

Bifurcations d'ordre supérieur, cycles limites et intégrabilité

Mathieu Gentes

► To cite this version:

Mathieu Gentes. Bifurcations d'ordre supérieur, cycles limites et intégrabilité. Mathématiques [math]. Université Pierre et Marie Curie - Paris VI, 2009. Français. <tel-00437848>

HAL Id: tel-00437848 https://tel.archives-ouvertes.fr/tel-00437848

Submitted on 1 Dec 2009

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Bifurcations d'ordre supérieur, cycles limites et intégrabilité

THÈSE DE DOCTORAT

présentée et soutenue publiquement le 14 novembre 2009

pour l'obtention du

Doctorat de l'université Pierre et Marie Curie – Paris 6 Spécialité Mathématiques Fondamentales

par

Mathieu Gentes

Composition du jury

Rapporteurs : Lubomir GAVRILOV

Robert Roussarie

Examinateurs : Jean-Pierre FRANÇOISE Directeur de thèse Jaume LLIBRE Reinhard SCHÄFKE

École Doctorale de Sciences Mathématiques de Paris Centre

UFR 929 - Mathématiques Faculté de Mathématiques _{UFR 929}

Remerciements

Je remercie tout d'abord Jean-Pierre Françoise de m'avoir guidé avec autant d'écoute et de spontanéité vers un sujet de recherche qui corresponde à mes attentes. La confiance qu'il m'a immédiatement accordée ainsi que sa naturelle bienveillance m'ont permis d'initier et mener mes travaux de recherche plus sereinement.

Je remercie vivement Lubomir Gavrilov et Robert Roussarie d'avoir accepté d'être rapporteurs de ce mémoire et de l'avoir enrichi de leurs rectifications et précisions bibliographiques. Merci aux autres membres du jury, Jaume Llibre et Reinhard Schäfke, qui me font l'honneur de leur présence en ce jour de Saturne.

Mes remerciements vont également aux membres du Laboratoire Jacques-Louis Lions avec lesquels j'ai cultivé d'agréables moments d'échanges tant mathématiques que verbaux, tant culinaires que musicaux, tant sportifs qu'amicaux...

Je les adresse en premier lieu à Evelyne, voisine et amie, avec qui j'ai eu le privilège de partager l'intégralité de ces trois années de thèse. Je pense à nos repas de la rue Louis Morard, à son soutien en toutes circonstances, pour des relectures, préparations d'exposés, tracasseries administratives ou simplement lorsque s'invite la mélancolie. Merci aux autres occupants du bureau 3D23, the best one : Alexis et ses délicieux muffins, Jean-Marie et ses aides providentielles en mathematica, Pierre, Benjamin, Mouna, et tout dernièrement Marianne, première d'une longue liste de docteurs ès poussette-canne.

Je ne vous oublie pas, vous autres que le sort a relégué dans les pièces voisines... plus particulièrement Alexandra, dans son boudoir, digne tenancière du gtt et à qui je dois entre autres la splendide mise en page de ce manuscrit, Rachida et ses histoires rocambolesques, Maya, Sepideh, Matthieu, Giacomo, Etienne, Nicolas.

L'Alsace, expatriée, peut compter sur sa sœur Lorraine : merci Benjamin pour ta sagesse et nos discussions enrichissantes, Frédéric pour ta générosité et ton éternelle bonne humeur, et tous les deux pour nos agréables soirées musicales.

Merci enfin à Edwige Godlewski et Yvon Maday, Laurent Boudin, Nicolas Seguin ainsi que Danielle Boulic et Liliane Ruprecht pour leur chaleureux accueil au sein du laboratoire Jacques-Louis Lions.

De cette suite nominale probablement non exhaustive, je ne peux omettre mes amis probabilistes qui partagent presque sûrement les bureaux du même plateau et dont la présence a toujours été d'un grand soutien : Vincent pour ses relectures attentives, ses conseils avisés en tout genre, ses soirées poker à la cachanaise, et Sophie pour nos multiples conversations et cellules de crises tenues dans les couloirs, nos obsessions de macarons et leurs ultimes concrétisations, non sans l'aide précieuse de... Sophie !

A ces remerciements j'associe tous mes amis thésards ou assimilés. Je pense à Nicolas, à l'opéra qu'il m'a fait découvrir et à nos coups de gueule en tout genre, à Alain, Bertrand, Etienne, Renaud, ainsi qu'à tous les anciens du magistère et de l'Université de Strasbourg.

Ces trois années de recherche ont fortement été enrichies par la découverte de l'enseignement, auquel je me destine, et qui s'est révélé être de manière parfaitement inattendue le point de départ de deux formidables aventures musicales et humaines : *Brassage Musique* et *Musiques en Seine*. Un immense merci à Damien et Mathias. C'est dans l'*Harmonie Brassage*, mélant rouge et noir, amateurs et jeunes talents, que j'ai eu l'opportunité de me lancer dans un orchestre en tant que bassoniste, système français... Je ne peux m'empêcher de repenser à ces intenses week-ends passés à la Sirène, à nos interminables soirées de concerts aux Batignolles.

Quant à la naissance fabuleuse de *Musiques en Seine*, elle marque certes mes premiers pas clarinettistiques dans ce monde passionnant de la musique symphonique mais surtout la genèse d'une épopée à la fois musicale et amicale. Une pensée indélébile pour Hermance ma Coconacienne-Neufmontoise préférée, ma fidèle et enjouée copupitre Claire, mon ami suisse Johannes, non par diplomatie à la "belge n'ayant pas trouvé la Suisse", Florence et Laurence du clan des "ence", Ben, Anna, Téléchat, Carine, le couple présidentiel Durand-Tarrade, les Belin, les Marcy, Christine, Pierre-Etienne, Danielalala, Charles, Anaïs, Lucile, Gabi, Martine, Paula, Aurélia, Brandon, Agnès, Mathyld, Sandrine, sans oublier Constantin, notre empereur musical ainsi que tous ceux qu'on a vu naître et mourir pour la paix, pour nos répétitions et postrépétitions au Rota, nos superbes concerts, nos week-ends inoubliables au Martroy, nos parties de cache-cache, nos pyramides, nos piques-niques parisiens, les mariages et leurs animations, nos improbables escapades andalouse, bulgare, lombarde et je l'espère bientôt sicilienne, sans oublier la légendaire danse du ventre de Dvořák... et tout ce qui compte sans conter.

Merci à nos fidèles spectateurs : Cléova, Emilie, Arnaud, Isabelle mon bonheur et Gésabelle...

Ces années doctorales parisiennes ne m'ont toutefois pas éloigné de mes amis de plus longue date : les irremplaçables quetsches strasbourgeoises, mon Cmin, Laurent, Romain le maîiître en IAT_EX, Antoine, Choubinou, Vanessa et Thierry, Sonia et Etienne, Claire et Olivier, Isabelle et Grégoire, Alexandra et Nicolas, Laurence et Manu, Laure et Henri, Claire et Jérémy, Pauline et Etienne, Annso et Yves, Vincent, Séverine, Delphine, Hélène, Carole, Sylvanie, Yves, Laura, Sidonie et les bienheureuses victimes de ma mémoire défaillante.

Pour finir, je remercie de tout cœur ma famille : mes deux adorables sœurs Céline et Emilie, mon (beau-)frère David, Arnaud, mon neveu Marceau et surtout mes chers parents. Vous avez toujours su soutenir le petit dernier avec la générosité et l'amour que je vous connais. Ces quelques pages, d'atroces calculs me direz-vous, vous sont modestement dédiées.

"Sempre libera degg'io, Folleggiar di gioia in gioia,..."

Violetta, la Traviata.

iv

Table des matières

In	trod	uction	et présentation des résultats	1				
	1	Systè	mes différentiels polynômiaux - Intégrabilité	1				
		1.1	Introduction	1				
		1.2	Intégrabilité des systèmes différentiels	1				
		1.3	Systèmes différentiels à centres	2				
			1.3.1 Cas linéaire	2				
			1.3.2 Cas quadratique \ldots	2				
			1.3.3 Lien avec l'intégrabilité	3				
	2	Le 16	e problème de Hilbert - Problème du centre $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	4				
		2.1	Généralités	4				
		2.2	Perturbation des systèmes différentiels	4				
		2.3	Application de premier retour	5				
		2.4	Algorithme de Françoise	6				
	3 Les résultats obtenus dans cette thèse							
		3.1	Chapitre I : Un système différentiel de Liénard					
		3.2	Chapitre II : Perturbation quadratique d'un secteur elliptique	7				
		3.3	Chapitre III : Une famille de systèmes différentiels avec domaines elliptiques	8				
Ι	Un	systèr	ne différentiel de Liénard	11				
	1	Intro	luction et notations	11				
		1.1	Le système différentiel	11				
		1.2	Intégrales premières et facteurs intégrants	11				
		1.3	Etude des singularités	13				
		1.4	Perturbation et recherche de cycles limites	14				
		1.5	Place dans la classification des systèmes quadratiques à centre \ldots .	15				
	2	Premi	ière fonction de Melnikov	16				
		2.1	Première approche	16				
		2.2	Seconde approche	19				
		2.3	Recherche des zéros de M_1	22				

			2.3.1 Cas A et B de même signe, A ou B éventuellement nul $\ldots 2$	2				
			2.3.2 Cas A et B de signe opposé, A et B non nuls	3				
			2.3.3 Un résultat d'unicité	9				
	3	Second	de fonction de Melnikov	1				
		3.1	Cas $b_{20} = 0$	2				
		3.2	$\operatorname{Cas} b_{20} \neq 0 \dots \dots \dots \dots \dots \dots \dots \dots \dots $	4				
	4	ème fonction de Melnikov	6					
		4.1	Cas $a_{11} = 0$	0				
		4.2	Cas $a_{11} \neq 0$	0				
	5	Foncti	ions de Melnikov d'ordre supérieur	4				
		5.1	Cas $a_{11} = 0$ et $b_{00} = 0$	4				
			5.1.1 Quatrième fonction de Melnikov	4				
			5.1.2 Cinquième fonction de Melnikov	7				
			5.1.3 Nature de la singularité	0				
		5.2	Cas $a_{10} + a_{11} = 0$	1				
		5.3	Cas $a_{10} = 0$	2				
			5.3.1 Recherche d'une intégrale première	5				
			5.3.2 Nature du centre	7				
	6	3 Synthèse des résultats						
II	Per	turbat	ion quadratique d'un secteur elliptique 6	1				
	1	L'équa	ation de Liouville $\ldots \ldots 6$	1				
		1.1	Introduction et notations	1				
		1.2	Une intégrale première	2				
	2	du système différentiel de Liénard associé	4					
		2.1	Intégrale première et facteur intégrant	5				
			2.1.1 Formules générales	5				
			2.1.2 Le cas particulier $\alpha = 1/2$	6				
	3	Etude	des singularités du système (4) $\ldots \ldots 6$	7				
		Les singularités du système (4)	7					
		3.2	Singularités sur la sphère de Poincaré	8				
			3.2.1 Procédé d'étude des singularités à l'infini 6	8				
			3.2.2 Cas du système de Liénard considéré	0				
	4	Forme	e normale du "système à l'infini" $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots 7$	2				
		4.1	Introduction	2				
		4.2	Première étape de perturbation : déformation en un centre 7	5				
		4.3	Place dans la classification des systèmes quadratiques réversibles 7	6				

5	Seco	nde étape	de perturbation : recherche de cycles limites					
	5.1	Premiè	re fonction de Melnikov					
	5.2 Seconde fonction de Melnikov							
		5.2.1	Décomposition de $\tilde{g}_1 d\tilde{R}_1$					
		5.2.2	Décomposition de $\tilde{g}_1 d\hat{R}_1$					
		5.2.3	Décomposition de $\hat{g}_1 d\tilde{R}_1$					
		5.2.4	Décomposition de $\hat{g}_1 d\hat{R}_1$					
	5.3	Troisiè	me fonction de Melnikov					
		5.3.1	Cas $c_0 = c_1 = b_{10} = 0$					
		5.3.2	Cas $c_1 = c_4 = a_{11} = 0$					
		5.3.3	Cas $c_0 = c_1 = c_4 - \eta a_{11} = 0$					
		5.3.4	Cas $c_1 = a_{11} = 3b_{10} + 2\eta c_0 = 0$					
		5.3.5	Cas $c_0 = a_{02} = 3b_{10}(c_4 - \eta a_{11}) + 2c_1(2c_3 + \eta c_2) = 0$					
	5.4	Fonctio	ons de Melnikov d'ordre supérieur					
		5.4.1	Cas $c_0 = c_1 = b_{10} = 0$					
		5.4.2	Cas $c_1 = c_4 = a_{11} = 0$					
		5.4.3	Cas $c_0 = c_1 = c_4 - \eta a_{11} = 0$					
		5.4.4	Cas $c_1 = a_{11} = 3b_{10} + 2\eta c_0 = 0$					
		5.4.5	Cas $c_0 = a_{02} = 3b_{10}(c_4 - \eta a_{11}) + 2c_1(2c_3 + \eta c_2) = 0$					
	5.5 Synthèse des résultats							
		5.5.1	Un résultat algébrique					
		5.5.2	Synthèse des résultats					
IIIUn	e fami	ille de sy	stèmes différentiels avec domaines elliptiques 119					
1	Intro	duction .						
	1.1	Intégra	bilité					
	1.2 Recherche des singularités							
		1.2.1	Le cas général $\lambda \neq 1$					
		1.2.2	Le cas particulier $\lambda = 1$					
2	2Première étape : déformation générant deux centres \ldots 2.1Le cas général $\lambda \neq 1$ \ldots							
	2.2 Le cas particulier $\lambda = 1$							
3	3 Seconde étape : recherche de cycles limites							
	3.2 Les secondes fonctions de Melnikov							
		3.2.1	Calcul de \tilde{N}_2					
		3.2.2	Calcul de \tilde{N}_2					

	3.2.3 3.2.4	Calcul de $\tilde{\hat{N}}_2$ Calcul de $\hat{\hat{N}}_2$	 	 	
Table des fig	gures				135
Bibliographi	e				137
Résumé					139
Abstract					141

Introduction et présentation des résultats

Une composante de la recherche mathématique dans le domaine des systèmes différentiels est historiquement motivée par le 16^e problème de Hilbert. Il pose la question du nombre et de la disposition de trajectoires périodiques isolées pour des systèmes différentiels polynômiaux du plan de degré donné.

Ce problème fait partie d'une liste de vingt-trois problèmes, jusqu'alors non résolus, recensés par D. Hilbert lors d'un congrès international tenu à Paris en 1900. A l'heure actuelle, cinq de ces problèmes, parmis lesquels figure le 16^e , demeurent partiellement ouverts.

Les résultats rassemblés dans ce document concernent le cas des systèmes différentiels quadratiques pour lesquels on ne connaît toujours pas de borne au nombre de trajectoires périodiques isolées.

1 Systèmes différentiels polynômiaux - Intégrabilité

1.1 Introduction

On considère des systèmes différentiels de la forme

$$(S_d) \begin{cases} \dot{x} = P(x, y), \\ \dot{y} = Q(x, y), \end{cases}$$
(1)

où P et Q sont des polynômes à coefficients réels de degré d.

On note

$$\omega_0 = P(x, y)dy - Q(x, y)dx$$

la 1-forme associée au système (1). Il y a correspondance entre les solutions du système (1) et les solutions de l'équation $\omega_0 = 0$.

1.2 Intégrabilité des systèmes différentiels

Soient \mathcal{U} un ouvert du plan et $t \mapsto (x(t), y(t))$ une solution du système (1). On note

$$\Delta_{(x,y)}^{\mathcal{U}} = \{ t \in \mathbb{R} \mid (x(t), y(t)) \in \mathcal{U} \}.$$

Définition 1.1. L'application $H : \mathcal{U} \longrightarrow \mathbb{R}$ est appelée intégrale première du système sur \mathcal{U} si elle est constante sur les courbes solutions (x(t), y(t)) du système (1) contenue dans \mathcal{U} , ie si

$$H(x(t), y(t)) = cste, \quad \forall t \in \Delta^{\mathcal{U}}_{(x,y)}$$

Définition 1.2. On dit que le système différentiel (1) est intégrable sur un ouvert \mathcal{U} du plan, s'il admet une intégrale première sur \mathcal{U} .

Définition 1.3. On appelle facteur intégrant du système (1) sur \mathcal{U} associé à une intégrale première H, l'application $\psi : \mathcal{U} \longrightarrow R$ rendant la 1-forme ω exacte et égale à dH, ie

$$\psi\omega = dH.$$

1.3 Systèmes différentiels à centres

Nous travaillerons avec des systèmes différentiels présentant une singularité de type centre. Quitte à effectuer une translation, on peut supposer que cette singularité se situe à l'origine.

Définition 1.4. L'origine est un centre pour le système différentiel (S_d) s'il existe un voisinage épointé de l'origine dans lequel toute courbe solution est fermée et entoure l'origine.

Pour des systèmes différentiels linéaires et quadratiques, il existe des conditions nécessaires et suffisantes sur les polynômes P et Q pour que l'origine soit un centre. Nous les énonçons dans la suite de ce paragraphe. Dans le cas général, ce problème n'est pas résolu.

1.3.1 Cas linéaire

Dans ce cas (d = 1), le système s'écrit

$$\begin{cases} \dot{x} = ax + by, \\ \dot{y} = cx + dy, \end{cases}$$

où a, b, c, d sont des constantes réelles, ou encore sous forme matricielle

$$\dot{X} = LX$$
, avec $L = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ et $X = \begin{pmatrix} x \\ y \end{pmatrix}$. (2)

Théorème 1.5. Le système (2) présente une singularité de type centre en l'origine si et seulement si la matrice L a des valeurs propres imaginaires pures conjuguées.

1.3.2 Cas quadratique

Une condition nécessaire pour qu'un système quadratique possède un centre est donnée par le théorème de Poincaré.

Théorème 1.6 (Poincaré, [5]). Si le système (1) admet un centre à l'origine, alors la matrice L du système linéarisé est soit singulière, soit non nulle avec des valeurs propres imaginaires pures.

Les conditions nécessaires et suffisantes ne sont connues que depuis le début du siècle dernier. On distingue cinq classes de centres possibles. En écrivant le système différentiel sous forme complexe (z = x + iy), on peut exprimer n'importe quel système dont les valeurs propres de la matrice associée au système linéarisé sont imaginaires pures, sous la forme

$$\dot{z} = iz + Az^2 + B|z|^2 + C\bar{z}^2,\tag{3}$$

où A, B et C sont des nombres complexes.

Théorème 1.7 (Dulac et Kapteyn, [21]). L'origine est un centre si et seulement si l'une des conditions suivantes est satisfaite

$$\begin{aligned} \mathcal{Q}_{3}^{LV} &: B = 0, \\ \mathcal{Q}_{3}^{H} &: 2A + \bar{B} = 0, \\ \mathcal{Q}_{3}^{R} &: Im(AB) = Im(\bar{B}^{3}C) = Im(A^{3}C) = 0, \\ \mathcal{Q}_{4} &: A - 2\bar{B} = |C| - |B| = 0. \end{aligned}$$

On parle respectivement de centre de type Lotka-Volterra généralisé (\mathcal{Q}_3^{LV}) , de centre Hamiltonien (\mathcal{Q}_3^H) , réversible (\mathcal{Q}_3^R) ou de codimension 4 (\mathcal{Q}_4) .

Il existe une classification qui lui est équivalente et que nous utiliserons aussi par la suite [14] :

Théorème 1.8. L'origine est un centre si et seulement si le système différentiel peut s'écrire sous l'une des formes suivantes :

 $\begin{array}{ll} \dot{z} = -iz - z^2 + 2|z|^2 + (b + ic)\bar{z}^2, & Hamiltonien \ (\mathcal{Q}_3^H) \\ \dot{z} = -iz + az^2 + 2|z|^2 + b\bar{z}^2, & réversible \ (\mathcal{Q}_3^R) \\ \dot{z} = -iz + 4z^2 + 2|z|^2 + (b + ic)\bar{z}^2, & |b + ic| = 2, \ codimension \ 4 \ (\mathcal{Q}_4) \\ \dot{z} = -iz + z^2 + (b + ic)\bar{z}^2, & Lotka-Volterra \ généralisé \ (\mathcal{Q}_3^{LV}) \\ \dot{z} = -iz + \bar{z}^2, & triangle \ Hamiltonien \end{array}$

où a, b et c sont des constantes réelles.

Les cas \mathcal{Q}_3^H , \mathcal{Q}_4 , \mathcal{Q}_3^{LV} avec c = 0 et triangle Hamiltonien sont également réversibles.

Définition 1.9. On appelle variété du centre l'espace des systèmes quadratiques (3) ayant un centre à l'origine.

1.3.3 Lien avec l'intégrabilité

Dans le cas d'un champ de vecteurs polynômial quelconque, on dispose d'une condition nécessaire et suffisante reposant sur l'intégrabilité du système. Soient P_2 et Q_2 des polynômes de valuation 2 en les variables x et y. Le système (1) s'écrit sous la forme

$$\begin{cases} \dot{x} = ax + by + P_2(x, y), \\ \dot{y} = cx + dy + Q_2(x, y), \end{cases}$$
(4)

où a, b, c et d sont des nombres réels.

Théorème 1.10 (Poincaré, Lyapounov, [5]). Supposons que pour le système (4), la matrice du système linéarisé a des valeurs propres imaginaires pures non nulles (ie a + d = 0 et ad - bc > 0).

Alors le système présente un centre à l'origine si et seulement s'il possède une intégrale première réelle non constante analytique au voisinage de l'origine.

Ce théorème admet une reformulation en terme de facteur intégrant.

Théorème 1.11. Supposons que pour le système (4), la matrice du système linéarisé a des valeurs propres imaginaires pures non nulles (ie a + d = 0 et ad - bc > 0).

Alors le système présente un centre à l'origine si et seulement s'il possède un facteur intégrant non identiquement nul analytique au voisinage de l'origine.

En particulier, un système quadratique avec centre est intégrable en son voisinage.

2 Le 16^e problème de Hilbert - Problème du centre

Une singularité de type centre est caractérisée par un continuum d'orbites périodiques qui l'entoure. Plus généralement, on s'intéresse à l'existence de solutions périodiques isolées pour des systèmes différentiels polynômiaux de type (S_d) . Cette recherche est motivée par le 16^e problème de Hilbert.

2.1 Généralités

Définition 2.1. On appelle cycle limite toute trajectoire périodique qui est isolée dans l'ensemble des trajectoires périodiques.

Le 16^e problème de Hilbert consiste en la recherche d'une borne uniforme N(d) au nombre de cycles limites apparaissant dans la classe des systèmes (S_d) ainsi qu'en l'étude de leurs configurations.

Pour les systèmes différentiels quadratiques (d = 2), il a récemment été prouvé que :

Théorème 2.2 ([So]). $N(2) \ge 4$.

Les résultats rassemblés dans ce document concernent uniquement le cas de systèmes différentiels quadratiques.

2.2 Perturbation des systèmes différentiels

Une technique usuelle pour obtenir un système différentiel avec cycles limites est de considérer un système différentiel polynômial de type (1), possédant une singularité de type centre, et de ce fait intégrable. On appelle H une intégrale première et ψ son facteur intégrant associé. On perturbe ce système par des polynômes f et g de mêmes degrés que P et Q.

Le système différentiel obtenu s'écrit

$$\begin{cases} \dot{x} = P(x, y) + \varepsilon f(x, y), \\ \dot{y} = Q(x, y) + \varepsilon g(x, y), \end{cases}$$

où ε est un petit paramètre positif.

L'objectif est de rompre le continuum d'orbites périodiques en espérant toutefois qu'il reste des solutions fermées, qui seront isolées.

Dans notre cas, tous les polynômes sont de degré deux et on pose

$$\begin{cases} f(x,y) = a_{00} + a_{10}x + a_{01}y + a_{20}x^2 + a_{11}xy + a_{02}y^2, \\ g(x,y) = b_{00} + b_{10}x + b_{01}y + b_{20}x^2 + b_{11}xy + b_{02}y^2, \end{cases}$$

avec

$$\forall 1 \leq i, j \leq 2, \ a_{i,j} \in \mathbb{R} \text{ et } b_{i,j} \in \mathbb{R}$$

Un autre problème, appelé *problème du centre*, consiste à décrire les conditions nécessaires et suffisantes portant sur les coefficients des fonctions de perturbation f et g pour que le champ de vecteurs ait toutes ses orbites périodiques dans un voisinage de l'origine. Pour les exemples que nous traiterons, nous ne serons en mesure de résoudre que partiellement ce problème du centre.

2.3 Application de premier retour

Pour traiter ces deux problèmes, on fait appel à une application de premier retour dont l'existence est assurée par le théorème suivant :

Théorème 2.3. Pour ε suffisamment petit, il existe une application de premier retour L_{ε} définie sur une section transverse Σ .

FIG. 1 – Section transverse au voisinage d'un centre ($\varepsilon = 0$).

Cette section transverse peut être paramétrée par l'intégrale première H elle-même et L_{ε} admet un développement en série entière en ε de la forme :

$$L_{\varepsilon}(h) = h + \varepsilon M_1(h) + \dots + \varepsilon^k M_k(h) + \mathcal{O}(\varepsilon^{k+1}),$$

où les fonctions $(M_i)_{i\geq 1}$, définies sur Σ , sont couramment appelées fonctions de Melnikov.

FIG. 2 – Application de premier retour ($\varepsilon > 0$).

Les connexions existantes et bien connues entre ces fonctions et la résolution des deux problèmes énoncés sont les suivantes :

- (i) le nombre de cycles limites qui se déforment continûment en des ovales de l'intégrale première H lorsque ε tend vers zéro, est donné par le nombre de zéros isolés réels de la première fonction de Melnikov non identiquement nulle.
- (ii) l'origine est un centre si et seulement si l'application de premier retrour est l'application identité en son voisinage, ou encore si toutes les fonctions de Melnikov sont identiquement nulles.

Tout repose sur la possibilité de connaître une expression de ces fonctions, ce que propose l'algorithme de Françoise [9].

$\mathbf{2.4}$ Algorithme de Françoise

L'expression de la première fonction de Melnikov est donnée par la formule de H. Poincaré

$$\frac{\partial L_{\varepsilon}}{\partial \varepsilon}|_{\varepsilon=0} = M_1(h) = -\int_{H=h} \omega,$$

où ω est la 1-forme

$$\omega = \psi(fdy - gdx).$$

On dit que l'intégrale première H vérifie la condition (\star) si et seulement si pour toute 1-forme différentielle $\bar{\omega}$:

$$\oint_{H=h} \bar{\omega} \equiv 0 \quad \iff \text{ il existe des fonctions analytiques } g \text{ et } R \text{ tels que } \bar{\omega} = g dH + dR.$$

L'algorithme de calcul des dérivées successives dans le cas intégrable s'énonce sous la forme

Théorème 2.4 (J.-P. Françoise, [9]). On suppose que H satisfait la condition (\star) et on considère les solutions de l'équation différentielle $\omega_{\varepsilon} = 1/\psi(H + \varepsilon \omega) = 0$. On appelle L_{ε} l'application de premier retour associée à une section transverse Σ . Supposons $M_1(h) \equiv \cdots \equiv M_k(h) \equiv 0$.

Alors il existe des fonctions analytiques $g_1, \ldots, g_k, R_1, \ldots, R_k$ telles que

$$\omega = g_1 dH + dR_1, \ g_1 \omega = g_2 dH + dR_2, \dots, \ g_{k-1} \omega = g_k dH + dR_k,$$

et la (k+1)ème dérivée de L_{ε} ,

$$\frac{d^{k+1}L_{\varepsilon}}{d\varepsilon^{k+1}}|_{\varepsilon=0} = M_{k+1}(h) = -\oint_{H=h} g_k \omega.$$

Les résultats obtenus dans cette thèse 3

Dans ma thèse, je me suis interessé au cas de trois systèmes différentiels ou famille de systèmes différentiels particuliers.

3.1 Chapitre I : Un système différentiel de Liénard

On s'intéresse tout d'abord à un système différentiel de type Liénard :

$$\begin{cases} \dot{x} = y, \\ \dot{y} = -x + xy. \end{cases}$$
(5)

Il s'agit en fait d'un exemple de système intégrable simple avec une singularité de type centre, plus complexe que le cas classique

$$\begin{cases} \dot{x} = y, \\ \dot{y} = -x, \end{cases}$$

pour lequel

$$H(x,y) = \frac{1}{2}(x^2 + y^2)$$

est un Hamiltonien. Son comportement sous une perturbation quadratique est complètement connu.

Ce système correspond à l'équation de Liénard symétrique de plus bas degré, étudiée dans différents contextes. Il joue un rôle crucial dans la théorie des systèmes lents-rapides, pour l'étude de l'équation de Van der Pol et de ses généralisation [7].

Pour cet exemple (5), on peut montrer que la première fonction de Melnikov admet un unique zéro réel isolé. Cela assure que le système perturbé peut présenter au moins un cycle limite. On calculera également dans certains cas les fonctions d'ordre supérieur. On en déduira notamment des conditions sur les coefficients pour lesquelles la singularité reste un centre.

Proposition (cf. Proposition 6.2). Etant données des fonctions de perturbation f impaire et g paire en la variable x,

$$\begin{cases} f(x,y) = a_{10}x + a_{11}xy, \\ g(x,y) = b_{00} + b_{01}y + b_{20}x^2 + b_{02}y^2, \end{cases}$$

on dispose de conditions pour lesquelles le système reste à centre :

$$\begin{cases} a_{10} + b_{00} + b_{01} = 0, \\ a_{10} - b_{02} = 0, \\ b_{20} = 0, \\ a_{11} = b_{00} = 0, \quad ou \quad a_{10} + a_{11} = 0, \quad ou \quad a_{10} = 0, \end{cases}$$

soit encore,

$$\begin{cases} a_{11} = b_{00} = b_{20} = 0, \\ a_{10} = -b_{01} = b_{02}, \end{cases} \quad ou \quad \begin{cases} b_{20} = 0, \\ a_{10} = -a_{11} = b_{02}, \\ a_{10} + b_{00} + b_{01} = 0, \end{cases} \quad ou \quad \begin{cases} a_{10} = b_{20} = b_{02} = 0, \\ b_{00} + b_{01} = 0. \end{cases}$$

3.2 Chapitre II : Perturbation quadratique d'un secteur elliptique

Cette partie débute par l'étude de l'intégrabilité d'une équation différentielle du premier ordre introduite par Liouville [16]. L'étude des singularités à l'infini révèle l'existence d'une singularité non hyperbolique présentant un secteur elliptique.

Introduction et présentation des résultats

FIG. 3 – Singularité avec domaine elliptique.

On étudie la forme normale associée à cette singularité (voir aussi [13]) que l'on perturbe une première fois de manière intégrable afin de déformer la singularité avec domaine elliptique en un centre :

$$\begin{cases} \dot{x} = y - 2x^2 - \eta, \\ \dot{y} = -2xy, \end{cases}$$
(6)

où η est un petit paramètre strictement positif.

On perturbe ensuite le système ainsi obtenu en vue de faire apparaître des cycles limites. Dans cet exemple, il est possible de calculer explicitement les trois premières fonctions de Melnikov.

Théorème (cf. Théorème 5.45). La première fonction de Melnikov M_1 a au plus deux zéros dans l'intervalle $] - 1/2\eta, 0[$, en tenant compte de leurs éventuelles multiplicités. Si $M_1 \equiv 0$, alors la seconde fonction de Melnikov M_2 a au plus deux zéros sur ce même intervalle. Si $M_2 \equiv 0$, alors la troisième fonction de Melnikov M_3 a au plus deux zéros.

Pour des raisons de complexité, on ne calcule pas les fonctions de Melnikov d'ordre supérieur mais on en donne la nature algébrique. On découvre également certains cas intégrables.

Théorème (cf. Théorème 5.46). Les fonctions de Melnikov $(M_k(h))_{k\geq 1}$ appartiennent au module de type fini engendré par $\Pi_1(\sqrt{-h})$ et $\Pi_2(\sqrt{-h})$ sur $\mathbb{R}_{a,b} = \mathbb{R}[a_{i,j}, b_{i,j}, 0 \leq i, j \leq 2]$, avec

$$\Pi_1(X) = 1 - \sqrt{2\eta}X, \quad \Pi_2(X) = 1 - 2\eta X^2 = (1 - \sqrt{2\eta}X)(1 + \sqrt{2\eta}X).$$

3.3 Chapitre III : Une famille de systèmes différentiels avec domaines elliptiques

Dans ce chapitre on considère la famille de systèmes différentiels suivants

$$(E_{\lambda}) \begin{cases} \dot{x} = y - 2x^2 + \lambda(y^2 - y), \\ \dot{y} = -2xy, \end{cases}$$

3. Les résultats obtenus dans cette thèse

où λ est un nombre réel strictement positif.

Le cas $\lambda = 0$ a été traité dans la partie précédente.

Les portaits de phase font apparaître un centre et une singularité avec domaine elliptique lorsque $\lambda \neq 1$, une singularité avec deux domaines elliptiques lorsque $\lambda = 1$. On perturbe tout d'abord le système différentiel pour faire apparaître deux centres, l'un dans le demi-plan $\{y < 0\}$, l'autre dans le demi-plan $\{y > 0\}$:

$$\begin{cases} \dot{x} = y - 2x^2 + \lambda(y^2 - y) - \eta, \\ \dot{y} = -2xy, \end{cases}$$

où η est un petit paramètre strictement positif.

On perturbe ensuite le système obtenu en vue de générer des cycles limites de part et d'autre. On espère ainsi trouver un exemple de système différentiel quadratique pour lequel le portrait de phase laisse entrevoir quatre centres imbriqués deux à deux.

FIG. 4 – Les deux composantes connexes de l'intégrale première.

Dans cette famille de systèmes différentiels, les lignes de niveau de l'intégrale première ont deux composantes connexes, chacune entourant l'un des deux centres. L'étude des systèmes différentiels nécessitera l'introduction de deux applications de premier retour L_{ε}^{-} et L_{ε}^{+} admettant des développements en série entière en ε de la forme :

$$L_{\varepsilon}^{-}(h) = h + \varepsilon M_{1}^{-}(h) + \varepsilon^{2} M_{2}^{-}(h) + \mathcal{O}(\varepsilon^{3}) \quad \text{et} \quad L_{\varepsilon}^{+}(h) = h + \varepsilon M_{1}^{+}(h) + \varepsilon^{2} M_{2}^{+}(h) + \mathcal{O}(\varepsilon^{3}).$$

Nous n'accederons pas au résultat souhaité, mais nous serons en mesure de donner des coefficients des fonctions de perturbation pour lesquels M_1^+ a deux zéros isolés et M_1^- en a un.

Introduction et présentation des résultats

Chapitre I

Un système différentiel de Liénard

1 Introduction et notations

1.1 Le système différentiel

On considère le système différentiel de type Liénard suivant

$$\begin{cases} \dot{x} = y, \\ \dot{y} = -x + xy, \end{cases}$$
(1)

auquel est associée la 1-forme différentielle

$$\omega_0 = ydy + x(1-y)dx$$

Les solutions de $\omega_0 = 0$ sont en correspondance avec les solutions du système (1). Son feuilletage prend la forme d'une équation différentielle à variables séparées :

$$\frac{dy}{dx} = x\left(1 - \frac{1}{y}\right),$$

que l'on peut intégrer.

1.2 Intégrales premières et facteurs intégrants

Par intégration, nous déduisons une première famille d'intégrales premières :

$$H_c(x,y) = -\frac{1}{2}x^2 + y + \ln(|1-y|) + c, \quad c \in \mathbb{R}, \quad (x,y) \in \mathbb{R} \times \mathbb{R} - \{1\}$$

Pour la suite, posons

$$H(x,y) := H_0(x,y) = -\frac{1}{2}x^2 + y + \ln(|1-y|), \quad y \neq 1.$$

Lemme 1.1. Le facteur intégrant ψ associé à l'intégrale première H sur le demi-plan $\{y < 1\}$ vaut

$$\psi(y) = \frac{1}{y-1}.$$

au

1

PREUVE. On part de la relation liant l'intégrale première à son facteur intégrant,

$$\psi\omega_0 = dH,$$

d'où

$$\psi y dy + \psi x (1-y) dx = \frac{\partial H}{\partial x} dx + \frac{\partial H}{\partial y} dy \quad \Longleftrightarrow \quad \begin{cases} \psi y = \frac{\partial H}{\partial y}, \\ \psi x (1-y) = \frac{\partial H}{\partial x}. \end{cases}$$

En se plaçant sur le demi-plan $\{y < 1\}$, on trouve

$$\begin{cases} \psi y = 1 - \frac{1}{1 - y}, \\ \psi x (1 - y) = -x, \end{cases}$$
$$\psi = \frac{1}{y - 1}.$$

 soit

Le système initial peut alors également s'écrire sous la forme

$$\left\{ \begin{array}{l} \dot{x} = \frac{1}{\psi} \frac{\partial H}{\partial y}, \\ \dot{y} = -\frac{1}{\psi} \frac{\partial H}{\partial x}. \end{array} \right.$$

A partir de H, nous pouvons former d'autres intégrales premières en composant par exemple H par des fonctions, ou en lui ajoutant des constantes. On trouve ainsi l'intégrale première suivante :

$$\hat{H}(x,y) = \frac{e^{\frac{x^2}{2}-y}}{|1-y|} - 1, \quad y \neq 1,$$

dont le développement limité au voisinage de l'origine est

$$\hat{H}(x,y) = \frac{1}{2}(x^2 + y^2) + o(||(x,y)||^2),$$

où ||.|| est une norme quelconque sur \mathbb{R}^2 .

Lorsqu'on se rapproche de l'origine, les lignes de niveau de \hat{H} prennent la forme de cercles centrés en l'origine. Nous sommes en présence d'une singularité de type centre, ce que nous montrerons par la suite.

Le facteur intégrant $\hat{\psi}$ associé à l'intégrale première \hat{H} sur le demi-plan $\{y < 1\}$ vaut

$$\hat{\psi}(x,y) = \frac{1}{1-y} \left(\hat{H}(x,y) + 1 \right).$$

On travaillera plutôt avec l'intégrale première H, dont le facteur intégrant sur le demi-plan d'étude $\{y < 1\}$ ne dépend que de la variable y.

1.3 Etude des singularités

L'origine est la seule singularité du système (1). L'étude peut être limitée au demi-plan $\{y < 1\}$. On recherche tout d'abord les valeurs du paramètre h pour lesquelles les lignes de niveau $C_h = \{(x, y) \in \mathbb{R}^2 \mid H(x, y) = h\}$ existent.

Lemme 1.2. Les lignes de niveau C_h existent pour tout h réel positif.

PREUVE. On procède par analyse.

$$H(x,y) = h \iff x^2 = 2[y + \ln(1-y) + \ln(1+h)].$$

Notons

$$X_h(y) = y + \ln(1-y) + \ln(1+h), \quad y < 1$$

et étudions le signe de cette fonction. On a

$$X_h'(y) = \frac{y}{y-1}, \quad y < 1$$

si bien que

$$\forall y \in \mathbb{R}^*_- \quad X'_h(y) > 0, \quad \text{et} \quad \forall y \in]0, 1[\quad X'_h(y) < 0.$$

La fonction X_h croît sur \mathbb{R}^*_- , décroît sur]0,1[: elle atteint son maximum en zéro. La ligne de niveau \mathcal{C}_h existe uniquement pour les valeurs de h telles que

$$X_h(0) = \ln(1+h) \ge 0$$
, soit $h \ge 0$,

d'où le domaine de définition annoncé.

Dans la suite, on travaille avec h dans l'ensemble des réels positifs. La ligne de niveau C_0 correspond à l'origine. Pour h > 0, on note $\alpha(h)$ et $\beta(h)$ les valeurs de y pour lesquelles

 $X_h(\alpha(h)) = X_h(\beta(h)) = 0, \quad \alpha(h) < 0 < \beta(h) < 1.$

 X_h est alors bien définie sur le segment $[\alpha(h), \beta(h)]$.

FIG. 1 – Lignes de niveau de H.

Lemme 1.3. L'origine est un centre pour le système (1).

PREUVE. Pour tout réel positif h, on a

$$H(x,y) = h \iff x = \pm x_h(y), \quad y \in [\alpha(h), \beta(h)],$$

avec

$$x_h(y) = \sqrt{2X_h(y)} = \sqrt{2} \left[y + \ln(1-y) + \ln(1+h) \right]^{1/2}, \quad y \in [\alpha(h), \beta(h)].$$

En particulier, on a

$$x(\alpha(h)) = x(\beta(h)) = 0.$$

Les lignes de niveau de H sont obtenues comme réunion de deux courbes γ_h^- et γ_h^+ , définies par :

$$\gamma_{h}^{-} = \{ (y, -x_{h}(y)), \ y \in [\alpha(h), \beta(h)] \},\$$

$$\gamma_{h}^{+} = \{ (y, x_{h}(y)), \ y \in [\alpha(h), \beta(h)] \},\$$

qui sont respectivement les graphes des fonctions $y \mapsto -x_h(y)$ et $y \mapsto x_h(y)$.

