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LARGE DEVIATION PRINCIPLE AND INVISCID SHELL MODELS

HAKIMA BESSAIH AND ANNIE MILLET

Abstract. A LDP is proved for the inviscid shell model of turbulence. As the viscosity
coefficient ν converges to 0 and the noise intensity is multiplied by

√
ν, we prove that

some shell models of turbulence with a multiplicative stochastic perturbation driven by
a H-valued Brownian motion satisfy a LDP in C([0, T ], V ) for the topology of uniform
convergence on [0, T ], but where V is endowed with a topology weaker than the natural
one. The initial condition has to belong to V and the proof is based on the weak
convergence of a family of stochastic control equations. The rate function is described
in terms of the solution to the inviscid equation.

1. Introduction

Shell models, from E.B. Gledzer, K. Ohkitani, M. Yamada, are simplified Fourier sys-
tems with respect to the Navier-Stokes ones, where the interaction between different modes
is preserved only between nearest neighbors. These are some of the most interesting ex-
amples of artificial models of fluid dynamics that capture some properties of turbulent
fluids like power law decays of structure functions.

There is an extended literature on shell models. We refer to K. Ohkitani and M. Ya-
mada [25], V. S. Lvov, E. Podivilov, A. Pomyalov, I. Procaccia and D. Vandembroucq [21],
L. Biferale [3] and the references therein. However, these papers are mainly dedicated to
the numerical approach and pertain to the finite dimensional case. In a recent work by
P. Constantin, B. Levant and E. S. Titi [11], some results of regularity, attractors and iner-
tial manifolds are proved for deterministic infinite dimensional shells models. In [12] these
authors have proved some regularity results for the inviscid case. The infinite-dimensional
stochastic version of shell models have been studied by D. Barbato, M. Barsanti, H. Bes-
saih and F. Flandoli in [1] in the case of an additive random perturbation. Well-posedeness
and apriori estimates were obtained, as well as the existence of an invariant measure. Some
balance laws have been investigated and preliminary results about the structure functions
have been presented.

The more general formulation involving a multiplicative noise reads as follows

du(t) + [νAu(t) +B(u(t), u(t))] dt = σ(t, u(t)) dWt , u(0) = ξ.

driven by a Hilbert space-valued Brownian motion W . It involves some similar bilinear
operator B with antisymmetric properties and some linear ”second order” (Laplace) op-
erator A which is regularizing and multiplied by some non negative coefficient ν which
stands for the viscosity in the usual hydro-dynamical models. The shell models are adi-
mensional and the bilinear term is better behaved than that in the Navier Stokes equation.
Existence, uniqueness and several properties were studied in [1] in the case on an additive
noise and in [10] for a multiplicative noise in the ”regular” case of a non-zero viscosity
coefficient which was taken constant.
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2 H. BESSAIH AND A. MILLET

Several recent papers have studied a Large Deviation Principle (LDP) for the distri-
bution of the solution to a hydro-dynamical stochastic evolution equation: S. Sritharan
and P. Sundar [27] for the 2D Navier Stokes equation, J. Duan and A. Millet [16] for the
Boussinesq model, where the Navier Stokes equation is coupled with a similar nonlinear
equation describing the temperature evolution, U. Manna, S. Sritharan and P. Sundar [22]
for shell models of turbulence, I. Chueshov and A. Millet [10] for a wide class of hydro-
dynamical equations including the 2D Bénard magneto-hydro dynamical and 3D α-Leray
Navier Stokes models, A.Du, J. Duan and H. Gao [15] for two layer quasi-geostrophic
flows modeled by coupled equations with a bi-Laplacian. All the above papers consider an
equation with a given (fixed) positive viscosity coefficient and study exponential concen-
tration to a deterministic model when the noise intensity is multiplied by a coefficient

√
ǫ

which converges to 0. All these papers deal with a multiplicative noise and use the weak
convergence approach of LDP, based on the Laplace principle, developed by P. Dupuis
and R. Ellis in [17]. This approach has shown to be successful in several other infinite-
dimensional cases (see e.g. [4], [5], [20]) and differ from that used to get LDP in finer
topologies for quasi-linear SPDEs, such as [26], [9], [7], [8]. For hydro-dynamical models,
the LDP was proven in the natural space of trajectories, that is C([0, T ],H)∩L2([0, T ], V ),

where roughly speaking, H is L2 and V = Dom(A
1

2 ) is the Sobolev space H2
1 with proper

periodicity or boundary conditions. The initial condition ξ only belongs to H.
The aim of this paper is different. Indeed, the asymptotics we are interested in have

a physical meaning, namely the viscosity coefficient ν converges to 0. Thus the limit
equation, which corresponds to the inviscid case, is much more difficult to deal with, since
the regularizing effect of the operator A does not help anymore. Thus, in order to get
existence, uniqueness and apriori estimates to the inviscid equation, we need to start from
some more regular initial condition ξ ∈ V , to impose that (B(u, u), Au) = 0 for all u
regular enough (this identity would be true in the case on the 2D Navier Stokes equation
under proper periodicity properties); note that this equation is satisfied in the GOY and
Sabra shell models of turbulence under a suitable relation on the coefficients a, b and µ

stated below. Furthermore, some more conditions on the diffusion coefficient are required
as well. The intensity of the noise has to be multiplied by

√
ν for the convergence to hold.

The technique is again that of the weak convergence. One proves that given a family
(hν) of random elements of the RKHS ofW which converges weakly to h, the corresponding
family of stochastic control equations, deduced from the original ones by shifting the noise
by hν√

ν
, converges in distribution to the limit inviscid equation where the Gaussian noise

W has been replaced by h. Some apriori control of the solution to such equations has
to be proven uniformly in ν > 0 for ”small enough” ν. Existence and uniqueness as
well as apriori bounds have to be obtained for the inviscid limit equation. Some upper
bounds of time increments have to be proven for the inviscid equation and the stochastic
model with a small viscosity coefficient; they are similar to that in [16] and [10]. The
LDP can be shown in C([0, T ], V ) for the topology of uniform convergence on [0, T ], but
where V is endowed with a weaker topology, namely that induced by the H norm. More
generally, under some slight extra assumption on the diffusion coefficient σ, the LDP is
proved in C([0, T ], V ) where V is endowed with the norm ‖ · ‖α := |Aα(·)|H for 0 ≤ α ≤ 1

4 .

The natural case α = 1
2 is out of reach because the inviscid limit equation is much more

irregular. Indeed, it is an abstract equivalent of the Euler equation. The case α = 0
corresponds to H and then no more condition on σ is required. The case α = 1

4 is that of
an interpolation space which plays a crucial role in the 2D Navier Stokes equation. Note
that in the different context of a scalar equation, M. Mariani [23] has also proved a LDP
for a stochastic PDE when a coefficient ε in front of a deterministic operator converges
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to 0 and the intensity of the Gaussian noise is multiplied by
√
ε. However, the physical

model and the technique used in [23] are completely different from ours.

The paper is organized as follows. Section 2 gives a precise description of the model and
proves apriori bounds for the norms in C([0, T ],H) and L2([0, T ], V ) of the stochastic con-
trol equations uniformly in the viscosity coefficient ν ∈]0, ν0] for small enough ν0. Section
3 is mainly devoted to prove existence, uniqueness of the solution to the deterministic in-
viscid equation with an external multiplicative impulse driven by an element of the RKHS
of W , as well as apriori bounds of the solution in C([0, T ], V ) when the initial condition
belong to V and under reinforced assumptions on σ. Under these extra assumptions, we
are able to improve the apriori estimates of the solution and establish them in C([0, T ], V )
and L2([0, T ],Dom(A)). Finally the weak convergence and compactness of the level sets
of the rate function are proven in section 4; they imply the LDP in C([0, T ], V ) where V
is endowed with the weaker norm associated with Aα for any value of α with 0 ≤ α ≤ 1

4 .
The LDP for the 2D Navier Stokes equation as the viscosity coefficient converges to 0

will be studied in a forthcoming paper.
We will denote by C a constant which may change from one line to the next, and C(M)

a constant depending on M .

2. Description of the model

2.1. GOY and Sabra shell models. Let H be the set of all sequences u = (u1, u2, . . .)
of complex numbers such that

∑

n |un|2 < ∞. We consider H as a real Hilbert space
endowed with the inner product (·, ·) and the norm | · | of the form

(u, v) = Re
∑

n≥1

unv
∗
n, |u|2 =

∑

n≥1

|un|2, (2.1)

where v∗n denotes the complex conjugate of vn. Let k0 > 0, µ > 1 and for every n ≥ 1, set
kn = k0 µ

n. Let A : Dom(A) ⊂ H → H be the non-bounded linear operator defined by

(Au)n = k2
nun, n = 1, 2, . . . , Dom(A) =

{

u ∈ H :
∑

n≥1

k4
n|un|2 <∞

}

.

The operator A is clearly self-adjoint, strictly positive definite since (Au, u) ≥ k2
0|u|2 for

u ∈ Dom(A). For any α > 0, set

Hα = Dom(Aα) = {u ∈ H :
∑

n≥1

k4α
n |un|2 < +∞}, ‖u‖2

α =
∑

n≥1

k4α
n |un|2 for u ∈ Hα.

(2.2)
Let H0 = H,

V := Dom(A
1

2 ) =
{

u ∈ H :
∑

n≥1

k2
n|un|2 < +∞

}

; also set H = H 1

4

, ‖u‖H = ‖u‖ 1

4

.

Then V (as each of the spaces Hα) is a Hilbert space for the scalar product (u, v)V =
Re(

∑

n k
2
n un v

∗
n), u, v ∈ V and the associated norm is denoted by

‖u‖2 =
∑

n≥1

k2
n |un|2. (2.3)

The adjoint of V with respect to theH scalar product is V ′ = {(un) ∈ C
N :

∑

n≥1 k
−2
n |un|2 <

+∞} and V ⊂ H ⊂ V ′ is a Gelfand triple. Let 〈u , v〉 = Re
(

∑

n≥1 un v
∗
n

)

denote the

duality between u ∈ V and v ∈ V ′. Clearly for 0 ≤ α < β, u ∈ Hβ and v ∈ V we have

‖u‖2
α ≤ k

4(α−β)
0 ‖u‖2

β , and ‖v‖2
H ≤ |v| ‖v‖, (2.4)
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where the last inequality is proved by the Cauchy-Schwarz inequality.
Set u−1 = u0 = 0, let a, b be real numbers and B : H × V → H (or B : V ×H → H)

denote the bilinear operator defined by

[B(u, v)]n = −i
(

akn+1u
∗
n+1v

∗
n+2 + bknu

∗
n−1v

∗
n+1 − akn−1u

∗
n−1v

∗
n−2 − bkn−1u

∗
n−2v

∗
n−1

)

(2.5)
for n = 1, 2, . . . in the GOY shell-model (see, e.g., [25]) or

[B(u, v)]n = −i
(

akn+1u
∗
n+1 vn+2 + bknu

∗
n−1vn+1 + akn−1un−1vn−2 + bkn−1un−2vn−1

)

,

(2.6)
in the Sabra shell model introduced in [21].

