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A MASS FOR ASYMPTOTICALLY COMPLEX HYPERBOLIC

MANIFOLDS.

Abstract. We prove a positive mass theorem for complete Kähler manifolds that
are asymptotic to the complex hyperbolic space.
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Introduction

The aim of this paper is to provide a positive mass theorem in the realm of asymptot-
ically complex hyperbolic Kähler manifolds, extending previous results by M. Herzlich
[Her] and Boualem-Herzlich [BH]. Before explaining them, let us recall the history of
the subject.

The classical positive mass theorem finds its roots in general relativity [ADM] and
deals with asymptotically Euclidean manifolds, namely complete Riemannian manifolds
(Mn, g) whose geometry at infinity tends to that of the flat Euclidean space : M is
diffeomorphic to R

n outside a compact set and g goes to gRn at infinity. Under a
nonnegativity assumption on the curvature (Scalg ≥ 0), the positive mass theorem
roughly asserts that such manifolds possess a global Riemannian invariant, which is
called a mass, which is obtained by computing the limit of integrals over larger and
larger spheres, which is a non-negative number and which vanishes only when the
manifold is isometric to the model flat space. This “Euclidean mass” is given in some
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2 A MASS FOR ASYMPTOTICALLY COMPLEX HYPERBOLIC MANIFOLDS.

chart at infinity by

(1) µg = −1

4
lim

R−→∞

∫

SR

∗ (div g + dTr g) ,

where the sphere, Hodge star, the divergence and the trace are defined with respect to
the Euclidean metric gRn at infinity. It is not obvious that this quantity depends only on
g and not on the chart but [Bart] proved it. We refer to [SY1, SY2, Wit, Bart, LP] for
details and “classical” proofs and to [Loh] for a more recent and more general treatment.
The mathematical interest of such a theorem is the rigidity result it involves: under
a nonnegativity assumption on the curvature, it asserts a model metric at infinity
(the Euclidean metric, here) cannot be approached at any rate, the obstruction being
precisely the mass. Another striking feature of this theorem is its role as a key step in
the first proof of the Yamabe theorem [LP] ; see also [ST] for a nice application of the
positive mass theorem to obtain a rigidity result for compact manifolds with boundary.

It is possible to extend these ideas behind this theorem in several contexts, involving
different models at infinity. The authors of [MO, AD, CH] studied the case of manifolds
whose model at infinity is the real hyperbolic space RHn. More sophisticated models
are also considered in [Dai, Min]. The notion of real hyperbolic mass introduced in
[CH] is at the very root of our work so we need to explain what it looks like (note it
is more general than what follows). Basically, while the Euclidean mass (1) is a single
number, the real hyperbolic mass appears naturally as a linear functional on some finite
dimensional vector space N , attached to the model at infinity, RHn. More precisely,
[CH] defines N as the set of functions u on RHn such that HessRHn u = ugRHn and
the mass linear functional is given by
(2)

µg(u) = −1

4
lim

R−→∞

∫

SR

∗ [(div g + dTr g) u− Tr(g − gRHn)du+ (g − gRHn)(grad u, .)] ,

where the right-hand side is computed with respect to the real hyperbolic metric gRHn

at infinity. It turns out that N can be interpreted as the set of parallel sections for
some natural vector bundle E , endowed with a natural connection ∇RH preserving a
natural Lorentz metric h : if you see RHn as a hypersurface in Minkowski space R

n,1,
then (E , h) is simply the restriction of the tangent bundle TR

n,1 and ∇RH is induced by
the flat connection on Minkowki space ; from this point of view, N identifies naturally
with R

n,1. We will give more details on this picture in the first section of this text
and explain why it is natural that the mass belongs to the dual of this space N and
why the formula above is a relevant geometric invariant. The basic idea is that any
Riemannian manifold carries a natural connection ∇RH that is flat iff the manifold is
(locally) hyperbolic ; the mass appears naturally as an obstruction to the construction
of parallel sections for this connection.

The model at infinity we wish to consider is the complex hyperbolic space CHm,
which is a counterpart of the real hyperbolic space RHn in complex geometry. Up to
scale, it is indeed the unique simply-connected complete Kähler manifold with constant
holomorphic sectional curvature. To be concrete, let us recall that CHm can be seen
as the unit ball in C

m, endowed with its standard complex structure J and with the
Kähler metric

gCHm = gCHm =
1

(1 − s2)2
(

ds2 + (Jds)2 + s2(1 − s2)gFS
)

,



A MASS FOR ASYMPTOTICALLY COMPLEX HYPERBOLIC MANIFOLDS. 3

where s is the radial coordinate in C
m and gFS is the Fubini-Study metric of CPm−1,

pulled-back to C
m\{0}. Setting s = tanh r, we obtain CHm as the complex manifold

C
m endowed with

gCHm = dr2 + (sinh 2r)2η2 + (sinh r)2gFS

where η = − Jdr
sinh 2r is the standard contact form on S

2m−1. This is an Einstein metric
with scalar curvature −4m(m + 1) – the holomorphic sectional curvature is −4. The
most useful description of CHm for us is yet another one. Let C

m,1 denote the vector
space C

m+1 endowed with a Hermitian form h of (complex) signature (m, 1). Then the
level set h = −1 in C

m,1, endowed with the induced metric, is a well-known Lorentz
manifold, called Anti-de-Sitter space AdS2m,1. The quotient of AdS2m,1 by the scalar
action of S

1 is then a Riemannian manifold and it is precisely CHm.
In this paper, we define asymptotically complex hyperbolic manifolds as complete

Kähler manifolds (M2m, g, J) such that:

(i) M minus a compact subset is biholomorphic to CHm minus a ball and,
(ii) through this identification, g − gCHm = O(e−ar) with a > m+ 1

2 (in C1,α).

Note the definition in [Her], while apparently weaker, is indeed equivalent (cf. the
remark after Definition 3.1). The papers [Her, BH] prove rigidity results about asymp-
totically complex hyperbolic manifolds that look like the rigidity part (the vanishing
mass part) of a positive mass theorem. What is the mass in this setting ?

In complete analogy with the real hyperbolic case, we will see the mass as a linear
functional on some natural finite-dimensional vector space N attached to the model at
infinity, CHm. This vector space N is best described as a set of parallel sections for
some natural connection ∇CH on some natural vector bundle E over CHm. The vector
bundle E is indeed Λ2

JCHm ⊕ TCHm ⊕ R and the relevant connection comes from the
flat connection on C

m,1. Details will be given in the text. To keep this introduction
short, let us just point out that N identifies naturally to the vector space Λ2

JC
m,1 of

J-invariant 2-forms on C
m,1 and also admits a description as the set of functions u

satisfying a natural third-order equation. Then we define the complex hyperbolic mass
by

(3) µg(u) = −1

4
lim

R−→∞

∫

SR

∗
[

(div g + dTr g) u− 1

2
Tr(g − gCHm)du

]

,

where everything on the right-hand side is computed with respect to the complex
hyperbolic metric gCHm at infinity. The following positive mass theorem holds in this
context.

Theorem 0.1 — Let (M,g, J) be a spin asymptotically complex hyperbolic manifold
with Scalg ≥ ScalgCHm . When the complex dimension of M is even, we also assume that
M is contractible. Then µg is a well defined linear functional, up to an automorphism
of the model. It vanishes if and only if (M,g, J) is the complex hyperbolic space.

The mass also satisfies a nonnegativity property : it takes non-negative values on
some distinguished orbits of the action of PU(m, 1). Under these assumptions, the mass
may very well take infinite values : we then decide that is infinite and the finiteness
of the mass does not depend on the choice of the chart at infinity. A simple criterion
for the mass to be finite is that the rate of fall-off to the model metric at infinity be
sufficiently fast : a ≥ 2m + 1. A consequence of the positive mass theorem is that if
a > 2m + 1, then (M,g, J) is complex hyperbolic ; it is the object of [Her, BH]. Our
viewpoint yields a different proof, maybe more direct.
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The spin assumption is classical : we need spinors to implement Witten’s techniques
[Wit]. The additional topological assumption in the even dimensional case is quite
technical but could be weakened ; we refer to the text for a more precise statement.
This assumption was already used in [BH]. Basically, Witten’s techniques require some
“special” spinors to exist on the model. Complex hyperbolic spaces of odd dimension
possess such distinguished spinors, called Kählerian Killing spinors. Such spinors do
not exist in the even dimensional case, so we need an extra trick. This has a cost : an
additional assumption.

Let us make a general remark. The previous positive mass theorems were very
related to – if not completely immersed into – physical ideas. The asymptotically
complex hyperbolic realm does not share this feature (yet). We feel it is all the more
interesting to observe that the very physical idea of a positive mass theorem carries over
to purely mathematical settings. It might indicate that there is a general mechanism,
waiting for new applications.