Ces deux courbes étant symétriques l'une de l'autre par rapport à l'axe des ordonnées, les lignes de niveau de H sont fermées et centrées en l'origine, d'où la nature de cette singularité.

1.4 Perturbation et recherche de cycles limites

Considérons la perturbation du système (1)

$$\begin{cases} \dot{x} = y + \varepsilon f(x, y), \\ \dot{y} = -x + xy + \varepsilon g(x, y), \end{cases}$$
(2)

où f et g sont des polynômes de degré deux donnés par

$$\begin{cases} f(x,y) = a_{00} + a_{10}x + a_{01}y + a_{20}x^2 + a_{11}xy + a_{02}y^2, \\ g(x,y) = b_{00} + b_{10}x + b_{01}y + b_{20}x^2 + b_{11}xy + b_{02}y^2, \end{cases}$$

et ε est un petit paramètre strictement positif.

Notons ω_{ε} la 1-forme différentielle associée et posons

$$\omega = \psi(fdy - gdx).$$

On a

$$\begin{split} \omega_{\varepsilon} &= (y + \varepsilon f)dy - (-x + xy + \varepsilon g)dx \\ &= \left(\frac{1}{\psi}\frac{\partial H}{\partial y} + \varepsilon f\right)dy + \left(\frac{1}{\psi}\frac{\partial H}{\partial x} - \varepsilon g\right)dx \\ &= \frac{1}{\psi}dH + \varepsilon(fdy - gdx) \\ &= \frac{1}{\psi}\left(dH + \varepsilon\omega\right). \end{split}$$

Avant de rechercher le nombre de zéros de la première fonction de Melnikov non identiquement nulle, on s'intéresse à la nature du centre dans la classification des systèmes quadratiques à centre.

1.5 Place dans la classification des systèmes quadratiques à centre

Ce système occupe en effet une place assez particulière dans cette classification.

Proposition 1.4. L'origine du système (1) est un centre de type $\mathcal{Q}_3^{LV} \cap \mathcal{Q}_3^R$.

PREUVE. On se réfère à la classification proposée dans [14]. En posant z = x + iy, on trouve

$$\dot{z} = \dot{x} + i\dot{y} = y - ix - ixy = -iz - ixy.$$

D'autre part, il est clair que

$$xy = \frac{1}{4}(z^2 - \bar{z}^2),$$

si bien que

$$\dot{z} = -iz + \frac{1}{4}(z^2 - \bar{z}^2).$$

Un changement de variable de la forme Z = -4z donne

$$\dot{Z} = -iZ + Z^2 - \bar{Z}^2,$$

ce qui correspond au cas b = -1 et c = 0 des centres de type Lotka-Volterra généralisé de la classification de [14] (*cf.* Introduction, Théorème 1.8). D'où le résultat.

Le centre considéré appartient donc à l'intersection de deux strates affines. Dans la suite, nous exhiberons des familles de perturbations, dont les déformations interviennent dans la direction des centres de type Lotka-Volterra.

En fait, ce centre appartient à $\mathcal{Q}_3^{LV} \cap \mathcal{Q}_3^R \setminus \mathcal{Q}_3^H$. Comme le signalent [14] et [21], il s'agit d'une situation dégénérée dans laquelle la première fonction de Melnikov M_1 ne donnera pas le nombre maximum de zéros de la quantité

$$d(h,\varepsilon) = |L_{\varepsilon}(h) - h|,$$

pour la classe des perturbations f et g quadratiques. Et ant également réversibles, ces cas dégénérés admettent des symétries supplémentaires, d'où un nombre moindre de zéros pour la fonction M_1 que celui attendu.

Dans le cas où le système non perturbé possède deux ou trois lignes invariantes on a néanmoins le résultat suivant [21] :

- **Théorème 1.5.** (i) Le nombre maximal de zéros de la première fonction de Melnikov est de 2 dans $\mathcal{Q}_3^{LV} \setminus \mathcal{Q}_3^R$, 1 dans $\mathcal{Q}_3^{LV} \cap \mathcal{Q}_3^R \setminus \mathcal{Q}_3^H$ et 0 dans $\mathcal{Q}_3^{LV} \cap \mathcal{Q}_3^R \cap \mathcal{Q}_3^H$.
- (ii) Une perturbation quadratique d'un système de type $\mathcal{Q}_3^{LV} \setminus \mathcal{Q}_3^H$ possédant deux lignes invariantes peut générer 0, 1 ou 2 cycles limites.

Le cas (b, c) = (-1, 0) n'entre toutefois pas dans les hypothèses de ce théorème. Considérons Γ_2 (*resp.* Γ_{∞}) la courbe de l'espace des paramètres (b, c) pour lesquels le système non perturbé a un point critique double (*resp.* à l'infini). Ces courbes admettent pour équations (*cf.* [14]) :

$$\Gamma_2 : \left(b^2 + c^2 - \frac{1}{3}\right)^2 + \frac{4}{27}(2b - 1) = 0,$$

$$\Gamma_\infty : b^2 + c^2 - 1 = 0.$$

On remarque que le point (-1,0) occupe une place particulière dans cet espace de paramètres : c'est l'unique point d'intersection de Γ_2 et Γ_{∞} .

FIG. 2 – Place du système de Liénard dans le diagramme de bifurcation de Q_3^{LV} (figure issue de [14]).

Nous allons désormais rechercher le nombre de zéros de la première fonction de Melnikov non identiquement nulle en s'attendant toutefois à ce que le nombre de cycles limites que l'on peut obtenir par perturbation quadratique lui soit supérieur.

2 Première fonction de Melnikov

2.1 Première approche

On rappelle l'expression de la première fonction de Melnikov M_1 :

$$M_1(h) = -\oint_{H=h} \psi(fdy - gdx) = -\oint_{H=h} \omega.$$

Dans le cas étudié, la symétrie va permettre d'exprimer M_1 à l'aide d'une intégrale simple.

Proposition 2.1. Soient F et G deux fonctions telles que F est impaire et G est paire en la variable x. Alors

$$\oint_{H=h} F dx + G dy \equiv 0.$$

PREUVE. L'intégrale curviligne peut être décomposée en deux intégrales simples correspondant au calcul de la 1-forme considérée le long des deux courbes γ_h^- et γ_h^+ formant la ligne de niveau

2. Première fonction de Melnikov

 $\{H = h\}$. On a

$$\begin{split} \oint_{H=h} Fdx + Gdy &= \int_{\alpha(h)}^{\beta(h)} F(x_h(y), y) . x'_h(y) dy + G(x_h(y), y) dy \\ &+ \int_{\beta(h)}^{\alpha(h)} F(-x_h(y), y) . (-x'_h(y)) dy + G(-x_h(y), y) dy, \end{split}$$

soit encore

$$\oint_{H=h} Fdx + Gdy = \int_{\alpha(h)}^{\beta(h)} [F(x_h(y), y) + F(-x_h(y), y)]dx + [G(x_h(y), y) - G(-x_h(y), y)]dy.$$

D'après les parités de F et G en x, on trouve finalement

$$\oint_{H=h} Fdx + Gdy \equiv 0.$$

En particulier, on a le corollaire suivant :

Corollaire 2.2. Si on note f_{i_x} (resp. g_{p_x}) la partie impaire (resp. paire) en x de la fonction f (resp. g), M_1 s'écrit

$$M_1(h) = -\oint_{H=h} \psi(f_{i_x} dy - g_{p_x} dx) = 2 \int_{\alpha(h)}^{\beta(h)} \frac{1}{1-y} \left[f_{i_x}(x,y) + \frac{y}{(1-y)x} g_{p_x}(x,y) \right] dy.$$

L'étude de la première fonction de Melnikov ${\cal M}_1$ peut donc se limiter au cas de fonctions de perturbations f et g telles que

 $f_{p_x} \equiv 0, \quad g_{i_x} \equiv 0,$

 soit

$$\begin{cases} f(x,y) = a_{10}x + a_{11}xy, \\ g(x,y) = b_{00} + b_{01}y + b_{20}x^2 + b_{02}y^2. \end{cases}$$

Par linéarité de l'intégrale, on trouve

$$M_{1}(h) = 2 \left[a_{10} \int_{\alpha(h)}^{\beta(h)} \frac{x}{1-y} dy + a_{11} \int_{\alpha(h)}^{\beta(h)} \frac{xy}{1-y} dy + b_{00} \int_{\alpha(h)}^{\beta(h)} \frac{y}{(1-y)^{2}x} dy + b_{01} \int_{\alpha(h)}^{\beta(h)} \frac{y^{2}}{(1-y)^{2}x} dy + b_{20} \int_{\alpha(h)}^{\beta(h)} \frac{xy}{(1-y)^{2}} dy + b_{02} \int_{\alpha(h)}^{\beta(h)} \frac{y^{3}}{(1-y)^{2}x} dy \right].$$
(3)

Les résultats qui suivent permettront de simplifier l'écriture de M_1 .

Lemme 2.3. On a l'identité :

$$\forall \ k \in \mathbb{N} \cup \{-1\}, \qquad \int_{\alpha(h)}^{\beta(h)} \frac{x^k y}{1-y} dy = 0.$$

PREUVE. En effet il suffit de remarquer que pour $k \geq -1,$

$$\begin{split} \int_{\alpha(h)}^{\beta(h)} \frac{x^k y}{1 - y} dy &= -\int_{\alpha(h)}^{\beta(h)} x_h^{k+1}(y) x_h'(y) dy \\ &= -\left[\frac{1}{k + 2} x_h^{k+2}(y)\right]_{\alpha(h)}^{\beta(h)} \\ &= \frac{1}{k + 2} \left[x_h^{k+2}(\alpha(h)) - x_h^{k+2}(\beta(h))\right] = 0. \end{split}$$

D'autre part,

Lemme 2.4. On a les identités suivantes

1.
$$\int_{\alpha(h)}^{\beta(h)} \frac{y}{(1-y)^2 x} dy = \int_{\alpha(h)}^{\beta(h)} \frac{x}{(1-y)^2} dy,$$

2.
$$\int_{\alpha(h)}^{\beta(h)} \frac{y^2}{(1-y)^2 x} dy = \int_{\alpha(h)}^{\beta(h)} \frac{x}{(1-y)^2} dy,$$

3.
$$\int_{\alpha(h)}^{\beta(h)} \frac{y^3}{(1-y)^2 x} dy = \int_{\alpha(h)}^{\beta(h)} \frac{xy}{(1-y)^2} dy = \int_{\alpha(h)}^{\beta(h)} \frac{x}{(1-y)^2} dy - \int_{\alpha(h)}^{\beta(h)} \frac{x}{(1-y)} dy$$

$$= \frac{1}{3} \int_{\alpha(h)}^{\beta(h)} \frac{x^3}{(1-y)^2} dy = \frac{1}{3} \int_{\alpha(h)}^{\beta(h)} x^3 dy.$$

PREUVE. Ces résultats se montrent à l'aide d'intégrations par parties en faisant apparaître la dérivée en y de $x_h(y)$. Les fonctions $y \mapsto \frac{1}{y-1}$ et $y \mapsto \frac{y}{y-1}$ ayant mêmes dérivées, il n'est pas étonnant de trouver un résulat identique pour 1. et 2.

$$1. \quad \int_{\alpha(h)}^{\beta(h)} \frac{y}{(1-y)^2 x} dy = \int_{\alpha(h)}^{\beta(h)} -x'_h(y) \frac{1}{1-y} dy = \int_{\alpha(h)}^{\beta(h)} \frac{x}{(1-y)^2} dy,$$

$$2. \quad \int_{\alpha(h)}^{\beta(h)} \frac{y^2}{(1-y)^2 x} dy = \int_{\alpha(h)}^{\beta(h)} -x'_h(y) \frac{y}{1-y} dy = \int_{\alpha(h)}^{\beta(h)} \frac{x}{(1-y)^2} dy,$$

$$3. \quad \int_{\alpha(h)}^{\beta(h)} \frac{y}{(1-y)^2 x} dy = \int_{\alpha(h)}^{\beta(h)} -x'_h(y) \frac{y^2}{1-y} dy = \int_{\alpha(h)}^{\beta(h)} \frac{xy}{(1-y)^2} dy + \int_{\alpha(h)}^{\beta(h)} \frac{xy}{1-y} dy$$

$$= \int_{\alpha(h)}^{\beta(h)} \frac{xy}{(1-y)^2} dy = \int_{\alpha(h)}^{\beta(h)} \frac{xy}{(1-y)^2} dy = \int_{\alpha(h)}^{\beta(h)} \frac{x}{(1-y)^2} dy - \int_{\alpha(h)}^{\beta(h)} \frac{x}{1-y} dy,$$

$$\int_{\alpha(h)}^{\beta(h)} \frac{xy}{(1-y)^2} dy = \int_{\alpha(h)}^{\beta(h)} x'_h(y) x_h^2(y) \frac{-1}{1-y} dy = \frac{1}{3} \int_{\alpha(h)}^{\beta(h)} \frac{x^3}{(1-y)^2} dy,$$

$$\int_{\alpha(h)}^{\beta(h)} \frac{x^3}{(1-y)^2} dy = \int_{\alpha(h)}^{\beta(h)} x^3 dy + \int_{\alpha(h)}^{\beta(h)} \frac{x^3y}{1-y} dy = \int_{\alpha(h)}^{\beta(h)} x^3 dy.$$

On en déduit plusieurs expressions de la première fonction de Melnikov ${\cal M}_1$:

2. Première fonction de Melnikov

Corollaire 2.5. La première fonction de Melnikov M_1 peut s'écrire sous les formes suivantes,

$$M_{1}(h) = \oint_{H=h} \frac{P(x)}{(1-y)^{2}} dy$$

= $A \oint_{H=h} \frac{x}{(1-y)^{2}} dy + B \oint_{H=h} \frac{xy}{(1-y)^{2}} dy$
= $C \oint_{H=h} \frac{x}{(1-y)^{2}} dy - B \oint_{H=h} \frac{x}{1-y} dy$

 $o \hat{u}$

 $A = a_{10} + b_{00} + b_{01},$ $B = b_{20} + b_{02} - a_{10},$ $C = A + B = b_{00} + b_{01} + b_{20} + b_{02},$

et P est le polynôme

$$P(X) = X \cdot \left(\frac{B}{3}X^2 + A\right).$$

Ces expressions montrent très clairement que les résultats vont dépendre de deux paramètres indépendants.

PREUVE. On combine les résultats des deux lemmes précédents avec l'expression de M_1 obtenue en (3) et on obtient

$$M_{1}(h) = 2 \int_{\alpha(h)}^{\beta(h)} \frac{x}{(1-y)^{2}} \left[(a_{10} + b_{00} + b_{01}) + \frac{1}{3} (b_{20} + b_{02} - a_{10}) x^{2} \right] dy$$

$$= 2 \int_{\alpha(h)}^{\beta(h)} \frac{x}{(1-y)^{2}} \left[(a_{10} + b_{00} + b_{01}) + (b_{20} + b_{02} - a_{10}) y \right] dy$$

$$= 2 (b_{00} + b_{01} + b_{20} + b_{02}) \int_{\alpha(h)}^{\beta(h)} \frac{x}{(1-y)^{2}} dy + 2 (a_{10} - b_{20} - b_{02}) \int_{\alpha(h)}^{\beta(h)} \frac{x}{1-y} dy.$$

Soit encore

$$M_{1}(h) = 2 \int_{\alpha(h)}^{\beta(h)} \frac{P(x)}{(1-y)^{2}} dy$$

= $2A \int_{\alpha(h)}^{\beta(h)} \frac{x}{(1-y)^{2}} dy + 2B \int_{\alpha(h)}^{\beta(h)} \frac{xy}{(1-y)^{2}} dy$
= $2C \int_{\alpha(h)}^{\beta(h)} \frac{x}{(1-y)^{2}} dy - 2B \int_{\alpha(h)}^{\beta(h)} \frac{x}{1-y} dy,$ (4)

d'où le résultat.

2.2 Seconde approche

Dans cette partie, on reprend l'étude de la première fonction de Melnikov en adoptant le point de vue des formes différentielles exposé dans l'article [2]. Cette seconde approche repose sur la réduction d'une 1-forme dans la cohomologie relative, c'est à dire à l'aide de la différentielle

dH et des formes exactes (cf. [10]). On rappelle les expressions de l'intégrale première H et son facteur intégrant associé ψ :

$$H(x,y) = -\frac{1}{2}x^2 + y + \ln(1-y), \quad y < 1,$$

$$\psi(x,y) = \frac{1}{y-1}.$$

Pour décomposer la 1-forme

$$\omega = \psi(fdy - gdx),$$

on introduit les 1-formes différentielles élémentaires

$$\omega_{ij} = \frac{x^i y^j}{y-1} dx \quad \text{et} \quad \delta_{ij} = \frac{x^i y^j}{y-1} dy, \quad 0 \le i+j \le 2,$$

qui sont telles que la forme ω se décompose comme suit

$$\omega = \sum_{0 \le i+j \le 2} a_{ij} \delta_{ij} - b_{ij} \omega_{ij}.$$
(5)

On exprime ces 1-formes à l'aide de la différentielle dH, de différentielles de fonctions ainsi que des 1-formes ω_{00} et δ_{10} .

Lemme 2.6. On a les identités suivantes

$$\begin{split} \delta_{00} &= d[\ln(1-y)], & \delta_{01} = d[y + \ln(1-y)], \\ \delta_{20} &= 2\ln(1-y)dH + d[2(1-H)\ln(1-y) + 2y + \ln^2(1-y)], \\ \delta_{11} &= xdH + d\left[\frac{x^3}{3}\right], & \delta_{02} = d\left[\frac{y^2}{2} + y + \ln(1-y)\right], \\ \omega_{10} &= -\frac{1}{y-1}dH + d\left[\ln(1-y) - \frac{1}{y-1}\right], & \omega_{01} = dx + \omega_{00}, \\ \omega_{20} &= -\frac{x}{y-1}dH - d\left[\frac{x}{y-1}\right] + \delta_{10} + \omega_{00}, & \omega_{11} = -\frac{y}{y-1}dH + d\left[y + 2\ln(1-y) - \frac{1}{y-1}\right], \\ \omega_{02} &= -xdH + d\left[x + xy - \frac{x^3}{3}\right] + \delta_{10} + \omega_{00}. \end{split}$$

PREUVE. Certaines de ces identités sont immédiates, pour les autres, on se sert des expressions de H et de sa différentielle

$$dH = -xdx + \frac{y}{y-1}dy.$$

On trouve

$$\begin{split} \delta_{20} &= -2\frac{H}{y-1} + 2\frac{y}{y-1} + 2\frac{\ln(1-y)}{y-1} \\ &= -2d[H\ln(1-y)] + 2\ln(1-y)dH + 2\delta_{01} + d[\ln^2(1-y)], \\ \delta_{11} &= x \left(dH + xdx \right) = xdH + d\left[\frac{x^3}{3}\right], \\ \delta_{02} &= \left(y+1+\frac{1}{y-1}\right)dy = d\left[\frac{y^2}{2} + y + \ln(1-y)\right], \\ \omega_{10} &= \frac{1}{y-1} \left(-dH + dy + \frac{1}{y-1}dy\right), \\ \omega_{20} &= \frac{x}{y-1}d\left[\frac{x^2}{2}\right] = -\frac{x}{y-1}dH + \delta_{10} + \frac{x}{(y-1)^2}dy \\ &= -\frac{x}{y-1}dH + \delta_{10} + \omega_{00} - d\left[\frac{x}{y-1}\right], \\ \omega_{11} &= \frac{y}{y-1} \left[-dH + \frac{y}{y-1}dy\right] = -\frac{y}{y-1}dH + \left(1 + \frac{2}{y-1} + \frac{1}{(y-1)^2}\right)dy, \\ \omega_{02} &= ydx + dx + \omega_{00} = d[xy] - xdy + dx + \omega_{00} = d[xy] - xdH - x^2dx + \delta_{10} + dx + \omega_{00}. \end{split}$$

En combinant ces identités avec (5), on obtient la décomposition suivante pour ω : **Proposition 2.7.** ω peut s'écrire sous la forme

$$\omega = g_1 dH + dR_1 + N_1, \tag{6}$$

 $o \dot{u}$

$$g_{1}(x,y) = (a_{11} + b_{02})x + \frac{b_{10} + b_{20}x + b_{11}y}{y - 1} + 2a_{20}\ln(1 - y),$$

$$R_{1}(x,y,H) = (a_{01} + 2a_{20} + a_{02} - b_{11})y - (b_{01} + b_{02})x + -b_{02}xy + a_{02}y^{2} + (a_{11} + b_{02})\frac{x^{3}}{3} + \frac{(b_{10} + b_{11}) + b_{20}x}{y - 1} + (a_{00} + a_{01} + 2a_{20} + a_{02} - b_{10} - 2b_{11})\ln(1 - y) + 2a_{20}\ln^{2}(1 - y) - 2a_{20}H\ln(1 - y),$$

$$N_{1} = -B\delta_{10} - C\omega_{00}.$$

Cette décomposition (6) permet de donner une expression de M_1 .

Corollaire 2.8. On a

$$M_1(h) = C \oint_{H=h} \frac{x}{(1-y)^2} dy - B \oint_{H=h} \frac{x}{y-1} dy.$$

PREUVE. Par définition, M_1 vaut

$$M_1(h) = -\oint_{H=h} \omega = -\oint_{H=h} g_1 dH - \oint_{H=h} dR_1 - \oint_{H=h} N_1.$$

Il est clair que la première intégrale est identiquement nulle

$$\oint_{H=h} g_1 dH = 0.$$

Par ailleurs,

$$\alpha(h) < 0 < \beta(h) < 1, \quad \text{pour } h \in \mathbb{R}_+.$$

Les lignes de niveau $\{H = h\}$ sont donc contenues dans le demi-plan $\{y < 1\}$. R_1 étant analytique sur ce demi-plan, on a également

$$\oint_{H=h} dR_1 = 0.$$

Si bien que

$$M_{1}(h) = -\oint_{H=h} N_{1}$$

= $B \oint_{H=h} \frac{x}{y-1} dy + C \oint_{H=h} \frac{1}{y-1} dx$
= $C \oint_{H=h} \frac{y}{(1-y)^{2}x} dy - B \oint_{H=h} \frac{x}{1-y} dy,$

 car

$$dx = \frac{y}{(y-1)x}dy.$$

Or, d'après le Lemme 2.4,

$$\oint_{H=h} \frac{y}{(1-y)^2 x} dy = \oint_{H=h} \frac{x}{(1-y)^2} dy,$$

d'où l'expression de M_1 .

On retrouve bien la même expression pour la première fonction de Melnikov M_1 que dans le Corollaire 2.5.

2.3 Recherche des zéros de M_1

2.3.1 Cas A et B de même signe, A ou B éventuellement nul

Lemme 2.9. Si A et B sont de même signe, A ou B éventuellement nul, alors la première fonction de Melnikov garde un signe constant sur \mathbb{R}^*_+ , celui donné par A et B.

PREUVE. On a montré dans le Corollaire 2.5 que M_1 peut s'écrire sous la forme

$$M_1(h) = 2 \int_{\alpha(h)}^{\beta(h)} \frac{P(x)}{(1-y)^2} dy.$$

Pour h un réel strictement positif fixé, la fonction $y \mapsto x_h(y)$ est positive sur $[\alpha(h), \beta(h)]$. D'autre part, le polynôme P garde un signe constant sur \mathbb{R}_+ , celui donné par les constantes A et B. Si ce signe est positif (*resp.* négatif), alors l'intégrant est strictement positif (*resp.* négatif) sur l'intervalle ouvert d'intégration, d'où le résultat.

Pour de telles valeurs des coefficients A et B, le portrait de phase ne présente a priori aucun cycle limite.

22

2. Première fonction de Melnikov

2.3.2 Cas A et B de signe opposé, A et B non nuls

On peut supposer sans perte de généralité que A > 0 et B < 0. La discussion fera intervenir le signe du paramètre C = A + B.

Sous de telles hypothèses, le polynôme P est scindé à racines simples

$$P(X) = \frac{B}{3}X(X - x_0)(X + x_0), \text{ avec } x_0^2 = -\frac{3A}{B}.$$

Son signe sur \mathbb{R}_+ est positif sur $[0, x_0]$ et négatif sinon.

Le maximum de la fonction $y \mapsto x_h(y)$ croît lorsque h croît. On appelle h_0 la valeur critique à partir de laquelle ce maximum est supérieur à x_0 . On a :

$$x_0 = \max\{x_{h_0}(y), y \in [\alpha(h_0), \beta(h_0)]\} = \sqrt{2\ln(1+h_0)},$$

soit

$$h_0 = e^{x_0^2/2} - 1$$

FIG. 3 – Ligne de niveau critique $\mathcal{C}_{h_0} : y \mapsto x_{h_0}(y)$.

Pour $h \leq h_0$, on a

$$0 \le x_h(y) \le x_0,$$

d'où

$$P(x) \ge 0$$
 et $M_1(h) \ge 0$.

En fait M_1 est même strictement positive pour les valeurs du paramètre h telles que $h < h_0$. On a le résultat suivant :

Proposition 2.10. On suppose que A > 0 et B < 0. Alors, on a

$$\lim_{h \to +\infty} M_1(h) = -\infty \iff C < 0.$$

Afin de démontrer cette proposition, nous établissons quelques résultats préliminaires.

Lemme 2.11. Pour tout réel positif h, la fonction $y \mapsto x_h(y)$ est concave sur $[\alpha(h), \beta(h)]$.

PREUVE. La fonction $y \mapsto x_h(y)$ est au moins deux fois dérivable sur $]\alpha(h), \beta(h)[$ et on a

$$x_h'(y) = -\frac{y}{(1-y)x_h(y)},$$

et donc

$$x_h''(y) = -\frac{y^2 + x_h(y)^2}{(1-y)^2 x_h(y)^3} \le 0,$$

 car

$$x_h(y) > 0$$
 pour $y \in]\alpha(h), \beta(h)[$ et $y \le \beta(h) < 1,$

d'où le résultat.

Lemme 2.12. Au voisinage de l'infini, on a les développements asymptotiques :

(i)
$$\alpha(h) = -\ln h + o_{\infty}(\ln h),$$

(ii) $\beta(h) = 1 - \frac{1}{eh} + o_{\infty}\left(\frac{1}{h}\right).$

PREUVE. On utilise comme point de départ les relations suivantes

$$\alpha(h) < 0 < \beta(h) < 1, \tag{7a}$$

$$\alpha(h) + \ln(1 - \alpha(h)) + \ln(1 + h) = 0, \tag{7b}$$

$$\beta(h) + \ln(1 - \beta(h)) + \ln(1 + h) = 0.$$
(7c)

Lorsque h tend vers l'infini, l'équation (7b) est toujours vérifiée, si bien que l'on a

$$\lim_{h \to +\infty} \alpha(h) = -\infty \quad \text{ou} \quad \lim_{h \to +\infty} \ln(1 - \alpha(h)) = -\infty,$$

so it encore $% \left({{{\left({{{}}}}}} \right)}}} \right,$

$$\lim_{h \to +\infty} \alpha(h) = -\infty \quad \text{ou} \quad \lim_{h \to +\infty} \alpha(h) = 1.$$

De même pour β , l'équation (7c) étant vraie pour tout h,

$$\lim_{h \to +\infty} \beta(h) = -\infty \quad \text{ou} \quad \lim_{h \to +\infty} \beta(h) = 1.$$

La relation (7a) impose finalement

$$\lim_{h \to +\infty} \alpha(h) = -\infty \quad \text{et} \quad \lim_{h \to +\infty} \beta(h) = 1.$$

Développement limité pour α : en divisant par $\alpha(h)$ dans (7b), on trouve

$$1 + \frac{\ln(1 - \alpha(h))}{\alpha(h)} + \frac{\ln(1 + h)}{\alpha(h)} = 0,$$

ou encore

$$1 + \frac{\ln(1 - \alpha(h))}{\alpha(h)} + \frac{\ln(1 + h)}{\ln h} \cdot \frac{\ln h}{\alpha(h)} = 0.$$

2. Première fonction de Melnikov

De plus, par relation de comparaison

$$\lim_{h \to +\infty} \frac{\ln(1 - \alpha(h))}{\alpha(h)} = 0,$$

si bien que

$$\alpha(h) \sim_{\infty} -\ln h,$$

et donc

$$\alpha(h) = -\ln h + o_{\infty}(\ln h).$$

Développement limité pour β : on pose

$$\beta(h) = 1 + \tilde{\beta}(h), \text{ avec } \lim_{h \to +\infty} \tilde{\beta}(h) = 0.$$

L'équation (7c) devient

$$\begin{aligned} 1+\beta(h)+\ln(-\beta(h))+\ln(1+h)&=0,\\ \Longleftrightarrow \quad 1+\tilde{\beta}(h)+\ln(-h\tilde{\beta}(h))+\ln\left(1+\frac{1}{h}\right)&=0. \end{aligned}$$

On en déduit

d'où

$$\lim_{h \to +\infty} \ln(-h\tilde{\beta}(h)) = -1, \quad \text{soit} \quad \lim_{h \to +\infty} h\tilde{\beta}(h) = -\frac{1}{e},$$
$$\tilde{\beta}(h) = -\frac{1}{eh} + o_{\infty}\left(\frac{1}{h}\right) \quad \text{et} \quad \beta(h) = 1 - \frac{1}{eh} + o_{\infty}\left(\frac{1}{h}\right)$$

PREUVE DE LA PROPOSITION 2.10. M_1 est combinaison linéaire de deux intégrales indépendantes. Le méthode standard pour étudier son comportement, en l'infini notamment, consiste en l'étude du rapport de ces deux intégrales. Dans notre cas, cela n'a pas abouti au résultat attendu.

On part alors de l'expression (4)

$$M_1(h) = 2C \int_{\alpha(h)}^{\beta(h)} \frac{x}{(1-y)^2} dy - 2B \int_{\alpha(h)}^{\beta(h)} \frac{x}{1-y} dy.$$

 \Box Si $C \ge 0$, alors M_1 est décomposée comme une somme de deux intégrales positives, dont l'une strictement (on a supposé B < 0), d'où l'impossibilité de s'annuler. Il n'y a pas de zéros dans ce cas.

 \Box Si C < 0, alors M_1 est décomposée comme une somme d'une intégrale positive et d'une intégrale négative. Nous allons voir que pour des valeurs de h suffisamment grandes, l'intégrale négative va donner son signe à M_1 et même que

$$\lim_{h \to +\infty} M_1(h) = -\infty.$$

Pour cela, on cherche à majorer la quantité $M_1(h)$. D'après le Lemme 2.12,

$$\exists h_1 \ge 0 \mid \forall h \ge h_1, \quad \beta(h) \ge 1 - \frac{2}{eh}.$$
On découpe chaque intégrale en deux sous-intégrales :

$$\begin{split} M_1(h) &= 2C \int_{\alpha(h)}^{1-2/eh} \frac{x}{(1-y)^2} dy - 2B \int_{\alpha(h)}^{1-2/eh} \frac{x}{1-y} dy \\ &+ 2C \int_{1-2/eh}^{\beta(h)} \frac{x}{(1-y)^2} dy - 2B \int_{1-2/eh}^{\beta(h)} \frac{x}{1-y} dy \\ &\leq 2 \left[\frac{C}{1-\alpha(h)} - B \right] \int_{\alpha(h)}^{1-2/eh} \frac{x}{1-y} dy + \left[Ceh - 2B \right] \int_{1-2/eh}^{\beta(h)} \frac{x}{1-y} dy. \end{split}$$

De plus,

$$\lim_{h \to +\infty} \frac{C}{1 - \alpha(h)} - B = -B > 0,$$

et
$$\lim_{h \to +\infty} Ceh - 2B = -\infty,$$

d'où l'existence de $h_2 \geq h_1$ tel que

$$\forall h \ge h_2, \quad \frac{C}{1-\alpha(h)} - B > 0, \quad \text{et} \quad Ceh - 2B < 0.$$

La valeur du paramètre h tendant vers l'infini, on peut supposer que $h \ge h_2$.

Majoration de la première intégrale :

Etant donné que

$$x \le max\{x_h(y), y \in [\alpha(h), \beta(h)]\} = \sqrt{2\ln(1+h)},$$

on a

$$\int_{\alpha(h)}^{1-2/eh} \frac{x}{1-y} dy \le \sqrt{2\ln(1+h)} \int_{\alpha(h)}^{1-2/eh} \frac{dy}{1-y} \\ \le \sqrt{2\ln(1+h)} \cdot \left[\ln(1-\alpha(h)) + \ln h + 1 - \ln 2\right].$$

Minoration de la seconde intégrale :

$$\int_{1-2/eh}^{\beta(h)} \frac{x}{1-y} dy \ \geq \ \frac{eh}{2} \int_{1-2/eh}^{\beta(h)} x dy.$$

Il reste à minorer cette nouvelle intégrale qui correspond à l'aire sous la courbe de la fonction $y \mapsto x_h(y)$ sur l'intervalle $[1 - 2/eh, \beta(h)]$. Pour cela, on utilise la concavité de $y \mapsto x_h(y)$.

FIG. 4 – Minoration de l'aire par concavité.

Il en résulte que :

$$\begin{split} \int_{1-2/eh}^{\beta(h)} \frac{x}{1-y} dy &\geq \frac{eh}{2} x \left(1-\frac{2}{eh}\right) \times \frac{1}{2} \left[\beta(h)-1+\frac{2}{eh}\right] \\ &\geq \frac{eh}{2\sqrt{2}} \sqrt{\ln 2 - \frac{2}{eh} + \ln\left(1+\frac{1}{h}\right)} \times \left[\frac{1}{eh} + o_{\infty}(\frac{1}{h})\right] \\ &\geq \frac{1}{2\sqrt{2}} \sqrt{\ln 2 - \frac{2}{eh} + \ln\left(1+\frac{1}{h}\right)} \times \left[1+o_{\infty}(1)\right]. \end{split}$$

Finalement,

$$M_1(h) \le E_1(h) + E_2(h),$$

avec

$$E_1(h) = 2\left[\frac{C}{1-\alpha(h)} - B\right]\sqrt{2\ln(1+h)} \times \left[\ln(1-\alpha(h)) + \ln h + 1 - \ln 2\right],$$

$$E_2(h) = \frac{1}{2\sqrt{2}}\left[Ceh - 2B\right]\sqrt{\ln 2 - \frac{2}{eh} + \ln\left(1 + \frac{1}{h}\right)} \times \left[1 + o_{\infty}(1)\right].$$

Au voisinage de l'infini, on a les équivalents suivants pour $E_1(h)$ et $E_2(h)$:

$$E_1(h) = 2 \left[\frac{C}{1 + \ln h + o_\infty(\ln h)} - B \right] \sqrt{2\ln(1+h)} \\ \times \left[\ln(1 + \ln h + o_\infty(\ln h)) + \ln h + 1 - \ln(2) \right],$$

 soit

$$E_1(h) \sim_{\infty} -2B\sqrt{2\ln h} \times \ln h = -2\sqrt{2}B\ln^{3/2}h,$$
$$E_2(h) \sim_{\infty} \frac{Ce}{2}\sqrt{\frac{\ln 2}{2}}h.$$

Par relation de comparaison, on a clairement

$$E_1(h) = o_\infty(E_2(h)),$$

et donc

$$M_1(h) \sim_{\infty} \frac{Ce}{2} \sqrt{\frac{\ln 2}{2}} h \longrightarrow -\infty, \quad \text{quand } h \to +\infty,$$

d'où le résultat.

A titre d'illustration, on donne l'allure de M_1 pour deux valeurs des paramètres A et B correspondant respectivement aux cas $C = A + B \ge 0$ et C < 0:

Dans le cas A < 0 et B > 0, la première fonction de Melnikov M_1 est strictement négative sur l'intervalle $]0, h_0[$ et la Proposition 2.10 devient :

$$\lim_{h \to +\infty} M_1(h) = +\infty \iff C > 0$$

Corollaire 2.13. La première fonction de Melnikov M_1 s'annule en au moins un point si et seulement si AB < 0 et AC < 0.

PREUVE. Ces deux conditions donnent lieu à deux cas. Cas A > 0, B < 0 et C < 0: on est dans le cadre de la Proposition 2.10, à savoir que

$$\forall h \in]0, h_0[, M_1(h) > 0 \text{ et } \lim_{h \to +\infty} M_1(h) = -\infty$$

Cas A < 0, B > 0 et C > 0: on est dans le cas symétrique, à savoir que

$$\forall h \in]0, h_0[, M_1(h) < 0 \text{ et } \lim_{h \to +\infty} M_1(h) = +\infty,$$

Cela assure l'existence d'un zéro pour la première fonction de Melnikov M_1 et donc d'un cycle limite. D'autre part, on a vu précédemment que dans les autres cas, M_1 garde un signe constant, ce qui achève la preuve.

2. Première fonction de Melnikov

 M_1 peut s'annuler pour des valeurs du paramètre h arbitrairement grandes. En effet, le cycle limite n'apparaît pas au voisinage de l'origine. Comme le suggère les portaits de phase suivants, plus les paramètres A, B et C, C < 0 sont proches du cas critique C = 0, plus la valeur de h pour laquelle M_1 s'annule est grande, et de ce fait, plus le cycle limite s'éloigne de l'origine $(x_{max} = \sqrt{2 \ln(1+h)})$.

On a donné une condition nécessaire et suffisante pour l'apparition d'au moins un cycle. En fait, on se rend compte numériquement qu'il ne semble pas possible d'en voir émerger d'autres.

2.3.3 Un résultat d'unicité

Une autre démonstration donne à la fois l'existence et l'unicité d'un zéro pour la première fonction de Melnikov du système perturbé étudié.

Lemme 2.14. Le système de Liénard initial (1) perturbé comme suit

$$\begin{cases} \dot{x} = y + \varepsilon f(x), \\ \dot{y} = -x + xy + \varepsilon g(x), \end{cases}$$

avec

$$f(x) = Ax + B\frac{x^3}{3} = P(x)$$
 et $g(x) = Ax^2 + B\frac{x^4}{3} = xP(x)$,

est tel que sa première fonction de Melnikov \tilde{M}_1 vérifie

$$\tilde{M}_1(h) = \oint_{H=h} \frac{P(x)}{(1-y)^2} dy = M_1(h).$$

PREUVE. Les fonctions perturbatrices f et g considérées ne sont cette fois-ci plus quadratiques.

Chapitre I. Un système différentiel de Liénard

La première fonction de Melnikov \tilde{M}_1 s'écrit

$$\begin{split} \tilde{M}_{1}(h) &= -\oint_{H=h} \psi(fdy - gdx) \\ &= \oint_{H=h} \frac{f(x)}{1 - y} dy - \frac{g(x)}{1 - y} dx \\ &= \oint_{H=h} \frac{f(x, y)}{1 - y} + \frac{yg(x, y)}{(1 - y)^{2}x} dy \\ &= \oint_{H=h} \frac{xf(x, y) - g(x, y)}{(1 - y)x} + \frac{g(x, y)}{(1 - y)^{2}x} dy \end{split}$$

Or, les fonctions f et g vérifient clairement

$$xf(x) - g(x) = 0$$
 et $g(x) = xP(x)$,

 soit

$$\tilde{M}_1(h) = \oint_{H=h} \frac{g(x)}{(1-y)^2 x} dy = \oint_{H=h} \frac{Ax + Bx^3/3}{(1-y)^2} dy = M_1(h),$$

d'où le résultat.

Le nouveau système obtenu est encore de type Liénard. Son équation différentielle du second degré associée est

$$\begin{split} \ddot{x} &= \dot{y} + \varepsilon A \dot{x} + \varepsilon B x^2 \dot{x} \\ &= -x + x \left(\dot{x} - \varepsilon A x - \varepsilon B \frac{x^3}{3} \right) + \varepsilon \left(A x^2 + B \frac{x^4}{3} \right) + \varepsilon A \dot{x} + \varepsilon B x^2 \dot{x} \\ &= -x + x \dot{x} + \varepsilon A \dot{x} + \varepsilon B x^2 \dot{x}, \end{split}$$

ou encore

$$\ddot{x} - (\varepsilon B x^2 + x + \varepsilon A)\dot{x} + x = 0.$$

On peut enfin écrire cette équation différentielle de Liénard sous forme d'un autre système différentiel qui lui est équivalent :

$$\begin{cases} \dot{x} = y - F(x), \\ \dot{y} = -x, \end{cases}$$
(8)

avec

$$F(x) = \int_0^x -(\varepsilon Bt^2 + t + \varepsilon A)dt = -\frac{\varepsilon B}{3}x^3 - \frac{1}{2}x^2 - \varepsilon Ax.$$

On note X_F le champ de vecteurs associé au système différentiel (8), avec F s'écrivant

$$F(x) = a_3 x^3 + a_2 x^2 + a_1 x$$

Dans l'article [15], le résultat suivant est établi :

Théorème 2.15. On a les différentes possibilités :

- (i) Si $a_1a_3 > 0$ et $(a_1, a_3) \neq (0, 0)$, alors X_F n'a aucune orbite fermée.
- (ii) Si $a_1a_3 < 0$, alors X_F a une unique orbite fermée.
- (iii) Si $a_1 = a_3 = 0$, l'origine est un centre.