Note that B can be extended as a bilinear operator from H ×H to V ′ and that there
exists a constant C > 0 such that given u, v ∈ H and w ∈ V we have

|〈B(u, v) , w〉| + |
(

B(u,w) , v
)

| + |
(

B(w, u) , v
)

| ≤ C |u| |v| ‖w‖. (2.7)

An easy computation proves that for u, v ∈ H and w ∈ V (resp. v,w ∈ H and u ∈ V ),

〈B(u, v) , w〉 = −
(

B(u,w) , v
)

(resp.
(

B(u, v) , w
)

= −
(

B(u,w) , v
)

). (2.8)

Furthermore, B : V × V → V and B : H×H → H; indeed, for u, v ∈ V (resp. u, v ∈ H)
we have

‖B(u, v)‖2 =
∑

n≥1

k2
n |B(u, v)n|2 ≤ C ‖u‖2 sup

n
k2
n|vn|2 ≤ C ‖u‖2 ‖v‖2, (2.9)

|B(u, v)| ≤ C ‖u‖H ‖v‖H.

For u, v in either H, H or V , let B(u) := B(u, u). The anti-symmetry property (2.8)
implies that |〈B(u1)−B(u2) , u1−u2〉V | = |〈B(u1−u2), u2〉V | for u1, u2 ∈ V and |〈B(u1)−
B(u2) , u1 − u2〉| = |〈B(u1 − u2), u2〉| for u1 ∈ H and u2 ∈ V . Hence there exist positive
constants C̄1 and C̄2 such that

|〈B(u1) −B(u2) , u1 − u2〉V | ≤ C̄1 ‖u1 − u2‖2 ‖u2‖,∀u1, u2 ∈ V, (2.10)

|〈B(u1) −B(u2) , u1 − u2〉| ≤ C̄2 |u1 − u2|2 ‖u2‖,∀u1 ∈ H,∀u2 ∈ V . (2.11)

Finally, since B is bilinear, Cauchy-Schwarz’s inequality yields for any α ∈ [0, 1
2 ], u, v ∈ V :

∣

∣

(

AαB(u) −AαB(v) , Aα(u− v)
)∣

∣ ≤
∣

∣

(

AαB(u− v, u) +AαB(v, u− v) , Aα(u− v)
)∣

∣

≤ C‖u− v‖2
α (‖u‖ + ‖v‖). (2.12)

In the GOY shell model, B is defined by (2.5); for any u ∈ V , Au ∈ V ′ we have

〈B(u, u), Au〉 = Re
(

− i
∑

n≥1

u∗n u
∗
n+1 u

∗
n+2µ

3n+1
)

k3
0(a+ bµ2 − aµ4 − bµ4).

Since µ 6= 1,

a(1 + µ2) + bµ2 = 0 if and only if 〈B(u, u) , Au〉 = 0,∀u ∈ V. (2.13)

On the other hand, in the Sabra shell model, B is defined by (2.6) and one has for u ∈ V ,

〈B(u, u) , Au〉 = k3
0Re

(

− i
∑

n≥1

µ3n+1
[

(a+ b µ2)u∗n u
∗
n+1 un+2 + (a+ b)µ4un un+1 u

∗
n+2

])

.

Thus (B(u, u), Au) = 0 for every u ∈ V if and only if a+ bµ2 = (a+ b)µ4 and again µ 6= 1
shows that (2.13) holds true.
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2.2. Stochastic driving force. Let Q be a linear positive operator in the Hilbert space

H which is trace class, and hence compact. Let H0 = Q
1

2H; then H0 is a Hilbert space
with the scalar product

(φ,ψ)0 = (Q− 1

2φ,Q− 1

2ψ), ∀φ,ψ ∈ H0,

together with the induced norm | · |0 =
√

(·, ·)0. The embedding i : H0 → H is Hilbert-
Schmidt and hence compact, and moreover, i i∗ = Q. Let LQ ≡ LQ(H0,H) be the space

of linear operators S : H0 7→ H such that SQ
1

2 is a Hilbert-Schmidt operator from H to
H. The norm in the space LQ is defined by |S|2LQ

= tr(SQS∗), where S∗ is the adjoint

operator of S. The LQ-norm can be also written in the form

|S|2LQ
= tr([SQ1/2][SQ1/2]∗) =

∑

k≥1

|SQ1/2ψk|2 =
∑

k≥1

|[SQ1/2]∗ψk|2 (2.14)

for any orthonormal basis {ψk} in H, for example (ψk)n = δkn.
Let W (t) be a Wiener process defined on a filtered probability space (Ω,F , (Ft),P),

taking values in H and with covariance operator Q. This means that W is Gaussian, has
independent time increments and that for s, t ≥ 0, f, g ∈ H,

E(W (s), f) = 0 and E(W (s), f)(W (t), g) =
(

s ∧ t) (Qf, g).

Let βj be standard (scalar) mutually independent Wiener processes, {ej} be an orthonor-
mal basis in H consisting of eigen-elements of Q, with Qej = qjej . Then W has the
following representation

W (t) = lim
n→∞

Wn(t) in L2(Ω;H) with Wn(t) =
∑

1≤j≤n
q
1/2
j βj(t)ej , (2.15)

and Trace(Q) =
∑

j≥1 qj. For details concerning this Wiener process see e.g. [13].
Given a viscosity coefficient ν > 0, consider the following stochastic shell model

dtu(t) +
[

νAu(t) +B(u(t))
]

dt =
√
ν σν(t, u(t)) dW (t), (2.16)

where the noise intensity σν : [0, T ] × V → LQ(H0,H) of the stochastic perturbation is
properly normalized by the square root of the viscosity coefficient ν. We assume that σν
satisfies the following growth and Lipschitz conditions:
Condition (C1): σν ∈ C

(

[0, T ] × V ;LQ(H0,H)
)

, and there exist non negative constants
Ki and Li such that for every t ∈ [0, T ] and u, v ∈ V :
(i) |σν(t, u)|2LQ

≤ K0 +K1|u|2 +K2‖u‖2,

(ii) |σν(t, u) − σν(t, v)|2LQ
≤ L1|u− v|2 + L2‖u− v‖2.

For technical reasons, in order to prove a large deviation principle for the distribution of
the solution to (2.16) as the viscosity coefficient ν converges to 0, we will need some precise
estimates on the solution of the equation deduced from (2.16) by shifting the Brownian W
by some random element of its RKHS. This cannot be deduced from similar ones on u by
means of a Girsanov transformation since the Girsanov density is not uniformly bounded
when the intensity of the noise tends to zero (see e.g. [16] or [10]).

To describe a set of admissible random shifts, we introduce the class A as the set of

H0−valued (Ft)−predictable stochastic processes h such that
∫ T
0 |h(s)|20ds <∞, a.s. For

fixed M > 0, let

SM =
{

h ∈ L2(0, T ;H0) :

∫ T

0
|h(s)|20ds ≤M

}

.

The set SM , endowed with the following weak topology, is a Polish (complete separa-

ble metric) space (see e.g. [5]): d1(h, k) =
∑∞

k=1
1
2k

∣

∣

∫ T
0

(

h(s) − k(s), ẽk(s)
)

0
ds

∣

∣, where
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{ẽk(s)}∞k=1 is an orthonormal basis for L2([0, T ],H0). For M > 0 set

AM = {h ∈ A : h(ω) ∈ SM , a.s.}. (2.17)

In order to define the stochastic control equation, we introduce for ν ≥ 0 a family of
intensity coefficients σ̃ν of a random element h ∈ AM for some M > 0. The case ν = 0
will be that of an inviscid limit ”deterministic” equation with no stochastic integral and
which can be dealt with for fixed ω. We assume that for any ν ≥ 0 the coefficient σ̃ν
satisfies the following condition:

Condition (C2): σ̃ν ∈ C
(

[0, T ] × V ;L(H0,H)
)

and there exist constants K̃H, K̃i, and

L̃j , for i = 0, 1 and j = 1, 2 such that:

|σ̃ν(t, u)|2L(H0,H) ≤ K̃0 + K̃1|u|2 + νK̃H‖u‖2
H, ∀t ∈ [0, T ], ∀u ∈ V, (2.18)

|σ̃ν(t, u) − σ̃ν(t, v)|2L(H0,H) ≤ L̃1|u− v|2 + νL̃2‖u− v‖2, ∀t ∈ [0, T ], ∀u, v ∈ V, (2.19)

where H = H 1

4

is defined by (2.2) and | · |L(H0,H) denotes the (operator) norm in the space

L(H0,H) of all bounded linear operators from H0 into H. Note that if ν = 0 the previous
growth and Lipschitz on σ̃0(t, .) can be stated for u, v ∈ H.

Remark 2.1. Unlike (C1) the hypotheses concerning the control intensity coefficient σ̃ν
involve a weaker topology (we deal with the operator norm | · |L(H0,H) instead of the trace
class norm | · |LQ

). However we require in (2.18) a stronger bound (in the interpolation

space H). One can see that the noise intensity
√
ν σν satisfies Condition (C2) provided

that in Condition (C1), we replace point (i) by |σν(t, u)|2LQ
≤ K0 + K1|u|2 + KH‖u‖2

H.

Thus the class of intensities satisfying both Conditions (C1) and (C2) when multiplied
by

√
ν is wider than that those coefficients which satisfy condition (C1) with K2 = 0.

Let M > 0, h ∈ AM , ξ an H-valued random variable independent of W and ν > 0.
Under Conditions (C1) and (C2) we consider the nonlinear SPDE

duνh(t) +
[

ν Auνh(t) +B
(

uνh(t)
)]

dt =
√
ν σν(t, u

ν
h(t)) dW (t) + σ̃ν(t, u

ν
h(t))h(t) dt, (2.20)

with initial condition uνh(0) = ξ. Using [10], Theorem 3.1, we know that for every T > 0
and ν > 0 there exists K̄ν

2 := K̄2(ν, T,M) > 0 such that if hν ∈ AM , E|ξ|4 < +∞ and
0 ≤ K2 < K̄ν

2 , equation (2.20) has a unique solution uνh ∈ C([0, T ],H)∩L2([0, T ], V ) which
satisfies:

(uνh, v) − (ξ, v) +

∫ t

0

[

ν〈uνh(s), Av〉 + 〈B(uνh(s)), v〉
]

ds

=

∫ t

0

(√
ν σν(s, u

ν
h(s)) dW (s) , v

)

+

∫ t

0

(

σ̃ν(s, u
ν
h(s))h(s) , v

)

ds

a.s. for all v ∈ Dom(A) and t ∈ [0, T ]. Note that uνh is a weak solution from the analytical
point of view, but a strong one from the probabilistic point of view, that is written in
terms of the given Brownian motion W . Furthermore, if K2 ∈ [0, K̄ν

2 [ and L2 ∈ [0, 2[,

there exists a constant Cν := C(Ki, Lj , K̃i, K̃H, T,M, ν) such that

E

(

sup
0≤t≤T

|uνh(t)|4 +

∫ T

0
‖uνh(t)‖2 dt+

∫ T

0
‖uνh(t)‖4

H dt
)

≤ Cν (1 + E|ξ|4). (2.21)

The following proposition proves that K̄ν
2 can be chosen independent of ν and that a

proper formulation of upper estimates of the H, H and V norms of the solution uνh to
(2.20) can be proved uniformly in h ∈ AM and in ν ∈ (0, ν0] for some constant ν0 > 0.