The structure of the paper is as follows. In a first section, we will discuss the real
hyperbolic case and explain how the introduction of a natural hyperbolic connection
gives a slightly different proof of the hyperbolic positive mass theorem in [CH]. This
case will also serve as a helpful guide for the complex case. In a second section, we
will introduce the complex hyperbolic connection and describe its basic features and in
particular how it interacts with the so-called Kählerian Killing spinors. A third section
is devoted to the proof of the complex hyperbolic positive mass theorem in odd complex
dimensions. A short fourth section will describe how to extend these arguments to the
even dimensions. Finally, an appendix describes an example.

Acknowledgements. The authors would like to thank Marc Herzlich for bringing the
problem to their attention, but also Olivier Biquard, Elisha Falbel and Paul Gauduchon
for useful discussions.

1. The real hyperbolic case.

In this section, we briefly review some aspects of [CH]. The result mentioned here
is not new, but we feel that the reformulation we propose might be useful. It is indeed
quite simple and turns out to generalize to the complex hyperbolic setting. The basic
question we address is the following : given a Riemannian manifold that looks like the
hyperbolic space, how can one ensure that it is actually the hyperbolic space ? The
approach suggested here consists in finding a connection characterizing the hyperbolic
space, in that it is flat only on a (locally) hyperbolic manifold, and then try to build
parallel sections for this connection.

Let us start with a Riemannian manifold (Mn, g). We consider the vector bundle
E = T ∗M ⊕ R obtained as the sum of the cotangent bundle and of the trivial real line
bundle. It can be endowed with a natural Lorentz metric h : for α ∈ T ∗

xM and u ∈ R,
we set

h(α, u) = |α|2g − u2.

We will say that an element (α, u) of E is future light-like if h(α, u) = 0 and u > 0. We
then define a connection ∇RH on E : if (α, u) is a section of E and X a vector field on
M ,

∇RH
X

(

α
u

)

:=

(

∇g
Xα− ug(X, .)
dXu− α(X)

)

.

This connection is metric with respect to h. Moreover, an easy computation shows
that its curvature vanishes if and only if g has sectional curvature −1, which is why
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we call this connection hyperbolic. In case (M,g) is (RHn, gRHn), this construction is
clear : RHn is embedded into Minkowski space R

n,1 as the hypersurface

{

x ∈ R
n+1 / x2

1 + · · · + x2
n − x2

n+1 = −1 and xn+1 > 0
}

;

then E = ERHn identifies with TR
n,1|RHn , h is induced by the Minkowski metric and

∇RH by the flat Minkowski connection.

Remark 1. Note that this construction admits an obvious spherical analogue. On the
same vector bundle, one can consider the obvious positive definite metric and change a
sign in the formula for the connection to make it metric, which results in a spherical
connection : it is flat if and only if (M,g) is locally isometric to the sphere with constant
sectional curvature +1.

Observe also that a section (α, u) of E is parallel for this connection if and only if
α = du and Hessg u = ug. We call N the space of parallel sections for ∇RH and N+

the subset of future light-like elements of N . Observe that in the model case, NRHn

identifies with R
n,1 and N+

RHn is simply the future isotropic half-cone.

Remark 2. The spherical analogue yields the equation Hessg u = −ug, which is called
Obata equation and has been much studied ([Oba, Gal]), in relation with the bottom
of the spectrum of Riemannian manifolds with Ric ≥ RicSn. Obata equation admits a
non-trivial solution only on the standard sphere.

We are interested in trying to produce parallel sections of E . To do this, we follow
an indirect path, assuming M to be spin and looking at a related spinorial connection.
An imaginary Killing spinor ψ on a spin Riemannian manifold (M,g) is a section of
the spinor bundle such that

∇gψ +
i

2
ψ = 0.

The space of Killing spinors is denoted by K. The following crucial observation follows
from a straightforward computation :

(4) ∇gψ +
i

2
ψ = 0 ⇒ ∇RH

(

d |ψ|2g
|ψ|2g

)

= 0.

In other words, we obtain a map Q : K −→ N by setting Q(ψ) = (d |ψ|2 , |ψ|2).
To understand the relevance of imaginary Killing spinors, we must describe them on

the model RHn : basically, they are induced by the constant spinors of R
n,1 and they

trivialize the spinor bundle of RHn [CH]. Using explicit formulas (cf. [CH]), one can
see that N+

RHn lies inside QRHn(KRHn) ; indeed, it is sufficient to prove that one of the

Killing spinors is mapped into N+
RHn and then use the equivariance of Q with respect

to the natural actions of O+(n, 1), together with the transitivity of O+(n, 1) on N+
RHn .

Now assume the complete Riemannian manifold (M,g) is asymptotically hyperbolic
in the following sense : M minus a compact is diffeomorphic to RHn minus a ball
and, through this diffeomorphism, g = gRHn + O(e−ar) with a > n+1

2 in C1,α (r is the
distance to some point in RHn). We further assume that the scalar curvature Scalg
of (M,g) is greater than or equal to ScalgRHn . Then [CH] proves that for any Killing

spinor ψ on RHn, one can find a unique spinor ψ̃ that is asymptotic to ψ and harmonic
for some natural Dirac operator. A Witten’s like argument, based on Lichnerowitz
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formula, then leads to

(5)

∫

M

(

∣

∣

∣

∣

∇gψ̃ +
i

2
ψ̃

∣

∣

∣

∣

2

+
1

4
(Scalg − ScalgRHn )

∣

∣

∣ψ̃
∣

∣

∣

2
)

= lim
R→∞

∫

SR

. . .

The right hand side can be computed explicitly : it is

µg (QRHn(ψ)) = −1

4
lim

R−→∞

∫

SR

∗
[

(div g + dTr g) |ψ|2

−Tr(g − gRHn)du+ (g − gRHn)(d |ψ|2 , .)
]

,

where the sphere, the Hodge star, the divergence, the trace and the identification
between vectors and forms on the right-hand side are taken with respect to gRHn .
Since N+

RHn ⊂ QRHn(KRHn), it follows that µ yields a linear functional on the linear

span of N+
RHn , namely on NRHn ∼= R

n,1. In view of (5), it is clearly non-negative on

N+
RHn . Besides, if µ vanishes, the left-hand side of (5) is zero, so that every ψ̃ is a

Killing spinor on (M,g) ; then, in view of (4), for any element σ = QRHn(ψ) of N+
RHn ,

there is an element σ̃ = Qg(ψ̃) of Ng that is asymptotic to σ. As a consequence, Ng

has maximal dimension, which implies that (M,g) is (locally) hyperbolic. In view of
its asymptotic, it is bound to be RHn.

Theorem 1.1 ([CH]) — Let (Mn, g) be an asymptotically hyperbolic spin manifold,
with Scalg ≥ ScalgRHn . Then the linear functional µg on NRHn introduced above is well-
defined up to an automorphism of RHn, it is non-negative on N+

RHn and it vanishes iff
(Mn, g) is isometric to RHn.

The fact that the orbit of µg under the action of O+(n, 1) does not depend on the
chart at infinity is not obvious but is proved in [CH]. Under our assumptions, µg may
take infinite values (i.e. formula (5) may be +∞ for some ψ) and this does not depend
on the chart at infinity, so we actually obtain an element of (NRHn)∗/O+(n, 1) ∪ {∞}.
Remark 3. The standard positive mass theorem, about asymptotically Euclidean met-
rics, can be thought of in a similar way. Let M be a spin asymptotically Euclidean
manifold with non-negative scalar curvature. Witten’s trick consists in trying to build
parallel spinors ψ̃ on M that are asymptotic to the constant spinors ψ of the Euclidean
space R

n. Now every constant one-form on R
n can be written as X 7→ i(X · ψ,ψ).

So the rigidity part of the Euclidean positive mass theorem can be explained as follows
: starting from a constant one-form α on R

n, we pick a constant spinor ψ such that
α(X) = (X ·ψ,ψ) ; an analytical argument (based on µg = 0) provides a parallel spinor

ψ̃ on M asymptotic to ψ, hence a parallel one-form α̃, given by α̃(X) = (X · ψ̃, ψ̃), that
is asymptotic to α ; this yields a parallel trivialization of the cotangent bundle of M , so
M is flat and is therefore R

n, owing to its asymptotic shape. The mass is the obstruc-
tion to do this. It is a single number µ, but if we wish to make it fit into our picture,
we might as well interpret it as a linear functional on the space of parallel sections of
the flat bundle ERn := T ∗

R
n⊕R : (α, u) 7→ µu. The bundle EM := T ∗M ⊕R, endowed

with the Levi-Civita connection on T ∗M and the flat connection on the R-part, is of
course flat if and only if M is flat, so the formalism described above still works.

