuich, W., ed.: 19th ICALP.

Volume 623 of Lecture Notes in Computer Science., Springer-Verlag (1992) 685–695
18. Crary, K., Harper, R., Pfenning, F., Pierce, B.C., Weirich, S., Zdancewic, S.: Man-

ifest security for distributed information. White paper (March 2006)

A Reduction Semantics

Fig. 5 Reduction semantics

(r-goto) lJgotop k. P K −→ kJP K

(r-newloc) lJnewloc k, (~c), (~p), (~q) :
P

x : loc. Twith Pk in P K
−→ (new

˙

k, ((~c), (~p), (~q)) : T{l/x}
¸

)(kJPkK | lJP K)

(r-newpass) lJnewpass p from k̃⋆ in P K −→ (new p : k̃⋆ 7→ l) lJP K

(r-comm) lJa ! 〈V 〉P1K | lJa ? (X : T) P2K −→ lJP1K | lJP2{V/X}K

(r-if-v) lJif a = a then P1 else P2K −→ lJP1K

(r-if-f) lJif a1 = a2 then P1 else P2K −→ lJP2K when a1 6= a2

(r-newchan) lJnewchan c : C in P K −→ (new c : C@l) lJP K

(r-split) lJP1 |P2K −→ lJP1K | lJP2K

(r-rep) lJ∗P K −→ lJP K | lJ∗P K

M1 −→ M ′

1
(r-c-par)

M1 |M2 −→ M ′

1 |M2

M1 −→ M ′

1
(r-c-new)

(new a : E) M1 −→ (new a : E) M ′

1

M1 ≡ M2 −→ M ′

2 ≡ M ′

1
(r-struct)

M1 −→ M ′

1

https://hal.archives-ouvertes.fr/hal-00140527
https://hal.archives-ouvertes.fr/hal-00140527
http://www.pps.jussieu.fr/~hym/r/
http://www.pps.jussieu.fr/~hym/r/

	Mobility Control via Passports
	Samuel Hym