LDP AND INVISCID SHELL MODELS 7

Proposition 2.2. Fix M > 0, T > 0, σν and σ̃ν satisfy Conditions (C1)–(C2) and let the
initial condition ξ be such that E|ξ|4 < +∞. Then in any shell model where B is defined
by (2.5) or (2.6), there exist constants ν0 > 0, K̄2 and C̄(M) such that if 0 < ν ≤ ν0,
0 ≤ K2 < K̄2, L2 < 2 and h ∈ AM , the solution uνh to (2.20) satisfies:

E

(

sup
0≤t≤T

|uνh(t)|4 + ν

∫ T

0
‖uνh(s)‖2 ds+ ν

∫ T

0
‖uνh(s)‖4

H ds
)

≤ C̄(M)
(

E|ξ|4 + 1
)

. (2.22)

Proof. For every N > 0, set τN = inf{t : |uνh(t)| ≥ N} ∧ T. Itô’s formula and the
antisymmetry relation in (2.8) yield that for t ∈ [0, T ],

|uνh(t∧τN )|2 = |ξ|2 + 2
√
ν

∫ t∧τN

0

(

σν(s, u
ν
h(s))dW (s), uνh(s)

)

− 2 ν

∫ t∧τN

0
‖uνh(s)‖2ds

+ 2

∫ t∧τN

0

(

σ̃ν(s, u
ν
h(s))h(s), u

ν
h(s)

)

ds + ν

∫ t∧τN

0
|σν(s, uνh(s))|2LQ

ds, (2.23)

and using again Itô’s formula we have

|uνh(t ∧ τN )|4 + 4 ν

∫ t∧τN

0
|uνh(r)|2 ‖uνh(r)‖2 dr ≤ |ξ|4 + I(t) +

∑

1≤j≤3

Tj(t), (2.24)

where

I(t) = 4
√
ν

∣

∣

∣

∫ t∧τN

0

(

σν(r, u
ν
h(r)) dW (r), uνh(r) |uνh(r)|2

)

∣

∣

∣
,

T1(t) = 4

∫ t∧τN

0
|(σ̃ν(r, uνh(r))h(r) , uνh(r))| |uνh(r)|2dr,

T2(t) = 2ν

∫ t∧τN

0
|σν(r, uνh(r))|2LQ

|uνh(r)|2dr,

T3(t) = 4ν

∫ t∧τN

0
|σ∗ν(s, uνh(r)) uνh(r)|20 dr.

Since h ∈ AM , the Cauchy-Schwarz and Young inequalities and condition (C2) imply
that for any ǫ > 0,

T1(t) ≤ 4

∫ t∧τN

0

(

√

K̃0 +

√

K̃1 |uνh(r)| +
√

ν K̃H k
− 1

2

0 ‖uνh(r)‖
)

|h(r)|0 |uνh(r)|3dr

≤ 4

√

K̃0M T + 4
(

√

K̃0 +

√

K̃1

)

∫ t∧τN

0
|h(r)|0 |uνh(r)|4 ds

+ ǫ ν

∫ t

0
‖uνh(r)‖2 |uνh(r)|2 dr +

4 K̃H
ǫ k0

∫ t∧τN

0
|h(r)|20 |uνh(r)|4 dr. (2.25)

Using condition (C1) we deduce

T2(t) + T3(t) ≤ 6 ν

∫ t∧τN

0

[

K0 +K1 |uνh(r)|2 +K2‖uνh(r)‖2
]

|uνh(r)|2 dr

≤ 6 ν K0 T + 6 ν (K0 +K1)

∫ t∧τN

0
|uνh(r)|4 dr + 6 ν K2

∫ t

0
‖uνh(r)‖2 |uνh(r)|2dr. (2.26)

Let K2 ≤ 1
2 and 0 < ǫ ≤ 2 − 3K2; set

ϕ(r) = 4
(

√

K̃0 +

√

K̃1

)

|h(r)|0 +
4K̃H
ǫk0

|h(r)|20 + 6 ν(K0 +K1).
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Then a.s.
∫ T

0
ϕ(r) dr ≤ 4

(

√

K̃0 +

√

K̃1

)√
M T +

4K̃H
ǫk0

M + 6 ν(K0 +K1)T := Φ (2.27)

and the inequalities (2.24)-(2.26) yield that for

X(t) = sup
r≤t

|uνh(r ∧ τN )|4 , Y (t) = ν

∫ t

0
‖uνh(r ∧ τN )‖2 |uνh(r ∧ τN )|2 ds,

X(t)+ (4−6K2 − ǫ)Y (t) ≤ |ξ|4 +
(

4

√

K̃0MT +6νK0T
)

+ I(t)+

∫ t

0
ϕ(s)X(s) ds. (2.28)

The Burkholder-Davis-Gundy inequality, (C1), Cauchy-Schwarz and Young’s inequalities
yield that for t ∈ [0, T ] and δ, κ > 0,

EI(t) ≤ 12
√
ν E

({

∫ t∧τN

0

[

K0 +K1 |uνh(s)|2 +K2 ‖uνh(s)‖2
]

|uνh(r)|6ds
}

1

2

)

≤ 12
√
ν E

(

sup
0≤s≤t

|uνh(s ∧ τN )|2
{

∫ t∧τN

0

[

K0 +K1 |uνh(s)|2 +K2 ‖uνh(s)‖2
]

|uνh(s)|2ds
}

1

2

)

≤ δ E(Y (t)) +
(36K2

δ
+ κ ν

)

E(X(t)) +
36

κ

[

K0 T + (K0 +K1)

∫ t

0
E(X(s)) ds

]

. (2.29)

Thus we can apply Lemma 3.2 in [10] (see also Lemma 3.2 in [16]), and we deduce that
for 0 < ν ≤ ν0, K2 ≤ 1

2 , ǫ = α = 1
2 , β = 36K2

δ + κ ν0 ≤ 2−1 e−Φ, δ ≤ α2−1 e−Φ and

γ = 36
κ (K0 +K1),

E

(

X(T )+αY (T )
)

≤ 2 exp
(

Φ+2TγeΦ
)

[

4

√

K̃0M T+6ν0K0T+
36

κ
K0T+E(|ξ|4)

]

. (2.30)

Using the last inequality from (2.4), we deduce that for K2 small enough, C̄(M) indepen-
dent of N and ν ∈]0, ν0],

E

(

sup
0≤t≤T

|uνh(t ∧ τN )|4 + ν

∫ τN

0
‖uνh(t)‖4

H dt
)

≤ C̄(M)(1 + E(|ξ|4)).

As N → +∞, the monotone convergence theorem yields that for K̄2 small enough and
ν ∈]0, ν0]

E

(

sup
0≤t≤T

|uνh(t)|4 + ν

∫ T

0
‖uνh(t)‖4

H dt
)

≤ C̄(M)(1 + E(|ξ|4)).

This inequality and (2.30) with t instead of t ∧ τN conclude the proof of (2.22) by a
similar simpler computation based on conditions (C1) and (C2). �

3. Well posedeness, more a priori bounds and inviscid equation

The aim of this section is twofold. On one hand, we deal with the inviscid case ν = 0
for which the PDE

du0
h(t) +B(u0

h(t)) dt = σ̃0(t, u
0
h(t))h(t) dt , u0

h(0) = ξ (3.1)

can be solved for every ω. In order to prove that (3.1) has a unique solution in C([0, T ], V )
a.s., we will need stronger assumptions on the constants µ, a, b defining B, the initial
condition ξ and σ̃0. The initial condition ξ has to belong to V and the coefficients a, b, µ
have to be chosen such that (B(u, u), Au) = 0 for u ∈ V (see (2.13)). On the other
hand, under these assumptions and under stronger assumptions on σν and σ̃ν , similar to
that imposed on σ̃0, we will prove further properties of uνh for a strictly positive viscosity
coefficient ν.



LDP AND INVISCID SHELL MODELS 9

Thus, suppose furthermore that for ν > 0 (resp. ν = 0), the map

σ̃ν : [0, T ] ×Dom(A) → L(H0, V ) (resp. σ̃0 : [0, T ] × V → L(H0, V ))

satisfies the following:

Condition (C3): There exist non negative constants K̃i and L̃j , i = 0, 1, 2, j = 1, 2 such
that for s ∈ [0, T ] and for any u, v ∈ Dom(A) if ν > 0 (resp. for any u, v ∈ V if ν = 0),

|A 1

2 σ̃ν(s, u)|2L(H0,H) ≤ K̃0 + K̃1 ‖u‖2 + ν K̃2 |Au|2, (3.2)

and

|A 1

2 σ̃ν(s, u) −A
1

2 σ̃ν(s, v)|2L(H0,H) ≤ L̃1 ‖u− v‖2 + ν L̃2 |Au−Av|2. (3.3)

Theorem 3.1. Suppose that σ̃0 satisfies the conditions (C2) and (C3) and that the
coefficients a, b, µ defining B satisfy a(1 + µ2) + bµ2 = 0. Let ξ ∈ V be deterministic. For
any M > 0 there exists C(M) such that equation (3.1) has a unique solution in C([0, T ], V )
for any h ∈ AM , and a.s. one has:

sup
h∈AM

sup
0≤t≤T

‖u0
h(t)‖ ≤ C(M)(1 + ‖ξ‖). (3.4)

Since equation (3.1) can be considered for any fixed ω, it suffices to check that the
deterministic equation (3.1) has a unique solution in C([0, T ], V ) for any h ∈ SM and that
(3.4) holds. For any m ≥ 1, let Hm = span(ϕ1, · · · , ϕm) ⊂ Dom(A),

Pm : H → Hm denote the orthogonal projection from H onto Hm, (3.5)

and finally let σ̃0,m = Pmσ̃0. Clearly Pm is a contraction of H and |σ̃0,m(t, u)|2L(H0,H) ≤
|σ̃0(t, u)|2L(H0,H). Set u0

m,h(0) = Pm ξ and consider the ODE on the m-dimensional space

Hm defined by

d
(

u0
m,h(t) , v

)

=
[

−
(

B(u0
m,h(t)) , v

)

+
(

σ̃0(t, u
0
m,h(t))h(t) , v

)]

dt (3.6)

for every v ∈ Hm.
Note that using (2.9) we deduce that the map u ∈ Hm 7→ 〈B(u) , v〉 is locally Lipschitz.

Furthermore, since there exists some constant C(m) such that ‖u‖ ∨ ‖u‖H ≤ C(m)|u| for
u ∈ Hm, Condition (C2) implies that the map u ∈ Hm 7→

(

(σ̃0,m(t, u)h(t) , ϕk) : 1 ≤ k ≤
m

)

, is globally Lipschitz from Hm to R
m uniformly in t. Hence by a well-known result

about existence and uniqueness of solutions to ODEs, there exists a maximal solution
u0
m,h =

∑m
k=1(u

0
m,h , ϕk

)

ϕk to (3.6), i.e., a (random) time τ0
m,h ≤ T such that (3.6) holds

for t < τ0
m,h and as t ↑ τ0

m,h < T , |u0
m,h(t)| → ∞. The following lemma provides the

(global) existence and uniqueness of approximate solutions as well as their uniform a
priori estimates. This is the main preliminary step in the proof of Theorem 3.1.