Dans notre situation, on a bien affaire à un champ de vecteurs de type X_F avec les coefficients

$$a_1 = -\varepsilon A$$
 et $a_3 = -\frac{\varepsilon B}{3}$, soit $a_1 a_3 = \frac{\varepsilon^2}{3} AB$,

et dont le signe dépend de celui de AB.

On en déduit les deux corollaires :

Corollaire 2.16. Si AB < 0, alors le système différentiel de Liénard (8) admet un unique cycle limite.

Corollaire 2.17. La première fonction de Melnikov M_1 associée au système perturbé (2) admet un unique zéro si et seulement si AB < 0 et AC < 0.

PREUVE. On sait d'ores et déjà que M_1 a au moins un zéro si seulement si AB < 0 et AC < 0. Les premières fonctions de Melnikov de (2) et (8) étant d'autre part les mêmes, le Corollaire 2.16 assure que M_1 ne pourra s'annuler au plus qu'une fois. D'où le résultat.

3 Seconde fonction de Melnikov

Les deux intégrales définissant M_1 sont indépendantes (on peut en tout cas s'en persuader numériquement). On a donc

$$M_1 \equiv 0 \Longleftrightarrow A = B = 0,$$

et par conséquent

C = 0,

soit encore

$$a_{10} + b_{00} + b_{01} = 0, (9)$$

$$b_{20} + b_{02} - a_{10} = 0. (10)$$

Dans ce cas, le comportement du système perturbé sera donné par la première fonction de Melnikov d'ordre supérieur non identiquement nulle.

La décomposition donnée dans la seconde approche de la partie précédente permet de poursuivre la recherche des fonctions de Melnikov d'ordre supérieur de manière itérative. Pour notre système différentiel, les calculs s'avèrent fastidieux dès la seconde étape. En revanche, on utilisera cette méthode pour traiter l'exemple étudié dans le chapitre suivant.

Ainsi, on ne va rechercher les fonctions de Melnikov d'ordre supérieur que dans quelques cas particuliers, qui vont néanmoins présenter des comportements variés. Comme pour le calcul de M_1 , on se limite au cas de polynômes quadratiques f impair et g pair en la variable x. Les autres coefficients n'étaient pas intervenus pour des raisons de parités. Ces conditions permettent une simplification de l'étude, dans la mesure où les décompositions utilisées ne feront intervenir que des fonctions polynômes.

Pour calculer la seconde fonction de Melnikov M_2 , et par la suite les fonctions de Melnikov d'ordre supérieur, on utilise l'adaptation aux systèmes intégrables de l'algorithme de Françoise pour les sytèmes Hamiltoniens (*cf.* Introduction, Théorème 2.4).

3.1 Cas $b_{20} = 0$

La condition (10) devient $b_{02} = a_{10}$ et on écrit le système à l'aide des paramètres a_{10} , a_{11} et b_{00} :

$$\begin{cases} \dot{x} = y + \varepsilon x \left(a_{10} + a_{11} y \right), \\ \dot{y} = -x + xy + \varepsilon \left(b_{00} - (a_{10} + b_{00})y + a_{10} y^2 \right), \end{cases}$$

soit finalement

$$\begin{cases} \dot{x} = y + \varepsilon \left(a_{10}x + a_{11}xy \right), \\ \dot{y} = \left(y - 1 \right) \left(x + \varepsilon \left(a_{10}y - b_{00} \right) \right) \end{cases}$$

Dans ce cas particulier, la décomposition de ω ne fait intervenir que des polynômes.

Proposition 3.1. Il existe des polynômes g_1 et R_1 tels que

$$\omega = g_1 dH + dR_1,\tag{11}$$

avec

$$g_1(x,y) = (a_{10} + a_{11})x,$$

$$R_1(x,y) = \frac{1}{3}(a_{10} + a_{11})x^3 - a_{10}xy + b_{00}x + C_1, \quad C_1 \in \mathbb{R}.$$

Remarque 3.2. D'avance, on peut montrer sans calculer les fonctions g_1 et R_1 que

$$M_2(h) \equiv 0.$$

Cela repose sur la parité des fonctions f et g en x. En effet, f étant impaire en x et g paire en x, on a

$$f(-x,y)dy - g(-x,y)d(-x) = g_1(-x,y)dH(-x,y) + dR_1(-x,y),$$

$$\iff -(f(x,y)dy - g(x,y)dx) = g_1(-x,y)dH(x,y) + dR_1(-x,y),$$

$$\iff -g_1dH - dR_1 = g_1(-x,y)dH + dR_1(-x,y).$$

Cette dernière égalité suggère que g_1 est impaire en x, si bien que

$$M_2(h) = -\oint_{H=h} g_1 \omega = -\oint_{H=h} \psi(g_1 f dy - g_1 g dx) \equiv 0,$$

d'après la Proposition 2.1.

L'expression de g_1 est toutefois nécessaire afin de poursuivre l'algorithme de calcul des fonctions d'ordre supérieur.

Cette remarque reposant sur la parité des fonctions intégrées vaut également pour le calcul de toutes les fonctions de Melnikov paires d'ordre supérieur.

PREUVE. Cette décomposition peut s'obtenir directement en annulant les coefficients concernés dans la décomposition de ω annoncée dans la Proposition 2.7. On se propose cependant de procéder par analyse. Cette méthode, que nous emploierons dans la suite de ce chapitre, conduit à la résolution d'une équation aux dérivées partielles dont les solutions sont polynômiales. On rappelle que

$$\begin{split} H &= -\frac{1}{2}x^2 + y + \ln{(1-y)}, \quad y < 1, \\ \psi &= \frac{1}{y-1}, \end{split}$$

3. Seconde fonction de Melnikov

d'où

$$dH = -x \ dx + \frac{y}{y-1} \ dy.$$

En différenciant l'équation (11), on trouve une condition nécessaire que doit vérifier le polynôme g_1 :

$$d\omega = dg_1 \wedge dH$$

$$\iff \psi d(fdy - gdy) + d\psi \wedge (fdy - gdy) = dg_1 \wedge dH$$

$$\iff \psi \left(\frac{\partial f}{\partial x} + \frac{\partial g}{\partial y}\right) + f\frac{\partial \psi}{\partial x} + g\frac{\partial \psi}{\partial y} = x\frac{\partial g_1}{\partial y} + \frac{y}{y - 1}\frac{\partial g_1}{\partial x}$$

Or,

$$\begin{split} \psi\left(\frac{\partial f}{\partial x} + \frac{\partial g}{\partial y}\right) + f\frac{\partial \psi}{\partial x} + g\frac{\partial \psi}{\partial y} \\ &= \frac{1}{y-1}\left(a_{10} + a_{11}y + b_{01} + 2a_{10}y\right) - \frac{1}{(y-1)^2}\left(b_{00} + b_{01}y + a_{10}y^2\right) \\ &= \frac{1}{(y-1)^2}\left(-\left(a_{10} + b_{00} + b_{01}\right) + \left(a_{10} - a_{11} - 2a_{10}\right)y + \left(a_{10} + a_{11}\right)y^2\right) \\ &= \frac{1}{(y-1)}\left(a_{10} + a_{11}\right)y, \end{split}$$

d'où l'équation

$$x(y-1)\frac{\partial g_1}{\partial y} + y\frac{\partial g_1}{\partial x} = (a_{10} + a_{11})y$$

On voit clairement que

$$g_1(x,y) = (a_{10} + a_{11})x + c_1, \quad c_1 \in \mathbb{R},$$

convient. Il faut maintenant s'assurer de l'existence d'un polynôme R_1 dont la différentielle vaut :

$$\omega - g_1 dH = \frac{a_{10}x + a_{11}xy}{y - 1} dy - (a_{10}y - b_{00})dx - \left((a_{10} + a_{11})x + c_1\right) \left(-x dx + \frac{y}{y - 1} dy\right)$$
$$= \left(a_{10} + a_{11}\right)x^2 + c_1x - a_{10}y + b_{00}dx + \frac{1}{y - 1}\left(a_{10}x(1 - y) + c_1y\right)dy.$$

S'agissant de la différentielle d'un polynôme, il faut nécessairement $c_1 = 0$. Par conséquent,

$$g_1(x,y) = (a_{10} + a_{11})x,$$

et on trouve

$$\omega - g_1 \, dH = \left((a_{10} + a_{11})x^2 - a_{10}y + b_{00} \right) dx - a_{10}x dy = dR_1,$$

avec

$$R_1(x,y) = \frac{1}{3}(a_{10} + a_{11})x^3 - a_{10}xy + b_{00}x + C_1, \quad C_1 \in \mathbb{R}.$$

On peut alors montrer le résultat suivant

Corollaire 3.3. La seconde fonction de Melnikov est identiquement nulle

$$M_2(h) \equiv 0.$$

PREUVE. La proposition précédente fournit une expression de g_1 . D'après l'algorithme de Françoise, on a

$$\begin{split} M_2(h) &= -\oint_{H=h} g_1 \omega \\ &= -\oint_{H=h} \frac{(a_{10} + a_{11})x}{y - 1} \left((a_{10}x + a_{11}xy)dy - (y - 1)(a_{10}y - b_{00})dx \right) \\ &= -(a_{10} + a_{11}) \oint_{H=h} \frac{x^2(a_{10} + a_{11}y)}{y - 1}dy + (a_{10} + a_{11}) \oint_{H=h} a_{10}y - b_{00}dx \\ &= 0, \end{split}$$

d'après la réduction relative à la parité en x des fonctions intégrées du Corollaire 2.2.

3.2 Cas $b_{20} \neq 0$

Dans ce cas, on peut quand même adapter la méthode précédente en recherchant cette fois-ci une décomposition de ω sous une autre forme :

Proposition 3.4. Il existe des polynômes \tilde{g}_1 et \tilde{R}_1 tels que

$$\omega = \psi \tilde{g}_1 dH + d\left(\psi \tilde{R}_1\right),\tag{12}$$

avec

$$\tilde{g}_1(x,y) = (a_{10} + a_{11})x(y-1) + b_{20}x,$$

$$\tilde{R}_1(x,y) = \left(\frac{1}{3}(a_{10} + a_{11})x^3 - a_{10}xy - b_{00}x + \tilde{C}_1\right)(y-1) + b_{20}x, \quad \tilde{C}_1 \in \mathbb{R}.$$

PREUVE. A nouveau, on pourrait obtenir cette décomposition directement en annulant les coefficients concernés dans la décomposition de ω annoncée dans la Proposition 2.7. On procède par analyse en différenciant l'équation (12), et on trouve une condition nécessaire que doit vérifier le polynôme \tilde{g}_1 :

$$d\omega = d (\psi \tilde{g}_1 dH)$$

$$\iff \psi d(f dy - g dy) + d\psi \wedge (f dy - g dy) = \tilde{g}_1 d\psi \wedge dH + \psi d\tilde{g}_1 \wedge dH$$

$$\iff \psi \left(\frac{\partial f}{\partial x} + \frac{\partial g}{\partial y}\right) + f \frac{\partial \psi}{\partial x} + g \frac{\partial \psi}{\partial y} = -\psi^2 x \tilde{g}_1 + \psi x \frac{\partial \tilde{g}_1}{\partial y} + \psi^2 y \frac{\partial \tilde{g}_1}{\partial x}.$$

Or,

$$\psi\left(\frac{\partial f}{\partial x} + \frac{\partial g}{\partial y}\right) + f\frac{\partial \psi}{\partial x} + g\frac{\partial \psi}{\partial y} = \psi^2 \left[\left(b_{20} - (a_{10} + a_{11}) \right) y + (a_{10} + a_{11}) y^2 - b_{20} x^2 \right],$$

d'où l'équation

$$x(y-1)\frac{\partial \tilde{g}_1}{\partial y} + y\frac{\partial \tilde{g}_1}{\partial x} - x\tilde{g}_1 = (b_{20} - (a_{10} + a_{11}))y + (a_{10} + a_{11})y^2 - b_{20}x^2.$$
(13)

3. Seconde fonction de Melnikov

On cherche \tilde{g}_1 sous la forme d'un polynôme de degré deux :

$$\tilde{g}_1(x,y) = \alpha x^2 + \beta xy + \gamma y^2 + \lambda x + \mu y + \nu.$$

L'équation différentielle (13) est alors équivalente à l'équation

 $-\alpha x^{3} + \gamma x y^{2} - (\beta + \lambda) x^{2} + \beta y^{2} + 2(\alpha - \gamma) x y - (\mu + \nu) x + \beta y = (b_{20} - (a_{10} + a_{11})) y + (a_{10} + a_{11}) y^{2} - b_{20} x^{2},$ d'où le système compatible

$$\begin{cases} \alpha = \gamma = 0, \\ \beta + \lambda = b_{20}, \\ \beta = a_{10} + a_{11}, \\ \mu + \nu = 0, \\ \lambda = b_{20} - (a_{10} + a_{11}), \end{cases} \iff \begin{cases} \alpha = \gamma = 0, \\ \beta = a_{10} + a_{11}, \\ \lambda = b_{20} - (a_{10} + a_{11}), \\ \mu = -\nu, \end{cases}$$

 et

$$\tilde{g}_1(x,y) = (a_{10} + a_{11})xy + (b_{20} - (a_{10} + a_{11}))x + \mu(y-1)$$

= $(a_{10} + a_{11} + \mu)x(y-1) + b_{20}x, \quad \mu \in \mathbb{R}.$

Le coefficient μ étant que lconque, on le choisit nul. Il faut maintenant s'assurer de l'existence d'un polynôme \tilde{R}_1 dont la différentielle vaut :

$$\begin{split} \omega - \psi \tilde{g}_1 \ dH &= \psi \left((a_{10}x + a_{11}xy)dy - (b_{00} + b_{01}y + b_{02}y^2 + b_{20}x^2)dx \right) \\ &- \psi \left((a_{11} + b_{02})x(y - 1) + b_{20}x \right) \left(-x \ dx + \frac{y}{y - 1} \ dy \right) \\ &= \psi \left(-b_{00} - b_{01}y - b_{02}y^2 + (a_{11} + b_{02})x^2(y - 1) \right)dx \\ &+ \psi \left(a_{10}x - b_{02}xy - \frac{b_{20}xy}{y - 1} \right)dy \\ &= \left((a_{11} + b_{02})x^2 - b_{01} - b_{02}(y + 1) + \frac{b_{20}}{y - 1} \right)dx + \left(-b_{02}x - \frac{b_{20}}{(y - 1)^2} \right)dy \\ &= P(x, y)dx + Q(x, y)dy. \end{split}$$

On a

$$\frac{\partial P}{\partial y} = -b_{02} - \frac{b_{20}}{(y-1)^2} = \frac{\partial Q}{\partial x}$$

Ainsi, la forme $\omega - \psi \tilde{g}_1 dH$ est fermée sur le demi-plan $\{y < 1\}$, qui est simplement connexe. Elle est donc exacte par le lemme de Poincaré. Par conséquent, il existe \tilde{R}_1 vérifiant le système

$$\begin{cases} \frac{\partial(\psi R_1)}{\partial x} = P(x,y) = (a_{11} + b_{02})x^2 - b_{01} - b_{02}(y+1) + \frac{b_{20}}{y+1}, \\ \frac{\partial(\psi \tilde{R}_1)}{\partial y} = Q(x,y) = -b_{02}x - \frac{b_{20}}{(y-1)^2}. \end{cases}$$

On trouve

$$\tilde{R}_{1}(x,y) = \frac{1}{\psi} \left(\frac{1}{3} (a_{11} + b_{02}) x^{3} - b_{02} x y - (b_{01} + b_{02}) x + \frac{b_{20} x}{y - 1} + \tilde{C}_{1} \right)$$
$$= \left(\frac{1}{3} (a_{11} + b_{02}) x^{3} - b_{02} x y - (b_{01} + b_{02}) x + \tilde{C}_{1} \right) (y - 1) + b_{20} x, \quad \tilde{C}_{1} \in \mathbb{R}.$$

Pour $b_{20} = 0$, on retrouve bien les polynômes g_1 et R_1 du cas précédent.

On peut alors montrer le corollaire suivant :

Corollaire 3.5. La seconde fonction de Melnikov est identiquement nulle

$$M_2(h) \equiv 0.$$

PREUVE. La proposition précédente fournit une expression de \tilde{g}_1 . D'après l'algorithme de Françoise, on a

$$\begin{aligned} M_2(h) &= -\oint_{H=h} \tilde{g}_1 \omega \\ &= -\oint_{H=h} \left((a_{11} + b_{02})x + \frac{b_{20}x}{y-1} \right) \left((a_{10}x + a_{11}xy)dy - (b_{00} + b_{01}y + b_{02}y^2 + b_{20}x^2)dx \right) \\ &= 0, \end{aligned}$$

d'après la réduction relative à la parité en x des fonctions intégrées du Corollaire 2.2.

4 Troisième fonction de Melnikov

On se place désormais dans le cas où $b_{20} = 0$. La décomposition de la seconde fonction de Melnikov étant identiquement nulle, on cherche à calculer la troisième fonction de Melnikov M_3 . Pour cela, on exhibe une décomposition pour $g_1\omega$.

Proposition 4.1. Il existe des polynômes g_2 et R_2 tels que

$$g_1\omega = g_2 dH + dR_2,\tag{14}$$

avec

$$g_2(x,y) = (a_{10} + a_{11})^2 x^2 - a_{10}(a_{10} + a_{11})(y-1),$$

$$R_2(x,y) = (a_{10} + a_{11}) \left[(a_{10} + a_{11}) \frac{x^4}{4} - a_{10}x^2y + (a_{10} + b_{00}) \frac{x^2}{2} + a_{10}\frac{y^2}{2} \right] + C_2, \quad C_2 \in \mathbb{R}.$$

PREUVE. En différenciant l'équation (14), on trouve une condition nécessaire que doit vérifier le polynôme g_2 :

$$d(g_{1}\omega) = dg_{2} \wedge dH$$

$$\iff \psi g_{1}d(fdy - gdy) + d(\psi g_{1}) \wedge (fdy - gdy) = dg_{2} \wedge dH$$

$$\iff \psi g_{1}\left(\frac{\partial f}{\partial x} + \frac{\partial g}{\partial y}\right) + f\psi \frac{\partial g_{1}}{\partial x} + gg_{1}\frac{\partial \psi}{\partial y} = x\frac{\partial g_{2}}{\partial y} + \frac{y}{y - 1}\frac{\partial g_{2}}{\partial x}.$$

Or,

$$\begin{split} \psi g_1 \left(\frac{\partial f}{\partial x} + \frac{\partial g}{\partial y} \right) &+ f \psi \frac{\partial g_1}{\partial x} + g g_1 \frac{\partial \psi}{\partial y} \\ &= (a_{10} + a_{11}) \left(\frac{(2a_{10} + a_{11})xy - b_{00}x}{y - 1} + \frac{f}{y - 1} - \frac{xg}{(y - 1)^2} \right) \\ &= \frac{a_{10} + a_{11}}{(y - 1)} \left((2a_{10} + a_{11})xy - b_{00}x + (a_{10}x + a_{11}xy) - x(a_{10}y - b_{00}) \right) \\ &= \frac{a_{10} + a_{11}}{(y - 1)} \left(a_{10}x + (a_{10} + 2a_{11})xy \right), \end{split}$$

4. Troisième fonction de Melnikov

d'où l'équation

$$x(y-1)\frac{\partial g_2}{\partial y} + y\frac{\partial g_2}{\partial x} = (a_{10} + a_{11})(a_{10}x + (a_{10} + 2a_{11})xy).$$
(15)

On recherche g_2 sous la forme d'un polynôme de degré inférieur ou égal à deux

$$g_2(x,y) = \alpha x^2 + \beta xy + \gamma y^2 + \lambda x + \mu y + \nu.$$

L'équation différentielle (15) est équivalente à

$$(xy - x)(\beta x + 2\gamma y + \mu) + y(2\alpha x + \beta y + \lambda) = (a_{10} + a_{11})(a_{10}x + (a_{10} + 2a_{11})xy),$$

soit encore

$$\beta x^2 y + 2\gamma x y^2 - \beta x^2 + (\mu + 2\alpha - 2\gamma) x y + \beta y^2 - \mu x + \lambda y = (a_{10} + a_{11}) (a_{10} x + (a_{10} + 2a_{11}) x y),$$

que l'on écrit aussi sous forme de système

$$\begin{cases} \beta = \gamma = \lambda = 0, \\ \mu + 2\alpha - 2\gamma = (a_{10} + a_{11})(a_{10} + 2a_{11}), \\ -\mu = a_{10}(a_{10} + a_{11}), \end{cases} \iff \begin{cases} \beta = \gamma = \lambda = 0, \\ \alpha = (a_{10} + a_{11})^2, \\ \mu = -a_{10}(a_{10} + a_{11}). \end{cases}$$

Après identification, les seuls polynômes qui conviennent sont de la forme :

$$g_2(x,y) = (a_{10} + a_{11})^2 x^2 - a_{10}(a_{10} + a_{11})y + \nu, \quad \nu \in \mathbb{R}.$$

Il faut maintenant s'assurer de l'existence d'un polynôme R_2 dont la différentielle vaut

$$g_{1}\omega - g_{2} dH = \frac{a_{10} + a_{11}}{y - 1} (a_{10}x^{2} + a_{11}x^{2}y)dy - (a_{10} + a_{11})x(a_{10}y - b_{00})dx$$

$$- \left((a_{10} + a_{11})^{2}x^{2} - a_{10}(a_{10} + a_{11})y + \nu \right) \left(-x \, dx + \frac{y}{y - 1} \, dy \right)$$

$$= \left(a_{10} + a_{11} \right)x(a_{10}y - b_{00}) + (a_{10} + a_{11})^{2}x^{3} - a_{10}(a_{10} + a_{11})xy + \nu x \right)dx$$

$$+ \psi \left(a_{10}(a_{10} + a_{11})x^{2} + a_{11}(a_{10} + a_{11})x^{2}y - (a_{10} + a_{11})^{2}x^{2}y + a_{10}(a_{10} + a_{11})y^{2} - \nu y \right)dy$$

$$= \left((a_{10} + a_{11})^{2}x^{3} - 2a_{10}(a_{10} + a_{11})xy + b_{00}(a_{10} + a_{11})x + \nu x \right)dx$$

$$+ \left(-a_{10}(a_{10} + a_{11})x^{2} + \frac{a_{10}(a_{10} + a_{11})y^{2} - \nu y}{y - 1} \right)dy.$$

S'agissant de la différentielle d'un polynôme, il faut nécessairement

$$\nu = a_{10}(a_{10} + a_{11}).$$

Par conséquent,

$$g_2(x,y) = (a_{10} + a_{11}) \big((a_{10} + a_{11}) x^2 - a_{10}(y-1) \big),$$

et on trouve

$$g_1\omega - g_2 dH = (a_{10} + a_{11}) \left((a_{10} + a_{11})x^3 - 2a_{10}xy + (a_{10} + b_{00})xdx + a_{10}(y - x^2)dy \right) = dR_2,$$

avec

$$R_2(x,y) = (a_{10} + a_{11}) \left((a_{10} + a_{11}) \frac{x^4}{4} - a_{10} x^2 y + (a_{10} + b_{00}) \frac{x^2}{2} + a_{10} \frac{y^2}{2} \right) + C_2, \quad C_2 \in \mathbb{R},$$
d'où la décomposition annoncée.

Corollaire 4.2. La troisième fonction de Melnikov peut s'écrire sous la forme

$$M_3(h) = a_{10}(a_{10} + a_{11}) \oint_{H=h} x \left(\frac{a_{11}}{3}x^2 - b_{00}\right) dy.$$

Au préalable, on montre un lemme.

Lemme 4.3. On a les égalités :

1.
$$\oint_{H=h} \frac{x^{k}}{y-1} dy = -\oint_{H=h} x^{k} dy, \quad k \in \mathbb{N},$$

2.
$$\oint_{H=h} \frac{xy^{2}}{y-1} dy = \oint_{H=h} xy dy = -\frac{1}{3} \oint_{H=h} x^{3} dy,$$

3.
$$\oint_{H=h} xy dy = -\frac{1}{3} \oint_{H=h} x^{3} dy,$$

4.
$$\oint_{H=h} \frac{y^{2}}{x} dy = \oint_{H=h} x dy - 2 \oint_{H=h} xy dy = \frac{2}{3} \oint_{H=h} x^{3} dy + \oint_{H=h} x dy,$$

5.
$$\oint_{H=h} \frac{y}{x} dy = -\oint_{H=h} x dy.$$

PREUVE. Ces résultats se montrent à l'aide d'intégrations par parties et du Lemme 2.3.

1.
$$\oint_{H=h} \frac{x^k}{y-1} dy = 2 \int_{\alpha(h)}^{\beta(h)} \frac{x^k}{y-1} dy = 2 \int_{\alpha(h)}^{\beta(h)} \frac{x^k y}{y-1} dy - 2 \int_{\alpha(h)}^{\beta(h)} x^k dy$$
$$= -2 \int_{\alpha(h)}^{\beta(h)} x^k dy = -\oint_{H=h} x^k dy,$$

2.
$$\oint_{H=h} \frac{xy^2}{y-1} dy = 2 \int_{\alpha(h)}^{\beta(h)} \frac{xy^2}{y-1} dy = 2 \int_{\alpha(h)}^{\beta(h)} xy dy + 2 \int_{\alpha(h)}^{\beta(h)} \frac{xy}{y-1} dy = \oint_{H=h} xy dy,$$

3.
$$\oint_{H=h} xydy = 2 \int_{\alpha(h)}^{\beta(h)} xydy = 2 \int_{\alpha(h)}^{\beta(h)} x^2(y)x'(y)(y-1)dy$$
$$= 2 \left[\frac{x^3}{3}(y-1) \right]_{\alpha(h)}^{\beta(h)} - \frac{2}{3} \int_{\alpha(h)}^{\beta(h)} x^3dy = -\frac{1}{3} \oint_{H=h} x^3dy,$$

$$4. \qquad \oint_{H=h} \frac{y^2}{x} dy = 2 \int_{\alpha(h)}^{\beta(h)} \frac{y^2}{x} dy = 2 \int_{\alpha(h)}^{\beta(h)} \frac{y^3}{x(y-1)} dy - 2 \int_{\alpha(h)}^{\beta(h)} \frac{y^2}{x(y-1)} dy \\ = 2 \int_{\alpha(h)}^{\beta(h)} x'(y) y^2 dy - 2 \int_{\alpha(h)}^{\beta(h)} x'(y) y dy \\ = 2 \left[xy^2 \right]_{\alpha(h)}^{\beta(h)} - 4 \int_{\alpha(h)}^{\beta(h)} xy dy - 2 \left[xy \right]_{\alpha(h)}^{\beta(h)} + 2 \int_{\alpha(h)}^{\beta(h)} x dy \\ = -4 \int_{\alpha(h)}^{\beta(h)} xy dy + 2 \int_{\alpha(h)}^{\beta(h)} x dy = -2 \oint_{H=h} xy dy + \oint_{H=h} x dy,$$

4. Troisième fonction de Melnikov

5.
$$\oint_{H=h} \frac{y}{x} dy = 2 \int_{\alpha(h)}^{\beta(h)} \frac{y}{x} dy = 2 \int_{\alpha(h)}^{\beta(h)} \frac{y^2}{x(y-1)} dy - 2 \int_{\alpha(h)}^{\beta(h)} \frac{y}{x(y-1)} dy$$
$$= 2 \int_{\alpha(h)}^{\beta(h)} x'(y) y dy - 2 \int_{\alpha(h)}^{\beta(h)} x'(y) dy = 2 [xy]_{\alpha(h)}^{\beta(h)} - 2 \int_{\alpha(h)}^{\beta(h)} x dy - 2 [x]_{\alpha(h)}^{\beta(h)}$$
$$= -2 \int_{\alpha(h)}^{\beta(h)} x dy = -\oint_{H=h} x dy.$$

On généraliser a plus loin ces résultats dans le Lemme 5.5.

PREUVE DU COROLLAIRE 4.2. D'après l'algorithme de Françoise,

$$\begin{split} M_{3}(h) &= -\oint_{H=h} g_{2}\omega \\ &= -(a_{10}+a_{11})^{2} \oint_{H=h} \frac{x^{2}}{y-1} \left[(a_{10}x+a_{11}xy)dy - (y-1)(a_{10}y-b_{00})dx \right] \\ &+ a_{10}(a_{10}+a_{11}) \oint_{H=h} (a_{10}x+a_{11}xy)dy - (y-1)(a_{10}y-b_{00})dx \\ &= -(a_{10}+a_{11})^{2} \oint_{H=h} \frac{x^{2}}{y-1} \left[a_{10}x+a_{11}xy - \frac{y}{x}(a_{10}y-b_{00})dy \right] \\ &+ a_{10}(a_{10}+a_{11}) \int_{H=h} a_{10}x+a_{11}xy - \frac{y}{x}(a_{10}y-b_{00})dy \\ &= -(a_{10}+a_{11})^{2} \left[a_{10} \oint_{H=h} \frac{x^{3}}{y-1}dy + a_{11} \oint_{H=h} \frac{x^{3}y}{y-1}dy \right] \\ &- a_{10} \oint_{H=h} \frac{xy^{2}}{y-1}dy + b_{00} \oint_{H=h} \frac{xy}{y-1}dy \\ &+ a_{10}(a_{10}+a_{11}) \left[a_{10} \oint_{H=h} xdy + a_{11} \oint_{H=h} xydy - a_{10} \oint_{H=h} \frac{y^{2}}{x} + b_{00} \oint_{H=h} \frac{y}{x}dx \right] \end{split}$$

Par les Lemmes 2.3 et 4.3, on en conclut que :

$$\begin{split} M_{3}(h) &= -(a_{10}+a_{11})^{2} \left[-a_{10} \oint_{H=h} x^{3} dy + \frac{1}{3} a_{10} \int_{H=h} x^{3} dy \right] + a_{10}(a_{10}+a_{11}) \left[a_{10} \oint_{H=h} x dy \right. \\ &\left. -\frac{1}{3} a_{11} \oint_{H=h} x^{3} dy - \frac{2}{3} a_{10} \oint_{H=h} x^{3} dy - a_{10} \oint_{H=h} x dy - b_{00} \oint_{H=h} x dy \right] \\ &= a_{10}(a_{10}+a_{11}) \left[\frac{1}{3} a_{11} \oint_{H=h} x^{3} dy - b_{00} \int_{H=h} x dy \right], \end{split}$$

d'où

$$M_3(h) = a_{10}(a_{10} + a_{11}) \oint_{H=h} x \left(\frac{1}{3}a_{11}x^2 - b_{00}\right) dy$$

Les intégrales

$$\oint_{H=h} x dy \quad \text{et} \quad \oint_{H=h} x^3 dy$$

étant indépendantes, il faut se placer sous les hypothèses

$$a_{10} \neq 0$$
, $a_{10} + a_{11} \neq 0$ et $(a_{11}, b_{00}) \neq (0, 0)$,

pour que cette fonction de Melnikov soit non nulle.

On recherche le nombre maximum de zéros que l'on peut obtenir en faisant varier les différents paramètres. Nous allons montrer que dans certains cas cette intégrale s'annule au moins pour une valeur de h. Numériquement, il semble que dans ces cas là, elle ne s'annule au plus qu'une seule fois.

4.1 Cas $a_{11} = 0$

On a

$$M_3(h) = -a_{10}^2 b_{00} \oint_{H=h} x dy.$$

L'intégrale curviligne

$$\oint_{H=h} x dy$$

représente l'aire de la surface engendrée par la ligne de niveau fermée $\{H = h\}$, si bien que M_3 garde un signe constant, toujours négatif.

4.2 Cas $a_{11} \neq 0$

On peut écrire la troisième fonction de Melnikov sous la forme

$$M_{3}(h) = R \oint_{H=h} x^{3} - Sxdy = 2R \int_{\alpha(h)}^{\beta(h)} x^{3} - Sxdy$$

avec

$$R = \frac{1}{3}a_{10}a_{11}(a_{10} + a_{11}) \quad \text{et} \quad S = 3\frac{b_{00}}{a_{11}}$$

Proposition 4.4. La troisième fonction de Melnikov M_3 admet au moins un zéro si et seulement si S > 0.

Preuve.

cas $S \leq 0$: soit *h* fixé dans \mathbb{R}^*_+ , la fonction $y \mapsto x(y)$ est strictement positive sur l'intervalle $]\alpha(h), \beta(h)[$. D'autre part, le polynôme $x \mapsto x(x^2 - S)$ n'a pas de racines strictement positives. Par conséquent, M_3 sera de signe constant, donné par R.

cas S > 0 : on peut sans perte de généralité supposer R > 0 et poser $S = s^2$, s > 0. Le contour d'intégration $\{H = h\}$ est de classe C^1 et définit un compact D_h sur lequel la différentielle intégrée, elle-même de classe C^1 sur son domaine de définition, est bien définie. Dans ces conditions, la formule de Green-Riemann pour les intégrales curvilignes assure que

$$M_3(h) = R \iint_{D_h} 3x^2 - s^2 dx dy.$$

On voit que pour

$$0 < x < \frac{s}{\sqrt{3}},$$

ce qui est le cas pour h assez petit, l'intégrant est strictement négatif et M_3 aussi.

On s'intéresse désormais au comportement de M_3 à l'infini. Pour h assez grand, on appelle u(h) et v(h) les coordonnées pour lesquelles

$$x(u(h)) = x(v(h)) = \frac{x_{max}}{\sqrt{2}} = \sqrt{\ln(1+h)}.$$

4. Troisième fonction de Melnikov

u(h) et v(h) sont les solutions de :

$$\begin{cases} y + \ln(1 - y) + \frac{1}{2}\ln(1 + h) = 0, \\ u(h) < 0 < v(h) < 1. \end{cases}$$

Ces informations permettent d'obtenir un développement asymptotique des fonctions u et v. Lemme 4.5. Au voisinage de l'infini,

(i)
$$u(h) = -\frac{1}{2}\ln h + o_{\infty}(\ln h),$$

(ii) $v(h) = 1 - \frac{1}{e\sqrt{h}} + o_{\infty}(\frac{1}{\sqrt{h}}).$

PREUVE. On procède de manière analogue au Lemme 2.12 en utilisant comme point de départ les relations suivantes

$$u(h) < 0 < v(h) < 1,$$
 (16a)

$$u(h) + \ln(1 - u(h)) + \frac{1}{2}\ln(1 + h) = 0,$$
 (16b)

$$v(h) + \ln(1 - v(h)) + \frac{1}{2}\ln(1 + h) = 0.$$
 (16c)

Lorsque h tend vers l'infini, les équations (16b) et (16c) sont toujours vérifiées. Si bien que l'on a

$$\lim_{h \to +\infty} u(h) = -\infty \quad \text{ou} \quad \lim_{h \to +\infty} \ln(1 - u(h)) = -\infty,$$

soit encore

$$\lim_{h \to +\infty} u(h) = -\infty \quad \text{ou} \quad \lim_{h \to +\infty} u(h) = 1,$$

et de même pour \boldsymbol{v}

$$\lim_{h \to +\infty} v(h) = -\infty \quad \text{ou} \quad \lim_{h \to +\infty} v(h) = 1.$$

La relation (16a) impose finalement

$$\lim_{h \to +\infty} u(h) = -\infty \quad \text{et} \quad \lim_{h \to +\infty} v(h) = 1.$$

Développement limité pour u: en divisant par u(h) dans (16b), on trouve

$$1 + \frac{\ln(1 - u(h))}{u(h)} + \frac{\ln(1 + h)}{2u(h)} = 0.$$

De plus, par relation de comparaison

$$\lim_{h \to +\infty} \frac{\ln(1 - \alpha(h))}{\alpha(h)} = 0,$$

si bien que

$$\alpha(h) \sim_{\infty} \frac{1}{2} \ln h,$$

Chapitre I. Un système différentiel de Liénard

et donc

$$\alpha(h) = -\frac{1}{2}\ln h + o_{\infty}(\ln h).$$

Développement limité pour v : on pose

$$v(h) = 1 + \tilde{v}(h)$$
, avec $\lim_{h \to +\infty} \tilde{v}(h) = 0$.

L'équation (16c) devient

$$1 + \tilde{v}(h) + \ln(-\tilde{v}(h)) + \frac{1}{2}\ln(1+h) = 0$$

$$\iff 1 + \tilde{v}(h) + \ln(-\sqrt{h}\tilde{v}(h)) + \frac{1}{2}\ln\left(1 + \frac{1}{h}\right) = 0.$$

_

On en déduit

$$\lim_{h \to +\infty} \ln(-\sqrt{h}\tilde{v}(h)) = -1, \quad \text{soit} \quad \lim_{h \to +\infty} \sqrt{h}\tilde{v}(h) = -\frac{1}{e},$$

d'où

$$\tilde{v}(h) = -\frac{1}{e\sqrt{h}} + o_{\infty}\left(\frac{1}{\sqrt{h}}\right)$$
 et $v(h) = 1 - \frac{1}{e\sqrt{h}} + o_{\infty}\left(\frac{1}{\sqrt{h}}\right)$.

On montre le résultat suivant :

Lemme 4.6. Si R > 0, alors

$$\lim_{h \to +\infty} M_3(h) = +\infty.$$

PREUVE.

FIG. 9 – Rectangles d'intégration.

4. Troisième fonction de Melnikov

On part de l'expression de M_3 obtenue par la formule de Green-Riemann, que l'on minore par la somme de deux intégrales doubles sur des domaines rectangulaires \mathcal{R}^- et \mathcal{R}^+ où l'intégrant est respectivement négatif et positif.

$$\begin{split} M_{3}(h) &= R \iint_{D_{h}} 3x^{2} - s^{2} dx dy \\ &\geq R \iint_{\mathcal{R}^{-}} 3x^{2} - s^{2} dx dy + R \iint_{\mathcal{R}^{+}} 3x^{2} - s^{2} dx dy \\ &\geq 2R \int_{\alpha(h)}^{\beta(h)} dy \int_{0}^{s/\sqrt{3}} 3x^{2} - s^{2} dx + 2R \int_{u(h)}^{v(h)} dy \int_{s/\sqrt{3}}^{\sqrt{\ln(1+h)}} 3x^{2} - s^{2} dx \\ &\geq 2R (\beta(h) - \alpha(h)) \left[x^{3} - s^{2} x \right]_{0}^{s/\sqrt{3}} + 2R (v(h) - u(h)) \left[x^{3} - s^{2} x \right]_{s/\sqrt{3}}^{\sqrt{\ln(1+h)}} \\ &\geq \frac{4R}{3\sqrt{3}} s^{3} (\alpha(h) - u(h)) + \frac{4R}{3\sqrt{3}} s^{3} (v(h) - \beta(h)) \\ &\quad + 2R (v(h) - u(h)) \left[\ln^{3/2} (1+h) - s^{2} \ln^{1/2} (1+h) \right]. \end{split}$$

On a donc l'inégalité

$$M_3(h) \ge m(h),\tag{17}$$

avec

$$\begin{split} m(h) &= \frac{4R}{3\sqrt{3}} s^3 \big(\alpha(h) - u(h) \big) + \frac{4R}{3\sqrt{3}} s^3 \big(v(h) - \beta(h) \big) \\ &+ 2R \big(v(h) - u(h) \big) \left[\ln^{3/2} (1+h) - s^2 \ln^{1/2} (1+h) \right]. \end{split}$$

En notant que

$$\ln^{1/2}(1+h) = \ln^{1/2} h + o_{\infty}(\ln^{1/2} h), \ln^{3/2}(1+h) = \ln^{3/2} h + o_{\infty}(\ln^{3/2} h),$$

et en utilisant les développements limités fournis par les Lemmes 2.12 et 4.5, on trouve

$$m(h) = -\frac{2R}{3\sqrt{3}}s^3 \ln h + o_{\infty}(\ln h) + R(\ln h + o_{\infty}(\ln h))(\ln^{3/2} h + o_{\infty}(\ln^{3/2} h))$$

= $R \ln^{5/2} h + o_{\infty}(\ln^{5/2} h).$

Ceci prouve bien que

$$\lim_{h\to+\infty}m(h)=+\infty,$$

soit, par l'inégalité (17), que

$$\lim_{h \to +\infty} M_3(h) = +\infty.$$

Ce résultat, associé au fait que M_3 est strictement négative pour h voisin de zéro, assure que la troisième fonction de Melnikov M_3 s'annule au moins une fois. Ceci achève la démonstration de la Proposition 4.4.