2. A complex hyperbolic connection.

2.1. The connection. Let (Mm, g, J) be a Kähler manifold of complex dimension m.
We wish to introduce a “complex hyperbolic connection” characterizing the complex
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hyperbolic geometry, in complete analogy with the real hyperbolic connection ∇RH

described in section 1. This is given by the following definition. The Kähler form is
denoted by Ω := g(., J.). We will often identify vectors and covectors thanks to the
metric g. With our convention, if (e1, Je1, . . . , em, Jem) is an orthonormal basis, then

Ω =
m
∑

k=1

Jek ∧ ek.

Definition 2.1 — Let E := Λ2
JM ⊕ T ∗M ⊕ R be the vector bundle obtained as the

direct sum of the bundle Λ2
JM of J-invariant 2-forms, of the cotangent bundle and of

the trivial (real) line bundle. We endow E with the connection ∇CH defined by

∇CH
X





ξ
α
u



 :=





∇g
Xξ + 1

2 (X ∧ α+ JX ∧ Jα)
∇g
Xα+ 2ιX(ξ + uΩ)
dXu+ Jα(X)



 .

The connection ∇CH preserves a pseudo-Riemannian structure h on E, with signature

(m2 + 1, 2m) and given by h(ξ, α, u) = |ξ|2g + u2 − |α|2g
2 .

This connection ∇CH is very related to the study of Hamiltonian two-forms in [ACG],
where a similar but more sophisticated connection is introduced. Let us explain why
this connection is natural. In analogy with section 1, we expect its curvature to measure
the deviation from the complex hyperbolic geometry (in the spirit of Cartan’s connec-
tions). In order to write down an explicit formula for the curvature, we introduce an
algebraic operation : if X and Y are two vectors and γ is an exterior form, we set:

CX,Y (γ) := (X ∧ ιY γ − Y ∧ ιXγ) + (JX ∧ ιJY γ − JY ∧ ιJXγ).
Proposition 2.2 — The curvature of ∇CH is given by

Rm∇CH

X,Y =





Rm∇
X,Y −CX,Y 0 0

0 Rm∇
X,Y − [2Ω(X,Y )J + CX,Y ] 0

0 0 0



 .

It follows that Rm∇CH

vanishes if and only if the holomorphic sectional curvature is
−4. In other words, (EM,∇CH) is flat if and only if the universal cover of (Mm, g, J)
is the complex hyperbolic space CHm of holomorphic sectional curvature −4.

The proof of this formula is a straightforward computation, which we omit. The link
with the curvature of the complex hyperbolic space is explained in paragraph IX.7 of
[KN] (where the sign convention is the opposite of ours).

Remark 4. By changing ∇g
Xα+ 2ιX(ξ+ uΩ) into ∇g

Xα− 2cιX(ξ+ uΩ) in the formula
for the connection, it is possible to obtain a family of connections characterizing every
constant holomorphic curvature 4c (in particular : complex projective spaces).

The parallel sections (ξ, α, u) for ∇CH obey α = Jdu and ξ = −1
2∇gα − uΩ so

that they are determined by their third component u, which satisfies the third order
equation

∀X ∈ TM, ∇g
X Hessg u = 2du(X) +X ⊙ du+ JX ⊙ Jdu,

where a⊙ b means a⊗ b+ b⊗ a. We will denote by N the space of parallel sections of
(E ,∇CH). We will also need the subspace

(6) N0 := {(ξ, α, u) ∈ N / g(ξ,Ω) = u}
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whose relevance will be clear from paragraph 2.2.

Remark 5. The complex projective analogue (c = +1 in remark 4) of this third order
equation appears in Obata’s work [Oba] : on a simply-connected manifold, it possesses
a solution if and only if the manifold is the complex projective space of holomorphic
sectional curvature 4.

2.2. The model case. We wish to describe the case where M = CHm. We start with
the complex vector space C

m+1, m ≥ 2, endowed with the Hermitian form <,> defined
by

< z, z >=

m
∑

k=1

|zk|2 − |zm+1|2 .

We denote this space by C
m,1 or R

2m,2 (whose metric structure is preserved by the
standard complex structure J). The level set < z, z >= −1, endowed with the restric-
tion of <,> is by definition the Anti-de-Sitter space, AdS2m,1, a Lorentz manifold with
constant sectional curvature −1, invariant under the natural (scalar) action of S

1 on
C
m+1. The complex hyperbolic space CHm is the quotient AdS2m,1/S1, endowed with

the induced metric :
AdS2m,1 ⊂ C

m,1

π ↓
CHm

Let ν be the position vector field in C
m+1, identified also with the dual one-form

< ν, . >. By definition of AdS2m,1, < ν, ν >= −1 along AdS2m,1 and the tangent
bundle TAdS2m,1 is exactly the orthogonal subspace to ν for <,>. Besides, the vector
field Jν is tangent to the action of S

1 and obeys < Jν, Jν >= −1. If π is the projection
of AdS2m,1 onto CHm, it follows that at each point of AdS2m,1, dπ is an isometry

between {ν, Jν}⊥ and the tangent space of CHm.
To understand E = E(CHm), we pick a point z in AdS2m,1 and look at the map

θz : Eπ(z) −→
(

Λ2
JR

2m,2
)

z
given by

θz(ξ, α, u) = (dπz)
∗ξ + u(π(z)) Jν ∧ ν +

ν ∧ (dπz)
∗α+ Jν ∧ J(dπz)

∗α

2
.

It is a R-linear isomorphism and we have

< θz(ξ, α, u), θz(ξ, α, u) >= |ξ|2π(z) + u(π(z))2 − 1

2
|α|2π(z) = h

π(z)
(ξ, α, ν).

Setting Ψz := θ−1
z , we obtain a bundle map Ψ that is S

1-invariant and satisfies the
commutative diagram

Λ2
JR

2m,2 Ψ−−−−→ E




y





y

AdS2m,1 π−−−−→ CHm

In this way, in the case of CHm, the metric h preserved by ∇CH simply comes from
<,>, via Ψ. At the level of sections, Ψ yields an isomorphism

Γ(E) ∼= Γ
(

Λ2
JR

2m,2|AdS2m,1

)S1

where the right-hand side denotes the S
1-invariant sections of the bundle obtained by

restricting Λ2
JR

2m,2 to AdS2m,1. This isomorphism identifies σ = (ξ, α, u) ∈ Γ(E) with
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the S
1-invariant 2-form

Ψ∗σ = π∗ξ + π∗u Jν ∧ ν +
ν ∧ π∗α+ Jν ∧ Jπ∗α

2
.

The bundle Λ2
JR

2m,2|AdS2m,1 carries a natural connectionD, inherited from the standard
flat connection on R

2m,2. The real and imaginary parts of the differential forms dzk∧dz̄l,
restricted to AdS2m,1, trivialize the bundle Λ2

JR
2m,2|AdS2m,1 , are S

1-invariant and D-
parallel. D therefore induces, via Ψ, a flat connection on E and the reader might expect
the following result.

Proposition 2.3 — The morphism Ψ identifies D and ∇CH : for every horizontal
vector field H on AdS2m,1 and for every section σ of E, ∇CH

π∗H
σ = Ψ∗ DH Ψ∗σ.

In this statement, “horizontal” means “orthogonal to both ν and Jν”. The proof of
this is a direct computation, involving only two obvious facts : Dν is the identity at
each point and the Levi-Civita connection of the hyperbolic space is induced by D.

Note it is very important to work here with J-invariant 2-forms. For instance, there
is no flat S

1-invariant trivialization of the bundle Λ1
R

2m,2|AdS2m,1 .
We therefore obtain an isomorphism NCHm ∼= Λ2

JR
2m,2. Let Λ2

J,0R
2m,2 be the sub-

space of primitive J-invariant 2-forms on R
2m,2. Since the Kähler form ω of C

m,1,
restricted to AdS2m,1, is given by ω = −Jν ∧ ν + π∗Ω, where Ω is the Kähler form of
CHm, we also have (cf. (6)):

NCHm,0
∼= Λ2

J,0R
2m,2.

2.3. Kählerian Killing spinors. Let (Mm, g, J) be a spin Kähler manifold. As in
the hyperbolic space, a class of special spinors somehow characterizes the complex
hyperbolic space. It turns out that there is a dimension issue, so we first assume the
complex dimension m is odd : m = 2l−1. The even dimensional case will be discussed
in section 4.

The spinor bundle Σ decomposes into the orthogonal sum of the eigenspaces of

the natural action of the Kähler form Ω = g(., J.) : Σ =
m
⊕

k=0

Σk, where Σk corre-

sponds to the eigenvalue i(m − 2k) ([Kir] for instance). We will write πΩ
k (ψ) or sim-

ply ψk for the kth component of the spinor ψ in this decomposition. From another

point of view, spinors may be seen as twisted forms : Σ =
m
⊕

k=0

Λ0,k ⊗
√

Λm,0 and then

Σk = Λ0,k ⊗
√

Λm,0. Through this identification, Clifford product “·” is merely
√

2
times the difference between exterior product and interior product ((1, 0)-vectors are
identified with (0, 1)-covectors by the Hermitian inner product). As a consequence,

(7) T 1,0 · Σk ⊂ Σk+1 and T 0,1 · Σk ⊂ Σk−1.