Lemma 3.2. Suppose that the assumptions of Theorem 3.1 are satisfied and fix M > 0.
Then for every h ∈ AM equation (3.6) has a unique solution in C([0, T ],Hm). There exists
some constant C(M) such that for every h ∈ AM ,

sup
m

sup
0≤t≤T

‖u0
m,h(t)‖2 ≤ C(M) (1 + ‖ξ‖2) a.s. (3.7)

Proof. The proof is included for the sake of completeness; the arguments are similar to
that in the classical viscous framework. Let h ∈ AM and let u0

m,h(t) be the approxi-

mate maximal solution to (3.6) described above. For every N > 0, set τN = inf{t :
‖u0

m,h(t)‖ ≥ N} ∧ T. Let Πm : H0 → H0 denote the projection operator defined by

Πmu =
∑m

k=1

(

u , ek
)

ek, where {ek, k ≥ 1} is the orthonormal basis of H made by eigen-
elements of the covariance operator Q and used in (2.15).
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Since ϕk ∈ Dom(A) and V is a Hilbert space, Pm contracts the V norm and commutes
with A. Thus, using (C3) and (2.13), we deduce

‖u0
m,h(t ∧ τN )‖2 ≤ ‖ξ‖2 − 2

∫ t∧τN

0

(

B(u0
m,h(s)) , Au

0
m,h(s)

)

ds

+ 2

∫ t∧τN

0

∣

∣A
1

2Pmσ̃0,m(s, u0
m,h(s))h(s)

∣

∣ ‖u0
m,h(s)‖ ds

≤ |ξ‖2 + 2

√

K̃0MT + 2
(

√

K̃0 +

√

K̃1

)

∫ t∧τN

0
|h(s)|0 ‖u0

m,h(s)‖2 ds.

Since the map ‖u0
m,h(.)‖ is bounded on [0, τN ], Gronwall’s lemma implies that for every

N > 0,

sup
m

sup
t≤τN

‖u0
m,h(t)‖2 ≤

(

‖ξ‖2 + 2

√

K̃0MT
)

exp
(

2
√
MT

[

√

K̃0 +

√

K̃1

])

. (3.8)

Let τ := limN τN ; as N → ∞ in (3.8) we deduce

sup
m

sup
t≤τ

‖u0
m,h(t)‖2 ≤

(

‖ξ‖2 + 2

√

K̃0MT
)

exp
(

2
√
MT

[

√

K̃0 +

√

K̃1

])

. (3.9)

On the other hand, supt≤τ ‖u0
m,h(t)‖2 = +∞ if τ < T , which contradicts the estimate

(3.9) . Hence τ = T a.s. and we get (3.7) which completes the proof of the Lemma. �

We now prove the main result of this section.
Proof of Theorem 3.1:
Step 1: Using the estimate (3.7) and the growth condition (2.18) we conclude that each
component of the sequence

(

(u0
m,h)n, n ≥ 1

)

satisfies the following estimate

sup
m

sup
0≤t≤T

|(u0
m,h)n(t)|2 +

∣

∣

(

σ̃0(t, u
0
m,h(t))h(t)

)

n

∣

∣ ≤ C a.s. ,∀n = 1, 2, · · ·

for some constant C > 0 depending only on M, ‖ξ‖, T . Moreover, writing the equation
(3.1) for the GOY shell model in the componentwise form using (2.5) (the proof for the
Sabra shell model using (2.6), which is similar, is omitted), we obtain for n = 1, 2, · · ·

(u0
m,h)n(t) =(Pmξ)n + i

∫ t

0
(akn+1(u

0
m,h)

∗
n+1(s)(u

0
m,h)

∗
n+2(s) + bkn(u

0
m,h)

∗
n−1(s)(u

0
m,h)

∗
n+1(s)

− akn−1(u
0
m,h)

∗
n−1(s)(u

0
m,h)

∗
n−2(s) − bkn−1(u

0
m,h)

∗
n−2(s)(u

0
m,h)

∗
n−1(s))ds

+

∫ t

0

(

σ̃0(s, u
0
m,h(s))h(s)

)

n
ds . (3.10)

Hence, we deduce that for every n ≥ 1 there exists a constant Cn, independent of m, such
that

‖(u0
m,h)n‖C1([0,T ];C) ≤ Cn.

Applying the Ascoli-Arzelà theorem, we conclude that for every n there exists a subse-
quence (mn

k )k≥1 such that (u0
mn

k
,h)n converges uniformly to some (u0

h)n as k −→ ∞. By

a diagonal procedure, we may choose a sequence (mn
k)k≥1 independent of n such that

(u0
m,h)n converges uniformly to some (u0

h)n ∈ C ([0, T ]; C) for every n ≥ 1; set

u0
h(t) = ((u0

h)1, (u
0
h)2, . . . ).

From the estimate (3.7), we have the weak star convergence in L∞(0, T ;V ) of some further
subsequence of

(

u0
mn

k
,h : k ≥ 1). The weak limit belongs to L∞(0, T ;V ) and has clearly

(u0
h)n as components that belong to C ([0, T ]; C) for every integer n ≥ 1. Using the uniform
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convergence of each component, it is easy to show, passing to the limit in the expression
(3.10), that u0

h(t) satisfies the weak form of the GOY shell model equation (3.1). Finally,
since

u0
h(t) = ξ +

∫ t

0

[

−B(u0
h(s)) + σ̃0(s, u

0
h(s))h(s)

]

ds,

is such that sup0≤s≤T ‖u0
h(s)‖ < ∞ a.s. and since for every s ∈ [0, T ], by (2.9) and (3.2)

we have a.s.
[

‖B(u0
h(s))‖ + ‖σ̃0(s, u

0
h(s))h(s)‖

]

≤ C
(

1 + sup
0≤s≤T

‖u0
h(s)‖2

)(

1 + |h(s)|0
)

∈ L2([0, T ]),

we deduce that u0
h ∈ C([0, T ], V ) a.s.

Step 2: To complete the proof of Theorem 3.1, we show that the solution u0
h to (3.1) is

unique in C([0, T ], V ). Let v ∈ C([0, T ], V ) be another solution to (3.1) and set

τN = inf{t ≥ 0 : ‖u0
h(t)‖ ≥ N} ∧ inf{t ≥ 0 : ‖v(t)‖ ≥ N} ∧ T.

Since ‖u0
h(.)‖ and ‖v(.)‖ are bounded on [0, T ], we have τN → T as N → ∞.

Set U = u0
h − v; equation (2.10) implies

∣

∣

(

A
1

2B(u0
h(s)) −A

1

2B(v(s)), A
1

2U(s)
)
∣

∣ =
∣

∣

(

B(u0
h(s)) −B(v(s)), AU(s)

)
∣

∣

≤ C̄1‖U(s)‖2 ‖v(s)‖.
On the other hand, the Lipschitz property (3.3) from condition (C3) for ν = 0 implies

∣

∣

[

A
1

2 σ̃0(s, u
0
h(s)) −A

1

2 σ̃0(s, v(s))
]

h(s)
∣

∣ ≤
√

L̃1‖u0
h(s) − v(s)‖ |h(s)|0.

Therefore,

‖U(t ∧ τN )‖2 =

∫ t∧τN

0

{

− 2
(

A
1

2B(u0
h(s)) −A

1

2B(v(s)), A
1

2U(s)
)

+ 2
(

[A
1

2 σ̃0(s, u
0
h(s)) −A

1

2 σ̃0(s, v(s))]h(s), A
1

2U(s)
)}

ds

≤ 2

∫ t

0

(

C̄1N +
√
L1|h(s)|0

)

‖U(s ∧ τN )‖2 ds,

and Gronwall’s lemma implies that (for almost every ω) sup0≤t≤T ‖U(t ∧ τN )‖2 = 0 for
every N . As N → ∞, we deduce that a.s. U(t) = 0 for every t, which concludes the proof.
2

We now suppose that the diffusion coefficient σν satisfies the following condition (C4)
which strengthens (C1) in the way (C3) strengthens (C2), i.e.,
Condition (C4) There exist constants Ki and Li, i = 0, 1, 2, j = 1, 2, such that for any
ν > 0 and u ∈ Dom(A),

|A 1

2σν(s, u)|2LQ
≤ K0 +K1‖u‖2 +K2|Au|2, (3.11)

|A 1

2σν(s, u) −A
1

2σν(s, v)|2LQ
≤ L1‖u− v‖2 + L2|Au−Av|2. (3.12)

Then for ν > 0, the existence result and apriori bounds of the solution to (2.20) proved in
Proposition 2.2 can be improved as follows.

Proposition 3.3. Let ξ ∈ V , let the coefficients a, b, µ defining B be such that a(1+µ2)+
bµ2 = 0, σν and σ̃ν satisfy the conditions (C1), (C2), (C3) and (C4). Then there exist
positive constants K̄2 and ν0 such that for 0 < K2 < K̄2 and 0 < ν ≤ ν0, for every M > 0
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there exists a constant C(M) such that for any h ∈ AM , the solution uνh to (2.20) belongs
to C([0, T ], V ) almost surely and

sup
h∈AM

sup
0<ν≤ν0

E

(

sup
t∈[0,T ]

‖uνh(t)‖2 + ν

∫ T

0
|Auνh(t)|2 dt

)

≤ C(M). (3.13)

Proof. Fix m ≥ 1, let Pm be defined by (3.5) and let uνm,h(t) be the approximate maximal

solution to the (finite dimensional) evolution equation: uνm,h(0) = Pmξ and

duνm,h(t) =
[

− νPmAu
ν
m,h(t) − PmB(uνm,h(t)) + Pmσ̃ν(t, u

ν
m,h(t))h(t)

]

dt

+Pm
√
ν σν(t, u

ν
m,h)(t)dWm(t), (3.14)

where Wm is defined by (2.15). Proposition 3.3 in [10] proves that (3.14) has a unique
solution uνm,h ∈ C([0, T ], Pm(H)). For every N > 0, set

τN = inf{t : ‖uνm,h(t)‖ ≥ N} ∧ T.

Since Pm(H) ⊂ Dom(A), we may apply Itô’s formula to ‖uνm,h(t)‖2. Let Πm : H0 → H0

be defined by Πmu =
∑m

k=1

(

u, ek
)

ek for some orthonormal basis {ek, k ≥ 1} of H made
by eigen-vectors of the covariance operator Q; then we have:

‖uνm,h(t ∧ τN )‖2 = ‖Pmξ‖2 + 2
√
ν

∫ t∧τN

0

(

A
1

2Pmσν(s, u
ν
m,h(s))dWm(s), A

1

2uνm,h(s)
)

+ ν

∫ t∧τN

0
|Pmσν(s, uνm,h(s))Πm|2LQ

ds− 2

∫ t∧τN

0

(

A
1

2B(uνm,h(s)) , A
1

2uνm,h(s)
)

ds

− 2ν

∫ t∧τN

0

(

A
1

2PmAu
ν
m,h(s), A

1

2uνm,h(s)
)

ds + 2

∫ t∧τN

0

(

A
1

2Pmσ̃ν(s, u
ν
m,h(s))h(s), A

1

2uνm,h(s)
)

ds.

Since the functions ϕk are eigen-functions of A, we have A
1

2Pm = PmA
1

2 and hence
(

A
1

2PmAu
ν
m,h(s), A

1

2uνm,h(s)
)

= |Auνm,h(s)|2. Furthermore, Pm contracts the H and the V

norms, and for u ∈ Dom(A),
(

B(u), Au
)

= 0 by (2.13). Hence for 0 < ǫ = 1
2(2−K2) < 1,

using Cauchy-Schwarz’s inequality and the conditions (C3) and (C4) on the coefficients
σν and σ̃ν , we deduce

‖uνm,h(t ∧ τN )‖2 + ǫν

∫ t∧τN

0

∣

∣Auνm,h(s)|2 ds ≤ ‖ξ‖2 + ν

∫ t∧τN

0

[

K0 +K1‖uνm,h(s)‖2
]

ds

+ 2
√
ν

∫ t∧τN

0

(

A
1

2Pmσν(s, u
ν
m,h(s))dWm(s), A

1

2uνm,h(s)
)

+ 2

∫ t∧τN

0

{[

√

K̃0 +
(

√

K̃0 +

√

K̃1

)

‖uνm,h(s)‖2
]

|h(s)|0 +
K̃2

ǫ
|h(s)|20‖uνm,h(s)‖2

}

ds.