Corollaire 4.7. La troisième fonction de Melnikov M_3 admet au moins une racine si et seulement si

$$a_{11}b_{00} > 0.$$

PREUVE. En effet cette condition est équivalente aux conditions

 $a_{11} \neq 0$, $b_{00} \neq 0$ et a_{11} et b_{00} sont de même signe,

ou encore

$$a_{11} \neq 0$$
 et $S > 0$.

On conclut à l'aide de la Proposition 4.4.

5 Fonctions de Melnikov d'ordre supérieur

Si M_3 est identiquement nulle, on doit regarder les fonctions de Melnikov d'ordre supérieur. Ce cas se produit lorsque l'une des conditions est vérifiée :

- (i) $a_{11} = 0$ et $b_{00} = 0$,
- (*ii*) $a_{10} + a_{11} = 0$,

(*iii*) $a_{10} = 0$.

Pour chacun de ces cas, nous verrons que la singularité du système perturbé de meure un centre pour ε assez petit.

5.1 Cas $a_{11} = 0$ et $b_{00} = 0$

Le système perturbé s'écrit

$$\begin{cases} \dot{x} = y + \varepsilon a_{10}x, \\ \dot{y} = -x + xy + \varepsilon a_{10}y(y-1). \end{cases}$$
(18)

5.1.1 Quatrième fonction de Melnikov

Afin d'effectuer ce calcul, on cherche une décomposition de $g_2\omega$ et on trouve :

Proposition 5.1. Il existe des polynômes g_3 et R_3 tels que

$$g_2\omega = g_3dH + dR_3,\tag{19}$$

avec

$$g_3(x,y) = a_{10}^3 x \left(x^2 - 2(y-1) \right),$$

$$R_3(x,y) = a_{10}^3 x \left(\frac{x^4}{5} - x^2 y + \frac{2x^2}{3} + y^2 - y \right) + C_3, \quad C_3 \in \mathbb{R}.$$

PREUVE. En différenciant l'équation (19), on trouve une condition nécessaire que doit vérifier le polynôme g_3 :

$$d(g_{2}\omega) = dg_{3} \wedge dH$$

$$\iff \psi g_{2}d(fdy - gdy) + g_{2}d\psi \wedge (fdy - gdy) + \psi dg_{2} \wedge (fdy - gdy) = dg_{3} \wedge dH$$

$$\iff \psi g_{2}\left(\frac{\partial f}{\partial x} + \frac{\partial g}{\partial y}\right) + f\psi \frac{\partial g_{2}}{\partial x} + gg_{2}\frac{\partial \psi}{\partial y} + g\psi \frac{\partial g_{2}}{\partial y} = x\frac{\partial g_{3}}{\partial y} + \frac{y}{y-1}\frac{\partial g_{3}}{\partial x}$$

$$\iff \psi g_{2}\left(\frac{\partial f}{\partial x} + \frac{\partial g}{\partial y}\right) + f\psi \frac{\partial g_{2}}{\partial x} + g\psi\left(\frac{\partial g_{2}}{\partial y} - \psi g_{2}\right) = x\frac{\partial g_{3}}{\partial y} + \frac{y}{y-1}\frac{\partial g_{3}}{\partial x}.$$

On rappelle que

$$g_2(x,y) = a_{10}^2 \left(x^2 - (y-1) \right),$$

et on a

$$\begin{split} \psi g_2 \left(\frac{\partial f}{\partial x} + \frac{\partial g}{\partial y} \right) &+ f \psi \frac{\partial g_2}{\partial x} + g \psi \left(\frac{\partial g_2}{\partial y} - \psi g_2 \right) \\ &= \psi \left[a_{10}^2 (x^2 - (y - 1)) \times 2a_{10}y + 2a_{10}^2 x \times a_{10}x + a_{10}y(y - 1) \left(-a_{10}^2 - \frac{a_{10}^2 (x^2 - (y - 1))}{y - 1} \right) \right] \\ &= \psi \left[2a_{10}^3 y(x^2 - y + 1) + 2a_{10}^3 x^2 - a_{10}^3 y(y - 1) - a_{10}^3 y(x^2 - y + 1) \right] \\ &= a_{10}^3 \psi \left(x^2 y + 2x^2 - 2y^2 + 2y \right), \end{split}$$

d'où l'équation aux dérivées partielles

$$x(y-1)\frac{\partial g_3}{\partial y} + y\frac{\partial g_3}{\partial x} = a_{10}^3(x^2y + 2x^2 - 2y^2 + 2y).$$
(20)

On recherche g_3 sous forme de polynôme de degré inférieur ou égal à trois

.

$$g_3(x,y) = \sum_{0 \le i,j \le 3} \lambda_{i,j} x^i y^j.$$

L'équation (20) s'écrit

$$\begin{split} \lambda_{2,1}x^3y + 2\lambda_{1,2}x^2y^2 + 3\lambda_{0,3}xy^3 + (\lambda_{1,1} - 2\lambda_{1,2} + 3\lambda_{3,0})x^2y + (2\lambda_{0,2} - 3\lambda_{0,3} + 2\lambda_{2,1})xy^2 \\ &+ (\lambda_{0,1} - 2\lambda_{0,2} + 2\lambda_{2,0})xy - \lambda_{2,1}x^3 - \lambda_{1,1}x^2 - \lambda_{0,1}x + \lambda_{1,2}y^3 + \lambda_{1,1}y^2 + \lambda_{1,0}y \\ &= a_{10}^3(x^2y + 2x^2 - 2y^2 + 2y), \end{split}$$

soit, après identification,

$$\begin{cases} \lambda_{2,1} = \lambda_{1,2} = \lambda_{0,3} = \lambda_{0,1} = 0, \\ \lambda_{1,1} - 2\lambda_{1,2} + 3\lambda_{3,0} = a_{10}, \\ 2\lambda_{0,2} - 3\lambda_{0,3} + 2\lambda_{2,1} = 0, \\ \lambda_{0,1} - 2\lambda_{0,2} + 2\lambda_{2,0} = 0, \\ \lambda_{1,1} = -2a_{10}, \\ \lambda_{1,0} = 2a_{10}. \end{cases}$$

On trouve

$$g_3(x,y) = a_{10}^3(x^3 - 2xy + 2x + \lambda_{0,0}), \quad \lambda_{0,0} \in \mathbb{R}.$$

La constante $\lambda_{0,0}$ étant réelle que lconque, on la choisit nulle :

$$g_3(x,y) = a_{10}^3 x \left(x^2 - 2(y-1) \right).$$

Il faut maintenant s'assurer de l'existence d'un polynôme R_3 dont la différentielle vaut

$$g_{2}\omega - g_{3} dH = \frac{1}{y-1} \left[a_{10}^{2} \left(x^{2} - (y-1) \right) \left(a_{10}xdy - a_{10}y(y-1)dx \right) -a_{10}^{3}x \left(x^{2} - 2(y-1) \right) \left(-x(y-1)dx + ydy \right) \right]$$
$$= a_{10}^{3} \left[\left(x^{4} - 3x^{2}y + 2x^{2} + y^{2} - y \right)dx + \left(-x^{3} + 2xy - x \right)dy \right],$$

si bien qu'on est amené à résoudre le système différentiel :

$$g_{2}\omega - g_{3} dH = dR_{3} \iff \begin{cases} \frac{\partial R_{3}}{\partial x} = a_{10}^{3}(x^{4} - 3x^{2}y + 2x^{2} + y^{2} - y), \\ \frac{\partial R_{3}}{\partial y} = a_{10}^{3}(-x^{3} + 2xy - x). \end{cases}$$

Les solutions de ce système sont de la forme

$$R_3(x,y) = a_{10}^3 x \left(\frac{x^4}{5} - x^2 y + \frac{2x^2}{3} + y^2 - y\right) + C_3, \quad C_3 \in \mathbb{R},$$

d'où la décomposition souhaitée.

Cette décomposition permet de calculer la quatrième fonction de Melnikov M_4 . Corollaire 5.2. La quatrième fonction de Melnikov vérifie

$$M_4(h) \equiv 0.$$

PREUVE. D'après l'algorithme de Françoise,

$$M_4(h) = -\oint_{H=h} g_3\omega$$

= $-\oint_{H=h} \frac{a_{10}^3 x}{y-1} (x^2 - 2(y-1)) a_{10} (xdy - y(y-1)dx)$
= 0.

En effet, M_4 s'écrit sous la forme

$$M_4(h) = -\oint_{H=h} \psi(P_4(x, y)dx + Q_4(x, y)dy),$$

où P_4 est un polynôme impair et Q_4 est un polynôme pair en la variable x. D'après le Corollaire 2.2, cette intégrale curviligne est identiquement nulle.

5.1.2 Cinquième fonction de Melnikov

La quatrième fonction de Melnikov étant identiquement nulle, on recherche la cinquième fonction de Melnikov. On a la décomposition :

Proposition 5.3. Il existe un polynôme g_4 et une fonction R_4 analytique sur le demi-plan $\{y < 1\}$ tels que

$$g_3\omega = g_4 dH + dR_4,\tag{21}$$

avec

$$g_4(x,y) = a_{10}^4 \left(x^4 - 3x^2y + x^2 + y^2 - 2y \right),$$

$$R_4(x,y) = a_{10}^4 \left(\frac{x^6}{6} - x^4y + \frac{3x^4}{4} + \frac{3xy^2}{2} - 2x^2y + y^2 - y - \ln(1-y) \right) + C_4, \quad C_4 \in \mathbb{R}.$$

PREUVE. En différenciant l'équation (21), on trouve une condition nécessaire que doit vérifier le polynôme g_4 :

$$d(g_{3}\omega) = dg_{4} \wedge dH$$

$$\iff \psi g_{3} \left(\frac{\partial f}{\partial x} + \frac{\partial g}{\partial y} \right) + f \psi \frac{\partial g_{3}}{\partial x} + g \psi \left(\frac{\partial g_{3}}{\partial y} - \psi g_{3} \right) = x \frac{\partial g_{4}}{\partial y} + \frac{y}{y-1} \frac{\partial g_{4}}{\partial x}.$$

On a

$$\begin{split} \psi g_3 \left(\frac{\partial f}{\partial x} + \frac{\partial g}{\partial y} \right) &+ f \psi \frac{\partial g_3}{\partial x} + g \psi \left(\frac{\partial g_3}{\partial y} - \psi g_3 \right) \\ &= \psi \left[a_{10}^3 x \left(x^2 - 2(y-1) \right) \times 2a_{10} y + \left(3x^2 - 2(y-1) \right) a_{10}^3 \times a_{10} \right. \\ &+ a_{10} y (y-1) \left(-2a_{10}^3 x - \frac{a_{10}^3 x \left(x^2 - 2(y-1) \right)}{y-1} \right) \right] \\ &= \psi \left(2a_{10}^4 x y (x^2 - 2y + 2) + a_{10}^4 x (3x^2 - 2y + 2) - 2a_{10}^4 x y (y-1) - a_{10}^4 x y (x^2 - 2y + 2) \right) \\ &= a_{10}^4 \psi \left(x^3 y + 3x^3 - 4xy^2 + 2xy + 2x \right), \end{split}$$

d'où l'équation aux dérivées partielles

$$x(y-1)\frac{\partial g_4}{\partial y} + y\frac{\partial g_4}{\partial x} = a_{10}^4(x^3y + 3x^3 - 4xy^2 + 2xy + 2x).$$
(22)

On recherche g_4 sous forme de polynôme de degré inférieur ou égal à quatre

$$g_4(x,y) = \sum_{0 \le i,j \le 4} \lambda_{i,j} x^i y^j.$$

L'équation (22) s'écrit

$$\begin{split} \lambda_{3,1}x^4y + 2\lambda_{2,2}x^3y^2 + 3\lambda_{1,3}xy^3 + 4\lambda_{04}xy^4 + (\lambda_{2,1} - 2\lambda_{2,2} + 4\lambda_{4,0})x^3y \\ &+ (2\lambda_{1,2} - 3\lambda_{1,3} + 3\lambda_{3,1})x^2y^2 + (3\lambda_{0,3} - 4\lambda_{0,4} + 2\lambda_{2,2})xy^3 + (\lambda_{1,1} - 2\lambda_{1,2} + 3\lambda_{3,0})x^2y \\ &+ (2\lambda0, 2 - 3\lambda_{0,3} + 2\lambda_{2,1})xy^2 + (\lambda_{0,1} - 2\lambda_{0,2} + 2\lambda_{2,0})xy - \lambda_{3,1}x^4 - \lambda_2, 1x^3 - \lambda_{1,1}x^2 \\ &- \lambda_{0,1}x + \lambda_{1,3}y^4 + \lambda_{1,2}y^3 + \lambda_{1,1}y^2 + \lambda_{1,0}y = a_{10}^4(x^3y + 3x^3 - 4xy^2 + 2xy + 2x), \end{split}$$

soit, après identification,

$$\begin{cases} \lambda_{3,1} = \lambda_{2,2} = \lambda_{1,3} = \lambda_{0,4} = \lambda_{1,0} = \lambda_{1,1} = \lambda_{1,2} = 0, \\ \lambda_{2,1} - 2\lambda_{2,2} + 4\lambda_{4,0} = a_{10}, \\ 2\lambda_{1,2} - 3\lambda_{1,3} + 3\lambda_{3,1} = 0, \\ 3\lambda_{0,3} - 4\lambda_{0,4} + 2\lambda_{2,2} = 0, \\ \lambda_{1,1} - 2\lambda_{1,2} + 3\lambda_{3,0} = 0, \\ 2\lambda_{0,2} - 3\lambda_{0,3} + 2\lambda_{2,1} = -4a_{10}, \\ \lambda_{0,1} - 2\lambda_{0,2} + 2\lambda_{2,0} = 2a_{10}, \\ \lambda_{2,1} = 3a_{10}, \\ -\lambda_{0,1} = 2a_{10}. \end{cases}$$

On trouve

$$g_4(x,y) = a_{10}^4 (x^4 - 3x^2y + 3x^2 + y^2 - 2y + \lambda_{0,0}), \quad \lambda_{0,0} \in \mathbb{R}.$$

La constante $\lambda_{0,0}$ étant réelle que lconque, on la choisit nulle :

$$g_4(x,y) = a_{10}^4 \left(x^4 - 3x^2y + 3x^2 + y^2 - 2y \right).$$

Il faut maintenant s'assurer de l'existence d'un polynôme R_4 dont la différentielle vaut :

$$g_{3}\omega - g_{4} dH = \frac{1}{y-1} \Big[a_{10}^{3} x \big(x^{2} - 2(y-1) \big) a_{10} \big(x dy - y(y-1) dx \big) \\ - a_{10}^{4} \big(x^{4} - 3x^{2}y + 3x^{2} + y^{2} - 2y \big) \big(-x(y-1) dx + y dy \big) \Big] \\ = a_{10}^{4} \Big[\big(x^{5} - 4x^{3}y + x^{3} + 3xy^{2} - 4xy \big) dx + \Big(-x^{4} + 3xy^{2} - 2x^{2} + \frac{y(y-2)}{y-1} \Big) dy \Big],$$

si bien que

$$g_{3}\omega - g_{4} dH = dR_{4} \iff \begin{cases} \frac{\partial R_{4}}{\partial x} = a_{10}^{4} (x^{5} - 4x^{3}y + 3x^{3} + 3xy^{2} - 4xy), \\ \frac{\partial R_{4}}{\partial y} = a_{10}^{4} \left(-x^{4} + 3x^{2}y - 2x^{2} + \frac{y(y-2)}{y-1} \right), \\ \end{cases}$$
$$\iff \begin{cases} \frac{\partial R_{4}}{\partial x} = a_{10}^{4} (x^{5} - 4x^{3}y + 3x^{3} + 3xy^{2} - 4xy), \\ \frac{\partial R_{4}}{\partial y} = a_{10}^{4} \left(-x^{4} + 3x^{2}y - 2x^{2} + y - 1 - \frac{1}{y-1} \right). \end{cases}$$

Les solutions de ce système sont de la forme

$$R_4(x,y) = a_{10}^4 \left(\frac{x^6}{6} - x^4y + \frac{3x^4}{4} + \frac{3xy^2}{2} - 2x^2y + y^2 - y - \ln(1-y) \right) + C_4, \quad C_4 \in \mathbb{R},$$

d'où la décomposition annoncée.

Corollaire 5.4. La cinquième fonction de Melnikov vérifie

$$M_5(h) \equiv 0.$$

5. Fonctions de Melnikov d'ordre supérieur

On montre au préalable le lemme suivant :

Lemme 5.5. On pose

$$I_{m,n} = \oint_{H=h} x^m y^n dy \quad et \quad J_{m,n} = \oint_{H=h} \frac{x^m y^n}{y-1} dy, \quad m,n \in \mathbb{Z}.$$

 $On\ a\ les\ relations\ suivantes$

0.
$$I_{m,n} = 0$$
 et $J_{m,n} = 0$, si m est pair.
1. $J_{m,n} = -\frac{n-1}{m+2}I_{m+2,n-2}, \quad m \ge -1, \ n \ge 1.$
2. $I_{m,n} = \frac{n-1}{m+2}I_{m+2,n-2} - \frac{n}{m+2}I_{m+2,n-1}, \quad m \ge -1, \ n \ge 1.$
3. $J_{m,n} = I_{m,n-1} + J_{m,n-1}, \quad m \ge -1, \ n \ge 1.$

PREUVE. On signale que certaines de ces relations ont déjà été prouvées dans le Lemme 4.3 pour des valeurs particulières de m et n.

0. C'est une conséquence immédiate de la Proposition 2.1 relative à la parité en x des fonctions intégrées.

1. Pour n = 1, c'est le Lemme 2.3. Pour n > 1, on effectue une intégration par parties

$$J_{m,n} = \oint_{H=h} \frac{x^m y^n}{y-1} dy = 2 \int_{\alpha(h)}^{\beta(h)} \frac{x^m y^n}{y-1} dy = 2 \int_{\alpha(h)}^{\beta(h)} x^{m+1} x'(y) y^{n-1} dy$$
$$= 2 \left[\frac{x^{m+2}}{m+2} y^{n-1} \right]_{\alpha(h)}^{\beta(h)} - 2 \frac{n-1}{m+2} \int_{\alpha(h)}^{\beta(h)} x^{m+2} y^{n-2} dy$$
$$= -\frac{n-1}{m+2} I_{m+2,n-2}.$$

2. Le résultat est obtenu en intégrant par parties,

$$\begin{split} I_{m,n} &= \oint_{H=h} x^m y^n dy = 2 \int_{\alpha(h)}^{\beta(h)} x^m y^n dy = 2 \int_{\alpha(h)}^{\beta(h)} x'(y) x^{m+1}(y) y^{n-1}(y-1) dy \\ &= \left[\frac{x^{m+2}}{m+2} y^{n-1}(y-1) \right]_{\alpha(h)}^{\beta(h)} - \frac{2}{m+2} \int_{\alpha(h)}^{\beta(h)} x^{m+2} \left[ny^{n-1} - (n-1)y^{n-2} \right] dy \\ &= 2 \frac{n-1}{m+2} \int_{\alpha(h)}^{\beta(h)} x^{m+2} y^{n-2} dy - \frac{2n}{m+2} \int_{\alpha(h)}^{\beta(h)} x^{m+2} y^{n-1} dy \\ &= \frac{n-1}{m+2} \oint_{H=h} x^{m+2} y^{n-2} dy - \frac{n}{m+2} \oint_{H=h} x^{m+2} y^{n-1} dy \\ &= \frac{n-1}{m+2} I_{m+2,n-2} - \frac{n}{m+2} I_{m+2,n-1}. \end{split}$$

3. Cette relation est obtenue en combinant 1. et 2. On la retrouve aussi directement en remarquant que

$$J_{m,n} = \oint_{H=h} \frac{x^m y^n}{y-1} dy = \oint_{H=h} \frac{x^m y^{n-1} (y-1)}{y-1} + \frac{x^m y^{n-1}}{y-1} dy = I_{m,n-1} + J_{m,n-1}.$$

PREUVE DU COROLLAIRE 5.4. La décomposition de $g_3\omega$ permet de calculer M_5 ,

$$\begin{split} M_5(h) &= -\oint_{H=h} g_4 \omega \\ &= -\oint_{H=h} \frac{a_{10}^4}{y-1} (x^4 - 3x^2y + 3x^2 + y^2 - 2y) a_{10} (xdy - y(y-1)dx) \\ &= -a_{10}^5 \oint_{H=h} \frac{1}{y-1} (x^5 - 3x^3y + 3x^3 + xy^2 - 2xy) dy \\ &+ a_{10}^5 \oint_{H=h} \frac{1}{y-1} \left(x^3y^2 - 3xy^3 + 3xy^2 + \frac{y^4}{x} - 2\frac{y^3}{x} \right) dy \\ &= a_{10}^5 \left(-J_{5,0} + J_{3,2} + 3I_{3,0} - 3J_{1,3} + 2J_{1,2} + 2J_{1,1} + J_{-1,4} - 2J_{-1,3} \right). \end{split}$$

D'après le Lemme 5.5, on a de plus les identités suivantes :

$$\begin{split} J_{5,0} &= -I_{5,0}, \\ J_{3,2} &= I_{3,1} + J_{3,1} = I_{3,1} = -\frac{1}{5}I_{5,0}, \\ J_{1,3} &= I_{1,2} + J_{1,2} = \frac{1}{3}I_{3,0} + \frac{2}{15}I_{5,0} + I_{1,1} + J_{1,1} = \frac{2}{15}I_{5,0}, \\ J_{1,2} &= I_{1,1} + J_{1,1} = -\frac{1}{3}I_{3,0}, \\ J_{-1,4} &= -3I_{1,2}, \\ J_{-1,3} &= -2I_{1,1} = \frac{2}{3}I_{3,0}, \\ I_{1,2} &= \frac{1}{3}I_{3,0} - \frac{2}{3}I_{3,1} = \frac{1}{3}I_{3,0} + \frac{2}{15}I_{5,0}. \end{split}$$

Finalement, on trouve bien

$$M_5(h) = a_{10}^5 \left[I_{5,0} - \frac{1}{5} I_{5,0} + 3I_{3,0} - \frac{2}{5} I_{5,0} - \frac{2}{3} I_{3,0} - \left(I_{3,0} + \frac{2}{5} I_{5,0} \right) - \frac{4}{3} I_{3,0} \right] \equiv 0.$$

5.1.3 Nature de la singularité

Les résultats précédents semblent suggérer que toutes les fonctions de Melnikov sont nulles. On ne peut toutefois pas formuler de récurrence sur les $(g_k)_{k\geq 1}$ et $(R_k)_{k\geq 1}$. Néanmoins, il est possible de montrer que le système (18) présente un centre pour ε assez petit, ce qui assure la nullité des fonctions de Melnikov d'ordre supérieur. La connaissance des $(g_k)_{k\geq 1}$ et $(R_k)_{k\geq 1}$ aurait permis de déterminer des expressions de l'intégrale première et de son facteur intégrant. Dans la suite, nous étudierons un cas pour lequel ces calculs peuvent être effectués.

Lemme 5.6. Pour ε assez petit, l'origine est un centre de type \mathcal{Q}_3^{LV} pour le système (18).

PREUVE. Dans le système (18), on pose

$$\tilde{y} = -y - \varepsilon a_{10}x,$$

5. Fonctions de Melnikov d'ordre supérieur

et le système s'écrit

$$\begin{cases} \dot{x} = -\tilde{y}, \\ \dot{\tilde{y}} = (1 - \varepsilon^2 a_{10}^2)x + \varepsilon a_{10}(1 - \varepsilon^2 a_{10}^2)x^2 + (1 - 2\varepsilon^2 a_{10}^2)x\tilde{y} - \varepsilon a_{10}\tilde{y}^2 \end{cases}$$

Pour ε assez petit, on effectue le nouveau changement de variables

$$\begin{cases} X = x, \\ Y = \frac{\tilde{y}}{\sqrt{1 - \varepsilon^2 a_{10}^2}}, \\ \tau = \sqrt{1 - \varepsilon^2 a_{10}^2}t, \end{cases}$$

pour écrire finalement le système (18) sous la forme

$$\begin{cases} \frac{dX}{d\tau} = -Y, \\ \frac{dY}{d\tau} = X + \varepsilon a_{10}X^2 + \frac{1 - 2\varepsilon^2 a_{10}^2}{\sqrt{1 - \varepsilon^2 a_{10}^2}}XY - \varepsilon a_{10}Y^2 \end{cases}$$

En posant Z = X + iY, ce dernier est équivalent à l'équation différentielle

$$\dot{Z} = iZ + \kappa Z^2 - \bar{\kappa}\bar{Z}^2,$$

où

$$\kappa = \frac{1}{2} \left(a_{10} + i \frac{1 - 2\varepsilon^2 a_{10}^2}{\sqrt{1 - \varepsilon^2 a_{10}^2}} \right).$$

L'origine est bien un centre de type Q_3^{LV} d'après la classification énoncée dans le Théorème 1.7 de l'Introduction.

Dans ce cas, on s'est restreint à des déformations dans la direction des centres de type Lotka-Volterra.

5.2 Cas $a_{10} + a_{11} = 0$

Le système perturbé s'écrit

$$\begin{cases} \dot{x} = y - \varepsilon a_{10} x(y-1), \\ \dot{y} = -x + xy + \varepsilon (y-1)(a_{10} y - b_{00}) \end{cases}$$

Les calculs précédents montrent que

$$d\omega = d \left[-a_{10} x dy - (a_{10} y - b_{00}) dx \right] = 0.$$

La 1-forme différentielle ω est de ce fait fermée sur un domaine simplement connexe, et par conséquent exacte :

$$\omega = dR_0,$$

où ${\cal R}_0$ est le polynôme

$$R_0(x,y) = -a_{10}xy + b_{00}x + C_0, \quad C_0 \in \mathbb{R}.$$

D'autre part,

$$\omega_{\varepsilon} = \frac{1}{\psi}(dH + \varepsilon\omega) = \frac{1}{\psi}(dH + \varepsilon dR_0) = \frac{1}{\psi}d(H + \varepsilon R_0).$$

si bien que dans ce cas, le système perturbé est intégrable, d'intégrale première $H + \varepsilon R_0$ et de facteur intégrant ψ .

Pour ε assez petit, le théorème de Poincaré-Lyapounov (*cf.* Introduction, Théorème 1.10) assure que le point singulier considéré est un centre. On peut en fait perturber le système intégrable initial continûment en ε , sans modifier localement la nature du portrait de phase. On remarque toutefois que lorsque ε dépasse un certain seuil, il n'y a plus de centre.

Dans ce cas, le problème de la nature du centre n'a pas été élucidé. Il se pourrait que les déformations interviennent cette fois-ci dans la direction des centres réversibles.

FIG.
$$10 - \varepsilon = 0, 38$$
.

FIG. $11 - \varepsilon = 0, 45$.

5.3 Cas $a_{10} = 0$

L'équation (9) donne

$$b_{00} + b_{01} = 0$$

et la condition $a_{10} + a_{11} \neq 0$ devient $a_{11} \neq 0$. La nullité de la constante b_{20} entraine par (10) celle de b_{02} .

Dans ce cas, le système devient

$$\begin{cases} \dot{x} = y + \varepsilon a_{11} x y, \\ \dot{y} = -x + x y + \varepsilon b_{00} (1 - y), \end{cases}$$
(23)

d'où

$$\omega = b_{00}dx + a_{11}\frac{xy}{y-1}dy,$$

et l'expression de g_2 donnée dans la Proposition 4.1 est

$$g_2(x,y) = (a_{11}x)^2.$$

On poursuit l'algorithme en recherchant une nouvelle fois une décomposition pour $g_2\omega$.

5. Fonctions de Melnikov d'ordre supérieur

Proposition 5.7. Il existe des polynômes g_3 et R_3 tels que

$$g_2\omega = g_3dH + dR_3,\tag{24}$$

avec

$$g_3(x,y) = (a_{11}x)^3,$$

$$R_3(x,y) = a_{11}^2 x^3 \left(\frac{1}{3}b_{00} + \frac{1}{5}a_{11}x^2\right).$$

PREUVE. On procède par analyse en différenciant (24), et on trouve

$$dg_{3} \wedge dH = d(g_{2}\omega) = dg_{2} \wedge \omega + g_{2}d\omega$$

= $2a_{11}^{2}xdx \wedge \left(b_{00}dx + a_{11}\frac{xy}{y-1}dy\right) + a_{11}^{2}x^{2}\frac{a_{11}y}{y-1}dx \wedge dy$
= $\frac{3a_{11}^{3}x^{2}y}{y-1}dx \wedge dy.$

Or,

$$dg_3 \wedge dH = x \frac{\partial g_3}{\partial y} + \frac{y}{y-1} \frac{\partial g_3}{\partial x},$$

d'où l'équation aux dérivées partielles

$$x(y-1)\frac{\partial g_3}{\partial y} + y\frac{\partial g_3}{\partial x} = 3a_{11}^3x^2y.$$

On remarque que

$$g_3(x,y) = (a_{11}x)^3$$

convient et qu'on peut lui associer un polynôme R_3 tel que l'on ait (24). En effet,

$$g_2\omega - g_3 dH = (a_{11}x)^2 \left(b_{00}dx + a_{11}\frac{xy}{y-1}dy \right) - (a_{11}x)^3 \left[-xdx + \frac{y}{y-1}dy \right]$$

= $(a_{11}x)^2 (b_{00} + a_{11}x^2)dx + 0 dy$
= dR_3 ,

avec

$$R_3(x,y) = a_{11}^2 x^3 \left(\frac{1}{3}b_{00} + \frac{1}{5}a_{11}x^2\right),$$

d'où le résultat.

On en conclut que

Corollaire 5.8. La quatrième fonction de Melnikov M_4 vérifie,

$$M_4 \equiv 0.$$

53

PREUVE. L'expression de M_4 est donnée par l'algorithme de Françoise,

$$M_{4}(h) = -\oint_{H=h} g_{3}\omega = -\oint_{H=h} (a_{11}x)^{3} \left(b_{00}dx + a_{11}\frac{xy}{y-1}dy \right)$$
$$= a_{11}^{4} \oint_{H=h} \frac{x^{4}y}{y-1}dy + a_{11}^{3}b_{00} \oint_{H=h} x^{3}dx$$
$$= 0,$$

d'après le Lemme 2.3.

Plus généralement, on dispose des décompositions suivantes :

Proposition 5.9. Pour tout entier naturel n non nul, on a

$$g_{n-1}\omega = g_n dH + dR_n,$$

avec

$$g_n(x,y) = (a_{11}x)^n,$$

$$R_n(x,y) = (a_{11})^{n-1}x^n \left(\frac{1}{n}b_{00} + \frac{1}{n+2}a_{11}x^2\right).$$

PREUVE. Ce résultat se montre par récurrence sur l'entier n. On a vu qu'il est vrai pour n = 1, 2, 3. Assurons-nous de l'hérédité de cette propriété en supposant le résultat vrai à l'étape n-1 et en recherchant par analyse des polynômes g_n et R_n tels que

$$g_{n-1}\omega = g_n dH + dR_n.$$

En différenciant, on trouve :

$$\begin{aligned} dg_n \wedge dH &= d(g_{n-1}\omega) = dg_{n-1} \wedge \omega + g_{n-1}d\omega \\ &= (n-1)a_{11}^{n-1}x^{n-2}dx \wedge \left(b_{00}dx + a_{11}\frac{xy}{y-1}dy\right) + (a_{11}x)^{n-1} \frac{a_{11}y}{y-1}dx \wedge dy \\ &= \frac{n(a_{11})^n x^{n-1}y}{y-1}dx \wedge dy, \end{aligned}$$

d'où l'équation aux dérivées partielles

$$x(y-1)\frac{\partial g_n}{\partial y} + y\frac{\partial g_n}{\partial x} = n(a_{11})^n x^{n-1}y,$$

dont une solution particulière évidente est

$$g_n(x,y) = (a_{11}x)^n.$$

Il ne reste plus qu'à s'assurer que l'on peut lui associer un polynôme R_n tel que l'on ait la décomposition souhaitée. On trouve

$$g_{n-1}\omega - g_n dH = (a_{11}x)^{n-1} \left(b_{00}dx + a_{11}\frac{xy}{y-1}dy \right) - (a_{11}x)^n \left[-xdx + \frac{y}{y-1}dy \right]$$

= $(a_{11}x)^{n-1}(b_{00} + a_{11}x^2)dx + 0 dy$
= dR_n ,

5. Fonctions de Melnikov d'ordre supérieur

avec

$$R_n(x,y) = (a_{11})^{n-1} x^n \left(\frac{1}{n} b_{00} + \frac{1}{n+2} a_{11} x^2\right),$$

d'où le résultat.

On en conclut que :

Corollaire 5.10. Pour tout entier naturel n non nul, on a

$$M_n(h) \equiv 0.$$

PREUVE. On sait d'ores et déjà que pour n = 1, 2, 3 on a

$$M_n(h) \equiv 0.$$

Pour $n \ge 4$, l'algorithme de Françoise assure que

$$M_n(h) = -\oint_{H=h} g_{n-1}\omega = -\oint_{H=h} (a_{11}x)^{n-1} \left(b_{00}dx + a_{11}\frac{xy}{y-1}dy \right)$$
$$= -(a_{11})^{n+1} \oint_{H=h} \frac{x^n y}{y-1}dy - (a_{11})^{n-1}b_{00} \oint_{H=h} x^{n-1}dx$$
$$\equiv 0,$$

d'où le résultat, toujours d'après le Lemme 2.3.

5.3.1 Recherche d'une intégrale première

La connaissance à tout ordre des fonctions $(g_n)_{n\geq 1}$ et $(R_n)_{n\geq 1}$ intervenant dans les décompositions successives permet le calcul d'une intégrale première et son facteur intégrant pour le système (23) considéré. On utilise pour cela la démarche de [11].

Proposition 5.11. Le sytème (23) est intégrable. Pour

$$|x| < \frac{1}{\varepsilon a_{11}},$$

une intégrale première H_{ε} et son facteur intégrant ψ_{ε} sont de la forme

$$H_{\varepsilon} = y - \frac{x}{\varepsilon a_{11}} + \ln(1-y) + \left(\frac{b_{00}}{a_{11}} + \frac{1}{(\varepsilon a_{11})^2}\right) \ln(1+\varepsilon a_{11}x),$$

$$\psi_{\varepsilon} = \frac{1}{(y-1)(1+\varepsilon a_{11}x)}.$$

PREUVE. On a trouvé $(g_n)_{n\geq 1}$ et $(R_n)_{n\geq 1}$ vérifiant

 $\omega = g_1 dH + dR_1 \quad \text{et} \quad g_{n-1}\omega = g_n dH + dR_n, \quad \forall n \ge 2.$

55

On multiplie la première équation par $\varepsilon,$ les autres par $(-1)^n\varepsilon^n.$ En sommant, on trouve l'égalité

$$\varepsilon\omega - \varepsilon g_1 dH + \sum_{n=2}^{+\infty} \left((-1)^n \varepsilon^n g_n dH + (-1)^{n-1} \varepsilon^{n-1} g_{n-1}(\varepsilon\omega) \right) = \varepsilon dR_1 + \sum_{n=2}^{+\infty} (-1)^{n+1} \varepsilon^n dR_n$$

$$\iff \left(\sum_{n=1}^{+\infty} (-1)^n \varepsilon^n g_n \right) dH + \left(1 + \sum_{n=1}^{+\infty} (-1)^n \varepsilon^n g_n \right) \varepsilon\omega = d \left[\sum_{n=1}^{+\infty} (-1)^{n+1} \varepsilon^n R_n \right]$$

$$\iff \left(1 + \sum_{n=1}^{+\infty} (-1)^n \varepsilon^n g_n \right) (dH + \varepsilon\omega) = d \left[H + \sum_{n=1}^{+\infty} (-1)^{n+1} \varepsilon^n R_n \right],$$

soit finalement,

$$\psi\left(1+\sum_{n=1}^{\infty}(-1)^{n}\varepsilon^{n}g_{n}\right)\left(\frac{1}{\psi}(dH+\varepsilon\omega)\right) = d\left(H+\sum_{n=1}^{\infty}(-1)^{n+1}\varepsilon^{n}R_{n}\right),$$

où

$$\frac{1}{\psi}(dH + \varepsilon\omega)$$

est la 1-forme associée au système perturbé (23).

Par définition, on a directement les expressions d'une intégrale première H_{ε} et de son facteur intégrant associé ψ_{ε} sous forme de développements en séries entières du paramètre de perturbation ε :

$$\begin{split} H_{\varepsilon} &= H + \sum_{n=1}^{\infty} (-1)^{n+1} \varepsilon^n R_n, \\ \psi_{\varepsilon} &= \psi \left(1 + \sum_{n=1}^{\infty} (-1)^n \varepsilon^n g_n \right). \end{split}$$

Ces séries entières de la variable x ont un rayon de convergence

$$R_c = \frac{1}{\varepsilon a_{11}},$$

et leurs sommes s'expriment à l'aide de fonctions élémentaires :

$$\begin{split} H_{\varepsilon} &= H + \sum_{n=1}^{\infty} (-1)^{n+1} \varepsilon^n R_n \\ &= H + b_{00} \sum_{n=1}^{\infty} (-1)^{n+1} \varepsilon^n a_{11}^{n-1} \frac{x^n}{n} + \sum_{n=1}^{\infty} (-1)^{n+1} \varepsilon^n a_{11}^n \frac{x^{n+2}}{n+2} \\ &= H + \frac{b_{00}}{a_{11}} \ln(1 + \varepsilon a_{11}x) + \frac{1}{(\varepsilon a_{11})^2} \sum_{n=3}^{\infty} (-1)^{n+1} \frac{(\varepsilon a_{11}x)^n}{n} \\ &= H + \frac{b_{00}}{a_{11}} \ln(1 + \varepsilon a_{11}x) + \frac{1}{(\varepsilon a_{11})^2} \left[\ln(1 + \varepsilon a_{11}x) - \varepsilon a_{11}x + \frac{1}{2} (\varepsilon a_{11}x)^2 \right] \\ &= y - \frac{x}{\varepsilon a_{11}} + \ln(1 - y) + \left[\frac{b_{00}}{a_{11}} + \frac{1}{(\varepsilon a_{11})^2} \right] \ln(1 + \varepsilon a_{11}x), \end{split}$$

 et

$$\psi_{\varepsilon} = \psi \left(1 + \sum_{n=1}^{\infty} (-1)^n \varepsilon^n g_n \right) = \psi \left(1 + \sum_{n=1}^{\infty} (-1)^n (\varepsilon a_{11} x)^n \right)$$
$$= \frac{\psi}{1 + \varepsilon a_{11} x} = \frac{1}{(y-1)(1 + \varepsilon a_{11} x)},$$

ce qui achève la démonstration.

On vérifie que ces expressions tendent bien respectivement vers H et ψ lorsque ε tend vers 0.

Pour ε assez petit, le théorème de Poincaré-Lyapounov (*cf.* Introduction, Théorème 1.10) assure que l'intégrabilité au voisinage du point singulier suffit pour reconnaître une singularité de type centre, dont on peut, dans ce cas particulier, préciser la nature.

5.3.2 Nature du centre

Proposition 5.12. Le point singulier du système différentiel (23) est un centre de type Q_3^{LV} .

PREUVE. Le système s'écrit

$$\begin{cases} \dot{x} = y + \varepsilon a_{11} x y, \\ \dot{y} = -x + x y + \varepsilon b_{00} (1 - y) = 0 \end{cases}$$

La recherche des points singuliers donne

$$\begin{cases} y(1+\varepsilon a_{11}x) = 0, \\ (y-1)(x-\varepsilon b_{00}) = 0, \end{cases} \iff \begin{cases} x = \varepsilon b_{00} \text{ et } y = 0, \\ x = -\frac{1}{\varepsilon a_{11}} \text{ et } y = 1. \end{cases}$$

On ne s'intéresse qu'au point singulier $(\varepsilon b_{00}, 0)$, l'autre apparaissant au voisinage de l'infini. On translate cette singularité en l'origine par changement de variables et on obtient le système

$$\begin{cases} \dot{x} = y(1 + \varepsilon^2 a_{11} b_{00}) + \varepsilon a_{11} xy, \\ \dot{y} = -x + xy. \end{cases}$$

Dans le cas

$$1 + \varepsilon^2 a_{11} b_{00} \ge 0,$$

qui est vérifié pour ε assez petit, on effectue le changement de variables

$$\begin{cases} X = x, \\ Y = -\sqrt{1 + \varepsilon^2 a_{11} b_{00}} y, \\ \tau = \sqrt{1 + \varepsilon^2 a_{11} b_{00}} t, \end{cases}$$

et on trouve

$$\begin{cases} \frac{dX}{d\tau} = -Y - \kappa XY, \\ \frac{dY}{d\tau} = X - XY, \end{cases}$$

où

$$\kappa = \frac{\varepsilon a_{11}}{1 + \varepsilon^2 a_{11} b_{00}}$$

En posant Z = X + iY, le système précédent est équivalent à l'équation différentielle

$$\frac{dZ}{d\tau} = iZ - (\kappa + i)XY = iZ + \frac{1}{4}(\kappa + i)(\bar{Z}^2 - Z^2).$$

Le point singulier étudié est bien un centre de type Q_3^{LV} d'après la classification énoncée dans le Théorème 1.7 de l'Introduction.