The following formula defines a connection ∇̂ on the vector bundle Σ :

∇̂Xψ = ∇Xψ + ic(X1,0)ψl−1 + ic(X0,1)ψl

= ∇Xψ +
i

2
c(X)(ψl−1 + ψl) +

1

2
c(JX)(ψl−1 − ψl).

The sections of Σl−1 ⊕ Σl that are parallel for the connection ∇̂ are called imaginary
Kählerian Killing spinors. The dimension of the space K of Kählerian Killing spinors
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is therefore at most C l2l. This bound is attained on CHm, as we will see in details after
corollary 2.7. First, we make a number of general useful remarks.

For future reference, let us introduce the (modified) Dirac operator ˆ6D which is natu-

rally associated with the connection ∇̂ : if (ǫj)j is any g-orthonormal frame, it is given
by

ˆ6Dψ :=
2m
∑

j=1

c(ǫj)∇̂ǫjψ.

In [Her], another modified Dirac operator D is used, for analytical reasons :

Dψ := ˆ6Dψ − i(m+ 1)(ψ − ψl−1 − ψl) = 6Dψ − i(m+ 1)ψ,

where 6D is the standard Dirac operator. It should be noticed that Kählerian Killing
spinors are canceled by both ˆ6D and D.

Given a spinor φ = φl−1 + φl ∈ Σl−1 ⊕ Σl, we will use the notation φ̃ := φl−1 − φl ;

φ̃ is (−1)l+1 times the conjugate φ+ −φ− with respect to the usual decomposition into
half-spinors. The Kählerian Killing equation can then be written

∇Xφ = − i

2
X · φ− 1

2
(JX) · φ̃ or ∇X φ̃ =

i

2
X · φ̃+

1

2
(JX) · φ.

The following lemma is easy but very useful.

Lemma 2.4 — If φ is a Kählerian Killing spinor then

(X · φ, φ) = −
(

X · φ̃, φ̃
)

= 2i Im
(

X1,0 · φl−1, φl
)

(X · φ̃, φ) = −
(

X · φ, φ̃
)

= 2Re
(

X1,0 · φl−1, φl
)

.

In particular, ((JX) · φ, φ) = i(X · φ̃, φ).

Proof. The first statement follows from the computation

(X · φ, φ) = (X · (φl + φl−1), φl + φl−1) = (X · φl, φl−1) + (X · φl−1, φl)

= 2i Im (X · φl−1, φl) = 2i Im
(

X1,0 · φl−1, φl
)

and the other ones are similar. �

In complete analogy with the real hyperbolic case, the squared norm |φ|2 of a
Kählerian Killing spinor φ will induce a ∇CH-parallel section of E . To see this, we
first compute two derivatives of this function.

Lemma 2.5 — Any Kählerian Killing spinor φ obeys

d |φ|2 (X) = −2i(X · φ, φ)(8)

∇Xd |φ|2 (Y ) = 2(X,Y ) |φ|2 − 2 Im
(

Y · (JX) · φ̃, φ
)

.(9)

Proof. The definition of Kählerian Killing spinors readily yields

d |φ|2 (X) = − i

2
(X · φ, φ) − 1

2
(JX · φ̃, φ) +

i

2
(φ,X · φ) − 1

2
(φ, JX · φ̃),
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which leads to d |φ|2 (X) = −2i(X · φ, φ), thanks to lemma 2.4. Differentiating once
more, we find

∇Xd |φ|2 (Y ) = −2i(Y · ∇Xφ, φ) − 2i(Y · φ,∇Xφ)

= −(Y ·X · φ, φ) + i(Y · JX · φ̃, φ) + (Y · φ,X · φ) + i(Y · φ, JX · φ̃)

and the result follows from elementary properties of the Clifford product. �

At this point, it is useful to introduce the following notations : for every Kählerian
Killing spinor φ, we define :

uφ := |φ|2 , αφ := Jduφ, ξφ(X,Y ) := Im(X · Y · φ̃, φ).

Lemma 2.6 — ξφ is a J-invariant two-form satisfying :

∇Zαφ = −2ιZ(ξφ + uφΩ),

(ξφ,Ω) = uφ,

∇Zξφ = −1

2
(Z ∧ αφ + JZ ∧ Jαφ) .

Proof. First, it is easy to check that ξφ is skewsymmetric, as a consequence of the

definition of φ̃. The J-invariance of ξφ stems from the following reformulation of its
definition :

ξφ(X,Y ) := Im(X1,0 · Y 0,1 · φ̃, φ) + Im(X0,1 · Y 1,0 · φ̃, φ).

Then formula (9) readily yields

∇Xαφ(Y ) = −2(X,JY )uφ + 2ξφ(JY, JX) = −2uφ Ω(X,Y ) − 2ξφ(X,Y ),

which justifies the first formula.
Let (e1, Je1, . . . , em, Jem) be an orthonormal basis. Then we have

(ξφ,Ω) =
m
∑

k=1

ξφ(Jek, ek) =
m
∑

k=1

Im(Jek · ek · φ̃, φ) = Im(Ω · φ̃, φ).

Now we use the spectral decomposition of the action of the Kähler form :

(Ω · φ̃, φ) = (Ω · φl−1 − Ω · φl, φ) = (iφl−1 + iφl, φ) = i |φ|2 .

This ensures (ξφ,Ω) = |φ|2 = uφ.

Finally, to obtain the third equation, we introduce θ(X,Y ) := 2(X · Y · φ̃, φ) and
differentiate :

∇Zθ(X,Y )

= 2(X · Y · ∇Z φ̃, φ) + 2(X · Y · φ̃,∇Zφ)

= i(X · Y · Z · φ̃, φ) + (X · Y · (JZ) · φ, φ) + i(X · Y · φ̃, Z · φ) − (X · Y · φ̃, (JZ) · φ̃)

= i([X · Y · Z − Z ·X · Y ] · φ̃, φ) + ([X · Y · (JZ) − (JZ) ·X · Y ] · φ, φ).

The identity ABC − CAB = 2(A,C)B − 2(B,C)A in Clifford algebra leads to

∇Zθ(X,Y )

= 2i(X,Z)(Y · φ̃, φ) − 2i(Y,Z)(X · φ̃, φ) + 2(X,JZ)(Y · φ, φ) − 2(Y, JZ)(X · φ, φ).
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Lemmata 2.4 and 2.5 then yield :

∇Zθ(X,Y )

= i(X,Z)duφ(JY ) − i(Y,Z)duφ(JX) + i(X,JZ)duφ(Y ) − i(Y, JZ)duφ(X)

= −i(X,Z)αφ(Y ) + i(Y,Z)αφ(X) − i(X,JZ)Jαφ(Y ) + i(Y, JZ)Jαφ(X)

and the result follows. �

The computations above result in the following proposition (recall(6)).

Corollary 2.7 — If φ is a Kählerian Killing spinor, then Q(φ) := (ξφ, αφ, uφ) is an
element of N0. So we have a map Q : K −→ N0.

When m = 2l − 1 for some integer l ≥ 2, the complex hyperbolic space CHm is
known to carry a space of Kählerian Killing spinors of maximal dimension, C l2l [Kir].
Where do they come from ? Briefly, constant spinors on C

m,1 admit a restriction as
spinors on AdS2m,1 (cf. Lemma 3 in [Bau]). These are the so-called imaginary Killing
spinors ; they trivialize the spinor bundle of AdS2m,1. Among them, thanks to the
parity of m, some are S

1-invariant (it can be seen on the graduation coming from the
Kähler structure of C

m,1) and admit a projection into spinors along CHm ([Mor]).
These “projected” spinors are exactly the Kählerian Killing spinors.