For any t ∈ [0, T ] set

I(t) = sup
0≤s≤t

∣

∣

∣
2
√
ν

∫ s∧τN

0

(

A
1

2Pmσν(r, u
ν
m,h(r))dWm(r) , A

1

2uνm,h(r)
)

∣

∣

∣
,

X(t) = sup
0≤s≤t

‖uνm,h(s ∧ τN )‖2, Y (t) =

∫ t∧τN

0
|Auνm,h(r)|2 dr,

ϕ(t) = 2
(

√

K̃0 +

√

K̃1

)

|h(t)|0 + νK1 +
K̃2

ǫ
|h(t)|20.

Then almost surely,
∫ T
0 ϕ(t) dt ≤ νK1T + 2

(

√

K̃0 +
√

K̃1

)√
MT + K̃2

ǫ M := C. The
Burkholder-Davis-Gundy inequality, conditions (C1) – (C4), Cauchy-Schwarz and Young’s
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inequalities yield that for t ∈ [0, T ] and β > 0,

EI(t) ≤ 6
√
ν E

{

∫ t∧τN

0

∣

∣A
1

2σν(s, u
ν
m,h(r)) Πm|2LQ

‖uνm,h(s)‖2ds
}

1

2

≤ β E

(

sup
0≤s≤t∧τN

‖um,h(s)‖2
)

+
9νK1

β
E

∫ t∧τN

0
‖um,h(s)‖2 ds

+
9νK0

β
T +

9νK2

β
E

∫ t∧τN

0
|Auνm,h(s)|2ds.

Set Z = ‖ξ‖2 + ν0K0T + 2
√

K̃0TM , α = ǫν, β = 2−1e−C , K2 < 2−2e−2C(9 + 2−3e−2C)−1;
the previous inequality implies that the bounded function X satisfies a.s. the inequality

X(t) + αY (t) ≤ Z + I(t) +

∫ t

0
ϕ(s)X(s) ds.

Furthermore, I(t) is non decreasing, such that for 0 < ν ≤ ν0, δ = 9νK2

β ≤ α2−1e−C and

γ = 9ν0
a K1, one has

EI(t) ≤ βEX(t) + γE

∫ t

0
X(s) ds + δY (t) +

9ν0

β
K0T.

Lemma 3.2 from [10] implies that for K2 and ν0 small enough, there exists a constant
C(M,T ) which does not depend on m and N , and such that for 0 < ν ≤ ν0, m ≥ 1 and
h ∈ AM :

sup
N>0

sup
m≥1

E

[

sup
0≤t≤τN

‖uνm,h(t)‖2 + ν

∫ τN

0
|Auνm,h(t)|2 dt

]

<∞.

Then, letting N → ∞ and using the monotone convergence theorem, we deduce that

sup
m≥1

sup
h∈AM

E

[

sup
0≤t≤T

‖uνm,h(t)‖2 + ν

∫ T

0
|Auνm,h(t)|2 dt

]

<∞. (3.15)

Then using classical arguments we prove the existence of a subsequence of (uνm,h,m ≥
1) which converges weakly in L2([0, T ] × Ω, V ) ∩ L4([0, T ] × Ω,H) and converges weak-
star in L4(Ω, L∞([0, T ],H)) to the solution uνh to equation (2.20) (see e.g. [10], proof of
Theorem 3.1). In order to complete the proof, it suffices to extract a further subsequence
of (uνm,h,m ≥ 1) which is weak-star convergent to the same limit uνh in L2(Ω, L∞([0, T ], V ))

and converges weakly in L2(Ω × [0, T ],Dom(A)); this is a straightforward consequence of
(3.15). Then as m→ ∞ in (3.15), we conclude the proof of (3.13). �

4. Large deviations

We will prove a large deviation principle using a weak convergence approach [4, 5],
based on variational representations of infinite dimensional Wiener processes. Let σ :
[0, T ] × V → LQ and for every ν > 0 let σ̄ν : [0, T ] ×Dom(A) → LQ satisfy the following
condition:
Condition (C5):
(i) There exist a positive constant γ and non negative constants C̄, K̄0, K̄1 and L̄1 such
that for all u, v ∈ V and s, t ∈ [0, T ]:

|σ(t, u)|2LQ
≤ K̄0 + K̄1 |u|2,

∣

∣A
1

2σ(t, u)
∣

∣

2

LQ
≤ K̄0 + K̄1 ‖u‖2,

|σ(t, u) − σ(t, v)|2LQ
≤ L̄1 |u− v|2,

∣

∣A
1

2σ(t, u) −A
1

2σ(t, v)
∣

∣

2

LQ
≤ L̄1 ‖u− v‖2,

∣

∣σ(t, u) − σ(s, u)
∣

∣

LQ
≤ C (1 + ‖u‖) |t − s|γ .
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(ii) There exist a positive constant γ and non negative constants C̄, K̄0, K̄H, K̄2 and L̄2

such that for ν > 0, s, t ∈ [0, T ] and u, v ∈ Dom(A),

|σ̄ν(t, u)|2LQ
≤

(

K̄0 + K̄H ‖u‖2
H

)

,
∣

∣A
1

2 σ̄ν(t, u)
∣

∣

2

LQ
≤

(

K̄0 + K̄2 |Au|2
)

,

|σ̄ν(t, u) − σ̄ν(t, v)|2LQ
≤ L̄2 ‖u− v‖2,

∣

∣A
1

2 σ̄ν(t, u) −A
1

2 σ̄ν(t, v)
∣

∣

2

LQ
≤ L̄2 |Au−Av|2,

∣

∣σ̄ν(t, u) − σ̄ν(t, u)
∣

∣

LQ
≤ C̄ (1 + ‖u‖) |t − s|γ .

Set
σν = σ̃ν = σ +

√
νσ̄ν for ν > 0, and σ̃0 = σ. (4.1)

Then for 0 ≤ ν ≤ ν1, the coefficients σν and σ̃ν satisfy the conditions (C1)-(C4) with

K0 = K̃0 = 4K̄0, K1 = K̃1 = 2K̄1, L1 = L̃1 = 2L̄1, K̃2 = 2K̄2, K̃H = 2K̄H,

K2 = 2
[

K̄2 ∨
(

K̄Hk
4α−2
0

)]

ν1, L2 = 2L̄2ν1 and L̃2 = 2L̄2. (4.2)

Proposition 3.3 and Theorem 3.1 prove that for some ν0 ∈]0, ν1], K̄2 and L̄2 small enough,
0 < ν ≤ ν0 (resp. ν = 0), ξ ∈ V and hν ∈ AM , the following equation has a unique
solution uνhν

(resp. u0
h) in C(0, T ], V ): uνhν

(0) = u0
h(0) = ξ, and

duνhν
(t) +

[

νAuνhν
(t) +B(uνhν

(t))
]

dt =
√
ν σν(t, u

ν
hν

(t)) dW (t) + σ̃ν(t, u
ν
hν

(t))hν(t)dt,
(4.3)

du0
h(t) +B(u0

h(t)) dt = σ(t, u0
h(t))h(t) dt. (4.4)

Recall that for any α ≥ 0, Hα has been defined in (2.2) and is endowed with the norm
‖ · ‖α defined in (2.2). When 0 ≤ α ≤ 1

4 , as ν → 0 we will establish a Large Deviation
Principle (LDP) in the set C([0, T ], V ) for the uniform convergence in time when V is
endowed with the norm ‖ · ‖α for the family of distributions of the solutions uν to the
evolution equation: uν(0) = ξ ∈ V ,

duν(t) +
[

νAuν(t) +B(uν(t))
]

dt =
√
νσν(t, u

ν(t)) dW (t), (4.5)

whose existence and uniqueness in C([0, T ], V ) follows from Propositions 2.2 and 3.3. Un-
like in [27], [16], [22] and [10], the large deviations principle is not obtained in the natural
space, which is here C([0, T ], V ) under the assumptions (C5), because the lack of viscosity
does not allow to prove that u0

h(t) ∈ Dom(A) for almost every t.
To obtain the LDP in the best possible space with the weak convergence approach,

we need an extra condition, which is part of condition (C5) when α = 0, that is when
Hα = H.

Condition (C6): Let α ∈ [0, 1
4 ]; there exists a constant L3 such that for u, v ∈ Hα and

t ∈ [0, 1],
∣

∣Aασ(t, u) −Aασ(t, v)|LQ
≤ L3 ‖u− v‖α. (4.6)

Let B denote the Borel σ−field of the Polish space

X = C([0, T ], V ) endowed with the norm ‖u‖X =: sup
0≤t≤T

‖u(t)‖α, (4.7)

where ‖ · ‖α is defined by (2.2). We at first recall some classical definitions; by convention
the infimum over an empty set is +∞.

Definition 4.1. The random family (uν) is said to satisfy a large deviation principle on
X with the good rate function I if the following conditions hold:
I is a good rate function. The function I : X → [0,∞] is such that for each

M ∈ [0,∞[ the level set {φ ∈ X : I(φ) ≤M} is a compact subset of X .
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For A ∈ B, set I(A) = infu∈A I(u).
Large deviation upper bound. For each closed subset F of X :

lim sup
ν→0

ν log P(uν ∈ F ) ≤ −I(F ).

Large deviation lower bound. For each open subset G of X :

lim inf
ν→0

ν log P(uν ∈ G) ≥ −I(G).

Let C0 = {
∫ .
0 h(s)ds : h ∈ L2([0, T ],H0)} ⊂ C([0, T ],H0). Given ξ ∈ V define G0

ξ :

C([0, T ],H0) → X by G0
ξ (g) = u0

h for g =
∫ .
0 h(s)ds ∈ C0 and u0

h is the solution to the

(inviscid) control equation (4.4) with initial condition ξ, and G0
ξ (g) = 0 otherwise. The

following theorem is the main result of this section.

Theorem 4.2. Let α ∈ [0, 1
4 ], suppose that the constants a, b, µ defining B are such that

a(1 + µ2) + bµ2 = 0, let ξ ∈ V , and let σν and σ̃ν be defined for ν > 0 by (4.1) with
coefficients σ and σ̄ν satisfying the conditions (C5) and (C6) for this value of α. Then
the solution (uν)ν>0 to (4.5) with initial condition ξ satisfies a large deviation principle
in X := C([0, T ], V ) endowed with the norm ‖u‖X =: sup0≤t≤T ‖u(t)‖α, with the good rate
function

I(u) = inf
{h∈L2(0,T ;H0): u=G0

ξ
(
R .

0
h(s)ds)}

{1

2

∫ T

0
|h(s)|20 ds

}

. (4.8)

We at first prove the following technical lemma, which studies time increments of the
solution to the stochastic control problem (4.3) which extends both (4.5) and (4.4).