FIG. 12 – Portrait de phase pour $\varepsilon = 0, 38$.

A nouveau, les déformations s'opèrent dans la direction des centres de type Lotka-Volterra.

6 Synthèse des résultats

Les différents cas de perturbations étudiées ont permis d'obtenir les résultats suivants :

Proposition 6.1. Il existe des coefficients des fonctions de perturbation f et g pour lesquels le système perturbé admet au moins un cycle limite.

Proposition 6.2. Etant données des fonctions de perturbation f impaire et g paire en la variable x,

$$\begin{cases} f(x,y) = a_{10}x + a_{11}xy, \\ g(x,y) = b_{00} + b_{01}y + b_{20}x^2 + b_{02}y^2, \end{cases}$$

on dispose de conditions pour lesquelles le système reste à centre :

$$\begin{cases} a_{10} + b_{00} + b_{01} = 0, \\ a_{10} - b_{02} = 0, \\ b_{20} = 0, \\ a_{11} = b_{00} = 0, \quad ou \quad a_{10} + a_{11} = 0, \quad ou \quad a_{10} = 0, \end{cases}$$

6. Synthèse des résultats

soit encore,

$$\begin{cases} a_{11} = b_{00} = b_{20} = 0, \\ a_{10} = -b_{01} = b_{02}, \end{cases} \quad ou \quad \begin{cases} b_{20} = 0, \\ a_{10} = -a_{11} = b_{02}, \\ a_{10} + b_{00} + b_{01} = 0, \end{cases} \quad ou \quad \begin{cases} a_{10} = b_{20} = b_{02} = 0, \\ b_{00} + b_{01} = 0. \end{cases}$$

On résume les résultats obtenus dans le diagramme suivant :

Chapitre II

Perturbation quadratique d'un secteur elliptique

1 L'équation de Liouville

1.1 Introduction et notations

Dans la revue Acta mathematica [16], Liouville mentionne une équation d'Abel particulière. Cette équation, que nous nommerons dans la suite équation de Liouville, est donnée sous la forme initiale suivante :

$$y' + (3mx^2 + 4m^2x + m_1)y^3 + 3xy^2 = 0, (1)$$

où m et m_1 sont des constantes réelles quelconques.

Cette équation, à deux paramètres *a priori*, peut dans certains cas s'écrire sous forme d'une équation à paramètre unique α [3] :

$$y' = 2(x^2 - \alpha^2)y^3 + 2(x+1)y^2, \quad \alpha \ge 0.$$
 (2)

On a effectivement :

Lemme 1.1. Pour $m \neq 0$ et $1 - \frac{3m_1}{4m^3} \ge 0$, les équations (1) et (2) sont équivalentes.

PREUVE. On effectue dans l'équation (1), pour m non nul, le changement de variables :

$$\begin{cases} x=-\frac{2m}{3}(\tilde{x}+1),\\ y=-\frac{3}{2m^2}\tilde{y}, \end{cases}$$

et on trouve

$$\frac{d\tilde{y}}{d\tilde{x}} = 2\left[\tilde{x}^2 - \left(1 - \frac{3m_1}{4m^3}\right)\right]\tilde{y}^3 + 2(\tilde{x}+1)\tilde{y}^2.$$

Pour

$$1 - \frac{3m_1}{4m^3} \ge 0,$$

on pose

$$\alpha^2 = 1 - \frac{3m_1}{4m^3},$$
et \tilde{y} vérifie bien l'équation (2) :

$$\frac{d\tilde{y}}{d\tilde{x}} = 2\left(\tilde{x}^2 - \alpha^2\right)\tilde{y}^3 + 2(\tilde{x} + 1)\tilde{y}^2, \quad \alpha \ge 0,$$

d'où le résultat.

1.2 Une intégrale première

Liouville propose une méthode permettant d'obtenir une intégrale première de son équation différentielle prise sous sa forme originelle. Cette méthode peut également être appliquée à la forme (2) et donne :

Proposition 1.2. Sur le domaine $\mathcal{D}_{\alpha} = \{(x, y) \mid x^2 + 1/y - \alpha^2 \ge 0\}$, l'équation (2) est intégrable, d'intégrale première

$$H^L_{\alpha}(x,y) = \frac{(\alpha+x)I_{\alpha}(v) + vI_{\alpha+1}(v)}{(\alpha+x)K_{\alpha}(v) - vK_{\alpha+1}(v)},$$

 $o \dot{u}$

$$v = \sqrt{x^2 + \frac{1}{y} - \alpha^2},$$

et I_{α} , K_{α} , $I_{\alpha+1}$, $K_{\alpha+1}$ sont les fonctions Bessel modifiées de première et seconde espèces d'indices α et $\alpha + 1$.

PREUVE. On appelle Y une primitive de y vue comme une fonction de la variable x. On a

$$y = \frac{dY}{dx},$$

et en remplaçant dans (2):

$$\frac{d^2Y}{dx^2} = 2(x^2 - \alpha^2) \left(\frac{dY}{dx}\right)^3 + 2(x+1) \left(\frac{dY}{dx}\right)^2$$
$$\iff \left(\frac{dx}{dY}\right)^3 \frac{d^2Y}{dx^2} = 2(x^2 - \alpha^2) + 2(x+1)\frac{dx}{dY}.$$

En remarquant que formellement

$$\begin{aligned} \frac{d^2x}{dY^2} &= \frac{d}{dY} \left[\frac{dx}{dY} \right] \\ &= \frac{dx}{dY} \frac{d}{dx} \left[\frac{1}{dY/dx} \right] \\ &= \frac{dx}{dY} \left(-\frac{1}{(dY/dx)^2} \right) \frac{d^2Y}{dx^2} \\ &= -\left(\frac{dx}{dY} \right)^3 \frac{d^2Y}{dx^2}, \end{aligned}$$

on obtient l'équation différentielle

$$\frac{d^2x}{dY^2} + 2(x+1)\frac{dx}{dY} + 2(x^2 - \alpha^2) = 0,$$

1. L'équation de Liouville

qui se présente également sous la forme factorisée

$$\frac{d}{dY}\left[\frac{dx}{dY} + x^2\right] + 2\left(\frac{dx}{dY} + x^2\right) = 2\alpha^2,$$

ce qui conduit à l'équation différentielle linéaire du premier ordre avec second membre :

$$\frac{df}{dY} + 2f = 2\alpha^2$$
, avec $f = \frac{dx}{dY} + x^2$.

On en déduit une nouvelle équation vérifiée par x et Y :

$$\frac{dx}{dY} + x^2 = Ae^{-2Y} + \alpha^2,\tag{3}$$

où A est une constante réelle quelconque.

Sur le domaine \mathcal{D}_{α} , A est positif et on pose

$$v = \sqrt{A}e^{-Y}$$
 et $x = \frac{d(\log u)}{dY}$.

L'équation (3) donne

$$v = \sqrt{x^2 + \frac{1}{y} - \alpha^2}.$$

On l'exprime formellement à l'aide des nouvelles variables u et v, en remarquant que

$$x = \frac{d(\log u)}{dY} = \frac{d(\log u)}{du} \frac{du}{dv} \frac{dv}{dY} = -\frac{v}{u}\frac{du}{dv},$$

 et

$$\begin{aligned} \frac{dx}{dY} &= \frac{dx}{dv} \frac{dv}{dY} = -v\frac{dx}{dv} \\ &= -v\frac{d}{dv} \left[-\frac{v}{u}\frac{du}{dv} \right] \\ &= \frac{v}{u}\frac{du}{dv} - \left(\frac{v}{u}\frac{du}{dv} \right)^2 + \frac{v^2}{u}\frac{d^2u}{dv^2}. \end{aligned}$$

Par conséquent, (3) prend la forme d'une équation de Bessel modifiée,

$$v^{2}\frac{d^{2}u}{dv^{2}} + v\frac{du}{dv} - u(v^{2} + \alpha^{2}) = 0,$$

dont les solutions sont des combinaisons linéaires des fonctions de Bessel modifiées de première et seconde espèces d'indice α ,

$$u(v) = \lambda I_{\alpha}(v) + \mu K_{\alpha}(v), \qquad \lambda, \mu \in \mathbb{R}.$$

On obtient ensuite une intégrale première en utilisant la relation liant x et u,

$$x = -\frac{v}{u}\frac{du}{dv} = -v \cdot \frac{\lambda I'_{\alpha}(v) + \mu K'_{\alpha}(v)}{\lambda I_{\alpha}(v) + \mu K_{\alpha}(v)}$$

Les formules de connexions des fonctions de Bessels modifiées [20] assurent que

$$vI'_{\alpha}(v) = \alpha I_{\alpha}(v) + vI_{\alpha+1}(v),$$

$$vK'_{\alpha}(v) = \alpha K_{\alpha}(v) - vK_{\alpha+1}(v),$$

d'où

$$\begin{aligned} x &= -\frac{\lambda(\alpha I_{\alpha}(v) + vI_{\alpha+1}(v)) + \mu(\alpha K_{\alpha}(v) - vK_{\alpha+1}(v))}{\lambda I_{\alpha}(v) + \mu K_{\alpha}(v)} \\ \iff \quad \lambda(x+\alpha)I_{\alpha}(v) + \mu(x+\alpha)K_{\alpha}(v) + \lambda vI_{\alpha+1} - \mu vK_{\alpha+1} = 0 \\ \iff \quad \frac{(\alpha+x)I_{\alpha}(v) + vI_{\alpha+1}(v)}{(\alpha+x)K_{\alpha}(v) - vK_{\alpha+1}(v)} = -\frac{\mu}{\lambda}. \end{aligned}$$

Par conséquent, on dispose bien pour l'équation de Liouville d'une intégrale première de la forme ((+ -) L () + - L ())

$$H^L_{\alpha}(x,y) = \frac{(\alpha+x)I_{\alpha}(v) + vI_{\alpha+1}(v)}{(\alpha+x)K_{\alpha}(v) - vK_{\alpha+1}(v)}$$

Cette intégrale première est définie par des fonctions transcendantes, on montrera cependant que pour le cas particulier $\alpha = 1/2$, elle s'exprime uniquement à l'aide des fonctions usuelles.

2 Etude du système différentiel de Liénard associé

L'étude de l'équation de Liouville, vue comme équation d'Abel, se ramène à celle d'un système différentiel de Liénard obtenu par le changement de variable usuel en 1/y:

$$\frac{dy}{dx} = -\frac{2(x^2 - \alpha^2) + 2(x+1)y}{y}$$

On considère le champ de vecteurs défini par le système différentiel associé à cette nouvelle équation :

$$\begin{cases} \dot{x} = -y, \\ \dot{y} = 2(x^2 - \alpha^2) + 2(x+1)y. \end{cases}$$
(4)

Les lignes de champ sont en correspondance avec les solutions de l'équation $\omega_{\alpha} = 0$, où ω_{α} est la 1-forme différentielle

$$\omega_{\alpha} = -ydy - 2\left((x^2 - \alpha^2) + (x+1)y\right)dx.$$

Le système (4) appartient à la famille de Bogdanov-Takens que l'on peut écrire sous la forme proposée dans [8] :

$$\begin{cases} \dot{x} = y, \\ \dot{y} = \mu_1 + \mu_2 x + x^2 \pm xy, \end{cases}$$

où μ_1 et μ_2 sont des constantes réelles.

2.1 Intégrale première et facteur intégrant

2.1.1 Formules générales

Ce système est intégrable car l'équation de Liouville l'est. On en donne une intégrale première dans la proposition suivante.

Proposition 2.1. Sur le domaine $\mathcal{D}'_{\alpha} = \{(x, y) \mid x^2 + y - \alpha^2 \ge 0\}$, une intégrale première H_{α} du système différentiel (4) et son facteur intégrant associé ψ_{α} sont donnés par

$$H_{\alpha}(x,y) = \frac{N_{\alpha}(x,y)}{D_{\alpha}(x,y)} \quad et \quad \psi_{\alpha} = \frac{1}{2w^2 D_{\alpha}^2} = \frac{H_{\alpha}}{2w^2 N_{\alpha} D_{\alpha}},$$

avec

$$N_{\alpha}(x,y) = (\alpha + x)I_{\alpha}(w) + wI_{\alpha+1}(w), \quad D_{\alpha}(x,y) = (\alpha + x)K_{\alpha}(w) - wK_{\alpha+1}(w),$$

et

$$w = \sqrt{x^2 + y - \alpha^2}.$$

PREUVE. Le système différentiel (4) étant obtenu à partir de l'équation différentielle (2) par un changement de variables de type 1/y, on en déduit

$$H_{\alpha}(x,y) = H_{\alpha}^{L}(x,1/y)$$

=
$$\frac{(\alpha+x)I_{\alpha}(w) + wI_{\alpha+1}(w)}{(\alpha+x)K_{\alpha}(w) - wK_{\alpha+1}(w)}$$

=
$$\frac{N_{\alpha}(x,y)}{D_{\alpha}(x,y)}.$$

On appelle ψ_{α} le facteur intégrant associé à l'intégrale première H_{α} . Il vérifie

$$\psi_{\alpha}\omega_{\alpha} = dH_{\alpha},$$

et de ce fait,

$$-\psi_{\alpha}y = \frac{\partial H_{\alpha}}{\partial y}.$$

Avant d'effectuer ce calcul, on rappelle différentes formules de connexions pour les fonctions de Bessel modifiées [20] :

$$(i) \ wI'_{\alpha}(w) = \alpha I_{\alpha}(w) + wI_{\alpha+1}(w),$$

$$(ii) \ wK'_{\alpha}(w) = \alpha K_{\alpha}(w) - wK_{\alpha+1}(w),$$

$$(iii) \ wI'_{\alpha+1}(w) = wI_{\alpha}(w) - (\alpha+1)I_{\alpha+1}(w),$$

$$(iv) \ wK'_{\alpha}(w) = -wK_{\alpha}(w) - (\alpha+1)K_{\alpha+1}(w),$$

$$(v) \ I_{\alpha}(w)K_{\alpha+1}(w) + I_{\alpha+1}(w)K_{\alpha}(w) = \frac{1}{w}.$$

Ainsi,

$$\begin{split} \frac{\partial H_{\alpha}}{\partial y} &= \frac{\partial w}{\partial y} \frac{1}{D_{\alpha}} \left[(\alpha + x)I_{\alpha}' + I_{\alpha+1} + wI_{\alpha+1}' \right] - \frac{\partial w}{\partial y} \frac{N}{D_{\alpha}^2} \left[(\alpha + x)K_{\alpha}' - K_{\alpha+1} - wK_{\alpha+1}' \right] \\ &= \frac{1}{2w} \frac{1}{D_{\alpha}} \left[\frac{\alpha}{w} \{ (\alpha + x)I_{\alpha} - wI_{\alpha+1} + (\alpha + x)I_{\alpha+1} + wI_{\alpha} \} \right] \\ &- \frac{1}{2w} \frac{N_{\alpha}}{D_{\alpha}^2} \left[\frac{\alpha}{w} \{ (\alpha + x)K_{\alpha} + wK_{\alpha+1} - (\alpha + x)K_{\alpha+1} + wK_{\alpha} \} \right] \\ &= \frac{1}{2wD_{\alpha}^2} (I_{\alpha+1}K_{\alpha} + I_{\alpha}K_{\alpha+1}) [(\alpha + x)^2 - 2\alpha(\alpha + x) - w^2] \\ &= -\frac{y}{2wD_{\alpha}^2} \cdot \frac{1}{w}. \end{split}$$

Par conséquent, le facteur intégrant est bien de la forme

$$\psi_{\alpha} = \frac{1}{2w^2 D_{\alpha}^2} = \frac{H_{\alpha}}{2w^2 N_{\alpha} D_{\alpha}}.$$

2.1.2 Le cas particulier $\alpha = 1/2$

Dans ce cas, on dispose d'une intégrale première dont l'expression fait intervenir des fonctions usuelles uniquement. En effet,

Proposition 2.2. Sur \mathcal{D}'_{α} , le système différentiel (4) avec $\alpha = 1/2$ admet pour intégrale première et facteur intégrant associé

$$\tilde{H}_{1/2}(x,w) = \frac{e^{2w}(x+w-1/2)+1}{x-w-1/2} \quad et \quad \tilde{\psi}_{1/2}(x,w) = \frac{e^{2w}}{w(x-w-1/2)^2},$$

avec

$$w = \sqrt{x^2 + y - \alpha^2}.$$

PREUVE. On a les expressions suivantes [20]

$$I_{1/2}(w) = \frac{e^w - e^{-w}}{\sqrt{2\pi w}}, \qquad \qquad K_{1/2}(w) = \sqrt{\frac{\pi}{2w}}e^{-w}, \\ I_{3/2}(w) = \frac{1}{\sqrt{2\pi w}} \left[e^w \left(1 - \frac{1}{w} \right) + e^{-w} \left(1 + \frac{1}{w} \right) \right], \qquad \qquad K_{3/2}(w) = \sqrt{\frac{\pi}{2w}}e^{-w} \left(1 + \frac{1}{w} \right).$$

En remplaçant ces relations dans l'expression de ${\cal H}_{1/2}$ obtenue dans la Proposition 2.1, on trouve

$$N_{1/2}(x,w) = \left(x + \frac{1}{2}\right) I_{1/2}(w) + w I_{3/2}(w) = \frac{e^w}{\sqrt{2\pi w}} \left(x + w - \frac{1}{2}\right) - \frac{e^{-w}}{\sqrt{2\pi w}} \left(x - w - \frac{1}{2}\right),$$
$$D_{1/2}(x,w) = \left(x + \frac{1}{2}\right) K_{1/2}(w) - w K_{3/2}(w) = \sqrt{\frac{\pi}{2w}} e^{-w} \left(x - w - \frac{1}{2}\right).$$

Par conséquent,

$$H_{1/2}(x,w) = \frac{1}{\pi} \left[e^{2w} \frac{x+w-1/2}{x-w-1/2} - 1 \right],$$

3. Etude des singularités du système (4)

si bien que $H_{1/2}$ est également une intégrale première pour le système considéré. Son facteur intégrant associé vérifie

$$y\tilde{\psi}_{1/2} = -\frac{\partial\tilde{H}_{1/2}}{\partial y} = -\pi\frac{\partial H_{1/2}}{\partial y} = \pi y\psi_{1/2},$$

d'où l'expression annoncée pour $\tilde{\psi}_{1/2}$:

$$\tilde{\psi}_{1/2}(x,w) = \frac{\pi}{2w^2 D_{1/2}^2(x,y)} = \frac{e^{2w}}{w(x-w-1/2)^2}.$$

3 Etude des singularités du système (4)

3.1 Les singularités du système (4)

On voit clairement que les points singuliers de ce système sont $(-\alpha, 0)$ et $(\alpha, 0)$. La matrice jacobienne associée au système est de la forme :

$$Jac = \begin{pmatrix} 0 & -1 \\ 4x + 2y & 2(x+1) \end{pmatrix}.$$

Lemme 3.1. Le point $(-\alpha, 0)$ est un col si $\alpha > 0$, un nœud-col si $\alpha = 0$.

Preuve.

$$\begin{vmatrix} -X & -1 \\ -4\alpha & 2(1-\alpha) - X \end{vmatrix} = X^2 - 2(1-\alpha)X - 4\alpha.$$
$$\Delta = (1+\alpha)^2 > 0.$$

Les valeurs propres de la matrice jacobienne en ce point sont 2 et -2α .

• Pour $\alpha > 0$, il s'agit d'un col.

• Pour $\alpha = 0$, cette singularité est dégénérée. On utilise les notations de la classification des points critiques non hyperboliques de [17]. En effectuant un changement d'échelle de temps $(\tau = 2t)$, le système s'écrit sous la forme

$$\begin{cases} \dot{x} = p_2(x, y), \\ \dot{y} = y + q_2(x, y), \end{cases}$$

avec

$$p_2(x,y) = -\frac{1}{2}y$$
 et $q_2(x,y) = x^2 + xy$.

Au voisinage de l'origine, l'équation

$$y + q_2(x, y) = 0$$

admet pour solution

$$y = \phi(x) = -\frac{x^2}{1+x}.$$

D'autre part, la fonction

$$\psi(x) = p_2(x, \phi(x)) = \frac{x^2}{2(1+x)}$$

admet en l'origine un développement de la forme

$$\psi(x) = a_m x^m + o(x^m),$$

avec m = 2, si bien que la singularité étudiée est un nœud-col.

Lemme 3.2. Le point $(\alpha, 0)$ est un nœud impropre instable si $0 < \alpha < 1$ et $\alpha > 1$, un nœuddégénéré si $\alpha = 1$.

Preuve.

$$\begin{vmatrix} -X & -1 \\ 4\alpha & 2(\alpha+1) - X \end{vmatrix} = X^2 - 2(\alpha+1)X + 4\alpha.$$
$$\Delta = (\alpha-1)^2 \ge 0.$$

Dans le cas $\alpha \neq 1$ les deux valeurs propres sont 2 et 2α . Pour $\alpha = 1$, la valeur propre 2 est double. Par conséquent, la singularité est

- un nœud impropre instable si $1 < \alpha$,
- un nœud dégénéré si $\alpha = 1$,
- un nœud impropre instable si $0 < \alpha < 1$.

Le cas $\alpha = 0$ a déjà été traité dans le lemme précédent.

FIG. 1 – Portrait de phase pour $\alpha = 1$.

FIG. 2 – Portrait de phase pour $\alpha = 1/2$.

3.2 Singularités sur la sphère de Poincaré

3.2.1 Procédé d'étude des singularités à l'infini

On utilise dans [17] le procédé de recherche des singularités à l'infini d'un système de la forme :

$$\begin{cases} \dot{x} = P(x, y), \\ \dot{y} = Q(x, y), \end{cases}$$
(5)

3. Etude des singularités du système (4)

où P et Q sont des polynômes.

Dans l'espace de coordonnées (X, Y, Z), posons :

$$S^{2} = \{ (X, Y, Z) \in \mathbb{R} \mid X^{2} + Y^{2} + Z^{2} = 1 \},$$

$$S^{2}_{+} = S^{2} \cap \{ Z > 0 \}.$$

On introduit les applications suivantes,

$$\Phi: \quad \mathcal{S}^2_+ \longrightarrow \mathbb{R}^2$$

$$(X, Y, Z) \longmapsto \left(\frac{X}{Z}, \frac{Y}{Z}\right),$$

$$\Psi: \quad \mathbb{R}^2 \longrightarrow \mathcal{S}^2_+$$

$$(x, y) \longmapsto \left(\frac{x}{\sqrt{x^2 + y^2 + 1}}, \frac{y}{\sqrt{x^2 + y^2 + 1}}, \frac{1}{\sqrt{x^2 + y^2 + 1}}\right).$$

Les applications Φ et Ψ sont de classe \mathcal{C}^1 et de plus,

$$\Phi \circ \Psi = id_{\mathbb{R}^2} \quad \text{et} \quad \Psi \circ \Phi = id_{\mathcal{S}^2_\perp}$$

 Φ réalise un \mathcal{C}^1 -difféomorphisme de \mathcal{S}^2_+ sur le plan. Il se prolonge en un \mathcal{C}^1 -difféomorphisme de la demie-sphère supérieure sur le compactifié d'Alexandroff de \mathbb{R}^2 .

Etant données les applications Φ et Ψ , on a

$$dx = \frac{-XdZ + ZdX}{Z^2}$$
 et $dy = \frac{-YdZ + ZdY}{Z^2}$.

On note $m = max(d^{o}P, d^{o}Q)$ et on pose

$$\tilde{P}(X,Y,Z) = Z^m P\left(\frac{X}{Z}, \frac{Y}{Z}\right),$$
$$\tilde{Q}(X,Y,Z) = Z^m Q\left(\frac{X}{Z}, \frac{Y}{Z}\right).$$

Remarquons que \tilde{P} et \tilde{Q} sont des polynômes en les indéterminées X, Y, Z. On en déduit

$$\begin{array}{l} P(x,y)dy - Q(x,y)dx = 0\\ \Longleftrightarrow \quad P\left(\frac{X}{Z},\frac{Y}{Z}\right) \cdot \frac{-XdZ + ZdX}{Z^2} - Q\left(\frac{X}{Z},\frac{Y}{Z}\right) \cdot \frac{-YdZ + ZdY}{Z^2} = 0\\ \Leftrightarrow \quad \tilde{Q}dX - \tilde{P}dY + (\tilde{P}Y - \tilde{Q}X)dZ = 0\\ \Leftrightarrow \quad \left| \begin{array}{c} dX & dY & dZ\\ X & Y & Z\\ \tilde{P} & \tilde{Q} & 0 \end{array} \right| = 0. \end{array}$$

L'étude des singularités au niveau de l'équateur donnera les singularités à l'infini du système initial (5) et leur nature. Ces points critiques sont les racines de l'équation polynômiale

$$\tilde{P}Y - \tilde{Q}X = 0.$$

3.2.2 Cas du système de Liénard considéré

On rappelle que le système de Liénard considéré est de la forme

$$\begin{cases} \dot{x} = -y, \\ \dot{y} = 2(x^2 - \alpha^2) + 2(x+1)y. \end{cases}$$

En effectuant les transformations mentionnées précédemment, on obtient

$$2((X^{2} - \alpha^{2}Z^{2}) + Y(X + Z))ZdX + Z^{2}YdY + [-Y^{2}Z - 2X(X^{2} - \alpha^{2}Z^{2}) + Y(X + Z))]dZ = 0.$$
(6)

Les points critiques au niveau de l'équateur (Z = 0) sont alors les solutions de

$$X^2(X+Y) = 0, \quad (X,Y) \in \mathcal{S}^1,$$

soit

- (*i*) X = 0 et $Y = \pm 1$,
- (*ii*) X = -Y avec $X^2 + Y^2 = 1$, so it encore $X = \pm \frac{1}{\sqrt{2}}$.

Dans la représentation de Poincaré, le caractère symétrique au niveau de l'équateur assure qu'il suffit d'étudier la nature des points (0, 1) et $(1/\sqrt{2}, -1/\sqrt{2})$. Dans la suite, on ne s'intéresse toutefois qu'à la singularité (0, 1).

En projetant sur l'axe Y = 1, la 1-forme différentielle devient

$$\left(2(X^2 - \alpha^2 Z^2) + 2(X + Z)\right)]ZdX + \left(-Z - 2X(X^2 - \alpha^2 Z^2) - 2X(X + Z)\right)dZ,$$

qu'on écrit également sous forme de système différentiel :

$$\begin{cases} \dot{X} = Z + 2X(X + Z + X^2 - \alpha^2 Z^2), \\ \dot{Z} = 2Z(X + Z + X^2 - \alpha^2 Z^2). \end{cases}$$
(7)

On étudie la singularité en l'origine de ce nouveau système.

Proposition 3.3. Le système (7) admet en (0,0) une singularité avec un domaine elliptique.

PREUVE. La matrice jacobienne en ce point est

$$\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}.$$

Les deux valeurs propres étant nulles, on a affaire à un point critique non classique. On pose

$$\begin{cases} x = X, \\ z = Z + 2X(X^2 - \alpha^2 Z^2) + 2X(X + Z), \end{cases}$$

et on trouve

$$\dot{x} = z,$$

$$\dot{z} = \dot{Z}(1 - 4\alpha^2 x Z + 2x) + \dot{x}(4x + 2Z + 6x^2 - 2\alpha^2 Z^2),$$

d'où

$$\begin{cases} \dot{x} &= z, \\ \dot{z} &= 2Z(x+Z+3x^2+2xZ-\alpha^2Z^2+2x^3-4\alpha^2x^2Z-6\alpha^2xZ^2-4\alpha^2x^3Z+4\alpha^3xZ^3) \\ &+ (Z+2x^3-2\alpha^xZ^2+2x^2+2xZ)(4x+2Z+6x^2-2\alpha^2Z^2). \end{cases}$$

3. Etude des singularités du système (4)

On en déduit l'existence de deux polynômes g_1 et h_1 en l'indéterminée x et un polynôme R_1 en les indéterminées x et Z, tels que

$$\dot{z} = 8x^3 + x^3g_1(x) + 6xZ + xZh_1(x) + Z^2R_1(x, Z).$$
(8)

On cherche maintenant à exprimer Z en fonction de x et z. Ces variables sont liées par l'équation

$$(2\alpha^2 x)Z^2 - (2x+1)Z + z - 2x^2(x+1) = 0.$$

On trouve

$$\Delta = 1 + 4x + 4x^2 - 8\alpha^2 xz + 16\alpha^2 x^3 + 16\alpha^2 x^4 > 0 \quad \text{au voisinage de } (0,0),$$

puis

$$\sqrt{\Delta} = 1 + 2x - 4\alpha^2 xz + 8\alpha^2 x^3 + 8\alpha^2 x^2 z + (10 - 8\alpha^2)x^4 - 24\alpha^2 x^3 z - 8\alpha^2 x^2 z^2 + o(||(x, z)||^4).$$

On en déduit une expression de Z en fonction de x et z,

$$Z = \frac{2x+1-\sqrt{\Delta}}{4\alpha^2 x}$$

= $\frac{1}{4\alpha^2 x} \left[4\alpha^2 xz - 8\alpha^2 x^3 - 8\alpha^2 x^2 z - (10-8\alpha^2)x^4 + 24\alpha^2 x^3 z + 8\alpha^2 x^2 z^2 + o(||(x,z)||^4) \right]$
= $z - 2x^2 - 2xz + \left(2 - \frac{5}{2\alpha^2}\right)x^3 + 6x^2 z + 2\alpha^2 xz^2 + o(||(x,z)||^3)$
= $z - 2x^2 + x^2 g_2(x) + xz R_2(x,z),$

où g_2 et R_2 sont des polynômes.

On a également

$$Z^{2} = 4x^{4} + x^{4}g_{3}(x) + xzh_{3}(x) + z^{2}R_{3}(x,y),$$

où g_3 , h_3 et R_3 sont des polynômes.

Par conséquent, en remplaçant dans (8),

$$\dot{z} = 8x^3 + x^3g_1(x) + 6x(z - 2x^2 + x^2g_2(x) + xzR_2(x, z)) + x(z - 2x^2 + x^2g_2(x) + xzR_2(x, z))h_1(x) + (4x^4 + x^4g_3(x) + xzh_3(x) + z^2R(x, y))R_1(x, Z) = -4x^3(1 + g(x)) + 6xz(1 + h(x)) + z^2R(x, z),$$

où g, h et R sont des polynômes.

Ainsi, \dot{z} est de la forme

$$\dot{z} = a_{2m+1}x^{2m+1}(1+h(x)) + b_n x^n z(1+g(x)) + z^2 R(x,z),$$

avec

$$m = n = 1$$
, $a_3 = -4 < 0$, $b_1 = 6 > 0$ et $\lambda = b_1^2 + 4(m+1)a_3 = 4 \ge 0$.

D'après la classification des points critiques non hyperboliques donnée dans [17], le système présente en (0,0) une singularité avec domaine elliptique.

FIG. 3 – Portrait de phase au voisinage du point singulier avec domaine elliptique en (0, 0).

4 Forme normale du "système à l'infini"

Les travaux qui suivent ont fait l'objet de la publication [13].

4.1 Introduction

On considère le système différentiel

$$\begin{cases} \dot{x} = y - 2x^2, \\ \dot{y} = -2xy. \end{cases}$$
(9)

pour lequel on a le résultat suivant :

Proposition 4.1. Le système (9) est une forme normale du système (4) à l'infini, au voisinage de la singularité avec domaine elliptique.

PREUVE. Dans la démonstration, on utilise la théorie des formes normales expliquée dans [17]. En posant $\mathbf{X} = (X, Z)$, on écrit le système (7) sous la forme

$$\mathbf{X} = J\mathbf{X} + F_2(\mathbf{X}) + O(|\mathbf{X}|),$$

avec

$$J = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \quad \text{et} \quad F_2(\mathbf{X}) = 2 \begin{pmatrix} X(X+Z) \\ Z(X+Z) \end{pmatrix}.$$

Grâce à un changement de coordonnées analytique de type

$$\mathbf{X} = \mathbf{x} + h(\mathbf{x}), \quad \mathbf{x} = (x, z),$$

la théorie des formes normales permet de simplifier la partie non linéaire du système (7).

Le nouveau système s'exprime comme suit :

$$\dot{\mathbf{x}} = J\mathbf{x} + \tilde{F}_2(\mathbf{x}) + O(|\mathbf{x}^3|),$$

où

$$\tilde{F}_2 = Jh_2(\mathbf{x}) - Dh_2(\mathbf{x})J\mathbf{x} + F_2(\mathbf{x}), \tag{10}$$

 et

$$h(\mathbf{x}) = h_2(\mathbf{x}) + O(|\mathbf{x}^3|).$$

On recherche une transformation h pour laquelle \tilde{F}_2 est le plus simple possible. En substituant dans (10) la fonction

$$h_2(\mathbf{x}) = \begin{pmatrix} a_{20}x^2 + a_{11}xz + a_{02}z^2 \\ b_{20}x^2 + b_{11}xz + b_{02}z^2 \end{pmatrix},$$

on obtient l'expression suivante de \tilde{F}_2 :

$$\tilde{F}_2(\mathbf{x}) = \begin{pmatrix} (b_{20}+2)x^2 + (b_{11}-2a_{20}+2)xz + (b_{02}-a_{11})z^2 \\ 2(1-b_{20})xz + (2-b_{11})z^2 \end{pmatrix}.$$

En choisissant

$$b_{20} = 0$$
, $a_{20} = b_{11} = 2$, et $a_{11} = b_{02}$

on trouve

$$\tilde{F}_2 = \left(\begin{array}{c} 2x^2\\2xz\end{array}\right)$$

et donc

$$\begin{cases} \dot{x} = z + 2x^2 \\ \dot{z} = 2xz. \end{cases}$$

Finalement, le changement de variables $\tilde{x} = -x$, $\tilde{z} = -z$, permet de retrouver le système (9).

Cette forme normale n'admet que l'origine pour point critique. Il s'agit d'un point critique avec domaine elliptique. On peut à nouveau s'en persuader en remarquant que ce système est intégrable et en calculant son intégrale première.

On a

$$\left(\frac{\dot{x}}{y}\right) = \frac{\dot{x}y - x\dot{y}}{y^2} = 1,$$

 soit

$$x = ty + c_0$$
 et $\dot{y} = -2xy = -2(t + c_0)y^2$, $c_0 \in \mathbb{R}$,

d'où la paramétrisation

$$\begin{cases} x = ty + c_0, \\ \frac{1}{y} = t^2 + 2c_0t + \frac{1}{y_0}, \quad c_0 \in \mathbb{R}, \quad y_0 \in \mathbb{R}^*. \end{cases}$$

De cette paramétrisation, on détermine une équation cartésienne des courbes invariantes :

$$\frac{1}{y} = t^2 + 2c_0t + \frac{1}{y_0}, \quad c_0 \in \mathbb{R}, \quad y_0 \in \mathbb{R}^* \iff \frac{1}{y} = (t+c_0)^2 - c_0^2 + \frac{1}{y_0}, \quad c_0 \in \mathbb{R}, \quad y_0 \in \mathbb{R}^*,$$
$$\iff \frac{1}{y} = \left(\frac{x}{y}\right)^2 + a, \quad a \in \mathbb{R},$$
$$\iff y = x^2 + 2ay^2, \quad a \in \mathbb{R}.$$

Les courbes intégrales obtenues sont des coniques. Plus précisément, il s'agit :

- d'hyperboles pour a < 0,
- d'une parabole pour a = 0,
- d'ellipses pour a > 0.

FIG. 4 – Portrait de phase de la forme normale.

On en déduit des expressions de l'intégrale première de la forme normale considérée et son facteur intégrant, que l'on note respectivement H et ψ :

$$H(x,y) = \frac{x^2 - y}{y^2},$$

$$\psi(x,y) = \frac{1}{y^3}, \quad (x,y) \in \mathbb{R} \times \mathbb{R}^*.$$
(11)

Signalons que les bifurcations de polycycles passant par le point singulier elliptique symétrique du système (9) ont fait l'objet d'une étude dans [18]. D'autre part, les déformations génériques de points nilpotents de codimension 3, et en particulier de type elliptiques mais non symétriques, ont fait l'objet d'une étude dans [8].

4.2 Première étape de perturbation : déformation en un centre

On souhaiterait déformer la singularité avec domaine elliptique en un centre. Pour cela, on perturbe la forme normale de la manière suivante :

$$\begin{cases} \dot{x} = y - 2x^2 + \eta c, \\ \dot{y} = -2xy, \end{cases}$$
(12)

où η est un petit paramètre strictement positif et c est un signe, $c \in \{-1, 1\}$.

Notons ω_{η} la 1-forme associée au systeme perturbé (12),

$$\omega_{\eta} = \frac{1}{\psi}dH - \eta dy = \frac{1}{\psi}\left(dH - \frac{\eta}{y^{3}}dy\right).$$

En tenant compte de la nature de ψ , on peut exprimer ω_{η} ainsi :

$$\omega_{\eta} = \frac{1}{\psi} d \left[H + \frac{\eta}{2y^2} \right].$$

Cela assure l'intégrabilité du système (12) et fournit par la même occasion une intégrale première

$$H_{\eta} = \frac{x^2 - y - \eta c/2}{y^2},$$

associée au même facteur intégrant ψ que précédemment.

L'analyse des points critiques naissant par cette perturbation donne :

• si c = 1, alors le système (12) a trois points singuliers : $(0, -\eta)$, $\left(-\sqrt{\frac{\eta}{2}}, 0\right)$ et $\left(\sqrt{\frac{\eta}{2}}, 0\right)$. Il s'agit respectivement d'un col, d'un nœud attractif et d'un nœud répulsif.

• si c = -1, alors $(0, \eta)$ est l'unique point singulier du système (12).

Proposition 4.2. Supposons c = -1. Le point singulier $(0, \eta)$ du système (12) est un centre.

PREUVE. Dans un voisinage du point singulier $(0, \eta)$, les lignes de niveau $\{H_{\eta} = h\}$, pour h fixé dans l'intervalle $]-1/2\eta, 0[$, sont fermées et l'union de deux courbes symétriques par rapport à l'axe des ordonnées,

$$x_h(y) = \pm \sqrt{hy^2 + y - \eta/2}, \quad y \in [\alpha(h), \beta(h)],$$

où

$$\alpha(h) = \frac{-1 + \sqrt{\Delta}}{2h}, \qquad \beta(h) = \frac{-1 - \sqrt{\Delta}}{2h} \qquad \text{et} \qquad \Delta = 1 + 2\eta h.$$

D'autre part, la ligne de niveau $\{H_{\eta} = -1/2\eta\}$ correspond au point singulier lui-même.

A partir de maintenant on suppose que c est négatif (c = -1).

FIG. 5 – Portrait de phase de la forme normale après la première perturbation.

4.3 Place dans la classification des systèmes quadratiques réversibles

On s'intéresse desormais à la nature de ce centre dans la classification des systèmes quadratiques réversibles.

Proposition 4.3. Le système (12) est de type \mathcal{Q}_3^R .

PREUVE. On effectue un changement d'origine. En posant $\tilde{y}=y-\eta,$ on a

$$\begin{cases} \dot{x} = \tilde{y} - 2x^2, \\ \dot{\tilde{y}} = -2x\tilde{y} - 2\eta x \end{cases}$$

Le changement de variables

$$\tilde{x} = \sqrt{2\eta}x$$
, $\tau = -\sqrt{2\eta}t$,

 $entra \hat{i} n e$

$$\begin{cases} \frac{d\tilde{x}}{d\tau} = -\tilde{y} + \frac{1}{\eta}\tilde{x}^2, \\ \frac{d\tilde{y}}{d\tau} = \tilde{x} + \frac{1}{\eta}\tilde{x}\tilde{y}. \end{cases}$$

En posant

$$z = \tilde{x} + i\tilde{y},$$

le sytème s'écrit sous la forme

$$\frac{dz}{d\tau} = iz + Az^2 + B|z|^2 + C\bar{z}^2,$$
(13)

5. Seconde étape de perturbation : recherche de cycles limites

avec

$$A = \frac{1}{2\eta}, \quad B = \frac{1}{2\eta} \quad \text{et} \quad C = 0.$$

D'après le Théorème 1.7 de l'Introduction, les coefficients étant réels, la singularité est un centre réversible.