To be more explicit, we can adapt the computations of [Kir]. The manifold CHm

carries global coordinates w1, . . . , wm, such that π∗wk = zk

zm+1
(along AdS2m,1, where

zm+1 does not vanish). These coordinates induce a trivialization of the canonical

bundle, by
√
dw :=

√
dw1 ∧ · · · ∧ dwm. We will use multi-index a = (a1, . . . , ak) with

1 ≤ a1 < · · · < ak ≤ m and set dza := dza1 ∧ · · · ∧ dzak
. The computations of [Kir] say

that, if a is a multi-index of length l − 1, the spinor ϕa = ϕal−1 + ϕal defined by

ϕal−1 = c(l)
dw̄a

(1 − |w|2)l ⊗
√
dw and ϕal =

c(l)

2il
∂̄

(

dw̄a
(1 − |w|2)l

)

⊗
√
dw

is a Kählerian Killing spinor. In this expression, c(l) is a normalization constant, which

we choose to be c(l) =
√

2
5
2
−3l

. Another family of Kählerian Killing spinors is described
by spinors ϕ̆b = ϕ̆bl−1 + ϕ̆bl where b is a multi-index of length l and

ϕ̆bl−1 = c(l)
ιR̄dw̄b

(1 − |w|2)l ⊗
√
dw and ϕ̆bl =

c(l)

2il
∂̄

(

ιR̄dw̄b
(1 − |w|2)l

)

⊗
√
dw

where R =
∑

k wk∂wk
. These families together form a basis for the Kählerian Killing

spinors of CHm. What we are interested in here is their squared norms. Let us
introduce the notation ă for the multi-index that is complementary to a (namely, a
and ă have no common index and the sum of their lengths is m), and also the notation

|wa|2 := |wa1 |2 + · · · + |wak
|2. An adaptation of the computations at the end of [Kir]

yields
∣

∣ϕal−1

∣

∣

2
= |ϕ̆ăl |2 =

1 − |wa|2

1 − |w|2
and |ϕal |2 = |ϕ̆ăl−1|2 =

|wă|2

1 − |w|2
,

hence

|ϕa|2 = |ϕ̆ă|2 =
1 − |wa|2 + |wă|2

1 − |w|2
.

It follows that π∗uϕa = − |za|2 + |ză|2 + |zm+1|2 (we forget the ϕ̆’s since they do not
yield new squared norms). Now αϕa and ξϕa are determined by uϕa (since these are
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the components of an element of N ). Denoting the real part of zk by xk, one can check
that the corresponding element of N0(CH

m) ∼= Λ2
J,0R

2m,2 is

βϕa = −
l−1
∑

j=1

Jdxaj
∧ dxaj

+

l
∑

j=1

Jdxăj
∧ dxăj

+ Jdxm+1 ∧ dxm+1

(To see this, it is sufficient to compute the scalar product of the right-hand side with
Jν ∧ ν and observe that it coincides with π∗uϕa .) In particular, < βϕa , βϕa >= m+ 1.
All these two-forms belong to the same orbit of the isometric and holomorphic action
of PU(m, 1). We will denote this orbit by N+

0,CHm . Note that, since Λ2
J,0R

2m,2 is

an irreducible representation of PU(m, 1), the linear span of N+
0,CHm is the whole

Λ2
J,0R

2m,2.

3. Toward a mass.

3.1. The “mass integral” at infinity. Let us give a precise definition for the class
of manifolds we are interested in.

Definition 3.1 — A complete Kähler manifold (Mm, g, J) is called asymptotically
complex hyperbolic if there is a compact subset K of M and a ball B in CHm such
that:

(i) (M\K,J) is biholomorphic to CHm\B and,
(ii) through this identification, ear(g−gCHm) is bounded in C1,α, with respect to the

complex hyperbolic metric gCHm . Here, r denotes the distance to some point in
CHm and we assume a > m+ 1

2 .

In [Her], it is only assumed that the complex structure J of M is asymptotic to the
complex structure J0 of CHm (instead of J = J0, as in our definition). It turns out that,
if J is asymptotic to J0, then they are related by a biholomorphism, defined outside a
compact set and asymptotic to the identity. To justify this, let us see J and J0 as two
complex structures on a neighborhood U of S

2m−1 in the unit ball of C
m. Under our

assumptions, they induce the same CR structure on the unit sphere, the standard CR
structure of S

2m−1. The restriction of any J0-holomorphic coordinate zk to the sphere
is a CR function. Since the standard sphere is strictly-pseudo-convex, Lewy’s extension
theorem makes it possible to extend this function into a J-holomorphic function wk
on U (shrinking U if necessary). This yields a holomorphic map w = (w1, . . . , wm)
from Ω to C

m. Since z = (z1, . . . , zm) is a diffeomorphism onto its range and coincide
with w on the sphere, we may shrink U to ensure w is also a diffeomorphism onto its
range, hence a biholomorphism between two neighborhoods of S

2m−1 in the unit ball
of C

m, one endowed with J and the other one with the standard complex structure.
The promised biholomorphism is z−1 ◦ w.

In this section, we assume (M,g, J) is an asymptotically complex hyperbolic manifold
of odd complex dimension m = 2l−1 and with scalar curvature bounded from below by
−4m(m+ 1) (the scalar curvature of CHm). In this setting, the spinor bundle Σ|M\K

can be identified with the spinor bundle of CHm\B. We may therefore extend any
Kählerian Killing spinor φ on CHm\B into a spinor φ on M . Our aim is to understand
to what extent we can make it into a Kählerian Killing spinor. In the spirit of [Wit],
we first check that we can choose an extension in the kernel of a Dirac operator.

Lemma 3.2 — There is a smooth spinor ψ := φ + φerr such that Dψ = 0 and φerr
decays as e−br in C1,α with b > m+ 1

2 .
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Proof. We first observe that

DD∗ = 6D2 +(m+ 1)2 = ∇∗∇ +
1

4
Scal +(m+ 1)2 ≥ ∇∗∇ +m+ 1.

A slight adaptation of Proposition I.3.5 in [Biq] then shows that the operator

DD∗ : ebrC2,α −→ ebrC0,α

is an isomorphism for every b such that m−
√
m2 +m+ 1 < b < m +

√
m2 +m+ 1.

Since Dφ = (Dg−DCHm)φ = O(e−(a−1)r), with a > m+ 1
2 , we can pick a b > m+ 1

2 such

that the equation DD∗σ = −Dφ0 admits a solution σ in ebrC2,α. Then φerr := D∗σ is
convenient. �

We then invoke a Weitzenböck formula, proved in paragraph 3 of [Her] (modulo two
misprints, indeed: in the formula stated, an i should be added at the second and third
lines and the coefficient m− 2q and the fourth one should be replaced by 2(m− q)) :

∫

SR

∗ζψ,ψ =

∫

BR

∣

∣

∣
∇̂ψ
∣

∣

∣

2
+

1

4

∫

BR

(Scal +4m(m+ 1)) |ψ|2

+ (m+ 1)

∫

BR

(

|ψ|2 −
∣

∣πΩ
l−1ψ

∣

∣

2 −
∣

∣πΩ
l ψ
∣

∣

2
)

,

where SR denotes the sphere {r = R}, bounding the domain BR, and ζσ,τ is the 1-form
defined by

ζσ,τ (X) = (∇̂Xσ + c(X)Dσ, τ).
In view of this formula, the obstruction for ψ to be a Kählerian Killing spinor is precisely
the “mass integral at infinity” limR→∞

∫

SR
∗ζψ,ψ, which is a well defined element of

[0,+∞], because the integrand on the right-hand side is non-negative.

Lemma 3.3 — lim
R→∞

∫

SR

∗ζψ,ψ = lim
R→∞

∫

SR

∗ζφ,φ.

Proof. Since Re ζσ,τ is symmetric up to a divergence term (as noticed in [Her], p.651),
we only need to check that

lim
R→∞

∫

SR

∗(ζφ,φerr
+ ζφerr,φerr

) = 0.

This follows from the following estimates : volSR = O(e2mr), ∇̂φ = O(e(1−a)r) (beware

φ grows in er), φerr = O(e−br), ∇̂φerr = O(e−br) (cf. lemma 3.2), with a > m+ 1
2 and

b > m+ 1
2 . �

In order to compare the metrics g et g0 := gCHm , we introduce the symmetric
endomorphism A such that g0 = g(A.,A.). Since A maps g0-orthonormal frames to
g-orthonormal frames, it identifies the spinor bundles defined with g and g0 (cf. [CH]
for instance). The associated Clifford products cg and cg0 are related by the formula
cg(AX)σ = cg0(X)σ. Note we will also write X· for cg0(X) (and not for cg(X)). For
the sake of efficiency, we will write u ≈ v when u− v = o(e−2mr) ; the terms we neglect
in this way will indeed not contribute to the integral at infinity. Before computing the
“mass integral at infinity”, we point out a few elementary facts.

Lemma 3.4 — A−1JA ≈ J .
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Proof. The definition g0 = g(A,A) and the compatibility of J with g0 yield the equality
g(AJ,AJ) = g(A,A). Since A and J are respectively g-symmetric and g-antisymmetric,
we deduce : JA2J = −A2. If A = 1 +H, this implies JHJ ≈ −H. Since J2 = −1, we
obtain JH ≈ HJ and then JA ≈ AJ , hence the result. �

Corollary 3.5 — We have cg(Ω) ≈ cg0(Ω0) and πΩ
k ≈ πΩ0

k .

Proof. Given a g0-orthonormal basis (e1, Je1, . . . , em, Jem), the Clifford action of the
Kähler form Ω0 reads cg0(Ω0) =

∑

k Jek · ek· while the Kähler form Ω of g acts by

cg(Ω) =

m
∑

k=1

cg(JAek)cg(Aek) =

m
∑

k=1

(A−1JAek) · ek · .