To state this lemma, we need the following notations. For every integer n, let ψn :
[0, T ] → [0, T ] denote a measurable map such that: s ≤ ψn(s) ≤

(

s+ c2−n) ∧ T for some
positive constant c and for every s ∈ [0, T ]. Given N > 0, hν ∈ AM , for t ∈ [0, T ] and
ν ∈ [0, ν0], let

GνN (t) =
{

ω :
(

sup
0≤s≤t

‖uνh(s)(ω)‖2
)

∨
(

∫ t

0
|Auνh(s)(ω)|2ds

)

≤ N
}

.

Lemma 4.3. Let a, b, µ satisfy the condition a(1+µ2)+ bµ2 = 0. Let ν0,M,N be positive
constants, σ and σ̄ν satisfy condition (C5), σν and σ̃ν be defined by (4.1) for ν ∈ [0, ν0].
For every ν ∈]0, ν0], let ξ ∈ L4(Ω;H) ∩ L2(Ω;V ), hν ∈ AM and let uνhν

(t) denote solution

to (4.3). For ν = 0, let ξ ∈ V , h ∈ AM , let u0
h(t) denote be solution to (4.4). Then there

exists a positive constant C (depending on Ki, K̃i, Li, L̃i, T,M,N, ν0) such that:

In(hν , ν) : = E

[

1Gν
N

(T )

∫ T

0
‖uνhν

(s) − uνhν
(ψn(s))‖2 ds

]

≤ C 2−
n
2 for 0 < ν ≤ ν0, (4.9)

In(h, 0) : = 1G0

N
(T )

∫ T

0
‖u0

h(s) − u0
h(ψn(s))‖2 ds ≤ C 2−n a.s. for ν = 0. (4.10)

Proof. For ν > 0, the proof is close to that of Lemma 4.2 in [16]. Let ν ∈]0, ν0], h ∈ AM ,;
for any s ∈ [0, T ], Itô’s formula yields

‖uνhν
(ψn(s))−uνhν

(s)‖2 = 2

∫ ψn(s)

s

(

A
[

uνhν
(r)−uνhν

(s)
]

, duνhν
(r))+ν

∫ ψn(s)

s
|A 1

2σ(r, uνhν
(r))|2LQ

dr.

Therefore In(hν , ν) =
∑

1≤i≤5 In,i(hν , ν), where

In,1(hν , ν) = 2
√
ν E

(

1Gν
N

(T )

∫ T

0
ds

∫ ψn(s)

s

(

A
1

2σν(r, u
ν
hν

(r))dW (r) , A
1

2

[

uνhν
(r) − uνhν

(s)
])

)

,



16 H. BESSAIH AND A. MILLET

In,2(hν , ν) = ν E

(

1Gν
N

(T )

∫ T

0
ds

∫ ψn(s)

s
|A 1

2σν(r, u
ν
hν

(r))|2LQ
dr

)

,

In,3(hν , ν) = −2 E

(

1Gν
N

(T )

∫ T

0
ds

∫ ψn(s)

s

〈

A
1

2B(uνhν
(r)) , A

1

2

[

uνhν
(r) − uνhν

(s)
]〉

dr
)

,

In,4(hν , ν) = −2 ν E

(

1Gν
N

(T )

∫ T

0
ds

∫ ψn(s)

s

〈

A
3

2 uνhν
(r) , A

1

2

[

uνhν
(r) − uνhν

(s)
]〉

dr
)

,

In,5(hν , ν) = 2 E

(

1Gν
N

(T )

∫ T

0
ds

∫ ψn(s)

s

(

A
1

2 σ̃ν(r, u
ν
hν

(r))hν(r) , A
1

2

[

uνhν
(r) − uνhν

(s)
])

dr
)

.

Clearly GνN (T ) ⊂ GνN (r) for r ∈ [0, T ]. Furthermore, ‖uνh(r)‖2 ∨ ‖uνh(s)‖2 ≤ N on GνN (r)
for 0 ≤ s ≤ r ≤ T .

The Burkholder-Davis-Gundy inequality and (C5) yield for 0 < ν ≤ ν0

|In,1(hν , ν)| ≤ 6
√
ν

∫ T

0
ds E

(

∫ ψn(s)

s

∣

∣A
1

2σν(r, u
ν
hν

(r))
∣

∣

2

LQ
1Gν

N
(r) ‖uνhν

(r) − uνhν
(s)‖2 dr

)
1

2

≤ 6
√

2ν0N

∫ T

0
ds E

(

∫ ψn(s)

s

[

K0 +K1 ‖uνhν
(r)‖2 +K2 |Auνhν

(r)|2
]

dr
)

1

2

.

The Cauchy-Schwarz inequality and Fubini theorem as well as (3.13), which holds uni-
formly in ν ∈]0, ν0] for small enough fixed ν0 > 0, imply

|In,1(hν , ν)| ≤ 6
√

2ν0NT
[

E

∫ T

0

[

K0 +K1 ‖uνhν
(r)‖2 +K2|Auνhν

(r)|2
]

(

∫ r

(r−c2−n)∨0
ds

)

dr
]

1

2

≤ C1

√
N 2−

n
2 (4.11)

for some constant C1 depending only on Ki, i = 0, 1, 2, Lj, j = 1, 2, M , ν0 and T . The
property (C5) and Fubini’s theorem imply that for 0 < ν ≤ ν0,

|In,2(hν , ν)| ≤ ν E

(

1Gν
N

(T )

∫ T

0
ds

∫ ψn(s)

s

[

K0 +K1‖uνhν
(r)‖2 +K2|Auνhν

(r)|2
]

dr
)

≤ ν0E

∫ T

0

[

K0 +K1 ‖uνhν
(r)‖2 +K2|Auνhν

(r)|2
]

c2−n dr ≤ C12
−n (4.12)

for some constant C1 as above. Since
〈

B(u), Au
〉

= 0 and ‖B(u)‖ ≤ C‖u‖2 for u ∈ V by
(2.9), we deduce that

|In,3(hν , ν)| ≤ 2E

(

1Gν
N

(T )

∫ T

0
ds

∫ ψn(s)

s
dr

(

A
1

2B(uνhν
(r)) , A

1

2uνhν
(s)

)

)

≤ 2CE

(

1Gν
N

(T )

∫ T

0
ds

∫ ψn(s)

s
‖uνhν

(r)‖2 ‖uνh(s)‖ dr
)

≤ 2C N
3

2 T 22−n. (4.13)

Using Cauchy-Schwarz’s inequality and (3.13) we deduce that

In,4(hν , ν) ≤ 2 ν E

(

1Gν
N

(T )

∫ T

0
ds

∫ ψn(s)

s
dr

[

− |Auνhν
(r)|2 + |Auνhν

(r)| |Auνhν
(s)|

]

)

≤ ν

2
E

(

∫ T

0
ds |Auνhν

(s)|2
∫ ψn(s)

s
dr

)

≤ C12
−n (4.14)

for some constant C1 as above.
Finally, Cauchy-Schwarz’s inequality, Fubini’s theorem, (C5) and the definition of AM
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yield

|In,5(hν , ν)| ≤ 2 E

(

1Gν
N

(T )

∫ T

0
ds

∫ ψn(s)

s
dr

[

K̃0 + K̃1‖uνhν
(r)‖2 + νK̃2|Auνhν

(r)|2
]

1

2 |hν(r)|0 ‖uνhν
(r) − uνhν

(s)‖
)

≤ 4
√
N E

(

1Gν
N

(T )

(

K̃0 + K̃1N
)

1

2

∫ T

0
|hν(r)|0

(

∫ r

(r−c2−n)∨0
ds

)

dr
)

+ 4
√
NE

(

1Gν
N

(T )

√

ν0K̃2

∫ T

0
|Auνhν

(r)| |hν(r)|0
(

∫ r

(r−c2−n)∨0
ds

)

dr
)

≤ 4
√
N

[√
MT

(

K̃0 + K̃1N
)

1

2 +
(

ν0 K̃2NM
)

1

2

]

c T2−n ≤ C(ν0, N,M, T ) 2−n. (4.15)

Collecting the upper estimates from (4.11)-(4.15), we conclude the proof of (4.9) for 0 <
ν ≤ ν0.

Let h ∈ AM ; a similar argument for ν = 0 yields for almost every ω

1G0

N
(T )

∫ T

0

∫ T

0
‖u0

h(ψn(s)) − u0
h(s)‖2 ds ≤

∑

j=1,2

In,j(h, 0),

with

In,1(h, 0) = −2 1G0

N
(T )

∫ T

0
ds

∫ ψn(s)

s

〈

A
1

2B(u0
h(r)) , A

1

2

[

u0
h(r) − u0

h(s)
]〉

dr,

In,2(h, 0) = 2 1G0

N
(T )

∫ T

0
ds

∫ ψn(s)

s

(

A
1

2 σ̃0(r, u
ν
h(r))h(r) , A

1

2

[

uνh(r) − uνh(s)
])

dr.

An argument similar to that which gives (4.13) proves

|In,1(h, 0)| ≤ C(T,N) 2−n. (4.16)

Cauchy-Schwarz’s inequality and (C5) imply

|In,2(h, 0)| ≤ 2 1G0

N
(T )

∫ T

0
ds

∫ ψn(s)

s
dr

(

K̃0 + K̃1‖u0
h(r)‖2

)
1

2 |h(r)|0 ‖u0
h(r) − u0

h(s)‖

≤ 4
√
N

(

K̃0 + K̃1N
)

1

2

∫ T

0
|h(r)|0

(

∫ r

(r−c2−n)∨0
ds

)

dr ≤ C(N,M,T ) 2−n. (4.17)

The inequalities (4.16) and (4.17) conclude the proof of (4.10). �

Now we return to the setting of Theorem 4.2. Let ν0 ∈]0, ν1] be defined by Theo-
rem 2.2 and Proposition 3.3, (hν , 0 < ν ≤ ν0) be a family of random elements taking
values in the set AM defined by (2.17). Let uνhν

be the solution of the correspond-
ing stochastic control equation (4.3) with initial condition uνhν

(0) = ξ ∈ V . Note that

uνhν
= Gνξ

(√
ν
(

W. +
1√
ν

∫ .
0 hν(s)ds

)

)

due to the uniqueness of the solution. The following

proposition establishes the weak convergence of the family (uνhν
) as ν → 0. Its proof is

similar to that of Proposition 4.5 in [10]; see also Proposition 3.3 in [16].

Proposition 4.4. Let a, b, µ be such that a(1 + µ2) + bµ2 = 0. Let α ∈ [0, 1
4 ], σ and

σ̄ν satisfy the conditions (C5) and (C6) for this value of α, σν and σ̃ν be defined by
(4.1). Let ξ be F0-measurable such that E

(

|ξ|4H + ‖ξ‖2
)

< ∞, and let hν converge to h in
distribution as random elements taking values in AM , where this set is defined by (2.17)
and endowed with the weak topology of the space L2(0, T ;H0). Then as ν → 0, the solution
uνhν

of (4.3) converges in distribution in X (defined by (4.7)) to the solution u0
h of (4.4).
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That is, as ν → 0, the process Gνξ
(√

ν
(

W. +
1√
ν

∫ .
0 hν(s)ds

)

)

converges in distribution to

G0
ξ

( ∫ .
0 h(s)ds

)

in C([0, T ], V ) for the topology of uniform convergence on [0, T ] where V is

endowed with the norm ‖ · ‖α.