La singularité étudiée précédemment est en fait un centre réversible isochrone. La valeur des coefficients de l'équation différentielle (13) en la variable z qui lui est associée, permet de positionner la forme normale de la singularité à l'infini du système de Liouville dans le diagramme de bifurcation de Q_3^R tel qu'il apparaît dans l'article d'Iliev [14]. En effet, en posant Z = -B/2 z et en inversant l'échelle des temps, on trouve

$$\frac{dZ}{d\tau} = -iZ + \frac{2A}{B}Z^2 + 2|Z|^2 + \frac{2C}{B}\bar{Z}^2$$
$$= -iZ + 2Z^2 + 2|Z|^2,$$

ce qui correspond au couple (a, b) = (2, 0).

FIG. 6 – Place de la forme normale dans le diagramme de bifurcation de Q_3^R (Figure issue de [14]). Les points S_2 , S_3 et S_4 correspondent aux centres isochrones.

Seconde étape de perturbation : recherche de cycles limites $\mathbf{5}$

Dans cette partie, on suppose que η est fixé et on perturbe le système (12) de façon quadratique avec un coefficient de pertubation strictement positif ε d'un ordre de grandeur plus petit que η ($\varepsilon \ll \eta$). On étudie le système

$$\begin{cases} \dot{x} = y - 2x^2 - \eta + \varepsilon f(x, y), \\ \dot{y} = -2xy + \varepsilon g(x, y), \end{cases}$$
(14)

où f et g sont des polynômes de degré deux d'expressions :

$$\begin{cases} f(x,y) = a_{00} + a_{10}x + a_{01}y + a_{20}x^2 + a_{11}xy + a_{02}y^2, \\ g(x,y) = b_{00} + b_{10}x + b_{01}y + b_{20}x^2 + b_{11}xy + b_{02}y^2. \end{cases}$$

On appelle ω_{ε} la 1-forme associée au système (14) :

$$\omega_{\varepsilon} = \frac{1}{\psi} dH_{\eta} + \varepsilon (fdy - gdx) = \omega_{\eta} + \varepsilon (fdy - gdx).$$

Pour étudier l'apparition d'éventuels cycles limites, on calcule les fonctions de Melnikov successives du système (14). De l'annulation de ces fonctions, on déduira des informations sur le nombre de cycles limites apparaissant par déformation des lignes de niveau de H_{η} ainsi que certaines conditions pour lesquelles le système reste à centre.

Un tel système a déjà fait l'objet d'une étude dans [4], dans laquelle la théorie de Bautin permet de montrer que la cyclicité de ce centre est 2.

5.1 Première fonction de Melnikov

On introduit la 1-forme

$$\omega = \psi(fdy - gdx),$$

telle que

$$\omega_{\varepsilon} = \frac{1}{\psi} (H_{\eta} + \omega).$$

On introduit également les 1-formes différentielles élémentaires impliquées dans l'expression de ω

$$\omega_{ij} = \frac{x^i y^j}{y^3} dx \quad \text{et} \quad \delta_{ij} = \frac{x^i y^j}{y^3} dy, \quad 0 \le i+j \le 2,$$

telles que

$$\omega = \sum_{0 \le i+j \le 2} a_{ij} \delta_{ij} - b_{ij} \omega_{ij}.$$

On commence par exprimer ces 1-formes à l'aide de différentielles de fonctions et de la différentielle dH_{η} .

Lemme 5.1. On a les identités suivantes

$$\begin{split} \delta_{00} &= d \left[-\frac{1}{2y^2} \right], & \delta_{10} &= \frac{x}{y} dH_{\eta} + d \left[-\frac{2x}{3y^2} - \frac{2x}{3y} H_{\eta} \right] + \frac{\eta}{3} \omega_{00}, \\ \delta_{01} &= d \left[-\frac{1}{y} \right], & \delta_{20} &= -\ln y dH_{\eta} + d \left[H_{\eta} \ln y - \frac{1}{y} + \frac{\eta}{4y^2} \right], \\ \delta_{11} &= d \left[-\frac{x}{y} \right] + \omega_{02}, & \delta_{02} &= d[\ln y], \\ \omega_{10} &= \frac{3}{2y} dH_{\eta} + d \left[-\frac{1}{4y^2} - \frac{1}{y} H_{\eta} \right], & \omega_{01} &= \frac{2x}{y} dH_{\eta} + d \left[-\frac{x}{3y^2} - \frac{4x}{3y} H_{\eta} \right] + \frac{2\eta}{3} \omega_{00}, \\ \omega_{20} &= \frac{2x}{y} dH_{\eta} + d \left[-\frac{1}{3y} - \frac{4x}{3y} H_{\eta} \right] + \frac{\eta}{6} \omega_{00} + H_{\eta} \omega_{02}, \\ \omega_{11} &= \left(\frac{1}{2} - \ln y \right) dH_{\eta} + d \left[-\frac{1}{2y} + H_{\eta} \ln y \right]. \end{split}$$

PREUVE : Certaines de ces relations sont immédiates, pour les autres, on fait appel à l'expression de l'intégrale première H_{η} et celle de sa différentielle

$$H_{\eta} = \frac{x^2 - y + \eta/2}{y^2},$$

$$dH_{\eta} = \frac{2x}{y^2}dx + \frac{-2x^2 + y - \eta}{y^3}dy = \frac{2x}{y^2}dx - \frac{1}{y}\left(2H_{\eta} + \frac{1}{y}\right)dy,$$

et on trouve

$$\begin{split} \delta_{10} &= d \left[-\frac{x}{2y^2} \right] + \frac{1}{2} \omega_{01}, \\ \delta_{20} &= d \left[-\frac{1}{y} - \frac{\varepsilon c}{4y^2} \right] + H_{\varepsilon} d[\ln y] = -\ln y dH_{\varepsilon} + d \left[H_{\varepsilon} \ln y - \frac{1}{y} - \frac{\varepsilon c}{4y^2} \right], \\ \omega_{10} &= \frac{1}{2y} dH_{\varepsilon} + d \left[\frac{1}{4y^2} + \frac{\varepsilon}{6y^3} \right] + d \left[-\frac{x^2}{3y^3} \right] + \frac{2}{3} \omega_{10}, \\ \omega_{20} &= \left(\frac{1}{y} H_{\varepsilon} + \frac{1}{y^2} + \frac{\varepsilon c}{2y^2} \right), \\ \omega_{11} &= d \left[\frac{x^2}{2y^2} \right] + \delta_{20}. \end{split}$$

Pour trouver l'expression de ω_{01} , on part des identités

$$\omega_{01} = d \left[\frac{x}{y^2} \right] + \frac{2x}{y^3} dy,$$

et $\omega_{00} = d \left[\frac{x}{y^3} \right] + \frac{3x}{y^4} dy,$

d'où

$$\begin{split} \omega_{01} &- \frac{2\eta}{3} \omega_{00} = d \left[\frac{x}{y^2} - \frac{2\eta x}{3y^3} \right] + \frac{2x}{y} \left(\frac{1}{y^2} - \frac{\eta}{y^3} \right) dy \\ &= d \left[\frac{x}{y^2} - \frac{2\eta x}{3y^3} \right] + \frac{2x}{y} \left(dH_\eta - \frac{2x}{y^2} dx + \frac{2x^2}{y^3} dy \right) \\ &= \frac{2x}{y} dH_\eta + d \left[\frac{x}{y^2} - \frac{2\eta x}{3y^3} - \frac{4x^3}{3y^3} \right] \\ &= \frac{2x}{y} dH_\eta + d \left[\frac{x}{y} \left(\frac{1}{y} - \frac{2\eta}{3y^2} - \frac{4x^2}{3y^2} \right) \right] \\ &= \frac{2x}{y} dH_\eta + d \left[\frac{x}{y} \left(-\frac{1}{3y} - \frac{4}{3} H_\eta \right) \right]. \end{split}$$

Ces décompositions élémetaires fournissent une décomposition de ω :

Lemme 5.2. ω peut se décomposer sous la forme

$$\omega = g_1 dH_\eta + dR_1 + N_1,$$

 $o \dot{u}$

$$g_{1}(y) = -\frac{b_{11}}{2} + c_{0} \ln y - \frac{3}{2} b_{10} \frac{1}{y} + c_{1} \frac{x}{y},$$

$$R_{1}(x, y, H_{\eta}) = c_{2} \frac{1}{y} + c_{3} \frac{1}{y^{2}} + a_{02} \ln y - a_{11} \frac{x}{y} + c_{4} \frac{x}{y^{2}} + b_{10} \frac{1}{y} H_{\eta} - c_{0} \ln y H_{\eta} - \frac{2}{3} c_{1} \frac{x}{y} H_{\eta},$$

$$N_{1}(x, y, H_{\eta}) = A_{1} \omega_{00} + (B_{1} + C_{1} H_{\eta}) \omega_{02},$$

avec

$$c_{0} = b_{11} - a_{20}, \qquad c_{1} = a_{10} - 2b_{01} - 2b_{20}, \qquad c_{2} = \frac{1}{2}b_{11} - a_{01} - a_{20}, \\ c_{3} = \frac{1}{4}(b_{10} - 2a_{00} + \eta a_{20}), \qquad c_{4} = -\frac{a_{10}}{2} - \frac{c_{1}}{6}, \\ A_{1} = -b_{00} + \frac{\eta}{6}(3b_{20} + 2c_{1}), \qquad B_{1} = a_{11} - b_{02}, \qquad C_{1} = -b_{20}.$$

Cette décomposition permet un calcul effectif de la première fonction de Melnikov M_1 . Dans cette optique, on montre au préalable le lemme suivant :

Lemme 5.3. Notons

$$I_k(h) = \int_{\alpha(h)}^{\beta(h)} \frac{dx}{y^k}, \quad k \ge 1, \quad h \in \left] -\frac{1}{2\eta}, 0 \right[,$$

 $on \ a$

$$I_1(h) = \frac{\pi}{\sqrt{2\eta}} \Pi_1(\sqrt{-h}) \quad et \quad I_3(h) = \frac{3\pi}{2\sqrt{2\eta^{5/2}}} \Pi_2(\sqrt{-h}),$$

avec

$$\Pi_1(X) = 1 - \sqrt{2\eta}X \quad et \quad \Pi_2(X) = 1 - 2\eta X^2 = (1 - \sqrt{2\eta}X)(1 + \sqrt{2\eta}X).$$

PREUVE. Pour h fixé dans $]-1/2\eta$, 0[et y dans le segment $[\alpha(h), \beta(h)]$, x s'écrit comme une fonction de la variable y :

$$x(y) = \sqrt{hy^2 + y - \frac{\eta}{2}}, \quad y \in [\alpha(h), \beta(h)],$$

d'où

$$x'(y) = \frac{2hy + 1}{2\sqrt{hy^2 + y - \frac{\eta}{2}}}, \quad y \in]\alpha(h), \beta(h)[, \quad h \in \left] -\frac{1}{2\eta}, 0\right[.$$

Ces intégrales curvilignes s'écrivent comme des intégrales ordinaires en la variable y uniquement

$$I_k(h) = \frac{1}{2} \int_{\alpha(h)}^{\beta(h)} \frac{2hy+1}{y^k \sqrt{hy^2 + 2 - \frac{\eta}{2}}} dy, \quad k \ge 1.$$

On écrit le trinôme $hy^2+2-\frac{\eta}{2}$ sous forme canonique pour en déduire un changement de variable $ad\ hoc$

$$hy^{2} + 2 - \frac{\eta}{2} = h\left[\left(y + \frac{1}{2h}\right)^{2} - \frac{\Delta}{4h^{2}}\right] = -\frac{\Delta}{4h}\left[1 - \frac{4h^{2}}{\Delta}\left(y + \frac{1}{2h}\right)^{2}\right],$$

avec

$$\Delta = 1 + 2\eta h.$$

On introduit la variable

$$Y = \frac{-2h}{\sqrt{\Delta}} \left(y + \frac{1}{2h} \right),$$

5. Seconde étape de perturbation : recherche de cycles limites

pour laquelle on a les équivalences

$$y = \alpha(h) \iff Y = -1,$$

 $y = \beta(h) \iff Y = 1.$

Par conséquent,

$$I_k(h) = -\sqrt{-h\Delta}(-2h)^{k-1} \int_{-1}^1 \frac{Y}{(\sqrt{\Delta}Y+1)^k \sqrt{1-Y^2}} dY$$

= $-\sqrt{-h\Delta}(-2h)^{k-1} J_k(h), \quad k \ge 1,$

où les intégrales $(J_k)_{k=1,3}$ peuvent être calculées par un changement de variable de type $Y = \sin u$:

$$J_1(h) = \frac{\pi(\sqrt{-2\eta h} - 1)}{\sqrt{\Delta}\sqrt{-2\eta h}} \quad \text{et} \quad J_3(h) = -\frac{3\pi\sqrt{\Delta}}{2(-2\eta h)^{5/2}},$$

d'où

$$I_1(h) = \frac{\pi}{\sqrt{2\eta}} (1 - \sqrt{2\eta}\sqrt{-h})$$
 et $I_3(h) = \frac{6\pi\Delta}{(2\eta)^{5/2}}.$

Proposition 5.4. La première fonction de Melnikov M_1 s'exprime sous forme d'un polynôme de degré 3 en $\sqrt{-h}$

$$M_1(h) = P_1(\sqrt{-h}),$$

 $o \dot{u}$

$$P_1(X) = \frac{\pi}{\sqrt{2\eta^{5/2}}} (1 - \sqrt{2\eta}X) Q_1(X),$$

et

$$Q_1(X) = 2\eta^2 C_1 X^2 - 3\sqrt{2\eta} A_1 X - (3A_1 + 2\eta^2 B_1)$$

PREUVE. Par définition, la première fonction de Melnikov s'écrit

$$M_1(h) = -\oint_{H_\eta=h} \omega$$

= $-\oint_{H_\eta=h} g_1 dH_\eta - \oint_{H_\eta=h} dR_1 - \oint_{H_\eta=h} N_1,$

Il est clair que la première intégrale est identiquement nulle

$$\oint_{H_{\eta}=h} g_1 dH_{\eta} = 0.$$

Par ailleurs, pour $\eta > 0$ et $h \in]-1/2\eta, 0[$,

$$\alpha(h) = \frac{-1 + \sqrt{1 + 2\eta h}}{2h} = \frac{1 - \sqrt{1 + 2\eta h}}{-2h} > 0,$$

si bien que les lignes de niveau $\{H_{\eta} = h\}$ sont contenues dans le demi-plan $\{y > 0\}$. R_1 étant analytique sur ce demi-plan, on a également

$$\oint_{H_{\eta}=h} dR_1 = 0.$$

D'où

$$\begin{split} M_1(h) &= -\oint_{H_\eta = h} N_1 \\ &= -\oint_{H_\eta = h} \frac{1}{y^3} [A_1 + B_1 y^2 + C_1 h y^2] dx \\ &= -2 \int_{\alpha(h)}^{\beta(h)} \frac{1}{y^3} [A_1 + B_1 y^2 + C_1 h y^2] dx \\ &= -2 \left[A_1 \int_{\alpha(h)}^{\beta(h)} \frac{dx}{y^3} + (B_1 + C_1 h) \int_{\alpha(h)}^{\beta(h)} \frac{dx}{y} \right] \\ &= -2 [A_1 I_3(h) + (B_1 + C_1 h) I_1(h)]. \end{split}$$

Finalement, le Lemme 5.3 assure que

$$M_{1}(h) = -\frac{2\pi}{(2\eta)^{5/2}}(1 - \sqrt{2\eta}\sqrt{-h})[4\eta^{2}(B_{1} + C_{1}h) + 6A_{1}(1 + \sqrt{2\eta}\sqrt{-h})]$$

$$= \frac{\pi}{\sqrt{2\eta^{5/2}}}(1 - \sqrt{2\eta}\sqrt{-h})[2\eta^{2}C_{1}(\sqrt{-h})^{2} - 3\sqrt{2\eta}A_{1}\sqrt{-h} - (3A_{1} + 2\eta^{2}B_{1})],$$

ce qui achève la preuve.

Corollaire 5.5. M_1 a au plus deux zéros dans l'intervalle ouvert $]-1/2\eta, 0[$. Cette borne est atteinte pour certains coefficients des fonctions f et g de la perturbation.

PREUVE. La Proposition 5.4 fournit une expression de M_1 comme polynôme de degré trois dont $-1/2\eta$ est une racine évidente. Par conséquent, M_1 a au plus deux zéros isolés dans l'intervalle ouvert $]-1/2\eta, 0[$. En outre, les coefficients de Q_1 sont clairement indépendants, ce qui assure l'existence de fonctions de perturbation f et g pour lesquelles M_1 a exactement deux zéros distincts.

En d'autres termes, il existe des perturbations générant exactement deux cycles limites.

Exemple 5.6. Posons $\eta = 0.1$, $\varepsilon = 0.01$ et considérons les fonctions de perturbation suivantes

$$\begin{cases} f(x,y) = 2x - 15.5xy, \\ g(x,y) = -0.105 + 1.9y - 2.5x^2, \end{cases}$$

Numériquement, on s'aperçoit bien que la première fonction de Melnikov M_1 présente deux zéros isolés dans l'intervalle ouvert]-5,0[.

FIG. 7 – La première fonction de Melnikov M_1 .

Le champ de vecteurs présente ainsi deux cycles limites.

FIG. 8 – Le cycle limite attractif.

FIG. 9 – Existence d'un cycle limite répulsif.

5.2 Seconde fonction de Melnikov

Si M_1 est identiquement nulle, il faut étudier la seconde fonction de Melnikov M_2 . Ce cas de figure se produit si et seulement si les conditions suivantes sont satisfaites

$$\begin{cases} C_1 = 0, \\ A_1 = 0, \\ 3A_1 + 2\eta^2 B_1 = 0, \end{cases} \iff A_1 = B_1 = C_1 = 0$$

Dans ce cas, les coefficients des fonctions de perturbation f et g satisfont le système

$$\begin{cases} -6b_{00} + \eta(3b_{20} + 2c_1) = 0, \\ a_{11} - b_{02} = 0, \\ b_{20} = 0, \end{cases} \iff \begin{cases} 3b_{00} + \eta(2b_{01} - a_{10}) = 0, \\ a_{11} = b_{02}, \\ b_{20} = 0. \end{cases}$$

D'après l'algorithme de Françoise, la seconde fonction de Melnikov ${\cal M}_2$ s'écrit

$$M_2(h) = -\oint_{H_\eta=h} g_1\omega.$$

Afin d'estimer M_2 , on décompose la 1-forme $g_1\omega$ en cherchant des fonctions analytiques g_2 , R_2 sur le demi-plan $\{y > 0\}$ et une 1-forme différentielle N_2 telles que

$$g_1\omega = g_2 dH_\eta + dR_2 + N_2.$$

Faisant appel à la décomposition de ω obtenue dans le Lemme 5.2 et le fait que

$$A_1 = B_1 = C_1 = 0,$$

on a

$$g_1\omega = g_1^2 dH_\varepsilon + g_1 dR_1 + g_1 N_1,$$

avec

$$N_1 \equiv 0.$$

Le terme g_1^2 contribue uniquement à la fonction g_2 . Par conséquent, il suffit d'étudier le second terme. On le décompose comme suit

$$g_1 dR_1 = d \left[-\frac{b_{11}}{2} R_1 \right] + \tilde{g}_1 d\tilde{R}_1 + \tilde{g}_1 d\hat{R}_1 + \hat{g}_1 d\tilde{R}_1 + \hat{g}_1 d\tilde{R}_1,$$

avec

$$\tilde{g}_1(y) = c_0 \ln y - \frac{3}{2} b_{10} \frac{1}{y}, \quad \tilde{R}_1(y, H_\eta) = c_2 \frac{1}{y} + c_3 \frac{1}{y^2} + a_{02} \ln y + b_{10} \frac{1}{y} H_\eta - c_0 \ln y H_\eta,$$

$$\hat{g}_1(x, y) = c_1 \frac{x}{y}, \qquad \qquad \hat{R}_1(x, y) = -a_{11} \frac{x}{y} + c_4 \frac{x}{y^2} - \frac{2}{3} c_1 \frac{x}{y} H_\eta.$$

5.2.1 Décomposition de $\tilde{g}_1 d\tilde{R}_1$

$$\tilde{g}_1 d\tilde{R}_1 = F_1(y) + F_2(y, H_\eta),$$

où

$$F_1(y) = \left(c_0 \ln y - \frac{3}{2}b_{10}\frac{1}{y}\right) d\left[c_2\frac{1}{y} + c_3\frac{1}{y^2} + a_{02}\ln y\right],$$

$$F_2(y, H_\eta) = \left(c_0 \ln y - \frac{3}{2}b_{10}\frac{1}{y}\right) d\left[b_{10}\frac{1}{y}H_\eta - c_0\ln yH_\eta\right],$$

On pose

$$L_{m,n}(y) = \frac{\ln^m y}{y^n}, \quad m, n \in \mathbb{N},$$

 et

$$\theta_{k,l,m,n} = \frac{\ln^m y}{y^n} d\left[H_{\varepsilon} \frac{\ln^k y}{y^l}\right],$$

= $L_{m,n} d\left[H_{\varepsilon} L_{k,l}\right], \quad k, l, m, n \in \mathbb{N}$

 F_1 et F_2 s'écrivent alors

$$F_{1}(y) = \left[c_{0} \left(a_{02}L_{1,1} - c_{1}L_{1,2} - 2c_{2}L_{1,3} \right) + \frac{3}{2}b_{10} \left(-a_{02}L_{0,2} + c_{1}L_{0,3} + 2c_{2}L_{0,4} \right) \right] dy,$$

$$F_{2}(y, H_{\eta}) = c_{0} \left(b_{10}\theta_{0,1,1,0} - c_{0}\theta_{1,0,1,0} \right) - \frac{3}{2}b_{10} \left(b_{10}\theta_{0,1,0,1} - c_{0}\theta_{1,0,0,1} \right).$$

On a les lemmes suivants :

Lemme 5.7. Soient $m, n \in \mathbb{N}$, il existe des coefficients $(\lambda_{i,n})_{0 \leq i \leq m}$, tels que

$$L_{m,n}(y)dy = \begin{cases} d\left[\frac{\ln^{m+1}y}{m+1}\right] = dL_{m+1,0}(y), & si \ n = 1, \\ d\left[\frac{1}{y^{n-1}}\sum_{i=0}^{m}\lambda_{i,n}\ln^{i}y\right] = d\left[\sum_{i=0}^{m}\lambda_{i,n}L_{i,n-1}(y)\right], & sinon. \end{cases}$$

PREUVE. Le cas n = 1 est immédiat. Le second se démontre aisément par récurrence sur l'entier m. En effet, on a

$$\frac{\ln^m}{y^n} dy = d \left[\frac{-1}{n-1} \frac{\ln^m y}{y^{n-1}} \right] + \frac{m}{n-1} \frac{\ln^{m-1}}{y^n} dy.$$

De ce fait, tous les termes de F_1 sont de type $L_{i,j}$ pour $0 \le i \le 1$ et $1 \le j \le 4$. Ils s'intègrent sous forme de fonctions $L_{i,j}$ pour $0 \le i \le 2$ et $0 \le j \le 3$. Leurs contributions n'apparaîssent que dans la fonction R_2 .

Dans la suite, on pose

$$\sigma_{i,j} = H_{\varepsilon} L_{i,j} dy, \quad \mu_{i,j} = L_{i,j} dH_{\varepsilon} \quad \text{et} \quad \nu_{i,j} = d \left[H_{\varepsilon} L_{i,j} \right], \quad \text{pour} \quad i, j \in \mathbb{N}.$$

Remarquons que l'on a

$$\mu_{i,j} = \theta_{0,0,i,j}$$
 et $\nu_{i,j} = \theta_{i,j,0,0}$.

Lemme 5.8. Soient $(p,q) \in \mathbb{N} \times \mathbb{N}^*$, la 1-forme $\sigma_{p,q}$ s'exprime à l'aide de combinaisons linéaires des 1-formes $\mu_{i,j}$ et $\nu_{i,j}$, avec

$$\begin{array}{lll} 0\leq i\leq p & et \quad j=q-1, \quad si \; q>1,\\ i=p+1 & et \quad j=0, \qquad si \; q=1. \end{array}$$

PREUVE. On utilise le lemme précédent.

Si q = 1 :

$$\sigma_{p,1} = H_{\varepsilon}d\left[\frac{\ln^{p+1}}{p+1}\right]$$
$$= d\left[H_{\varepsilon}\frac{\ln^{p+1}y}{p+1}\right] - \frac{\ln^{p+1}y}{p+1}dH_{\varepsilon}$$
$$= \frac{\nu_{p+1,0}}{p+1} - \frac{\mu_{p+1,0}}{p+1}.$$

Si $q \neq 1$: il existe des coefficients $(\lambda_{i,q})_{0 \leq i \leq p}$ pour lesquels

$$\sigma_{p,q} = H_{\varepsilon}d\left[\frac{1}{y^{q-1}}\sum_{i=0}^{p}\lambda_{i,q}\ln^{i}y\right] = \sum_{i=0}^{p}\lambda_{i,q}H_{\varepsilon}d\left[\frac{\ln^{i}y}{y^{q-1}}\right]$$
$$= \sum_{i=0}^{p}\lambda_{i,q}\left(d\left[H_{\varepsilon}\frac{\ln^{i}y}{y^{q-1}}\right] - \frac{\ln^{i}y}{y^{q-1}}dH_{\varepsilon}\right)$$
$$= \sum_{i=0}^{p}\lambda_{i,q}\left(\mu_{i,q-1} - \nu_{i,q-1}\right),$$

d'où le résultat.

Lemme 5.9. Soient $k, l, m, n \in \mathbb{N}$, la 1-forme $\theta_{k,l,m,n}$ s'exprime à l'aide de combinaisons linéaires des 1-formes $\mu_{i,j}$ et $\nu_{i,j}$, pour $0 \le i \le m+k$ et j=n+l. PREUVE. On observe que $1 - m + k_{y}$

$$\theta_{k,l,m,n} = \frac{\ln^{m+k} y}{y^{n+l}} dH_{\varepsilon} + kH_{\varepsilon} \frac{\ln^{m+k-1} y}{y^{n+l+1}} dy - lH_{\varepsilon} \frac{\ln^{m+k} y}{y^{n+l+1}} dy$$
$$= \mu_{m+k,n+l} + k \ \sigma_{m+k-1,n+l+1} - l \ \sigma_{m+k,n+l+1}.$$

• Si n=l=0, alors le lemme précédent pour "q=n+l+1=1" donne

$$\theta_{k,0,m,0} = \mu_{m+k,0} + k\sigma_{m+k-1,1} = \frac{1}{m+k} \left(m\mu_{m+k,0} + k\nu_{m+k,0} \right).$$

• Si $n+l \ge 1$, alors n+l+1 > 1, et on conclut en faisant appel au cas "q > 1" du lemme précédent.

Corollaire 5.10. On a les identités suivantes

$$\begin{aligned} \theta_{0,1,1,0} &= \ln yd \left[\frac{H_{\eta}}{y} \right] = -\frac{1}{y} dH_{\eta} + d \left[\frac{\ln y}{y} H_{\eta} + \frac{H_{\eta}}{y} \right], \\ \theta_{1,0,0,1} &= \frac{1}{y} d \left[\ln y H_{\eta} \right] = \left(\frac{1}{y} + \frac{\ln y}{y} \right) dH_{\eta} + d \left[-\frac{H_{\eta}}{y} \right], \\ \theta_{1,0,1,0} &= \ln yd \left[\ln y H_{\eta} \right] = \frac{1}{2} \ln^2 y dH_{\eta} + d \left[\frac{1}{2} \ln^2 y H_{\eta} \right], \\ \theta_{0,1,0,1} &= \frac{1}{y} d \left[\frac{H_{\eta}}{y} \right] = \frac{1}{2y^2} dH_{\eta} + d \left[\frac{H_{\eta}}{2y^2} \right]. \end{aligned}$$

Par conséquent,

pour alléger les expressions.

$$F_{2}(y, H_{\eta}) = \left[\frac{1}{2}b_{10}c_{0}\frac{1}{y} + \frac{3}{2}b_{10}c_{0}\frac{\ln y}{y} - \frac{1}{2}c_{0}^{2}\ln^{2}y - \frac{3}{4}b_{10}^{2}\frac{1}{y^{2}}\right]dH_{\eta} + d\left[b_{10}c_{0}\frac{H_{\eta}}{y}\left(\ln y - \frac{1}{2}\right) - \frac{1}{2}c_{0}^{2}H_{\eta}\ln^{2}y - \frac{3}{4}b_{10}^{2}\frac{H_{\eta}}{y^{2}}\right],$$

 et

$$\tilde{g}_1 d\tilde{R}_1 = \left[\frac{1}{2}b_{10}c_0\frac{1}{y} + \frac{3}{2}b_{10}c_0\frac{\ln y}{y} - \frac{1}{2}c_0^2\ln^2 y - \frac{3}{4}b_{10}^2\frac{1}{y^2}\right]dH_\eta + d\left[\right],$$
(15)
où $d\left[\right]$ est la différentielle d'une fonction analytique sur le demi-plan $\{y > 0\}$ dont l'expression

importe peu pour les calculs ultérieurs. Dans la suite, on adoptera dès que possible cette notation

5.2.2 Décomposition de $\tilde{g}_1 d\hat{R}_1$

$$\begin{split} \tilde{g}_1 d\hat{R}_1 &= \left(c_0 \ln y - \frac{3}{2} b_{10} \frac{1}{y} \right) d \left[-a_{11} \frac{x}{y} + c_4 \frac{x}{y^2} - \frac{2}{3} c_1 \frac{x}{y} H_\eta \right] \\ &= -a_{11} c_0 \ln y d \left[\frac{x}{y} \right] + c_0 c_4 \ln y d \left[\frac{x}{y^2} \right] - \frac{2}{3} c_0 c_1 \ln y d \left[\frac{x}{y} H_\eta \right] \\ &+ \frac{3}{2} a_{11} b_{10} \frac{1}{y} d \left[\frac{x}{y} \right] - \frac{3}{2} b_{10} c_4 \frac{1}{y} d \left[\frac{x}{y^2} \right] + b_{10} c_1 \frac{1}{y} d \left[\frac{x}{y} H_\eta \right]. \end{split}$$

Le traitement de $\tilde{g}_1 d\hat{R}_1$ découle du résultat suivant.

Lemme 5.11. On a les identités

$$\ln y \ d\left[\frac{x}{y}\right] = d\left[\frac{x}{y}(\ln y + 1)\right] - \omega_{02},$$

$$\ln y \ d\left[\frac{x}{y^2}\right] = -\frac{x}{y} dH_\eta + d\left[\frac{x}{y^2}\left(\ln y + \frac{2}{3}\right) + \frac{2x}{3y}H_\eta\right] - \frac{\eta}{3}\omega_{00},$$

$$\frac{1}{y} d\left[\frac{x}{y}\right] = \frac{x}{y} dH_\eta + d\left[\frac{x}{3y^2} - \frac{2x}{3y}H_\eta\right] + \frac{\eta}{3}\omega_{00},$$

$$\frac{1}{y} d\left[\frac{x}{y^2}\right] = d\left[\frac{2x}{3y^3}\right] + \frac{1}{3}\omega_{00}.$$

PREUVE. On utilise la formule de la différentielle d'un produit de fonctions et on trouve

$$\ln y \ d\left[\frac{x}{y}\right] = d\left[\frac{x}{y}\ln y\right] - \delta_{11},$$

$$\ln y \ d\left[\frac{x}{y^2}\right] = d\left[\frac{x}{y^2}\ln y\right] - \delta_{10},$$

$$\frac{1}{y}d\left[\frac{x}{y}\right] = d\left[\frac{x}{y^2}\right] + \delta_{10},$$

et
$$\frac{1}{y}d\left[\frac{x}{y^2}\right] = \frac{1}{y^3}dx - \frac{2x}{y^4}dy = \frac{2}{3}d\left[\frac{x}{y^3}\right] + \frac{1}{3}\omega_{00}.$$

En utilisant ce lemme, on obtient

$$\begin{split} \tilde{g}_1 d\hat{R}_1 &= \left(-\frac{2}{3} c_0 c_1 \frac{x}{y} \ln y + b_{10} c_1 \frac{x}{y^2} \right) dH_\eta - \left(a_{11} c_0 + \frac{2}{3} c_0 c_1 H_\eta \right) \left(d \left[\frac{x}{y} (\ln y + 1) \right] - \omega_{02} \right) \\ &+ c_0 c_4 \left(-\frac{x}{y} dH_\eta + d \left[\frac{x}{y^2} \left(\ln y + \frac{2}{3} \right) + \frac{2x}{3y} H_\eta \right] - \frac{\eta}{3} \omega_{00} \right) \\ &+ \left(\frac{3}{2} a_{11} b_{10} + b_{10} c_1 H_\eta \right) \left(\frac{x}{y} dH_\eta + d \left[\frac{x}{3y^2} - \frac{2x}{3y} H_\eta \right] + \frac{\eta}{3} \omega_{00} \right) \\ &- \frac{3}{2} b_{10} c_4 \left(d \left[\frac{2x}{3y^3} \right] + \frac{1}{3} \omega_{00} \right), \end{split}$$

 $Chapitre \ II. \ Perturbation \ quadratique \ d'un \ secteur \ elliptique$

$$\begin{split} \tilde{g}_{1}d\hat{R}_{1} &= \left(-\frac{2}{3}c_{0}c_{1}\frac{x}{y}\ln y + b_{10}c_{1}\frac{x}{y^{2}}\right)dH_{\eta} + d\left[-\left(a_{11}c_{0} + \frac{2}{3}c_{0}c_{1}H_{\eta}\right)\frac{x}{y}(\ln y + 1)\right] \\ &+ \frac{2}{3}c_{0}c_{1}\frac{x}{y}(\ln y + 1)dH_{\eta} + \left(a_{11}c_{0} + \frac{2}{3}c_{0}c_{1}H_{\eta}\right)\omega_{02} \\ &- c_{0}c_{4}\frac{x}{y}dH_{\eta} + d\left[c_{0}c_{4}\frac{x}{y^{2}}\left(\ln y + \frac{2}{3}\right) + \frac{2}{3}c_{0}c_{4}\frac{x}{y}H_{\eta}\right] - \frac{\eta}{3}c_{0}c_{4}\omega_{00} \\ &+ \left(\frac{3}{2}a_{11}b_{10} + b_{10}c_{1}H_{\eta}\right)\frac{x}{y}dH_{\eta} + d\left[\left(\frac{3}{2}a_{11}b_{10} + b_{10}c_{1}H_{\eta}\right)\left(\frac{x}{3y^{2}} - \frac{2x}{3y}H_{\eta}\right)\right] \\ &- b_{10}c_{1}\left(\frac{x}{3y^{2}} - \frac{2x}{3y}H_{\eta}\right)dH_{\eta} + \left(\frac{3}{2}a_{11}b_{10} + b_{10}c_{1}H_{\eta}\right)\frac{\eta}{3}\omega_{00} \\ &+ d\left[-b_{10}c_{4}\frac{x}{y^{3}}\right] - \frac{1}{2}b_{10}c_{4}\omega_{00}, \end{split}$$

$$\tilde{g}_{1}d\hat{R}_{1} = \left[\left(\frac{2}{3}c_{0}c_{1} - c_{0}c_{4} + \frac{3}{2}a_{11}b_{10} \right) \frac{x}{y} + \frac{5}{3}b_{10}c_{1}H_{\eta}\frac{x}{y} + \frac{2}{3}b_{10}c_{1}\frac{x}{y^{2}} \right] dH_{\eta} + d\left[\right] \\ + \left(-\frac{\eta}{3}c_{0}c_{4} + \frac{\eta}{2}a_{11}b_{10} - \frac{1}{2}b_{10}c_{4} + \frac{\eta}{3}b_{10}c_{1}H_{\eta} \right) \omega_{00} + \left(a_{11}c_{0} + \frac{2}{3}c_{0}c_{1}H_{\eta} \right) \omega_{02}.$$
(16)

5.2.3 Décomposition de $\hat{g}_1 d\tilde{R}_1$

$$\begin{aligned} \hat{g}_1 d\tilde{R}_1 &= c_1 \frac{x}{y} d\left[c_2 \frac{1}{y} + c_3 \frac{1}{y^2} + a_{02} \ln y + b_{10} \frac{1}{y} H_\eta - c_0 \ln y H_\eta \right] \\ &= \left(b_{10} c_1 \frac{x}{y^2} - c_0 c_1 \frac{x}{y} \ln y \right) dH_\eta + \left(c_1 c_2 + b_{10} c_1 H_\eta \right) \frac{x}{y} d\left[\frac{1}{y} \right] \\ &+ \left(a_{02} c_1 - c_0 c_1 H_\eta \right) \frac{x}{y} d\left[\ln y \right] + c_1 c_3 \frac{x}{y} d\left[\frac{1}{y^2} \right]. \end{aligned}$$

Lemme 5.12. On a les identités

$$\frac{x}{y}d\left[\frac{1}{y}\right] = -\delta_{10} = -\frac{x}{y}dH_{\eta} + d\left[\frac{2x}{3y^2} + \frac{2x}{3y}H_{\eta}\right] - \frac{\eta}{3}\omega_{00},$$
$$\frac{x}{y}d\left[\ln y\right] = \delta_{11} = d\left[-\frac{x}{y}\right] + \omega_{02},$$
$$\frac{x}{y}d\left[\frac{1}{y^2}\right] = d\left[\frac{2x}{3y^3}\right] - \frac{2}{3}\omega_{00}.$$

D'où

$$\begin{split} \hat{g}_{1}d\tilde{R}_{1} &= \left(b_{10}c_{1}\frac{x}{y^{2}} - c_{0}c_{1}\frac{x}{y}\ln y\right)dH_{\eta} - (c_{1}c_{2} + b_{10}c_{1}H_{\eta})\frac{x}{y}dH_{\eta} \\ &+ d\left[(c_{1}c_{2} + b_{10}c_{1}H_{\eta})\left(\frac{2x}{3y^{2}} + \frac{2x}{3y}H_{\eta}\right)\right] - b_{10}c_{1}\left(\frac{2x}{3y^{2}} + \frac{2x}{3y}H_{\eta}\right)dH_{\eta} \\ &- \frac{\eta}{3}\left(c_{1}c_{2} + b_{10}c_{1}H_{\eta}\right)\omega_{00} \\ &+ d\left[-\left(a_{02}c_{1} - c_{0}c_{1}H_{\eta}\right)\frac{x}{y}\right] - c_{0}c_{1}\frac{x}{y}dH_{\eta} + \left(a_{02}c_{1} - c_{0}c_{1}H_{\eta}\right)\omega_{02} \\ &+ d\left[\frac{2}{3}c_{1}c_{3}\frac{x}{y^{3}}\right] - \frac{2}{3}c_{1}c_{3}\omega_{00}, \end{split}$$

5. Seconde étape de perturbation : recherche de cycles limites

$$\hat{g}_{1}d\tilde{R}_{1} = \left[\left(-c_{0}c_{1} - c_{1}c_{2} \right) \frac{x}{y} - \frac{5}{3}b_{10}c_{1}H_{\eta}\frac{x}{y} - c_{0}c_{1}\frac{x}{y}\ln y + \frac{1}{3}b_{10}c_{1}\frac{x}{y^{2}} \right] dH_{\eta} + d\left[\right] \\ + \left(-\frac{\eta}{3}c_{1}c_{2} - \frac{2}{3}c_{1}c_{3} - \frac{\eta}{3}b_{10}c_{1}H_{\eta} \right) \omega_{00} + \left(a_{02}c_{1} - c_{0}c_{1}H_{\eta} \right) \omega_{02}.$$
(17)

5.2.4 Décomposition de $\hat{g}_1 d\hat{R}_1$

$$\hat{g}_1 d\hat{R}_1 = c_1 \frac{x}{y} d \left[-a_{11} \frac{x}{y} + c_4 \frac{x}{y^2} - \frac{2}{3} c_1 \frac{x}{y} H_\eta \right] = -\frac{2}{3} c_1^2 \frac{x^2}{y^2} dH_\eta + \left(-a_{11} c_1 - \frac{2}{3} c_1^2 H_\eta \right) \frac{x}{y} d \left[\frac{x}{y} \right] + c_1 c_4 \frac{x}{y} d \left[\frac{x}{y^2} \right].$$

Lemme 5.13. On a les identités

$$\frac{x}{y}d\left[\frac{x}{y}\right] = d\left[\frac{x^2}{2y^2}\right],$$
$$\frac{x}{y}d\left[\frac{x}{y^2}\right] = -\frac{1}{2y}dH_\eta + d\left[\frac{3}{4y^2} - \frac{\eta}{3y^3} + \frac{H_\eta}{y}\right].$$

D'où

$$\begin{aligned} \hat{g}_1 d\hat{R}_1 &= -\frac{2}{3} c_1^2 \frac{x^2}{y^2} dH_\eta + d \left[\left(-a_{11}c_1 - \frac{2}{3}c_1^2 H_\eta \right) \frac{x^2}{2y^2} \right] + \frac{1}{3} c_1^2 \frac{x^2}{y^2} dH_\eta - \frac{1}{2}c_1 c_4 \frac{1}{y} dH_\eta \\ &+ d \left[c_1 c_4 \left(\frac{3}{4y^2} - \frac{\eta}{3y^3} + \frac{H_\eta}{y} \right) \right], \end{aligned}$$

 soit

$$\hat{g}_1 d\hat{R}_1 = \left(-\frac{1}{3} c_1^2 \frac{x^2}{y^2} - \frac{1}{2} c_1 c_4 \frac{1}{y} \right) dH_\eta + d\left[\right].$$
(18)

Finalement, on trouve la décomposition souhaitée de $g_1\omega$:

Lemme 5.14. La 1-forme $g_1\omega$ peut se décomposer sous la forme

$$g_1\omega = g_2 dH_\eta + dR_2 + N_2,$$

 $o \dot{u}$

$$\begin{split} g_{2}(y) &= \quad \frac{b_{11}^{2}}{4} + \frac{1}{2} \left(3b_{10}b_{11} + b_{10}c_{0} - c_{1}c_{4} \right) \frac{1}{y} + \frac{3}{2}b_{10}^{2}\frac{1}{y^{2}} - b_{11}c_{0}\ln y - \frac{3}{2}b_{10}c_{0}\frac{\ln y}{y} + \frac{1}{2}c_{0}^{2}\ln^{2} y \\ &+ \left(-c_{0}c_{1} - c_{1}c_{2} - c_{0}c_{4} + \frac{3}{2}a_{11}b_{10} - b_{11}c_{1} \right) \frac{x}{y} + c_{0}c_{1}\frac{x}{y}\ln y - 2b_{10}c_{1}\frac{x}{y^{2}} + \frac{2}{3}c_{1}^{2}\frac{x^{2}}{y^{2}}, \\ R_{2} \ est \ une \ fonction \ analytique \ de \ x, \ y \ et \ H_{\eta} \ sur \ le \ demi-plan \ \{y > 0\}, \end{split}$$

 $N_2 = A_2\omega_{00} + (B_2 + C_2H_\eta)\omega_{02},$

avec

$$A_{2} = -\frac{\eta}{3}c_{0}c_{4} + \frac{\eta}{2}a_{11}b_{10} - \frac{1}{2}b_{10}c_{4} - \frac{\eta}{3}c_{1}c_{2} - \frac{2}{3}c_{1}c_{3},$$

$$B_{2} = a_{11}c_{0} + a_{02}c_{1}, \quad C_{2} = -\frac{1}{3}c_{0}c_{1}.$$

PREUVE. En tenant compte des résultats précédents, on a

$$g_2 = g_1^2 + \bar{g}_2,$$

où \bar{g}_2 provient de la contribution de $g_1 dR_1$:

$$\bar{g}_2(x,y) = \frac{1}{2} \left(b_{10}c_0 - c_1c_4 \right) \frac{1}{y} - \frac{3}{4} b_{10}^2 \frac{1}{y^2} + \frac{3}{2} b_{10}c_0 \frac{\ln y}{y} - \frac{1}{2} c_0^2 \ln^2 y \\ + \left(-c_0c_1 - c_1c_2 - c_0c_4 + \frac{3}{2}a_{11}b_{10} \right) \frac{x}{y} - c_0c_1 \frac{x}{y} \ln y + b_{10}c_1 \frac{x}{y^2} - \frac{1}{3} c_1^2 \frac{x^2}{y^2},$$

 et

$$g_1^2(y) = \frac{b_{11}^2}{4} + \frac{3}{2}b_{10}b_{11}\frac{1}{y} + \frac{9}{4}b_{10}^2\frac{1}{y^2} - b_{11}c_0\ln y - 3b_{10}c_0\frac{\ln y}{y} + c_0^2\ln^2 y - b_{11}c_1\frac{x}{y} + 2c_0c_1\frac{x}{y}\ln y - 3b_{10}c_1\frac{x}{y^2} + c_1^2\frac{x^2}{y^2}.$$

Pour calculer N_2 , on utilise les décompositions de $\tilde{g}_1 d\tilde{R}_1$, $\tilde{g}_1 d\tilde{R}_1$, $\hat{g}_1 d\tilde{R}_1$ et $\hat{g}_1 d\hat{R}_1$ calculées en (15), (16), (17) et (18) respectivement.