The first statement is therefore a straightforward consequence of lemma 3.4. The
second one follows from general considerations. We observe the skew-Hermitian endo-
morphisms P := cg(Ω) and P0 := cg0(Ω0) act on each fiber of the spinor bundle with
the same spectrum. If λ is one of the eigenvalues, the corresponding spectral projectors
Π and Π0 (for P and P0) obey the formulas

Π =
1

2π

∫

C

(z − P )−1dz and Π0 =
1

2π

∫

C

(z − P0)
−1dz

where C is a circle in the complex plane, centered in λ and with small radius δ. We
deduce

Π − Π0 =
1

2π

∫

C

(z − P )−1(P − P0)(z − P0)
−1dz

and then

|Π − Π0| ≤ δδ−1 |P − P0| δ−1 = δ−1 |P − P0| .
The result follows at once. �

The rest of this section is devoted to the proof of the following statement.

Proposition 3.6 — The “mass integral at infinity” is

lim
R→∞

∫

SR

∗ζψ,ψ = lim
R→∞

∫

SR

∗
(

−1

4
(dTrg0 g + divg0 g) |φ|2 +

1

8
Trg0(g − g0) d |φ|2

)

.

Proof. To begin with, in view of corollary 3.5, we may write

ζφ,φ(Y ) = (∇̂g
Y φ+ cg(Y ) ˆ6Dφ, φ) − i(m+ 1)

(

cg(Y )(1 − πΩ
l−1 − πΩ

l )φ, φ
)

≈ (∇̂g
Y φ+ cg(Y ) ˆ6Dφ, φ).

Given a g0-orthonormal frame (e1, . . . , e2m) and a g0-unit vector X, since φ is a
Kählerian Killing spinor with respect to (g0, J0), we may therefore write outside K
(as in [CH, Min] for instance) :

ζφ,φ(AX) ≈ 1

2

2m
∑

j=1

([cg(AX), cg(Aej)]∇̂g
Aej

φ, φ)

≈ 1

2

2m
∑

j=1

([cg(AX), cg(Aej)](∇̂g
Aej

− ∇̂g0
Aej

)φ, φ)

≈ 1

2

2m
∑

j=1

([X·, ej ·](∇̂g
Aej

− ∇̂g0
Aej

)φ, φ),
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which expands into

1

2

2m
∑

j=1

(

[X·, ej ·](∇g
Aej

−∇g0
Aej

)φ, φ
)

+
i

4

2m
∑

j=1

(

[X·, ej ·]
(

cg(Aej − iJAej)π
Ω
l−1 − cg0(Aej − iJAej)π

Ω0
l−1

)

φ, φ
)

+
i

4

2m
∑

j=1

(

([X·, ej ·]
(

cg(Aej + iJAej)π
Ω
l − cg0(Aej + iJAej)π

Ω0
l

)

φ, φ
)

,

that is

1

2

2m
∑

j=1

(

[X·, ej ·](∇g
Aej

−∇g0
Aej

)φ, φ
)

+
i

4

2m
∑

j=1

(

[X·, ej ·]
(

(ej − iA−1JAej) · πΩ
l−1 − (Aej − iJAej) · πΩ0

l−1

)

φ, φ
)

+
i

4

2m
∑

j=1

(

([X·, ej ·]
(

(ej + iA−1JAej) · πΩ
l − (Aej + iJAej) · πΩ0

l

)

φ, φ
)

.

In view of lemma 3.4 and corollary 3.5, we are left with :

ζφ,φ(AX) ≈ 1

2

2m
∑

j=1

(

[X·, ej ·](∇g
Aej

−∇g0
Aej

)φ, φ
)

+
i

4

2m
∑

j=1

(

[X·, ej ·]((ej − iJej) − (Aej − iJAej)) · πΩ0
l−1φ, φ

)

+
i

4

2m
∑

j=1

(

[X·, ej ·]((ej + iAej) − (Aej + iJAej)) · πΩ0
l φ, φ

)

.

With A = 1 +H we can there therefore write ζφ,φ(AX) ≈ I + II + III, with :

I :=
1

2

2m
∑

j=1

(

[X·, ej ·](∇g
Aej

−∇g0
Aej

)φ, φ
)

II := − i

4

2m
∑

j=1

([X·, ej ·]Hej · φ, φ)

III := −1

4

2m
∑

j=1

(

[X·, ej ·]JHej · φ̃, φ
)

.

The computation of the real part of the first term is classical (cf. [CH] or lemma 10 in
[Min], for instance) :

Re I ≈ −1

4
(dTrg0 g + divg0 g) |φ|2 .
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The second term is basically computed in [CH]. Indeed, since H is symmetric, we use
the identity [X·, ej ·] = 2Xj + 2X · ej · to obtain

Re II = − i

2
(HX · φ, φ) − i

2

2m
∑

j,l=1

Hjl (X · ej · el · φ, φ)

= − i

2
(HX · φ, φ) +

i

2
TrH (X · φ, φ) .

In the same way, the third term can be written

III = −1

2

(

(JHX · φ̃, φ
)

− 1

2

2m
∑

j=1

(

X · ej · JHej · φ̃, φ
)

.

Lemma 3.7 — Re

2m
∑

j=1

(

X · ej · JHej · φ̃, φ
)

≈ −2
(

JHX · φ̃, φ
)

.

Proof. Let us set M := JH and Mij := (ei,Mej), so that

2m
∑

j=1

(

X · ej · JHej · φ̃, φ
)

=
∑

j,k,p

MkjXp

(

ep · ej · ek · φ̃, φ
)

.

Lemma 3.4 ensures JH ≈ HJ . Since H is symmetric and J antisymmetric, we deduce
that M is antisymmetric up to a negligible term. In particular, Mkj ≈ 0 when k = j,
hence

2m
∑

j=1

(

X · ej · JHej · φ̃, φ
)

≈
∑

j 6=k

∑

p

MkjXp

(

ep · ej · ek · φ̃, φ
)

.

Given three distinct indices j, k, p we consider the expression
(

ep · ej · ek · φ̃, φ
)

= (ep · ej · ek · (φl−1 − φl), (φl−1 + φl)) .

Property (7) reduces it into
(

ep · ej · ek · φ̃, φ
)

= (ep · ej · ek · φl−1, φl) − (ep · ej · ek · φl, φl−1) .

and since the indices are distinct, this is imaginary. So

Re

2m
∑

j=1

(

X · ej · JHej · φ̃, φ
)

≈ Re
∑

j 6=k

MkjXj

(

ej · ej · ek · φ̃, φ
)

+ Re
∑

j 6=k

MkjXk

(

ek · ej · ek · φ̃, φ
)

≈ −Re
∑

j 6=k

MkjXj

(

ek · φ̃, φ
)

+ Re
∑

j 6=k

MkjXk

(

ej · φ̃, φ
)

≈ −2Re
∑

j 6=k

MkjXj

(

ek · φ̃, φ
)

≈ −2Re
(

MX · φ̃, φ
)

≈ −2
(

MX · φ̃, φ
)

.

�
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This lemma leads to

Re III ≈ −1

2

(

JHX · φ̃, φ
)

+
(

JHX · φ̃, φ
)

=
1

2

(

JHX · φ̃, φ
)

.

Eventually, summing I, II and III, we get :

Re ζφ,φ(AX) ≈ − 1

4
(dTrg0 g + divg0 g) |φ|2

− i

2
(HX · φ, φ) +

i

2
TrH (X · φ, φ)

+
1

2

(

JHX · φ̃, φ
)

.

Lemmata 2.4 and 2.5 simplify this into

Re ζφ,φ(AX) ≈ −1

4
(dTrg0 g + divg0 g) |φ|2 +

i

2
TrH (X · φ, φ)

≈ −1

4
(dTrg0 g + divg0 g) |φ|2 −

1

4
TrH d |φ|2 (X).

Since g − g0 ≈ −2g0(H., .), we have Tr(g − g0) ≈ −2TrH, hence :

Re ζφ,φ(AX) ≈ −1

4
(dTrg0 g + divg0 g) (X) |φ|2 +

1

8
Trg0(g − g0) d |φ|2 (X),

which yields the formula of proposition 3.6. �

3.2. The mass linear functional. We consider the formula

(10) µg(ξ, α, u) = −1

4
lim
R→∞

∫

SR

∗
(

(dTrg0 g + divg0 g) u+
1

2
Trg0(g − g0) Jα

)

.

If (ξ, α, u) belongs to QCHm(KCHm), the considerations of the previous paragraph imply
that µg(ξ, α, u) is an element of [0,+∞]. If it is infinite at some point of QCHm(KCHm),
we decide that the mass is infinite : µg = ∞. Otherwise, this defines a linear functional
µg on the linear span ofQCHm(KCHm) ⊂ NCHm,0, which is NCHm,0, since it is PU(m, 1)-
invariant and the action of this group on Λ2

J,0R
2m,2 is irreducible.