Proof. Since AM is a Polish space (complete separable metric space), by the Skorokhod

representation theorem, we can construct processes (h̃ν , h̃, W̃ ) such that the joint distri-

bution of (h̃ν , W̃ ) is the same as that of (hν ,W ), the distribution of h̃ coincides with

that of h, and h̃ν → h̃, a.s., in the (weak) topology of SM . Hence a.s. for every

t ∈ [0, T ],
∫ t
0 h̃ν(s)ds −

∫ t
0 h̃(s)ds → 0 weakly in H0. To ease notations, we will write

(h̃ν , h̃, W̃ ) = (hν , h,W ). Let Uν = uνhν
− u0

h ∈ C([0, T ], V ); then Uν(0) = 0 and

dUν(t) = −
[

νAuνhν
(t) +B(uνhν

(t)) −B(u0
h(t))

]

dt +
[

σ(t, uνhν
(t))hν(t) − σ(t, u0

h(t))h(t)
]

dt

+
√
ν σν(t, u

ν
hν

(t)) dW (t) +
√
ν σ̄ν(t, u

ν
hν

(t))hν(t) dt. (4.18)

On any finite time interval [0, t] with t ≤ T , Itô’s formula, yields for ν > 0 and α ∈ [0, 1
2 ]:

‖Uν(t)‖2
α = −2ν

∫ t

0

(

A1+αuνhν
(s), AαUν(s)

)

ds− 2

∫ t

0

〈

Aα
[

B(uνhν
(s)) −B(u0

h(s))
]

, AαUν(s)
〉

ds

+ 2
√
ν

∫ t

0

(

Aασν(s, u
ν
hν

(s))dW (s) , AαUν(s)
)

+ ν

∫ t

0
|Aασν(s, uνhν

(s))|2LQ
ds

+ 2
√
ν

∫ t

0

(

Aασ̄ν(s, u
ν
hν

(s))hν(s) , A
αUν(s)

)

ds

+ 2

∫ t

0

(

Aα
[

σ(s, uνhν
(s))hν(s) − σ(s, u0

h(s))h(s)
]

, AαUν(s)
)

ds.

Furthermore,
(

Aασ̄ν(s, u
ν
hν

(s))hν(s) , A
αUν(s)

)

=
(

σ̄ν(s, u
ν
hν

(s))hν(s) , A
2αUν(s)

)

. The
Cauchy-Schwarz inequality, conditions (C5) and (C6), (2.12) and (2.4) yield since α ∈
[0, 1

4 ]

‖Uν(t)‖2
α ≤ 2ν

∫ t

0

∣

∣A
1

2
+2αuνhν

(s)
∣

∣

(

‖uνhν
(s)‖ + ‖u0

h(s)‖
)

ds

+ 2C

∫ t

0
‖Uν(s)‖2

α

(

‖uνhν
(s)‖ + ‖u0

h(s)‖
)

ds+ 2
√
ν

∫ t

0

(

σν(s, u
ν
hν

(s))dW (s) , A2αUν(s)
)

+ ν

∫ t

0

[

K0 +K1‖uνhν
(s)‖2 +K2|Auνhν

(s)|2
]

ds

+ 2
√
ν

∫ t

0

[

√

K̃0 + k
− 1

2

0

√

K̃H‖uνhν
(s)‖

]

|hν(s)|0 k4α−1
0

(

‖uνhν
(s)‖ + ‖u0

h(s)‖
)

ds

+ 2

∫ t

0

(

Aα
[

σ(s, uνhν
(s)) − σ(s, u0

h(s))
]

hν(s) , A
αUν(s)

)

ds

+ 2

∫ t

0

(

Aασ(s, u0
h(s))

[

hν(s) − h0(s)
]

, AαUν(s)
)

ds

≤ 2

∫ t

0
‖Uν(s)‖2

α

[

C‖uνhν
(s)‖2 + C‖u0

h(s)‖2 + L3|hν(s)|0
]

ds+
∑

1≤j≤5

Tj(t, ν), (4.19)

where using again the fact that α ≤ 1
4 , we have

T1(t, ν) = 2ν sup
s≤t

[

‖uνhν
(s)‖ + ‖u0

h(s)‖
]

∫ t

0
|Auνhν

(s)| ds,
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T2(t, ν) = 2
√
ν

∫ t

0

(

σν(s, u
ν
hν

(s))dW (s) , A2αUν(s)
)

,

T3(t, ν) = ν

∫ t

0

[

K0 +K1‖uνhν
(s)‖2 +K2|Auνhν

(s)|2
]

ds,

T4(t, ν) = 2
√
ν k2α−1

0

∫ t

0

[

√

K̃0 + k
− 1

2

0

√

K̃H ‖uνhν
(s)‖

]

|hν(s)|0
(

‖uνhν
(s)‖ + ‖u0

h(s)‖
)

ds,

T5(t, ν) = 2

∫ t

0

(

σ(s, u0
h(s))

(

hν(s) − h(s)
)

, A2αUν(s)
)

ds.

We want to show that as ν → 0, supt∈[0,T ] ‖Uν(s)‖α → 0 in probability, which implies that

uνhν
→ u0

h in distribution in X. Fix N > 0 and for t ∈ [0, T ] let

GN (t) =
{

sup
0≤s≤t

‖u0
h(s)‖2 ≤ N

}

,

GN,ν(t) = GN (t) ∩
{

sup
0≤s≤t

‖uνhν
(s)‖2 ≤ N

}

∩
{

ν

∫ t

0
|Auhν

(s)|2ds ≤ N
}

.

The proof consists in two steps.
Step 1: For ν0 > 0 given by Proposition 3.3 and Theorem 3.1, we have

sup
0<ν≤ν0

sup
h,hν∈AM

P(GN,ν(T )c) → 0 as N → +∞.

Indeed, for ν ∈]0, ν0], h, hν ∈ AM , the Markov inequality and the a priori estimates (3.4)
and (3.13), which holds uniformly in ν ∈]0, ν0], imply that for 0 < ν ≤ ν0,

P(GN,ν(T )c) ≤ 1

N
sup

h,hν∈AM

E

(

sup
0≤s≤T

‖u0
h(s)‖2 + sup

0≤s≤T
‖uνhν

(s)|2 + ν

∫ T

0
|Auνhν

(s)|2 ds
)

≤ C
(

1 + E|ξ|4 + E‖ξ‖2
)

N−1, (4.20)

for some constant C depending on T and M , but independent of N and ν.
Step 2: Fix N > 0, let h, hν ∈ AM be such that hν → h a.s. in the weak topology of
L2(0, T ;H0) as ν → 0. Then one has:

lim
ν→0

E

[

1GN,ν(T ) sup
0≤t≤T

‖Uν(t)|2α
]

= 0. (4.21)

Indeed, (4.19) and Gronwall’s lemma imply that on GN,ν(T ), one has for 0 < ν ≤ ν0:

sup
0≤t≤T

‖Uν(t)‖2
α ≤ exp

(

4NC + 2L3

√
MT

)

∑

1≤j≤5

sup
0≤t≤T

Tj(t, ν) . (4.22)

Cauchy-Schwarz’s inequality implies that for some constant C(N,T ) independent on ν:

E

(

1GN,ν(T ) sup
0≤t≤T

|T1(t, ν)|
)

≤ 4
√
TN

√
ν E

(

1GN,ν(T )

{

∫ T

0
|Auνhν

(s)|2 ds
}

1

2

)

≤ C(N,T )
√
ν. (4.23)

Since the sets GN,ν(.) decrease, the Burkholder-Davis-Gundy inequality, α ≤ 1
4 , the in-

equality (2.4) and (C5) imply that for some constant C(N,T ) independent of ν:

E

(

1GN,ν(T ) sup
0≤t≤T

|T2(t, ν)|
)

≤ 6
√
ν E

{

∫ T

0
1GN,ν (s) k

4(2α− 1

2
)

0 ‖Uν(s)‖2 |σν(s, uνhν
(s))|2LQ

ds
}

1

2

≤ 6
√
νk

2(2α− 1

2
)

0 E

{

∫ T

0
1GN,ν(s)4N (K0 +K1‖uνhν

(s)‖2 +K2|Auνhν
(s)|2)ds

}
1

2 ≤ C(T,N)
√
ν.

(4.24)
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The Cauchy-Schwarz inequality implies

E

(

1GN,ν(T ) sup
0≤t≤T

|T4(t, ν)|
)

≤
√
ν C(N,M,T ). (4.25)

The definition of GN,ν(T ) implies that

E

(

1GN,ν(T ) sup
0≤t≤T

|T3(t, ν)|
)

≤ C T N ν. (4.26)

The inequalities (4.22) - (4.26) show that the proof of (4.21) reduces to check that

lim
ν→0

E

(

1GN,ν(T ) sup
0≤t≤T

|T5(t, ν)|
)

= 0 . (4.27)

In further estimates we use Lemma 4.3 with ψn = s̄n, where s̄n is the step function defined
by s̄n = kT2−n for (k− 1)T2−n ≤ s < kT2−n. For any n,N ≥ 1, if we set tk = kT2−n for
0 ≤ k ≤ 2n, we obviously have

E

(

1GN,ν(T ) sup
0≤t≤T

|T5(t, ν)|
)

≤ 2
∑

1≤i≤4

T̃i(N,n, ν) + 2 E
(

T̄5(N,n, ν)
)

, (4.28)

where

T̃1(N,n, ν) =E

[

1GN,ν(T ) sup
0≤t≤T

∣

∣

∣

∫ t

0

(

σ(s, u0
h(s))

(

hν(s) − h(s)
)

, A2α
[

Uν(s) − Uν(s̄n)
]

)

ds
∣

∣

∣

]

,

T̃2(N,n, ν) =E

[

1GN,ν(T )

× sup
0≤t≤T

∣

∣

∣

∫ t

0

(

[σ(s, u0
h(s)) − σ(s̄n, u

0
h(s))](hν(s) − h(s)) , A2αUν(s̄n)

)

ds
∣

∣

∣

]

,

T̃3(N,n, ν) =E

[

1GN,ν(T )

× sup
0≤t≤T

∣

∣

∣

∫ t

0

(

[

σ(s̄n, u
0
h(s)) − σ(s̄n, u

0
h(s̄n))

](

hν(s) − h(s)
)

, A2αUν(s̄n)
)

ds
∣

∣

∣

]

,

T̃4(N,n, ν) =E

[

1GN,ν(T ) sup
1≤k≤2n

sup
tk−1≤t≤tk

∣

∣

∣

(

σ(tk, u
0
h(tk))

∫ t

tk−1

(hν(s) − h(s))ds , A2αUν(tk)
)∣

∣

∣

]

,

T̄5(N,n, ν) =1GN,ν(T )

∑

1≤k≤2n

∣

∣

∣

(

σ(tk, u
0
h(tk))

∫ tk

tk−1

(

hν(s) − h(s)
)

ds , A2αUν(tk)
)
∣

∣

∣
.