En utilisant l'expression de N_2 du Lemme 5.14,

$$M_{2}(h) = -\oint_{H_{\eta}=h} N_{2}$$

= $-2\int_{\alpha(h)}^{\beta(h)} \frac{1}{y^{3}} [A_{2} + B_{2}y^{2} + C_{2}hy^{2}]dx$
= $-2[A_{2}I_{3}(h) + (B_{2} + C_{2}h)I_{1}(h)],$

avec

$$I_1(h) = \frac{\pi}{\sqrt{2\eta}} (1 - \sqrt{2\eta}\sqrt{-h})$$
 et $I_3(h) = \frac{3\pi}{2\sqrt{2\eta^{5/2}}} (1 + 2\eta h).$

On en déduit :

Proposition 5.15. La seconde fonction de Melnikov M_2 s'exprime comme un polynôme de degré $3 \text{ en } \sqrt{-h}$

$$M_2(h) = P_2(\sqrt{-h}),$$

 $o \dot{u}$

$$P_2(X) = \frac{\pi}{\sqrt{2\eta^{5/2}}} (1 - \sqrt{2\eta}X) Q_2(X),$$

et

$$Q_2(X) = 2\eta^2 C_2 X^2 - 3\sqrt{2\eta} A_2 X - (3A_2 + 2\eta^2 B_2).$$

De cette proposition résulte le corollaire suivant, dont la preuve est analogue à celle du Corollaire 5.5.

Corollaire 5.16. M_2 a au plus deux zéros dans l'intervalle ouvert $]-1/2\eta, 0[$. Cette borne est atteinte pour certains coefficients des fonctions de la perturbation.

5.3 Troisième fonction de Melnikov

La seconde fonction de Melnikov est identiquement nulle si et seulement si

$$\begin{cases} C_2 = 0, \\ A_2 = 0, \\ 3A_2 + 2\eta^2 B_2 = 0, \end{cases} \iff A_2 = B_2 = C_2 = 0,$$

ce qui se traduit par le système de conditions portant sur les coefficients des fonctions f et g de la perturbation :

$$\begin{cases} -\frac{\eta}{3}c_{0}c_{4} + \frac{\eta}{2}a_{11}b_{10} - \frac{1}{2}b_{10}c_{4} - \frac{\eta}{3}c_{1}c_{2} - \frac{2}{3}c_{1}c_{3} = 0, \\ a_{11}c_{0} + a_{02}c_{1} = 0, \\ -\frac{1}{3}c_{0}c_{1} = 0, \\ c_{0}c_{1} = 0, \end{cases}$$

$$\iff \begin{cases} 2\eta c_{0}c_{4} - 3\eta a_{11}b_{10} + 3b_{10}c_{4} + 2\eta c_{1}c_{2} + 4c_{1}c_{3} = 0, \\ a_{11}c_{0} + a_{02}c_{1} = 0, \\ c_{0}c_{1} = 0. \end{cases}$$

Les deux dernières équations de ce système engendrent trois cas : Si $c_0 = c_1 = 0$, la première équation est équivalente à

$$b_{10}(c_4 - \eta a_{11}) = 0.$$

Si $c_0 = a_{02} = 0$, elle est équivalente à

$$3b_{10}(c_4 - \eta a_{11}) + 2c_1(2c_3 + \eta c_2) = 0$$

Si $c_1 = a_{11} = 0$, elle est équivalente à

$$a_{10}(3b_{10} + 2\eta c_0) = 0.$$

Finalement, on est amené à considérer cinq cas :

(i)
$$c_0 = c_1 = b_{10} = 0,$$

(ii) $c_1 = c_4 = a_{11} = 0,$
(iii) $c_0 = c_1 = c_4 - \eta a_{11} = 0,$
(iv) $c_1 = a_{11} = 3b_{10} + 2\eta c_0 = 0,$
(v) $c_0 = a_{02} = 3b_{10}(c_4 - \eta a_{11}) + 2c_1(2c_3 + \eta c_2) = 0.$

5.3.1 Cas
$$c_0 = c_1 = b_{10} = 0$$

D'après le Lemme 5.2,

$$g_1 = -\frac{b_{11}}{2},$$

 soit

$$\omega = d \left[-\frac{b_{11}}{2} H_{\eta} + R_1 \right], \text{ and } \omega_{\varepsilon} = \frac{1}{\psi} d \left[\left(1 - \frac{b_{11}}{2} \varepsilon \right) H_{\eta} + \varepsilon R_1 \right],$$

si bien que le système perturbé (14) est lui même intégrable, d'intégrale première

$$H_{\varepsilon} = \left(1 - \frac{b_{11}}{2}\varepsilon\right)H_{\eta} + \varepsilon R_1,$$

et de facteur intégrant associé ψ . Pour de telles perturbations, le théorème de Poincaré-Lyapounov (*cf.* Introduction, Théorème 1.10) assure que la singularité demeure un centre pour des valeurs du paramètre ε assez petites. Il s'en suit la nullité de la troisième fonction de Melnikov

$$M_3 \equiv 0,$$

et même la nullité de toutes les fonctions de Melnikov :

$$\forall k \ge 2, \quad M_k \equiv 0,$$

ce que nous montrerons dans la suite.

Pour les autres cas, nous avons besoin de l'expression de la troisième fonction de Melni-kov M_3 :

$$M_3(h) = -\oint_{H_\eta=h} g_2\omega.$$

Pour calculer cette intégrale curviligne, nous recherchons une décomposition de $g_2\omega$ sous la forme

$$g_2\omega = g_3 dH_\eta + dR_3 + N_3$$

où g_3 , R_3 sont des fonctions analytiques sur le demi-plan $\{y > 0\}$ et N_3 est une 1-forme.

Donc l'expression de M_3 se réduit à nouveau à

$$M_3(h) = -\oint_{H_\eta=h} N_3.$$

En faisant appel à la décomposition de ω obtenue dans le Lemme 5.2, on trouve

$$g_2\omega = g_1g_2dH_\eta + g_2dR_1 + g_2N_1.$$

Dans la mesure où

$$N_1 \equiv 0,$$

il suffit d'étudier le terme $g_2 dR_1$.

5.3.2 Cas $c_1 = c_4 = a_{11} = 0$

Les fonctions g_2 et R_1 dépendent uniquement de y et H_{η} ,

$$g_2(y) = \frac{b_{11}^2}{4} + \frac{1}{2} \left(3b_{10}b_{11} + b_{10}c_0 \right) \frac{1}{y} + \frac{3}{2}b_{10}^2 \frac{1}{y^2} - b_{11}c_0 \ln y - \frac{3}{2}b_{10}c_0 \frac{\ln y}{y} + \frac{1}{2}c_0^2 \ln^2 y,$$

$$R_1(y, H_\eta) = c_2 \frac{1}{y} + c_3 \frac{1}{y^2} + a_{02} \ln y + b_{10} \frac{1}{y}H_\eta - c_0 \ln yH_\eta.$$

Par conséquent, la décomposition de $g_2\omega$ n'apporte aucune contribution à N_3 , si bien que

$$N_3 \equiv 0,$$

et par voie de conséquence

$$M_3 \equiv 0.$$

En fait, nous montrerons par la suite que lorsque de telles conditions sur c_1 , c_4 et a_{11} sont satisfaites, toutes les fonctions de Melnikov d'ordre supérieur sont identiquement nulles.

5. Seconde étape de perturbation : recherche de cycles limites

5.3.3 Cas $c_0 = c_1 = c_4 - \eta a_{11} = 0$

Les fonctions g_2 et R_1 s'écrivent

$$g_2(x,y) = \frac{b_{11}^2}{4} + \frac{3}{2}b_{10}b_{11}\frac{1}{y} + \frac{3}{2}b_{10}^2\frac{1}{y^2} + \frac{3}{2}a_{11}b_{10}\frac{x}{y},$$

$$R_1(x,y,H_\eta) = c_2\frac{1}{y} + c_3\frac{1}{y^2} + a_{02}\ln y - a_{11}\frac{x}{y} + \eta a_{11}\frac{x}{y^2} + b_{10}\frac{1}{y}H_\eta.$$

On pose

$$g_2 dR_1 = d \left[\frac{b_{11}^2}{2} R_1 \right] + \tilde{g}_2 d\tilde{R}_1 + \tilde{g}_2 d\tilde{R}_1 + \hat{g}_2 d\tilde{R}_1 + \hat{g}_2 d\tilde{R}_1,$$

avec

$$\tilde{g}_{2}(y) = \frac{3}{2}b_{10}\left(b_{11}\frac{1}{y} + b_{10}\frac{1}{y^{2}}\right), \quad \tilde{R}_{2}(y, H_{\eta}) = c_{2}\frac{1}{y} + c_{3}\frac{1}{y^{2}} + a_{02}\ln y + b_{10}\frac{1}{y}H_{\eta},$$
$$\hat{g}_{2}(x, y) = \frac{3}{2}a_{11}b_{10}\frac{x}{y}, \qquad \hat{R}_{2}(x, y) = -a_{11}\frac{x}{y} + \eta a_{11}\frac{x}{y^{2}}.$$

(a) Décomposition de $\tilde{g}_2 d\tilde{R}_1$

$$\tilde{g}_2 d\tilde{R}_1 = G_1^1(y) + G_2^1(y, H_\eta),$$

avec

$$G_1^1(y) = \frac{3}{2}b_{10}\left(b_{11}\frac{1}{y} + b_{10}\frac{1}{y^2}\right)d\left[c_2\frac{1}{y} + c_3\frac{1}{y^2} + a_{02}\ln y\right],$$

$$G_2^1(y, H_\eta) = \frac{3}{2}b_{10}\left(b_{11}\frac{1}{y} + b_{10}\frac{1}{y^2}\right)d\left[b_{10}\frac{1}{y}H_\eta\right].$$

Il est clair que G_1^1 peut s'écrire comme la différentielle d'une fonction, de même que F_1 précédemment. La seule contribution à g_3 et N_3 est apportée par G_2^1 :

$$G_2^1(y, H_\eta) = \frac{3}{2} b_{10}^2 \left(b_{11} \theta_{0,1,0,1} + b_{10} \theta_{0,1,0,2} \right).$$

Lemme 5.17. On a les identités suivantes

$$\begin{split} \theta_{0,1,0,1} &= \frac{1}{2y^2} dH_\eta + d \left[\frac{H_\eta}{2y^2} \right], \\ \theta_{0,1,0,2} &= \frac{2}{3y^3} dH_\eta + d \left[\frac{H_\eta}{3y^3} \right]. \end{split}$$

D'où

$$\begin{split} G_2^1(y,H_\eta) &= \frac{3}{2} b_{10}^2 \left(\frac{b_{11}}{2} \frac{1}{y^2} dH_\eta + b_{11} d\left[\frac{H_\eta}{2y^2} \right] + \frac{2b_{10}}{3} \frac{1}{y^3} dH_\eta + b_{10} d\left[\frac{H_\eta}{3y^3} \right] \right), \\ &= b_{10}^2 \left(\frac{3}{4} b_{11} \frac{1}{y^2} + b_{10} \frac{1}{y^3} \right) dH_\eta + d\left[b_{10}^2 H_\eta \left(\frac{3}{4} b_{11} \frac{1}{y^2} + \frac{b_{10}}{2} \frac{1}{y^3} \right) \right], \end{split}$$

 et

$$\tilde{g}_2 d\tilde{R}_1 = b_{10}^2 \left(\frac{3}{4} b_{11} \frac{1}{y^2} + b_{10} \frac{1}{y^3} \right) dH_\eta + d[].$$
⁽¹⁹⁾

(b) Décomposition de $\tilde{g}_2 d\hat{R}_1$

$$\begin{split} \tilde{g}_2 d\hat{R}_1 &= \frac{3}{2} b_{10} \left(b_{11} \frac{1}{y} + b_{10} \frac{1}{y^2} \right) d \left[-a_{11} \frac{x}{y} + \eta a_{11} \frac{x}{y^2} \right] \\ &= \frac{3}{2} b_{10} a_{11} \left(-b_{11} \frac{1}{y} d \left[\frac{x}{y} \right] + \eta b_{11} \frac{1}{y} d \left[\frac{x}{y^2} \right] - b_{10} \frac{1}{y^2} d \left[\frac{x}{y} \right] + \eta b_{10} \frac{1}{y^2} d \left[\frac{x}{y^2} \right] \right). \end{split}$$

Lemme 5.18. On a les identités suivantes

$$\begin{aligned} \frac{1}{y^2}d\left[\frac{x}{y}\right] &= d\left[\frac{x}{3y^3}\right] + \frac{2}{3}\omega_{00},\\ \frac{1}{y^2}d\left[\frac{x}{y^2}\right] &= d\left[\frac{x}{2y^4}\right] + \frac{dx}{2y^4},\\ \eta\frac{dx}{y^4} &= \left(-\frac{5x}{3y^2} + \frac{10x}{3y}H_\eta\right)dH_\eta + d\left[\frac{x}{3y^3} + \frac{2x}{3y^2}H_\eta - \frac{4x}{3y}H_\eta^2\right] + \frac{1}{3}\left(5 + 2\eta H_\eta\right)\omega_{00}. \end{aligned}$$

PREUVE.

$$\frac{1}{y^2}d\left[\frac{x}{y}\right] = \omega_{00} - \frac{x}{y^4}dy = \omega_{00} + d\left[\frac{x}{3y^3}\right] - \frac{1}{3}\omega_{00},$$

$$\frac{1}{y^2}d\left[\frac{x}{y^2}\right] = \frac{dx}{y^4} - \frac{2x}{y^5}dy = \frac{dx}{y^4} + d\left[\frac{x}{2y^4}\right] - \frac{dx}{2y^4}.$$

Pour l'expression de $\frac{dx}{y^4}$, on a

$$\frac{dx}{y^4} = d\left[\frac{x}{y^4}\right] + \frac{4x}{y^5}dy,$$
$$\omega_{00} = d\left[\frac{x}{y^3}\right] + \frac{3x}{y^4}dy,$$

 soit

$$\begin{aligned} 3\eta \frac{dx}{y^4} - 4\omega_{00} &= d \left[3\eta \frac{x}{y^4} - 4\frac{x}{y^3} \right] + 12\frac{x}{y^2} \left(\frac{\eta}{y^3} - \frac{1}{y^2} \right) dy \\ &= d \left[3\eta \frac{x}{y^4} - 4\frac{x}{y^3} \right] + 12\frac{x}{y^2} \left(-dH_\eta + \frac{2x}{y^2}dx - \frac{2x^2}{y^3}dy \right) \\ &= d \left[3\eta \frac{x}{y^4} - 4\frac{x}{y^3} \right] - 12\frac{x}{y^2}dH_\eta + 24\frac{x^2}{y^4}dx - 24\frac{x^3}{y^5}dy. \end{aligned}$$

D'autre part,

$$\begin{split} d\left[\frac{x^3}{y^4}\right] &= \frac{3x^2}{y^4}dx - \frac{4x^3}{y^5}dy, \\ \frac{x^2}{y^4}dx &= \frac{x}{2y^2} \times \frac{2x}{y^2}dx = \frac{x}{2y^2}dH_\eta + H_\eta\delta_{10} + \frac{x}{2y^4}dy \\ &= \frac{x}{2y^2}dH_\eta + \frac{x}{y}H_\eta dH_\eta + d\left[-\frac{2x}{3y^2}H_\eta - \frac{2x}{3y}H_\eta^2\right] + \left(\frac{2x}{3y^2} + \frac{2x}{3y}H_\eta\right)dH_\eta \\ &\quad + \frac{\eta}{3}H_\eta\omega_{00} + \frac{1}{6}\omega_{00} + d\left[-\frac{x}{6y^3}\right] \\ &= \left(\frac{7x}{6y^2} + \frac{5x}{3y}H_\eta\right)dH_\eta + d\left[-\frac{x}{6y^3} - \frac{2x}{3y^2}H_\eta - \frac{2x}{3y}H_\eta^2\right] + \frac{\eta}{3}H_\eta\omega_{00} + \frac{1}{6}\omega_{00}, \end{split}$$

si bien que

$$\begin{aligned} 3\eta \frac{dx}{y^4} - 4\omega_{00} &= d \left[3\eta \frac{x}{y^4} - 4\frac{x}{y^3} \right] - 12\frac{x}{y^2} dH_\eta + 6\frac{x^2}{y^4} dx + d \left[\frac{6x^3}{y^4} \right] \\ &= \left(-\frac{5x}{y^2} + \frac{10x}{y} H_\eta \right) dH_\eta + d \left[3\eta \frac{x}{y^4} - \frac{5x}{y^3} + \frac{6x^3}{y^4} - \frac{4x}{y^2} H_\eta - \frac{4x}{y} H_\eta^2 \right] \\ &+ (1 + 2\eta H_\eta)\omega_{00}. \end{aligned}$$

Au final,

$$3\eta \frac{x}{y^4} - \frac{5x}{y^3} + \frac{6x^3}{y^4} - \frac{4x}{y^2}H_\eta - \frac{4x}{y}H_\eta^2 = 3\eta \frac{x}{y^4} - \frac{5x}{y^3} + \frac{6x}{y^2}\left(H_\eta + \frac{1}{y} - \frac{\eta}{2y^2}\right) - \frac{4x}{y^2}H_\eta - \frac{4x}{y}H_\eta^2$$
$$= \frac{x}{y^3} + \frac{2x}{y^2}H_\eta - \frac{4x}{y}H_\eta^2,$$
bù le résultat.

d'où le résultat.

D'après les Lemmes 5.11 et 5.18, on a

$$\begin{split} \tilde{g}_2 d\hat{R}_1 &= \frac{3}{2} b_{10} a_{11} \left[-b_{11} \left(\frac{x}{y} dH_\eta + \frac{\eta}{3} \omega_{00} \right) + \frac{\eta}{3} b_{11} \omega_{00} \right. \\ &\left. -\frac{2}{3} b_{10} \omega_{00} + \frac{b_{10}}{2} \left(-\frac{5x}{3y^2} + \frac{10x}{3y} H_\eta \right) dH_\eta + \frac{b_{10}}{6} \left(5 + 2\eta H_\eta \right) \omega_{00} \right] + d\left[\right], \end{split}$$

 soit

$$\tilde{g}_2 d\hat{R}_1 = \frac{3}{2} b_{10} a_{11} \left(-b_{11} \frac{x}{y} - \frac{5}{6} b_{10} \frac{x}{y^2} + \frac{5}{3} b_{10} \frac{x}{y} H_\eta \right) dH_\eta + \frac{1}{4} a_{11} b_{10}^2 \left(1 + 2\eta H_\eta \right) \omega_{00} + d\left[\right].$$
(20)

Décomposition de $\hat{g}_2 d\tilde{R}_1$ (c)

$$\hat{g}_{2}d\tilde{R}_{1} = \frac{3}{2}a_{11}b_{10}\frac{x}{y}d\left[c_{2}\frac{1}{y} + c_{3}\frac{1}{y^{2}} + a_{02}\ln y + b_{10}\frac{1}{y}H_{\eta}\right]$$

$$= \frac{3}{2}a_{11}b_{10}\left(b_{10}\frac{x}{y^{2}}dH_{\eta} + (c_{2} + b_{10}H_{\eta})\frac{x}{y}d\left[\frac{1}{y}\right] + c_{3}\frac{x}{y}d\left[\frac{1}{y^{2}}\right] + a_{02}\frac{x}{y}d\left[\ln y\right]\right).$$

Lemme 5.19. On a les identités

$$\frac{x}{y}d\left[\ln y\right] = d\left[-\frac{x}{y}\right] + \omega_{02},$$

$$\frac{x}{y}d\left[\frac{1}{y}\right] = -\frac{x}{y}dH_{\eta} + d\left[\frac{2x}{3y^2} + \frac{2x}{3y}H_{\eta}\right] - \frac{\eta}{3}\omega_{00},$$

$$\frac{x}{y}d\left[\frac{1}{y^2}\right] = d\left[\frac{2x}{3y^3}\right] - \frac{2}{3}\omega_{00}.$$

PREUVE. Il suffit juste de remarquer que :

$$\begin{split} &\frac{x}{y}d\left[\ln y\right] = \delta_{11}, \\ &\frac{x}{y}d\left[\frac{1}{y}\right] = -\delta_{10}, \\ &\frac{x}{y}d\left[\frac{1}{y^2}\right] = -\frac{2x}{y^4}dy = d\left[\frac{2x}{3y^3}\right] - \frac{2}{3y^3}dx. \end{split}$$

Ainsi,

$$\begin{aligned} \hat{g}_2 d\tilde{R}_1 &= \frac{3}{2} a_{11} b_{10} \left\{ b_{10} \frac{x}{y^2} dH_\eta - (c_2 + b_{10} H_\eta) \frac{x}{y} dH_\eta \\ &+ d \left[(c_2 + b_{10} H_\eta) \left(\frac{2x}{3y^2} + \frac{2x}{3y} H_\eta \right) \right] - b_{10} \left(\frac{2x}{3y^2} + \frac{2x}{3y} H_\eta \right) dH_\eta \\ &- (c_2 + b_{10} H_\eta) \frac{\eta}{3} \omega_{00} + d \left[c_3 \frac{2x}{3y^3} \right] - \frac{2}{3} c_3 \omega_{00} + d \left[-a_{02} \frac{x}{y} \right] + a_{02} \omega_{02} \right\}, \end{aligned}$$

$$\hat{g}_{2}d\tilde{R}_{1} = \frac{1}{2}a_{11}b_{10}\left(-3c_{2}\frac{x}{y} + b_{10}\frac{x}{y^{2}} - 5b_{10}\frac{x}{y}H_{\eta}\right)dH_{\eta} + d\left[\right] - a_{11}b_{10}\left(c_{3} + \frac{\eta}{2}c_{2} + \frac{\eta}{2}b_{10}H_{\eta}\right)\omega_{00} + \frac{3}{2}a_{11}a_{02}b_{10}\omega_{02}.$$
 (21)

(d) Décomposition de $\hat{g}_2 d\hat{R}_1$

$$\hat{g}_2 d\hat{R}_1 = \frac{3}{2} a_{11} b_{10} \frac{x}{y} d\left[-a_{11} \frac{x}{y} + \eta a_{11} \frac{x}{y^2} \right] = \frac{3}{2} a_{11}^2 b_{10} \left(-\frac{x}{y} d\left[\frac{x}{y} \right] + \eta \frac{x}{y} d\left[\frac{x}{y^2} \right] \right).$$

Lemme 5.20. On a les identités

$$\frac{x}{y}d\left[\frac{x}{y}\right] = d\left[\frac{x^2}{2y^2}\right],$$
$$\frac{x}{y}d\left[\frac{x}{y^2}\right] = -\frac{1}{2y}dH_\eta + d\left[\frac{3}{4y^2} - \frac{\eta}{3y^3} + \frac{1}{y}H_\eta\right].$$

PREUVE. La première est évidente. Pour la seconde, on trouve

$$\frac{x}{y}d\left[\frac{x}{y^2}\right] = \omega_{10} - \frac{2x}{y^4}dy = \omega_{10} + d\left[\frac{2x^2}{3y^3}\right] - \frac{4}{3}\omega_{10}$$
$$= -\frac{1}{3}\omega_{10} + d\left[\frac{2}{3y}\left(H_\eta + \frac{1}{y} - \frac{\eta}{2y^2}\right)\right]$$
$$= -\frac{1}{2y}dH_\eta + d\left[\frac{3}{4y^2} - \frac{\eta}{3y^3} + \frac{1}{y}H_\eta\right].$$

Par conséquent,

$$\hat{g}_2 d\hat{R}_1 = -\frac{3}{4} a_{11}^2 b_{10} \frac{1}{y} dH_\eta + d[].$$
(22)

Finalement, on trouve la décomposition de $g_2\omega$ suivante : Lemme 5.21. La 1-forme $g_2\omega$ peut se décomposer sous la forme

$$g_2\omega = g_3 dH_\eta + dR_3 + N_3,$$

avec

$$\begin{split} g_3(x,y) &= -\frac{b_{11}^3}{8} + \frac{d_1}{y} + \frac{d_2}{y^2} + \frac{d_3}{y^3} + d_4 \frac{x}{y} + d_5 \frac{x}{y^2}, \\ R_3 \ est \ une \ fonction \ analytique \ sur \ le \ demi-plan \ \{y > 0\}, \\ N_3 &= A_3^1 \omega_{00} + B_3^1 \omega_{02}, \end{split}$$

et

$$\begin{split} d_1 &= -\frac{3}{8} b_{10} (2a_{11}^2 + 3b_{11}^2), \qquad d_2 &= -\frac{9}{4} b_{10}^2 b_{11}, \qquad d_3 = -\frac{5}{4} b_{10}^3, \\ d_4 &= -\frac{3}{4} a_{11} b_{10} (3b_{11} + 2c_2), \qquad d_5 = -3a_{11} b_{10}^2, \\ A_3^1 &= \frac{1}{4} a_{11} b_{10} (b_{10} - 2\eta c_2 - 4c_3), \quad B_3^1 &= \frac{3}{2} a_{11} a_{02} b_{10}. \end{split}$$

PREUVE. On a

$$g_3 = g_1 g_2 + \bar{g}_3,$$

où \bar{g}_3 est la contribution de $\tilde{g}_2 d\tilde{R}_1$, $\tilde{g}_2 d\tilde{R}_1$, $\hat{g}_2 d\tilde{R}_1$ et $\hat{g}_2 d\hat{R}_1$:

$$g_{3} = \left(-\frac{b_{11}}{2} - \frac{3}{2}b_{10}\frac{1}{y}\right) \left(\frac{b_{11}^{2}}{4} + \frac{3}{2}b_{10}b_{11}\frac{1}{y} + \frac{3}{2}b_{10}^{2}\frac{1}{y^{2}} + \frac{3}{2}a_{11}b_{10}\frac{x}{y}\right) \\ + b_{10}^{2} \left(\frac{3}{4}b_{11}\frac{1}{y^{2}} + b_{10}\frac{1}{y^{3}}\right) + \frac{3}{2}b_{10}a_{11} \left(-b_{11}\frac{x}{y} - \frac{3}{2}b_{10}\frac{x}{y^{2}} + b_{10}H_{\eta}\frac{x}{y}\right) \\ - \frac{3}{2}a_{11}b_{10}c_{2}\frac{x}{y} + \frac{1}{2}a_{11}b_{10}^{2}\frac{x}{y^{2}} - \frac{5}{2}a_{11}b_{10}^{2}H_{\eta}\frac{x}{y} - \frac{3}{4}a_{11}^{2}b_{10}\frac{1}{y} \\ = -\frac{b_{11}^{3}}{8} - \frac{3}{8}b_{10}(2a_{11}^{2} + 3b_{11}^{2})\frac{1}{y} - \frac{9}{4}b_{10}^{2}b_{11}\frac{1}{y^{2}} - \frac{5}{4}b_{10}^{3}\frac{1}{y^{3}} - \frac{3}{4}a_{11}b_{10}(3b_{11} + 2c_{2})\frac{x}{y} - 3a_{11}b_{10}^{2}\frac{x}{y^{2}}.$$

L'expression de N_3 est obtenue à partir des décompositions (19), (20), (21) et (22).

En utilisant l'expression de N_3 ,

$$\begin{split} M_3(h) &= -\oint_{H_\eta = h} N_3 \\ &= -2\int_{\alpha(h)}^{\beta(h)} \frac{1}{y^3} [A_3^1 + B_3^1 y^2] dx \\ &= -2[A_3^1 I_3(h) + B_3^1 I_1(h)], \end{split}$$

on en déduit la proposition suivante et son corollaire :

Proposition 5.22. La troisième fonction de Melnikov M_3 s'exprime comme un polynôme de degré 2 en $\sqrt{-h}$

$$M_3(h) = P_3^1(\sqrt{-h}),$$

 $o \dot{u}$

$$P_3^1(X) = \frac{\pi}{\sqrt{2\eta^{5/2}}} (1 - \sqrt{2\eta}X) Q_3^1(X),$$

et

$$Q_3^1(X) = -3\sqrt{2\eta}A_3^1X - (3A_3^1 + 2\eta^2B_3^1).$$

Corollaire 5.23. M_3 a au plus un zéro dans l'intervalle ouvert $]-1/2\eta, 0[$. Cette borne est atteinte pour certains coefficients des fonctions de la perturbation.
5.3.4 Cas $c_1 = a_{11} = 3b_{10} + 2\eta c_0 = 0$

Les fonctions g_2 et R_1 valent alors

$$g_2(x,y) = \frac{b_{11}^2}{4} - \frac{\eta}{3}c_0(3b_{11} + c_0)\frac{1}{y} + \frac{2}{3}\eta^2 c_0^2\frac{1}{y^2} - b_{11}c_0\ln y + \eta c_0^2\frac{\ln y}{y} + \frac{1}{2}c_0^2\ln^2 y - c_0c_4\frac{x}{y},$$

$$R_1(x,y,H_\eta) = c_2\frac{1}{y} + c_3\frac{1}{y^2} + a_{02}\ln y - \frac{2}{3}\eta c_0H_\eta\frac{1}{y} - c_0H_\eta\ln y + c_4\frac{x}{y^2}.$$

Posons

$$g_2 dR_1 = d \left[\frac{b_{11}^2}{4} R_1 \right] + \tilde{g}_2 d\tilde{R}_1 + \tilde{g}_2 d\hat{R}_1 + \hat{g}_2 d\tilde{R}_1 + \hat{g}_2 d\tilde{R}_1 + \hat{g}_2 d\hat{R}_1$$

avec

On ne s'intéresse ici qu'aux contributions de ces termes pour la 1-forme N_3 . On appelle $\tilde{\tilde{N}}_3$, $\hat{\tilde{N}}_3$ et \hat{N}_3 les contributions respectives de $\tilde{g}_2 d\tilde{R}_1$, $\tilde{g}_2 d\tilde{R}_1$, $\hat{g}_2 d\tilde{R}_1$ et $\hat{g}_2 d\hat{R}_1$.

(a) Calcul de $\tilde{\tilde{N}}_3$

$$\tilde{g}_2 d\tilde{R}_1 = G_1^2(y) + G_2^2(y, H_\eta),$$

avec

$$G_1^2(y) = \tilde{g}_2 \ d\left[c_2 \frac{1}{y} + c_3 \frac{1}{y^2} + a_{02} \ln y\right],$$

$$G_2^2(y, H_\eta) = \tilde{g}_2 \ d\left[-\frac{2}{3}\eta c_0 H_\eta \frac{1}{y} - c_0 H_\eta \ln y\right].$$

Il est clair que G_1^2 peut s'écrire comme la différentielle d'une fonction. Par ailleurs, G_2^2 étant combinaison linéaire des 1-formes $\theta_{i,j,k,l}$, il vient :

$$\tilde{\tilde{N}}_3 \equiv 0.$$

(b) Calcul de $\hat{\tilde{N}}_3$

$$\begin{split} \tilde{g}_2 d\hat{R}_1 &= \left(-\frac{\eta}{3} c_0 (3b_{11} + c_0) \frac{1}{y} + \frac{2}{3} \eta^2 c_0^2 \frac{1}{y^2} - b_{11} c_0 \ln y + \eta c_0^2 \frac{\ln y}{y} + \frac{1}{2} c_0^2 \ln^2 y \right) d \left[c_4 \frac{x}{y^2} \right] \\ &= c_0 c_4 \left\{ -\frac{\eta}{3} (3b_{11} + c_0) \frac{1}{y} d \left[\frac{x}{y^2} \right] + \frac{2}{3} \eta^2 c_0 \frac{1}{y^2} d \left[\frac{x}{y^2} \right] \right. \\ &\left. - b_{11} \ln y d \left[\frac{x}{y^2} \right] + \eta c_0 \frac{\ln y}{y} d \left[\frac{x}{y^2} \right] + \frac{1}{2} c_0 \ln^2 y d \left[\frac{x}{y^2} \right] \right\}. \end{split}$$

Lemme 5.24. On a les identités

$$\begin{aligned} \frac{1}{y}d\left[\frac{x}{y^2}\right] &= d\left[\right] + \frac{1}{3}\omega_{00}, \\ \frac{1}{y^2}d\left[\frac{x}{y^2}\right] &= (\)dH_\eta + d\left[\right] + \frac{1}{6\eta}(5 + 2\eta H_\eta)\omega_{00}, \\ \ln y \ d\left[\frac{x}{y^2}\right] &= (\)dH_\eta + d\left[\right] - \frac{\eta}{3}\omega_{00}, \\ \frac{\ln y}{y}d\left[\frac{x}{y^2}\right] &= d\left[\right] - \frac{2}{9}\omega_{00} + \frac{1}{3}\ln y \ \omega_{00}, \\ \ln^2 y \ d\left[\frac{x}{y^2}\right] &= (\)dH_\eta + d\left[\right] - \frac{4\eta}{9}\omega_{00} - \frac{2\eta}{3}\ln y \ \omega_{00} - \frac{4}{3}H_\eta\omega_{02}. \end{aligned}$$

PREUVE. Les trois premières identités ont déjà été démontrées dans les Lemmes 5.11 et 5.18. Pour les deux dernières, on trouve :

$$\begin{aligned} \frac{\ln y}{y} d\left[\frac{x}{y^2}\right] &= \frac{\ln y}{y^3} dx - \frac{2x}{y^4} \ln y dy \\ &= \frac{\ln y}{y^3} dx + d\left[\frac{2x}{9y^3} \left(3\ln y + 1\right)\right] - \frac{2}{9y^3} (3\ln y + 1) dx \\ &= d\left[\right] - \frac{2}{9}\omega_{00} + \frac{1}{3}\ln y \ \omega_{00}, \end{aligned}$$

 et

$$\begin{aligned} \ln^2 y \ d\left[\frac{x}{y^2}\right] &= \frac{\ln^2 y}{y^2} dx - \frac{2x}{y^3} \ln^2 y dy \\ &= \frac{\ln^2 y}{y^2} dx + d\left[\frac{x}{2y^2} \left(2\ln^2 y + 2\ln y + 1\right)\right] - \frac{\ln^2 y}{y^2} dx - \frac{\ln y}{y^2} dx - \frac{1}{2y^2} dx \\ &= d[\] - \left(\ln y + \frac{1}{2}\right) \omega_{01} \\ &= (\) dH_\eta + d[\] - \ln y d\left[-\frac{x}{3y^2} - \frac{4x}{3y}H_\eta\right] - \frac{\eta}{3}\omega_{00} - \frac{2\eta}{3}\ln y \ \omega_{00} \\ &= (\) dH_\eta + d[\] + \frac{1}{3}\ln y d\left[\frac{x}{y^2}\right] + \frac{4}{3}H_\eta \ln y d\left[\frac{x}{y}\right] - \frac{\eta}{3}\omega_{00} - \frac{2\eta}{3}\ln y \ \omega_{00} \\ &= (\) dH_\eta + d[\] - \frac{4\eta}{9}\omega_{00} - \frac{2\eta}{3}\ln y \ \omega_{00} - \frac{4}{3}H_\eta \omega_{02}, \end{aligned}$$

d'après le Lemme 5.11.