The previous paragraph also indicates that µg takes non-negative values on (the
convex cone generated by) QCHm(KCHm) ; since QCHm(KCHm) is PU(m, 1)-invariant
and contains one element of N+

CHm,0 (from the explicit computations in 2.3), it contains

N+
CHm,0. So µg is non-negative on N+

CHm,0.
Assume µg vanishes on NCHm,0. Then Lemma 3.2, coupled to the Bochner formula,

ensures that for every ψ in KCHm , there is a Kählerian Killing spinor φ on (M,g),
namely φ ∈ Kg, that is asymptotic to ψ. In particular, for any element β = QCHm(ψ)

of N+
CHm,0, there is an element β̃ = Qg(φ) of Ng,0 that is asymptotic to β. Since

the linear span of N+
CHm,0 is the whole NCHm,0, we deduce that Ng,0 has maximal

dimension, which implies that Ng has maximal dimension (add the Kähler form) :
(M,g) is (locally) complex hyperbolic. In view of its asymptotic, it is bound to be
CHm.

The holomorphic chart at infinity in Definition 3.1 is of course not unique. Any two
relevant charts Ψ1 and Ψ2 differ by a biholomorphism f := Ψ2 ◦ Ψ−1

1 of CHm such
that f∗g0 is asymptotic to g0. The map f therefore induces a CR-automorphism of the
sphere at infinity, so that f is asymptotic to an element of PU(m, 1). As in the remark
after Definition 3.1, we conclude f is an element of PU(m, 1). So the model at infinity
is unique up to its natural automorphism group PU(m, 1). If φ1 is a Kählerian Killing
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spinor in the chart Ψ1, then φ2 := f∗φ1 is a Kählerian Killing spinor in the chart Ψ2

(by naturality). We claim that

Lemma 3.8 — µΨ1
g (βφ1) = µΨ2

g (βφ2).

Proof. Recall that in the notations introduced in the previous paragraph,

µΨ1
g (βφ1) = lim

R→∞

∫

S
Ψ1
R

∗ζφ1,φ1 = lim
R→∞

∫

S
Ψ1
R

∗ζψ1,ψ1.

This quantity is equal to the well-defined integral
∫

M

∣

∣

∣∇̂ψ1

∣

∣

∣

2
+

1

4

∫

M

(Scal+4m(m+ 1)) |ψ1|2

+(m+ 1)

∫

M

(

|ψ1|2 −
∣

∣πΩ
l−1ψ1

∣

∣

2 −
∣

∣πΩ
l ψ1

∣

∣

2
)

,

so that we can compute it with another family of spheres :

µΨ1
g (βφ1) = lim

R→∞

∫

f(S
Ψ1
R

)
∗ζψ1,ψ1 = lim

R→∞

∫

f(S
Ψ1
R

)
∗ζφ1,φ1.

Since f∗g0 = g0 and f(SΨ1
R ) = SΨ2

R , we therefore obtain

µΨ1
g (βφ1) = lim

R→∞

∫

f(S
Ψ1
R

)
∗g0
(

−1

4
(dTrg0 g + divg0 g) |φ1|2g0 +

1

8
Trg0(g − g0) d |φ1|2g0

)

= lim
R→∞

∫

S
Ψ2
R

∗g0
(

−1

4
(dTrg0 g + divg0 g) |f∗φ2|2g0 +

1

8
Trg0(g − g0) d |f∗φ2|2g0

)

.

= lim
R→∞

∫

S
Ψ2
R

∗g0
(

−1

4
(dTrg0 g + divg0 g) |φ2|2g0 +

1

8
Trg0(g − g0) d |φ2|2g0

)

= µΨ2
g (βφ2).

�

In other words, changing the chart at infinity by an automorphism f ∈ PU(m, 1)
results in turning µg to f∗µg. So µg is well-defined up to the natural action of PU(m, 1).
We have proved the following result.

Theorem 3.9 — Let (Mm, g, J) be a spin asymptotically complex hyperbolic Kähler
manifold with odd complex dimension Scalg ≥ ScalCHm. Then the linear functional µg
on NCHm,0 is well-defined up to the natural action of PU(m, 1) ; it is non-negative on

N+
CHm,0 and vanishes if and only if (Mm, g, J) is the complex hyperbolic space.

4. The case of even-dimensional manifolds.

4.1. The twisted Kählerian Killing spinors. To extend the ideas above to the even-
dimensional case, it seems that we need Kählerian Killing spinors on even-dimensional
complex hyperbolic spaces. Unfortunately, such Kählerian Killing spinors do not exist.
To overcome this cruel reality, we follow [BH] and turn to the spinc realm. We refer to
[LM] for basic definitions about spinc structures.

We consider a Kähler manifold (M,g, J) with even complex dimension m = 2l. As
in [BH], we further assume that the cohomology class of Ω

iπ
is integral, i.e. in the image

of H2(M,Z) → H2(M,R). This determines a complex line bundle L endowed with a
Hermitian metric and a unitary connection with curvature F = −2iΩ ; the Chern class
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of L is c1(L) = i
2π [F ] = 1

π
[Ω]. We also assume that (M,L) defines a spinc structure, in

that the bundle TM⊗L admits a spin structure. We then introduce the corresponding
spinor bundle Σc, endowed with a Clifford action c and a connection ∇. The Kähler
form Ω acts on this bundle, with the eigenvalues i(m−2k), 0 ≤ k ≤ m. The eigenspaces

yield subbundles Σc
k. We may therefore define a connection ∇̂ on Σc by requiring that

∇̂Xψ := ∇Xψ + ic(X1,0)ψl−1 + ic(X0,1)ψl,

where ψk is the component of ψ in Σc
k. The parallel sections of Σc

l−1 ⊕Σc
l for this con-

nection will be called twisted Kählerian Killing spinors and the corresponding subspace
will be denoted by Kc.

Every computation of section 2.3 (but one) can be carried out with twisted Kählerian
Killing spinors, leading to the same formulas. In particular, one can define uψ, αψ, ξψ
for any ψ in Kc as in section 2.3 and this yields a map Qc : Kc → N . The only
difference is that we do not get elements of N0 : (ξψ,Ω) is no longer uψ, basically
because the eigenvalues of the Kähler form are now even (compare with the proof of
Lemma 2.6).

Let us describe the model case, where (M,g, J) is the complex hyperbolic space
CHm, m = 2l, with holomorphic sectional curvature −4. With this normalization, we
have RicCHm = −2(m + 1)gCHm . Since the Ricci form ρ = Ric(., J.) is i times the
curvature of the canonical line bundle, this implies :

c1(Λ
m,0) =

i

2π
[−iρ] =

i

2π
[2i(m+ 1)Ω] = −m+ 1

π
[Ω] = −(m+ 1)c1(L).

So L ∼=
(

Λm,0
)− 1

m+1 in this case. It follows that

Σc
k
∼= Σk ⊗ L ∼= Λ0,k ⊗

(

Λm,0
)

1
2
− 1

m+1 ∼= Λ0,k ⊗
(

Λm,0
)

l
2l+1 .

It turns out that the sections of Kc trivialize the bundle Σc
l−1 ⊕Σc

l , as noticed in [BH].
Indeed, using the same notations as in section 2.3, we can define two families of twisted
Kählerian Killing spinors in the following way. First, if a is a multi-index of length
l − 1, we set ϕa = ϕal−1 + ϕal with

ϕal−1 = c(l)
dw̄a

(1 − |w|2)l ⊗ dw
l

2l+1 and ϕal =
c(l)

2il
∂̄

(

dw̄a
(1 − |w|2)l

)

⊗ dw
l

2l+1 .

The normalization we choose is c(l) = 21−l− l2

2l+1 . We also introduce ϕ̆b = ϕ̆bl−1 + ϕ̆bl
where b is a multi-index of length l and

ϕ̆bl−1 = c(l)
ιR̄dw̄b

(1 − |w|2)l ⊗ dw
l

2l+1 and ϕ̆bl =
c(l)

2il
∂̄

(

ιR̄dw̄b
(1 − |w|2)l

)

⊗ dw
l

2l+1

where R =
∑

k wk∂wk
as before. These families together form a basis for Kc on CHm.