Using the Cauchy-Schwarz and Young inequalities, (C5), (2.4), (4.9) and (4.10) in Lemma 4.3
with ψn(s) = s̄n, we deduce that for some constant C̄1 := C(T,M,N) independent of
ν ∈]0, ν0],

T̃1(N,n, ν) ≤ k4α−1
0 E

[

1GN,ν (T )

∫ T

0

(

K̄0 + K̄1|u0
h(s)|2

)
1

2 |hν(s) − h(s)|0
∥

∥Uν(s) − Uν(s̄n)
∥

∥ ds
]

≤ k4α−1
0

(

E

[

1GN,ν (T )

∫ T

0
2
{

‖uνhν
(s) − uνhν

(s̄n)‖2 + ‖u0
h(s) − u0

h(s̄n)‖2
}

ds
])

1

2

×
√

K̄0 + k−2
0 K̄1N

(

E

∫ T

0
2
[

|hν(s)|20 + |h(s)|20
]

ds
)

1

2 ≤ C̄1 2−
n
4 . (4.29)

A similar computation based on (C5) and (4.10) from Lemma 4.3 yields for some constant
C̄3 := C(T,M,N) and any ν ∈]0, ν0]

T̃3(N,n, ν) ≤
√

2Nk−2
0 L1

(

E

[

1GN,ν(T )

∫ T

0
‖u0

h(s) − u0
h(s̄n)‖2 ds

])
1

2

(

E

∫ T

0
|hν(s) − h(s)|20 ds

)
1

2
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≤ C̄3 2−
n
4 . (4.30)

The Hölder regularity (C5) imposed on σ(., u) and the Cauchy-Schwarz inequality imply
that

T̃2(N,n, ν) ≤ C
√
N2−nγ E

(

1GN,ν(T )

∫ T

0

(

1 + ‖u0
h(s)‖

)

|hν(s)−h(s)|0ds
)

≤ C̄22
−nγ (4.31)

for some constant C̄2 = C(T,M,N). Using Cauchy-Schwarz’s inequality and (C5) we
deduce for C̄4 = C(T,N,M) and any ν ∈]0, ν0]

T̃4(N,n, ν) ≤ E

[

1GN,ν (T ) sup
1≤k≤2n

(

K̄0 + K̄1|u0
h(tk)|2

)
1

2

∫ tk

tk−1

|hν(s) − h(s)|0 ds ‖Uν(tk)‖ k4α−1
0

]

≤ C(N) E

(

sup
1≤k≤2n

∫ tk

tk−1

(

|hν(s)|0 + |h(s)|0
)

ds
)

≤ C̄4 2−
n
2 . (4.32)

Finally, note that the weak convergence of hν to h implies that as ν → 0, for any a, b ∈
[0, T ], a < b, the integral

∫ b
a hν(s)ds →

∫ b
a h(s)ds in the weak topology of H0. Therefore,

since the operator σ(tk, u
0
h(tk)) is compact from H0 to H, we deduce that for every k,

∣

∣

∣
σ(tk, u

0
h(tk))

(

∫ tk

tk−1

hν(s)ds −
∫ tk

tk−1

h(s)ds
)∣

∣

∣

H
→ 0 as ν → 0.

Hence a.s. for fixed n as ν → 0, T̄5(N,n, ν) → 0 while T̄5(N,n, ν) ≤ C(K̄0, K̄1, N, n,M).
The dominated convergence theorem proves that E(T̄5(N,n, ν)) → 0 as ν → 0 for any
fixed n,N .

This convergence and (4.28)–(4.32) complete the proof of (4.27). Indeed, they imply
that for any fixed N ≥ 1 and any integer n ≥ 1

lim sup
ν→0

E

[

1GN,ν(T ) sup
0≤t≤T

|T5(t, ν)|
]

≤ CN,T,M 2−n( 1

4
∧γ).

for some constant C(N,T,M) independent of n. Since n is arbitrary, this yields for any
integer N ≥ 1 the convergence property (4.27) holds. By the Markov inequality, we have
for any δ > 0

P

(

sup
0≤t≤T

‖Uν(t)‖α > δ
)

≤ P(GN,ν(T )c) +
1

δ2
E

(

1GN,ν (T ) sup
0≤t≤T

‖Uν(t)‖2
α

)

.

Finally, (4.20) and (4.21) yield that for any integer N ≥ 1,

lim sup
ν→0

P

(

sup
0≤t≤T

‖Uν(t)‖α > δ) ≤ C(T,M, δ)N−1,

for some constant C(T,M, δ) which does not depend on N . Letting N → +∞ concludes
the proof of the proposition. �

The following compactness result is the second ingredient which allows to transfer the
LDP from

√
νW to uν . Its proof is similar to that of Proposition 4.4 and easier; it will be

sketched (see also [16], Proposition 4.4).

Proposition 4.5. Suppose that the constants a, b, µ defining B satisfy the condition a(1+
µ2) + bµ2 = 0, σ satisfies the conditions (C5) and (C6) and let α ∈ [0, 1

4 ]. Fix M > 0,

ξ ∈ V and let KM = {u0
h : h ∈ SM}, where u0

h is the unique solution in C([0, T ], V ) of the
deterministic control equation (4.4). Then KM is a compact subset of X = C([0, T ], V )
endowed with the norm ‖u‖X = sup0≤t≤T ‖u(t)‖α.
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Proof. To ease notation, we skip the superscript 0 which refers to the inviscid case. By
Theorem 3.1, KM ⊂ C([0, T ], V ). Let {un} be a sequence in KM , corresponding to solu-
tions of (4.4) with controls {hn} in SM :

dun(t) +B(un(t))dt = σ(t, un(t))hn(t)dt, un(0) = ξ.

Since SM is a bounded closed subset in the Hilbert space L2(0, T ;H0), it is weakly compact.
So there exists a subsequence of {hn}, still denoted as {hn}, which converges weakly to a
limit h ∈ L2(0, T ;H0). Note that in fact h ∈ SM as SM is closed. We now show that the
corresponding subsequence of solutions, still denoted as {un}, converges in X to u which
is the solution of the following “limit” equation

du(t) +B(u(t))dt = σ(t, u(t))h(t)dt, u(0) = ξ.

Note that we know from Theorem 3.1 that u ∈ C([0, T ], V ), and that one only needs to
check that the convergence of un to u holds uniformly in time for the weaker ‖ · ‖α norm
on V . To ease notation we will often drop the time parameters s, t, ... in the equations
and integrals. Let Un = un − u; using (2.12) and (C6), we deduce that for t ∈ [0, T ],

‖Un(t)‖2
α = −2

∫ t

0

(

AαB(un(s)) −AαB(u(s)) , AαUn(s)
)

ds

+ 2

∫ t

0

{(

Aα
[

σ(s, un(s)) − σ(s, u(s))
]

hn(s) , A
αUn(s)

)

+
(

Aασ(s, u(s))
(

hn(s) − h(s)
)

, AαUn(s)
)

}

ds

≤ 2C

∫ t

0
‖Un(s)‖2

α

(

‖un(s)‖ + ‖u(s)‖
)

ds+ 2L3

∫ t

0
‖Un(s)‖2

α|hn(s)|0 ds

+ 2

∫ t

0

(

σ(s, u(s)) [hn(s) − h(s)] , A2αUn(s)
)

ds. (4.33)

The inequality (3.4) implies that there exists a finite positive constant C̃ such that

sup
n

sup
0≤t≤T

(

‖u(t)‖2 + ‖un(t)‖2
)

= C̃. (4.34)

Thus Gronwall’s lemma implies that

sup
0≤t≤T

‖Un(t)‖2
α ≤ exp

(

2CC̃ + 2L3

√
MT

)

)

∑

1≤i≤5

Iin,N , (4.35)

where, as in the proof of Proposition 4.4, we have:

I1
n,N =

∫ T

0

∣

∣

(

σ(s, u(s)) [hn(s) − h(s)] , A2αUn(s) −A2αUn(s̄N )
)∣

∣ ds,

I2
n,N =

∫ T

0

∣

∣

∣

(

[

σ(s, u(s)) − σ(s̄N , u(s))
]

[hn(s) − h(s)] , A2αUn(s̄N )
)
∣

∣

∣
ds,

I3
n,N =

∫ T

0

∣

∣

∣

(

[

σ(s̄N , u(s)) − σ(s̄N , u(s̄N ))
]

[hn(s) − h(s)] , A2αUn(s̄N )
)∣

∣

∣
ds,

I4
n,N = sup

1≤k≤2N

sup
tk−1≤t≤tk

∣

∣

∣

(

σ(tk, u(tk))

∫ t

tk−1

(hn(s) − h(s))ds , A2αUn(tk)
)∣

∣

∣
,

I5
n,N =

∑

1≤k≤2N

∣

∣

∣

(

σ(tk, u(tk))

∫ tk

tk−1

[hn(s) − h(s)] ds , A2αUn(tk)
)
∣

∣

∣
.
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The Cauchy-Schwarz inequality, (4.34), (C5) and (4.10) imply that for some constants Ci,

i = 0, · · · , 4, which depend on k0, K̄i, L̄1, C̃, M and T , but do not depend on n and N ,

I1
n,N ≤ C0

(

∫ T

0

(

‖un(s) − un(s̄N )‖2 + ‖u(s) − u(s̄N )‖2
)

ds
)

1

2

(

∫ T

0
|hn(s) − h(s)|20ds

)
1

2

≤ C1 2−
N
2 , (4.36)

I3
n,N ≤ C0

(

∫ T

0
‖u(s) − u(s̄N )‖2ds

)
1

2

2
√
M ≤ C3 2−

N
2 , (4.37)

I4
n,N ≤ C0 2−

N
2

(

1 + sup
0≤t≤T

‖u(t)‖
)

sup
0≤t≤T

(

‖u(t)‖ + ‖un(t)‖
)

2
√
M ≤ C4 2−

N
2 . (4.38)

Furthermore, the Hölder regularity of σ(., u) from condition (C5) implies that

I2
n,N ≤C̄2−Nγ sup

0≤t≤T

(

‖u(t)‖ + ‖un(t)‖
)

×
∫ T

0
(1 + ‖u(s)‖)(|h(s)|0 + |hn(s)|0) ds ≤ C2 2−Nγ . (4.39)

For fixed N and k = 1, · · · , 2N , as n → ∞, the weak convergence of hn to h implies
that of

∫ tk
tk−1

(hn(s) − h(s))ds to 0 weakly in H0. Since σ(tk, u(tk)) is a compact operator,

we deduce that for fixed k the sequence σ(tk, u(tk))
∫ tk
tk−1

(hn(s) − h(s))ds converges to 0

strongly in H as n → ∞. Since supn,k ‖Un(tk)‖ ≤ 2
√

C̃, we have limn I
5
n,N = 0. Thus

(4.35)–(4.39) yield for every integer N ≥ 1

lim sup
n→∞

sup
t≤T

‖Un(t)‖2
α ≤ C2−N( 1

2
∧γ).

Since N is arbitrary, we deduce that sup0≤t≤T ‖Un(t)‖α → 0 as n → ∞. This shows that
every sequence in KM has a convergent subsequence. Hence KM is a sequentially relatively
compact subset of X . Finally, let {un} be a sequence of elements of KM which converges
to v in X . The above argument shows that there exists a subsequence {unk

, k ≥ 1} which
converges to some element uh ∈ KM for the uniform topology on C([0, T ], V ) endowed
with the ‖ · ‖α norm. Hence v = uh, KM is a closed subset of X , and this completes the
proof of the proposition. �

Proof of Theorem 4.2: Propositions 4.5 and 4.4 imply that the family {uν} satisfies
the Laplace principle, which is equivalent to the large deviation principle, in X defined in
(4.7) with the rate function defined by (4.8); see Theorem 4.4 in [4] or Theorem 5 in [5].
This concludes the proof of Theorem 4.2. 2
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