One can again compute the squared norms of these spinors, like in [Kir]. If a is a
multi-index of length l − 1 and b a multi-index of length l, we have

∣

∣ϕal−1

∣

∣

2
=

1 − |wa|2

1 − |w|2
, |ϕal |2 =

|wă|2

1 − |w|2
,
∣

∣

∣
ϕ̆bl−1

∣

∣

∣

2
=

|wb|2

1 − |w|2
,
∣

∣

∣
ϕ̆bl

∣

∣

∣

2
=

1 −
∣

∣w
b̆

∣

∣

2

1 − |w|2
,

hence

|ϕa|2 =
1 − |wa|2 + |wă|2

1 − |w|2
,
∣

∣

∣
ϕ̆b
∣

∣

∣

2
=

1 −
∣

∣w
b̆

∣

∣

2
+ |wb|2

1 − |w|2
.
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Exactly as in the odd dimensional case, we see that the corresponding elements of
N (CHm) ∼= Λ2

JR
2m,2 are

Qc(ϕa) = βϕa = −
l−1
∑

j=1

Jdxaj
∧ dxaj

+
l+1
∑

j=1

Jdxăj
∧ dxăj

+ Jdxm+1 ∧ dxm+1,

Qc(ϕ̆b) = βϕ̆b = −
l
∑

j=1

Jdxbj ∧ dxbj +

l
∑

j=1

Jdx
b̆j
∧ dx

b̆j
+ Jdxm+1 ∧ dxm+1,

It follows that < βϕa , βφa >=< βϕ̆b , βϕ̆b >= m+1, < βϕa , ω >= 1 and < βϕ̆b , ω >= −1.

The βϕa ’s all belong to the same orbit under the action of PU(m, 1) : let N+1
CHm be

this orbit. The βϕ̆b ’s also belong to the same orbit under the action of PU(m, 1) and

we denote it by N−1
CHm.

4.2. The positive mass theorem.

Theorem 4.1 — Let (Mm, g, J) be an asymptotically complex hyperbolic Kähler man-
ifold with even complex dimension and Scalg ≥ ScalCHm . We assume that the cohomol-

ogy class of Ω
iπ

is integral, providing a line bundle L as above, and that (M,L) defines a
spinc structure. Then the formula (10) defines a (possibly infinite) linear functional µg
on NCHm. It is well defined by g up to the natural action of PU(m, 1), non-negative on
N+1

CHm ∪N−1
CHm and vanishes if and only if (Mm, g, J) is the complex hyperbolic space.

Note the assumption about [Ω] and L are of course satisfied when M is contractible.

Proof. The proof is nearly the same as in the odd dimensional case. The analytical
part is completely similar, cf. [BH]. So, for every element φ of Kc

CHm , one may find
an harmonic spinor ψ on M that is asymptotic to φ (harmonic means in the kernel
of some Dirac operator, cf. [BH]). We may then proceed to the same computation,
leading to the same mass integral at infinity, µg, defined on the linear span of Qc(Kc)

in N . From the computations above we know that Qc(Kc) contains N+1
CHm ∪ N−1

CHm.
Using the PU(m, 1) invariance, it is easy to see that this is the whole NCHm . The
nonnegativity statement is automatic and the fact that µg, up to PU(m, 1), depends
only on g is like in the odd case.

We are left to justify the rigidity part. If the mass µg vanishes, we know by construc-
tion that every element φ of Kc

CHm gives rise to an element ψ of Kc
g that is asymptotic to

φ. In particular, for any element β = Qc
CHm(φ) of N±1

CHm, there is an element β̃ = Qcg(ψ)
of Ng that is asymptotic to β. As a consequence, Ng has maximal dimension : (M,g)
is complex hyperbolic. �

Appendix : an example.

To build a non-trivial example of asymptotically complex hyperbolic Kähler man-
ifold, we use the symplectic point of view of [HS]. We work on C

m, m ≥ 2 and let
ρ = et be the Euclidean distance to the origin. Then ddct = ωFS is the pull-back to
C
m\ {0} of the Fubini-Study form on CPm−1. Every U(m)-invariant Kähler structure

on C
m\ {0} admits a Kähler form reading

ω = ψ′(t)dt ∧ dct+ ψ(t)ωFS,

where ψ is simply the derivative of a radial Kähler potential with respect to the variable
t. The function ψ and ψ′ must of course be positive. In fact ψ can be seen as a moment
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map for the standard action of S
1 on C

m\ {0} endowed with the symplectic form ω. If I
denotes the range of the function ψ, we define the “momentum profile” Θ as the positive
function Θ := ψ′ ◦ψ−1 on I =] inf ψ, supψ[. The Kähler metric extends smoothly near
0 if and only if inf ψ = 0 and Θ is smooth near 0 with Θ(0) = 0 and Θ′(0) = 2. Setting
x := ψ(t) ∈ I, the Kähler form is given by

ω = ωΘ =
dx ∧ dcx

Θ(x)
+ x ωFS

and its scalar curvature is

sΘ(x) =
2m(m− 1)

x
− ∂xx(x

m−1Θ(x))

xm−1
.

The flat metric corresponds to Θ(x) = 2x, x ∈ R+, the complex hyperbolic metric to
Θ(x) = 2x + 2x2, x ∈ R+ and the Fubini-Study metric on CPm to Θ(x) = 2x − 2x2,
x ∈ [0, 1].

Let Θ0(x) = 2x2+2x be the momentum profile of the complex hyperbolic metric. We
wish to build a U(m)-invariant Kähler metric with complex hyperbolic asymptotic and
scalar curvature bounded from below by the scalar curvature of the complex hyperbolic
model. We therefore need to find a positive function Θ defined on R+, such that
Θ(0) = 0, Θ′(0) = 2, Θ(x) is asymptotic to 2x+2x2 as x goes to infinity and sΘ ≥ sΘ0.
Setting Θ(x) = Θ0(x)−α(x), we are lead to find a non zero function α such that Θ0−α is
non-negative, α(0) = α′(0) = 0, α = o(x2) as x goes to infinity and ∂xx(x

m−1α(x)) ≥ 0.
Such a function α can be obtained by choosing

α(x) := x1−m

∫ x

0

∫ y

0
χ(z)dzdy,

where χ is a bump function with support inside [1,+∞[ and with unit integral. One
can then observe that α(x) vanishes on [0, 1] and is equivalent to x2−m as x goes to
infinity, while satisfying the desired differential inequality ; besides, the normalization
of χ ensures α(x) ≤ x for every x ≥ 0, which guarantees Θ0 −α ≥ 0. The Kähler form
is then

ωΘ = ωΘ0 +

(

Θ0(x)

Θ(x)
− 1

)

dx ∧ dcx
Θ0(x)

with Θ0(x)
Θ(x) − 1 ∼ x−m

2 . To understand the asymptotic of this, we relate x to the

initial variable t0 on the complex hyperbolic space. The properties dt0
dx

= 1
Θ0(x) and

t0(x = +∞) = 0 yield t0 ∼ − 1
2x . The geodesic distance r to 0 in the complex hyperbolic

model is given by r = tanh et0 so that x ∼ e2r

4 at infinity. So our Kähler metric satisfies

ω = ω0 + O(e−2mr).

Remark. The rate of the falloff to the model at infinity that we obtained is optimal in
the radial case. In other words, a function α satisfying the desired properties cannot
decay faster at infinity. This is due to the fact that the function x 7→ xm−1α(x) must
be convex on R+ with zero first order jet at 0 ; so either it vanishes identically or it
grows at least linearly.
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[CH] P. T. Chruściel, M. Herzlich, The mass of asymptotically hyperbolic Riemannian manifolds, Pacific

J. Math. 212 (2003), no. 2, 231–264.
[Dai] X. Dai, A positive mass theorem for spaces with asymptotic SUSY compactification, Comm. Math.

Phys. 244 (2004), no. 2, 335–345.

[Gal] S. Gallot, Équations différentielles caractéristiques de la sphère, Ann. Sci. cole Norm. Sup. (4)
12 (1979), no. 2, 235–267.

[Her] M. Herzlich, Scalar curvature and rigidity of odd-dimensional complex hyperbolic spaces, Math.
Annalen, vol. 312 (1998), 641-657.

[HS] A. D. Hwang, M. A. Singer A momentum construction for circle-invariant Kähler metrics, Trans.
Amer. Math. Soc. 354 (2002), no. 6, 2285–2325

[Kir] K.D. Kirchberg, Killing spinors on Kähler manifolds, Ann. Global Anal. Geom. 11 (1993), no. 2,
141–164.

[KN] S. Kobayashi, K. Nomizu, Foundations of differential geometry. Vol. II. Reprint of the 1969
original. Wiley Classics Library. New York, 1996.

[LM] H. Blaine Lawson, Jr, Marie-Louise Michelsohn, Spin geometry, Princeton Mathematical Series,
38. Princeton University Press, Princeton, NJ, 1989.

[LP] J. M. Lee, T. H. Parker, The Yamabe problem, Bull Amer. Math. Soc. New. Series 17, (37-91)
1987.

[Loh] J. Lohkamp, The Higher Dimensional Positive Mass Theorem I, arXiv:math/0608795v1.
[Min] V. Minerbe, A mass for ALF manifolds, to appear in Comm. Math. Phys.
[MO] M. Min-Oo, Scalar curvature rigidity of asymptotically hyperbolic spin manifolds, Math. Ann.,

285 (1989), 527–539.
[Mor] A. Moroianu, La première valeur propre de l’opérateur de Dirac sur les variétés kählériennes
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