Ainsi,

$$\hat{\tilde{N}}_{3} = c_{0}c_{4} \left[-\frac{\eta}{3}(3b_{11}+c_{0}) \times \frac{1}{3}\omega_{00} + \frac{2}{3}\eta^{2}c_{0} \times \frac{1}{6\eta}(5+2\eta H_{\eta})\omega_{00} - b_{11} \times \left(-\frac{\eta}{3}\right)\omega_{00} \right. \\ \left. +\eta c_{0} \times \left(-\frac{2}{9}\omega_{00} + \frac{1}{3}\ln y \,\,\omega_{00} \right) + \frac{1}{2}c_{0} \times \left(-\frac{4\eta}{9}\omega_{00} - \frac{2\eta}{3}\ln y \,\,\omega_{00} - \frac{4}{3}H_{\eta}\omega_{02} \right) \right] \\ \left. = \frac{2}{9}c_{0}^{2}c_{4}H_{\eta} \left(\eta^{2}\omega_{00} - 3\omega_{02} \right).$$

(c) Calcul de $\tilde{\hat{N}}_3$

$$\begin{split} \hat{g}_2 d\tilde{R}_1 &= -c_0 c_4 \frac{x}{y} d\left[c_2 \frac{1}{y} + c_3 \frac{1}{y^2} + a_{02} \ln y - \frac{2}{3} \eta c_0 H_\eta \frac{1}{y} - c_0 H_\eta \ln y \right] \\ &= -c_0 c_4 \left\{ \left(c_2 - \frac{2}{3} \eta c_0 H_\eta \right) \frac{x}{y} d\left[\frac{1}{y} \right] + c_3 \frac{x}{y} d\left[\frac{1}{y^2} \right] + (a_{02} - c_0 H_\eta) \frac{x}{y} d[\ln y] \right. \\ &\left. - c_0 \left(\frac{2\eta x}{3y^2} + \frac{x}{y} \ln y \right) dH_\eta \right\}. \end{split}$$

D'après le Lemme 5.19, on a

$$\tilde{\hat{N}}_{3} = -c_{0}c_{4}\left[\left(c_{2} - \frac{2}{3}\eta H_{\eta}\right) \times \left(-\frac{\eta}{3}\right)\omega_{00} + c_{3} \times \left(-\frac{2}{3}\right)\omega_{00} + (a_{02} - c_{0}H_{\eta})\omega_{02}\right]$$
$$= -c_{0}c_{4}\left[\left(-\frac{\eta}{3}c_{2} - \frac{2}{3}c_{3} + \frac{2}{9}\eta^{2}c_{0}H_{\eta}\right)\omega_{00} + (a_{02} - c_{0}H_{\eta})\omega_{02}\right].$$

(d) Calcul de $\hat{\hat{N}}_3$

$$\hat{g}_2 d\hat{R}_1 = -c_0 c_4 \frac{x}{y} d\left[c_4 \frac{x}{y^2}\right] = -c_0 c_4^2 \frac{x}{y} d\left[\frac{x}{y^2}\right].$$

D'après le Lemme 5.20,

$$\hat{N}_3 \equiv 0$$

Finalement,

$$N_3 = \tilde{\tilde{N}}_3 + \hat{\tilde{N}}_3 + \tilde{\hat{N}}_3 + \hat{\hat{N}}_3,$$

et les calculs précédents fournissent la décomposition de $g_2\omega$:

Lemme 5.25. La 1-forme $g_2\omega$ peut se décomposer sous la forme

$$g_2\omega = g_3 dH_\eta + dR_3 + N_3,$$

où g_3 et R_3 sont des fonctions analytiques sur le demi-plan $\{y > 0\}$ et

$$N_3 = A_3^2 \omega_{00} + (B_3^2 + C_3^2 H_\eta) \omega_{02},$$

avec

$$A_3^2 = \frac{c_0 c_4}{3} (\eta c_2 + 2c_3), \quad B_3^2 = -a_{02} c_0 c_4, \quad C_3^2 = \frac{c_0^2 c_4}{3}$$

On en déduit la proposition suivante et son corollaire :

Proposition 5.26. La troisième fonction de Melnikov M_3 s'exprime comme un polynôme de degré 3 en $\sqrt{-h}$

$$M_3(h) = P_3^2(\sqrt{-h}),$$

 $o \hat{u}$

$$P_3^2(X) = \frac{\pi}{\sqrt{2\eta^{5/2}}} (1 - \sqrt{2\eta}X) Q_3^2(X),$$

et

$$Q_3^2(X) = 2\eta^2 C_3^2 X^2 - 3\sqrt{2\eta} A_3^2 X - (3A_3^2 + 2\eta^2 B_3^2).$$

PREUVE. On utilise l'expression de M_3 ainsi que celle de N_3 fournie par le lemme précédent :

$$M_{3}(h) = -\oint_{H_{\eta}=h} N_{3}$$

= $-2\int_{\alpha(h)}^{\beta(h)} \frac{1}{y^{3}} [A_{3}^{2} + (B_{3}^{2} + C_{3}^{2}H_{\eta})y^{2}]dx$
= $-2[A_{3}^{2}I_{3}(h) + (B_{3}^{2} + C_{3}^{2}h)I_{1}(h)],$

avec

$$I_1(h) = \frac{\pi}{\sqrt{2\eta}} (1 - \sqrt{2\eta}\sqrt{-h}) \quad \text{et} \quad I_3(h) = \frac{3\pi}{2\sqrt{2\eta^{5/2}}} (1 + 2\eta h),$$

d'où l'expression annoncée pour M_3 .

Corollaire 5.27. M_3 a au plus deux zéros dans l'intervalle ouvert $]-1/2\eta, 0[$. Cette borne est atteinte pour certains coefficients des fonctions de la perturbation.

5.3.5 Cas $c_0 = a_{02} = 3b_{10}(c_4 - \eta a_{11}) + 2c_1(2c_3 + \eta c_2) = 0$

Dans ce cas, les fonctions g_2 et R_1 s'écrivent

$$g_{2}(x,y) = \frac{b_{11}^{2}}{4} + \frac{2}{3}c_{1}^{2}H_{\eta} + \left(\frac{3}{2}b_{10}b_{11} - \frac{1}{2}c_{1}c_{4} + \frac{2}{3}c_{1}^{2}\right)\frac{1}{y} + \left(\frac{3}{2}b_{10}^{2} - \frac{\eta}{3}c_{1}^{2}\right)\frac{1}{y^{2}} + \left(-c_{1}c_{2} + \frac{3}{2}a_{11}b_{10} - b_{11}c_{1}\right)\frac{x}{y} - 2b_{10}c_{1}\frac{x}{y^{2}},$$

$$R_{1}(x,y,H_{\eta}) = c_{2}\frac{1}{y} + c_{3}\frac{1}{y^{2}} - a_{11}\frac{x}{y} + c_{4}\frac{x}{y^{2}} + b_{10}H_{\eta}\frac{1}{y} - \frac{2}{3}c_{1}H_{\eta}\frac{x}{y}.$$

Posons

$$g_2 dR_1 = d\left[\left(\frac{b_{11}^2}{4} + \frac{2}{3}c_1^2 H_\eta\right)R_1\right] - \frac{2}{3}c_1^2 R_1 dH_\eta + \tilde{g}_2 d\tilde{R}_1 + \tilde{g}_2 d\tilde{R}_1 + \hat{g}_2 d\tilde{R}_1 + \hat{g}_2$$

avec

$$\begin{split} \tilde{g}_2(y) &= d_1 \frac{1}{y} + d_2 \frac{1}{y^2}, & \hat{g}_2(x,y) = d_3 \frac{x}{y} + d_4 \frac{x}{y^2}, \\ \tilde{R}_1(y, H_\eta) &= c_2 \frac{1}{y} + c_3 \frac{1}{y^2} + b_{10} H_\eta \frac{1}{y}, & \hat{R}_1(x,y) = -a_{11} \frac{x}{y} + c_4 \frac{x}{y^2} - \frac{2}{3} c_1 H_\eta \frac{x}{y}, \end{split}$$

où

$$d_1 = \frac{3}{2}b_{10}b_{11} - \frac{1}{2}c_1c_4 + \frac{2}{3}c_1^2, \qquad d_2 = \frac{3}{2}b_{10}^2 - \frac{\eta}{3}c_1^2,$$

$$d_3 = -c_1c_2 + \frac{3}{2}a_{11}b_{10} - b_{11}c_1, \quad d_4 = -2b_{10}c_1.$$

(a) Décomposition de $\tilde{g_2}d\tilde{R}_1$

$$\tilde{g}_2 d\tilde{R}_1 = G_1^3(y) + G_2^3(y, H_\eta).$$

 G_1^3 s'écrit comme la différentielle d'une fonction. L'autre terme se traite comme suit :

$$\begin{split} G_2^3(y, H_\eta) &= \left(d_1 \frac{1}{y} + d_2 \frac{1}{y^2} \right) d \left[b_{10} H_\eta \frac{1}{y} \right] \\ &= b_{10} \left(d_1 \frac{1}{y^2} + d_2 \frac{1}{y^3} \right) dH_\eta - b_{10} H_\eta \left(\frac{d_1}{y^3} + \frac{d_2}{y^4} \right) dy \\ &= b_{10} \left(d_1 \frac{1}{y^2} + d_2 \frac{1}{y^3} \right) dH_\eta + d \left[\right] - b_{10} \left(\frac{d_1}{2y^2} + \frac{d_2}{3y^3} \right) dH_\eta \\ &= b_{10} \left(\frac{d_1}{2y^2} + \frac{2d_2}{3y^3} \right) dH_\eta + d \left[\right], \end{split}$$

d'où

$$\tilde{g}_2 d\tilde{R}_1 = b_{10} \left(\frac{d_1}{2y^2} + \frac{2d_2}{3y^3} \right) dH_\eta + d[].$$

(b) Décomposition de $\tilde{g}_2 d\hat{R}_1$

$$\begin{split} \tilde{g}_2 d\hat{R}_1 &= \left(d_1 \frac{1}{y} + d_2 \frac{1}{y^2} \right) d \left[-a_{11} \frac{x}{y} + c_4 \frac{x}{y^2} - \frac{2}{3} c_1 H_\eta \frac{x}{y} \right] \\ &= -d_1 \left(a_{11} + \frac{2}{3} c_1 H_\eta \right) \frac{1}{y} d \left[\frac{x}{y} \right] + c_4 d_1 \frac{1}{y} d \left[\frac{x}{y^2} \right] \\ &- d_2 \left(a_{11} + \frac{2}{3} c_1 H_\eta \right) \frac{1}{y^2} d \left[\frac{x}{y} \right] + c_4 d_2 \frac{1}{y^2} d \left[\frac{x}{y^2} \right] - \frac{2}{3} c_1 \frac{x}{y} \left(d_1 \frac{1}{y} + d_2 \frac{1}{y^2} \right) dH_\eta \\ &= -d_1 \left(a_{11} + \frac{2}{3} c_1 H_\eta \right) \frac{x}{y} dH_\eta + d[] + \frac{2}{3} c_1 d_1 \left(\frac{x}{3y^2} - \frac{2x}{3y} H_\eta \right) dH_\eta \\ &- d_1 \left(a_{11} + \frac{2}{3} c_1 H_\eta \right) \times \frac{\eta}{3} \omega_{00} + c_4 d_1 \times \frac{1}{3} \omega_{00} + \frac{2}{3} c_1 d_2 \frac{x}{3y^3} dH_\eta \\ &- d_2 \left(a_{11} + \frac{2}{3} c_1 H_\eta \right) \times \frac{2}{3} \omega_{00} + c_4 d_2 \frac{1}{2\eta} \left(-\frac{5x}{3y^2} + \frac{10x}{3y} H_\eta \right) dH_\eta \\ &- d_2 \left(a_{11} + \frac{2}{3} c_1 H_\eta \right) \times \frac{2}{3} \omega_{00} + c_4 d_2 \frac{1}{2\eta} \left(-\frac{5x}{3y^2} + \frac{10x}{3y} H_\eta \right) dH_\eta \\ &+ c_4 d_2 \frac{1}{6\eta} (5 + 2\eta H_\eta) \omega_{00} - \frac{2}{3} c_1 \left(d_1 \frac{x}{y^2} + d_2 \frac{x}{y^3} \right) dH_\eta \\ &= \left(-a_{11} d_1 \frac{x}{y} - \frac{10}{9} c_1 d_1 \frac{x}{y} H_\eta - \frac{4}{9} c_1 d_1 \frac{x}{y^2} + \frac{5}{3\eta} c_4 d_2 \frac{x}{y} H_\eta - \frac{5}{6\eta} c_4 d_2 \frac{x}{y^2} - \frac{4}{9} c_1 d_2 \frac{x}{y^3} \right) dH_\eta \\ &+ d[] + \left[\frac{1}{6\eta} \left(-2a_{11} d_1 \eta^2 + 2\eta c_4 d_1 - 4\eta a_{11} d_2 + 5c_4 d_2 \right) \\ &+ \frac{1}{9} \left(-2\eta c_1 d_1 - 4c_1 d_2 + 3c_4 d_2 \right) H_\eta \right] \omega_{00}, \end{split}$$

d'après les Lemmes 5.11 et 5.18.

(c) Décomposition de $\hat{g}_2 d\tilde{R}_1$

$$\begin{aligned} \hat{g}_2 d\tilde{R}_1 &= \left(d_3 \frac{x}{y} + d_4 \frac{x}{y^2} \right) d \left[c_2 \frac{1}{y} + c_3 \frac{1}{y^2} + b_{10} H_\eta \frac{1}{y} \right] \\ &= d_3 (c_2 + b_{10} H_\eta) \frac{x}{y} d \left[\frac{1}{y} \right] + c_3 d_3 \frac{x}{y} d \left[\frac{1}{y^2} \right] \\ &+ d_4 (c_2 + b_{10} H_\eta) \frac{x}{y^2} d \left[\frac{1}{y} \right] + c_3 d_4 \frac{x}{y^2} d \left[\frac{1}{y^2} \right] + b_{10} \left(d_3 \frac{x}{y^2} + d_4 \frac{x}{y^3} \right) dH_\eta. \end{aligned}$$

Lemme 5.28. On a les identités

$$\frac{x}{y^2}d\left[\frac{1}{y}\right] = d\left[\frac{x}{3y^3}\right] - \frac{1}{3}\omega_{00},$$
$$\frac{x}{y^2}d\left[\frac{1}{y^2}\right] = d\left[\frac{x}{2y^4}\right] - \frac{1}{2}\frac{dx}{y^4}.$$

Les Lemmes 5.18, 5.19 et 5.28 assurent que

$$\begin{split} \hat{g}_{2}d\tilde{R}_{1} &= -d_{3}(c_{2} + b_{10}H_{\eta})\frac{x}{y}dH_{\eta} + d[\] - b_{10}d_{3}\left(\frac{2x}{3y^{2}} + \frac{2x}{3y}H_{\eta}\right)dH_{\eta} \\ &+ d_{3}(c_{2} + b_{10}H_{\eta}) \times \left(-\frac{\eta}{3}\omega_{00}\right) + c_{3}d_{3} \times \left(-\frac{2}{3}\omega_{00}\right) - \frac{1}{3}b_{10}d_{4}\frac{x}{y^{3}}dH_{\eta} \\ &+ d_{4}(c_{2} + b_{10}H_{\eta}) \times \left(-\frac{1}{3}\omega_{00}\right) + c_{3}d_{4}\left(\frac{5}{6\eta}\frac{x}{y^{2}} - \frac{5}{3\eta}\frac{x}{y}H_{\eta}\right)dH_{\eta} \\ &- \frac{1}{6\eta}c_{3}d_{4}(5 + 2\eta H_{\eta})\omega_{00} + b_{10}\left(d_{3}\frac{x}{y^{2}} + d_{4}\frac{x}{y^{3}}\right)dH_{\eta} \\ &= \left(-c_{2}d_{3}\frac{x}{y} - \frac{5}{3}b_{10}d_{3}\frac{x}{y}H_{\eta} + \frac{1}{3}b_{10}d_{3}\frac{x}{y^{2}} - \frac{5}{3\eta}c_{3}d_{4}\frac{x}{y}H_{\eta} + \frac{5}{6\eta}c_{3}d_{4}\frac{x}{y^{2}} + \frac{2}{3}b_{10}d_{4}\frac{x}{y^{3}}\right)dH_{\eta} \\ &+ d[\] + \left[\left(-\frac{\eta}{3}c_{2}d_{3} - \frac{2}{3}c_{3}d_{3} - \frac{1}{3}c_{2}d_{4} - \frac{5}{6\eta}c_{3}d_{4}\right) \\ &+ \left(-\frac{\eta}{3}b_{10}d_{3} - \frac{1}{3}b_{10}d_{4} - \frac{1}{3}c_{3}d_{4}\right)H_{\eta}\right]\omega_{00}. \end{split}$$

(d) Décomposition de $\hat{g}_2 d\hat{R}_1$

$$\begin{aligned} \hat{g}_2 d\hat{R}_1 &= \left(d_3 \frac{x}{y} + d_4 \frac{x}{y^2} \right) d \left[-a_{11} \frac{x}{y} + c_4 \frac{x}{y^2} - \frac{2}{3} c_1 H_\eta \frac{x}{y} \right] \\ &= -d_3 \left(a_{11} + \frac{2}{3} c_1 H_\eta \right) \frac{x}{y} d \left[\frac{x}{y} \right] + c_4 d_3 \frac{x}{y} d \left[\frac{x}{y^2} \right] \\ &- d_4 \left(a_{11} + \frac{2}{3} c_1 H_\eta \right) \frac{x}{y^2} d \left[\frac{x}{y} \right] + c_4 d_4 \frac{x}{y^2} d \left[\frac{x}{y^2} \right] - \frac{2}{3} c_1 \left(d_3 \frac{x^2}{y^2} + d_4 \frac{x^2}{y^3} \right) dH_\eta. \end{aligned}$$

Lemme 5.29. On a les identités

$$\frac{x}{y^2}d\left[\frac{x}{y}\right] = \frac{1}{2y}dH_{\eta} + d\left[\frac{1}{4y^2} - \frac{\eta}{6y^3}\right],$$
$$\frac{x}{y^2}d\left[\frac{x}{y^2}\right] = d\left[\frac{x^2}{2y^4}\right].$$

PREUVE.

$$\frac{x}{y^2}d\left[\frac{x}{y}\right] = \frac{x}{y^3}dy - \frac{x^2}{y^4}dy = \frac{1}{2y}\left(\frac{2x}{y^2}dx - \frac{2x}{y^3}dy\right)$$
$$= \frac{1}{2y}\left(dH_\eta - \frac{1}{y^2}dy + \frac{\eta}{y^3}dy\right) = \frac{1}{2y}dH_\eta - \frac{1}{2y^3}dy + \frac{\eta}{2y^4}dy$$
$$= \frac{1}{2y}dH_\eta + d\left[\frac{1}{4y^2} - \frac{\eta}{6y^3}\right].$$

La seconde est immédiate.

On trouve alors

$$\begin{split} \hat{g}_{2}d\hat{R}_{1} &= d[\] + \frac{2}{3}c_{1}d_{3}\frac{x^{2}}{2y^{2}}dH_{\eta} - \frac{1}{2}c_{4}d_{3}\frac{1}{y}dH_{\eta} - \frac{1}{2}d_{4}\left(a_{11} + \frac{2}{3}c_{1}H_{\eta}\right)\frac{1}{y}dH_{\eta} \\ &+ \frac{2}{3}c_{1}d_{4}\left(\frac{1}{4y^{2}} - \frac{\eta}{6y^{3}}\right)dH_{\eta} - \frac{2}{3}c_{1}\left(d_{3}\frac{x^{2}}{y^{2}} + d_{4}\frac{x^{2}}{y^{3}}\right)dH_{\eta} \\ &= \left(-\frac{1}{2}c_{4}d_{3}\frac{1}{y} - \frac{1}{2}a_{11}d_{4}\frac{1}{y} - c_{1}d_{4}H_{\eta}\frac{1}{y} + \frac{5}{6}c_{1}d_{4}\frac{1}{y^{2}} - \frac{4\eta}{9}c_{1}d_{4}\frac{1}{y^{3}} - \frac{1}{3}c_{1}d_{3}\frac{x^{2}}{y^{2}}\right)dH_{\eta} + d[\]. \end{split}$$

Ces résultats permettent d'obtenir la décomposition de $g_2\omega$: Lemme 5.30. La 1-forme $g_2\omega$ peut se décomposer sous la forme

$$g_2\omega = g_3 dH_\eta + dR_3 + N_3,$$

où g_3 et R_3 sont des fonctions analytiques sur le demi-plan $\{y > 0\}$ et

$$N_3 = A_3^3 \omega_{00},$$

avec

$$A_3^3 = \frac{1}{4\eta}b_{10}c_4(b_{10} - 2\eta c_2 - 4c_3) + \frac{1}{18\eta}(\eta c_1c_4 + 6b_{10}c_3)(3\eta a_{11} - c_1 - 3c_4).$$

PREUVE. Les calculs précédents montrent que

$$N_{3} = \left[\frac{1}{6\eta}(-2\eta^{2}a_{11}d_{1} + 2\eta c_{4}d_{1} - 4a_{11}d_{2} + 5c_{4}d_{2} - 2\eta^{2}c_{2}d_{3} - 2\eta c_{2}d_{4} - 4c_{3}d_{3} - 5c_{3}d_{4}) + \frac{1}{9}(-2\eta c_{1}d_{1} - 4c_{1}d_{2} + 3c_{4}d_{2} - 3\eta b_{10}d_{3} - 3b_{10}d_{4} - 3c_{3}d_{4})H_{\eta}\right]\omega_{00}.$$

D'autre part, si on remplace les coefficients d_1 , d_2 , d_3 et d_4 par leurs expressions respectives, il vient :

$$\begin{aligned} &-2\eta c_1 d_1 - 4c_1 d_2 + 3c_4 d_2 - 3\eta b_{10} d_3 - 3b_{10} d_4 - 3c_3 d_4 \\ &= -2\eta c_1 \left(\frac{3}{2}b_{10}b_{11} - \frac{1}{2}c_1 c_4 + \frac{2}{3}c_1^2\right) + (3c_4 - 4c_1) \left(\frac{3}{2}b_{10}^2 - \frac{\eta}{3}c_1^2\right) \\ &- 3\eta b_{10} \left(-c_1 c_2 + \frac{3}{2}a_{11}b_{10} - b_{11}c_1\right) - 3(b_{10} + c_3)(-2b_{10}c_1) \\ &= -3\eta b_{10}b_{11}c_1 + \eta c_1^2 c_4 - \frac{4}{3}\eta c_1^3 - 6b_{10}^2 c_1 + \frac{4}{3}\eta c_1^3 + \frac{9}{2}b_{10}^2 - \eta c_1^2 c_4 \\ &+ 3\eta b_{10}c_1 c_2 - \frac{9}{2}\eta b_{10}^2 a_{11} + 3\eta b_{10}b_{11}c_1 + 6b_{10}^2 c_1 + 6b_{10}c_1 c_3 \\ &= \frac{3}{2}b_{10} \left[3b_{10}(c_4 - \eta a_{11}) + 2c_1(2c_3 + \eta c_2)\right] = 0, \end{aligned}$$

 et

$$\begin{aligned} &-2\eta^2 a_{11}d_1 + 2\eta c_4 d_1 - 4a_{11}d_2 + 5c_4 d_2 - 2\eta^2 c_2 d_3 - 2\eta c_2 d_4 - 4c_3 d_3 - 5c_3 d_4 \\ &= 2\eta (c_4 - \eta a_1 1)(d_1 + 2d_2) + c_4 d_2 - 2(2c_3 + \eta c_2)(\eta d_3 + d_4) - c_3 d_4 \\ &= (3b_{10}(c_4 - \eta a_{11}) + 2c_1(2c_3 + \eta c_2))(\eta b_{11} + 2b_{10} + \eta c_2) \\ &- 3\eta b_{10}c_2 c_4 + \frac{3}{2}b_{10}^2 c_4 + 2b_{10}c_1 c_3 + \eta^2 a_{11}c_1 c_4 - \eta c_1 c_4^2 - \frac{\eta}{3}c_1^2 c_4 - 6\eta a_{11}b_{10}c_3 \\ &= \frac{3}{2}b_{10}c_4(b_{10} - 2\eta c_2) + 2b_{10}c_3(c_1 - 3\eta a_{11}) + \frac{\eta}{3}c_1 c_4(3\eta a_{11} - c_1 - 3c_4) \\ &= \frac{3}{2}b_{10}c_4(b_{10} - 2\eta c_2 - 4c_3) + \frac{1}{3}(\eta c_1 c_4 + 6b_{10}c_3)(3\eta a_{11} - c_1 - 3c_4), \end{aligned}$$

d'où le résultat annoncé.

On en déduit :

Proposition 5.31. La troisième fonction de Melnikov M_3 s'exprime comme un polynôme de degré 1 en h

$$M_3(h) = P_3^3(h),$$

оù

$$P_3^3(X) = \frac{3A_3^3\pi}{\sqrt{2}\eta^{5/2}}(1+2\eta X),$$

Corollaire 5.32. M_3 n'a aucun zéro dans l'intervalle ouvert $]-1/2\eta, 0[$.

5.4 Fonctions de Melnikov d'ordre supérieur

5.4.1 Cas $c_0 = c_1 = b_{10} = 0$

Dans ce cas, il est possible de montrer que toutes les fonctions d'ordre supérieur sont identiquement nulles.

Proposition 5.33. Supposons que

- (i) la première fonction de Melnikov s'annule identiquement,
- (*ii*) $c_0 = c_1 = b_{10} = 0$.

Alors, pour tout entier $k \ge 1$, on a les décompositions successives :

$$g_k \omega = g_{k+1} dH_\eta + dR_{k+1} + N_{k+1},$$

 $o \hat{u}$

$$g_{k+1} = g_1^{k+1} = \left(-\frac{b_{11}}{2}\right)^{k+1},$$

$$R_{k+1} \text{ est une fonction analytique sur le demi-plan } \{y > 0\},$$

$$N_{k+1} \equiv 0.$$

PREUVE. On raisonne par récurrence sur l'entier $k, k \ge 1$. Pour k = 1, le résultat est une conséquence immédiate des hypothèses de la proposition et de la décomposition trouvée dans le Lemme 5.14.

On suppose le résultat vrai au rang $k, k \ge 1$. Par définition de g_{k+1}, R_{k+1} et N_{k+1} , on a la relation

$$g_{k+1}dH_{\eta} + dR_{k+1} + N_{k+1} = g_k\omega = g_1g_kdH_{\eta} + g_kdR_1 + g_kN_1$$

D'après l'hypothèse au rang k pour g_k et l'hypothèse au rang un pour N_1 , on trouve

$$g_k\omega = g_1g_kdH_\eta + d\left[g_kR_1\right],$$

si bien que

$$g_{k+1} = g_1 g_k = g_1^{k+1}$$
 et $N_{k+1} \equiv 0$,

d'où le résultat.

On en déduit le corollaire suivant sur l'annulation des fonctions de Melnikov :

Corollaire 5.34. Supposons que,

(i) la première fonction de Melnikov s'annule identiquement,

(*ii*) $c_0 = c_1 = b_{10} = 0$.

Alors, toutes les fonctions de Melnikov s'annulent identiquement :

$$\forall k \ge 1, \quad M_k \equiv 0.$$

PREUVE. Pour $k \ge 1$, l'algorithme de Françoise fournit l'expression de M_{k+1} sous la forme,

$$M_{k+1}(h) = -\oint_{H_{\eta}=h} g_k \omega.$$

En y substituant la décomposition précédente de $g_k\omega~(k\geq 1)$, on trouve le résultat souhaité, à savoir

$$M_{k+1}(h) = -\oint_{H_{\eta}=h} N_{k+1} \equiv 0, \qquad \forall \ k \ge 1.$$

5.4.2 Cas $c_1 = c_4 = a_{11} = 0$

Dans ce cas, il est également possible de montrer que toutes les fonctions d'ordre supérieur sont identiquement nulles.

Proposition 5.35. Supposons que

(i) la première fonction de Melnikov est identiquement nulle,

(*ii*)
$$c_1 = c_4 = a_{11} = 0$$
.

Alors, pour tout entier $k \ge 1$, on a les décompositions successives :

$$g_k \omega = g_{k+1} dH_\eta + dR_{k+1} + N_{k+1},$$

 $o \hat{u}$

- g_{k+1} est une fonction de la variable y uniquement et s'exprime comme combinaison linéaire des fonctions $(L_{i,j})_{0 \le i+j \le k+1}$,
- R_{k+1} est une fonction analytique sur le demi-plan $\{y > 0\},$ $N_{k+1} \equiv 0.$

PREUVE. On raisonne par récurrence sur l'entier $k, k \ge 1$. Le résultat est immédiat pour g_2 . De plus, par hypothèse,

$$c_1 = c_4 = a_{11} = 0$$

ce qui assure l'annulation de M_2 et de fait celle des coefficients A_2 , B_2 et C_2 apparaissant dans la décomposition obtenue dans le Lemme 5.14. D'où

$$N_2 \equiv 0.$$

On suppose le résultat vrai au rang $k, k \ge 1$. Par définition de g_{k+1}, R_{k+1} et N_{k+1} , on a la relation

$$g_{k+1}dH_{\eta} + dR_{k+1} + N_{k+1} = g_k\omega = g_1g_kdH_{\eta} + g_kdR_1 + g_kN_1$$

Le terme g_1g_k contribue uniquement à g_{k+1} et ne contient que des fonctions de type $(L_{i,j})_{0 \le i+j \le k+1}$. D'autre part, l'hypothèse

 $M_1 \equiv 0$

assure que

Il ne reste plus qu'à étudier $g_k dR_1$. En tenant compte des contraintes d'annulation des coefficients c_1 , c_4 et a_{11} , R_1 ne dépend plus de la variable x:

 $N_1 \equiv 0.$

$$R_1(y, H_\eta) = c_2 \frac{1}{y} + c_3 \frac{1}{y^2} + a_{02} \ln y + b_{10} \frac{1}{y} H_\eta - c_0 \ln y H_\eta.$$

En outre, l'hypothèse de récurrence sur k assure que g_k est combinaison linéaire des fonctions $(L_{m,n})_{0 \le m+n \le k}$. Ainsi, par linéarité, il suffit de traiter le cas d'une seule fonction $L_{m,n}$:

$$L_{m,n}dR_1 = -c_2L_{m,n+2}dy - 2c_3L_{m,n+3}dy + a_{02}L_{m,n+1}dy + b_{10}\theta_{0,1,m,n} - c_0\theta_{1,0,m,n}$$

= $(a_{02}L_{m,n+1} - c_2L_{m,n+2} - 2c_3L_{m,n+3}) dy + b_{10}\theta_{0,1,m,n} - c_0\theta_{1,0,m,n},$

où

$$(a_{02}L_{m,n+1} - c_2L_{m,n+2} - 2c_3L_{m,n+3})\,\mathrm{d}y$$

s'exprime comme la différentielle d'une combinaison linéaire de fonctions $L_{i,j}$ et contribue à la différentielle dR_{k+1} (Lemme 5.7).

D'après le Lemme 5.9, $\theta_{0,1,m,n}$ s'exprime comme combinaison linéaire des 1-formes $\mu_{i,j}$ et $\nu_{i,j}$ pour $0 \le i \le m$ et j = n + 1, soit

$$0 \le i+j \le m+n+1 \le k+1,$$

et $\theta_{1,0,m,n}$ s'exprime comme combinaison linéaire des 1-formes $\mu_{i,j}$ et $\nu_{i,j}$ pour $0 \le i \le m+1$ et j = n, soit

$$0 \le i + j \le m + 1 + n \le k + 1.$$

Tous ces termes ne contribuent qu'aux expressions des fonctions g_{k+1} et R_{k+1} de la décomposition souhaitée. Par conséquent,

$$N_{k+1} \equiv 0,$$

ce qui termine la démonstration.

107

Corollaire 5.36. Supposons que,

(i) la première fonction de Melnikov est identiquement nulle,

(*ii*) $c_1 = c_4 = a_{11} = 0$.

Alors toutes les fonctions de Melnikov s'annulent identiquement :

$$\forall k \geq 1, \quad M_k \equiv 0.$$

Sous les hypothèses du théorème, la singularité demeure un centre pour le système perturbé qui est de ce fait intégrable (*cf.* Introduction, Théorème 1.10). On ne peut néanmoins pas en donner une intégrale première.

5.4.3 Cas $c_0 = c_1 = c_4 - \eta a_{11} = 0$

Lemme 5.37. La troisième fonction de Melnikov M_3 s'annule identiquement si et seulement si l'une des conditions est satisfaite :

$$a_{11} = 0$$
 ou $b_{10} = 0$ ou $a_{02} = b_{10} - 2\eta c_2 - c_4 = 0.$

PREUVE. D'après la Proposition 5.22, M_3 s'annule identiquement si et seulement si

$$A_3^1 = B_3^1 = 0,$$

d'où les trois cas annoncés.

Cas $a_{11} = 0$: En combinant cette condition avec les précédentes, on obtient

$$c_1 = c_4 = a_{11} = 0,$$

cas que nous venons juste de traiter et pour lequel toutes les fonctions de Melnikov d'ordre supérieur s'annulent identiquement.

Cas $b_{10} = 0$: On a

$$c_0 = c_1 = b_{10} = 0,$$

cas pour lequel nous avons montré précédemment que le système perturbé est intégrable, d'intégrale première

$$H_{\varepsilon} = \left(1 - \frac{b_{11}}{2}\varepsilon\right)H_{\eta} + \varepsilon R_1$$

et de facteur intégrant ψ .

Cas $a_{02} = b_{10} - 2\eta c_2 - c_4 = 0$:

$$g_{3} = -\frac{b_{11}^{3}}{8} + \frac{d_{1}}{y} + \frac{d_{2}}{y^{2}} + \frac{d_{3}}{y^{3}} + d_{4}\frac{x}{y} + d_{5}\frac{x}{y^{5}},$$

$$R_{1} = \frac{c_{2}}{y} + \frac{1}{4}(b_{10} - 2\eta c_{2})\frac{1}{y^{2}} + b_{10}H_{\eta}\frac{1}{y} - a_{11}\frac{x}{y} + \eta a_{11}\frac{x}{y^{2}},$$

avec

$$d_{1} = -\frac{3}{8}b_{10}(2a_{11}^{2} + 3b_{11}^{2}), \qquad d_{2} = -\frac{9}{4}b_{10}^{2}b_{11}, \quad d_{3} = -\frac{5}{4}b_{10}^{3}, \\ d_{4} = -\frac{3}{4}a_{11}b_{10}(3b_{11} + 2c_{2}), \quad d_{5} = -3a_{11}b_{10}^{2}.$$

Posons

$$g_3 dR_1 = d \left[\frac{-b_{11}^3}{8} R_1 \right] + \tilde{g}_3 d\tilde{R}_1 + \tilde{g}_3 d\hat{R}_1 + \hat{g}_3 d\tilde{R}_1 + \hat{g}_3 d\tilde{R}_1 + \hat{g}_3 d\hat{R}_1,$$

avec

Dans ce cas, on recherche l'expression de la 1-forme N_4 . On appelle $\tilde{\tilde{N}}_4$, $\hat{\tilde{N}}_4$, $\hat{\tilde{N}}_4$ et $\hat{\tilde{N}}_4$ les contributions respectives de $\tilde{g}_3 d\tilde{R}_1$, $\tilde{g}_3 d\tilde{R}_1$, $\hat{g}_3 d\tilde{R}_1$ et $\hat{g}_3 d\tilde{R}_1$.

(a) Calcul de $\tilde{\tilde{N}}_4$ On sait d'ores et déjà que

$$\tilde{N}_4 \equiv 0$$

(b) Calcul de \hat{N}_4

$$\tilde{g}_{3}d\hat{R}_{1} = \left(\frac{d_{1}}{y} + \frac{d_{2}}{y^{2}} + \frac{d_{3}}{y^{3}}\right)d\left[-a_{11}\frac{x}{y} + \eta a_{11}\frac{x}{y^{2}}\right]$$
$$= a_{11}\left\{-d_{1}\frac{1}{y}d\left[\frac{x}{y}\right] - d_{2}\frac{1}{y^{2}}d\left[\frac{x}{y}\right] - d_{3}\frac{1}{y^{3}}d\left[\frac{x}{y}\right] + \eta d_{1}\frac{1}{y}d\left[\frac{x}{y^{2}}\right] + \eta d_{2}\frac{1}{y^{2}}d\left[\frac{x}{y^{2}}\right] + \eta d_{3}\frac{1}{y^{3}}d\left[\frac{x}{y^{2}}\right]\right\}.$$

Lemme 5.38. On a les identités

$$\begin{split} &\frac{1}{y^3}d\left[\frac{x}{y}\right] = d\left[\frac{x}{4y^4}\right] + \frac{3}{4}\frac{dx}{y^4},\\ &\frac{1}{y^3}d\left[\frac{x}{y^2}\right] = d\left[\frac{2x}{5y^5}\right] + \frac{3}{5}\frac{dx}{y^5},\\ &\eta\frac{dx}{y^5} = -\frac{5x}{3y^3}dH_\eta + d[\] + \frac{7}{4}\frac{dx}{y^4} + \frac{4}{3}H_\eta\omega_{00}. \end{split}$$

PREUVE. On utilise le même procédé que dans le Lemme 5.18 :

$$\frac{1}{y^3}d\left[\frac{x}{y}\right] = \frac{dx}{y^4} - \frac{x}{y^5}dy = d\left[\frac{x}{4y^4}\right] + \frac{3}{4}\frac{dx}{y^4},$$
$$\frac{1}{y^3}d\left[\frac{x}{y^2}\right] = \frac{dx}{y^5} - \frac{2x}{y^6}dy = d\left[\frac{2x}{5y^5}\right] + \frac{3}{5}\frac{dx}{y^5}.$$

Pour trouver l'expression de $\frac{dx}{y^5}$, on écrit

$$\begin{split} \frac{dx}{y^5} &= d\left[\frac{x}{y^5}\right] + \frac{5x}{y^6}dy,\\ \frac{dx}{y^4} &= d\left[\frac{x}{y^4}\right] + \frac{4x}{y^5}dy, \end{split}$$

 soit

$$4\eta \frac{dx}{y^5} - 5\frac{dx}{y^4} = d\left[\right] + \frac{20x}{y^3} \left(\frac{\eta}{y^3} - \frac{1}{y^2}\right) dy$$

= $d\left[\right] + \frac{20x}{y^3} \left(-dH_\eta + \frac{2x}{y^2}dx - \frac{2x^2}{y^3}dy\right)$
= $-\frac{20x}{y^3}dH_\eta + d\left[\right] + \frac{40x^2}{y^5}dx - \frac{40x^3}{y^6}dy.$

D'autre part,

$$d\left[\frac{x^3}{y^5}\right] = \frac{3x^2}{y^5}dx - \frac{5x^3}{y^6}dy,$$

$$\frac{x^2}{y^5}dx = \frac{x}{2y^3} \times \frac{2x}{y^2}dx = \frac{x}{2y^3}dH_\eta + \frac{x}{y^4}H_\eta dy + \frac{x}{2y^5}dy$$

$$= \frac{x}{2y^3}dH_\eta + d[] + \frac{x}{3y^3}dH_\eta + \frac{1}{3}H_\eta\omega_{00} + \frac{dx}{8y^4}$$

$$= \frac{5x}{6y^3}dH_\eta + d[] + \frac{1}{3}H_\eta\omega_{00} + \frac{dx}{8y^4},$$

si bien que

$$4\eta \frac{dx}{y^5} - 5\frac{dx}{y^4} = -\frac{20x}{y^2} dH_\eta + d\left[\right] + 16 \times \frac{x^2}{y^5} dx$$
$$= -\frac{20x}{3y^3} dH_\eta + d\left[\right] + \frac{16}{3} H_\eta \omega_{00} + 2\frac{dx}{y^4},$$

d'où le résultat annoncé.

En faisant appel aux Lemmes 5.11, 5.18 et 5.38, on trouve

$$\begin{split} \hat{\tilde{N}}_4 &= a_{11} \left[-d_1 \times \frac{\eta}{3} \omega_{00} - d_2 \times \frac{2}{3} \omega_{00} - d_3 \times \frac{1}{4\eta} (5 + 2\eta H_\eta) \omega_{00} + \eta d_1 \times \frac{1}{3} \omega_{00} \right. \\ &\quad + \eta d_2 \times \frac{1}{6\eta} (5 + 2\eta H_\eta) \omega_{00} + \eta d_3 \times \frac{3}{5\eta} \left(\frac{7}{12\eta} (5 + 2\eta H_\eta) \omega_{00} + \frac{4}{3} H_\eta \omega_{00} \right) \right] \\ &= a_{11} \left[\left(\frac{d_2}{6} + \frac{d_3}{2\eta} \right) + \left(\frac{\eta}{3} d_2 + d_3 \right) H_\eta \right] \omega_{00} \\ &= \frac{a_{11}}{6\eta} (\eta d_2 + 3d_3) (1 + 2\eta H_\eta) \omega_{00}. \end{split}$$

(c) Calcul de $\tilde{\hat{N}}_4$

$$\begin{split} \hat{g}_{3}d\tilde{R}_{1} &= \left(d_{4}\frac{x}{y} + d_{5}\frac{x}{y^{2}}\right)d\left[\frac{c_{2}}{y} + \frac{1}{4}(b_{10} - 2\eta c_{2})\frac{1}{y^{2}} + b_{10}H_{\eta}\frac{1}{y}\right] \\ &= d_{4}\left((c_{2} + b_{10}H_{\eta})\frac{x}{y}d\left[\frac{1}{y}\right] + \frac{1}{4}(b_{10} - 2\eta c_{2})\frac{x}{y}d\left[\frac{1}{y^{2}}\right]\right) \\ &+ d_{5}\left((c_{2} + b_{10}H_{\eta})\frac{x}{y^{2}}d\left[\frac{1}{y}\right] + \frac{1}{4}(b_{10} - 2\eta c_{2})\frac{x}{y^{2}}d\left[\frac{1}{y^{2}}\right]\right) + (\)dH_{\eta} + d[\]. \end{split}$$

Les Lemmes 5.19 et 5.28 assurent alors que

$$\begin{split} \tilde{\hat{N}}_4 &= d_4 \left[\left(c_2 + b_{10} H_\eta \right) \times \left(-\frac{\eta}{3} \omega_{00} \right) + \frac{1}{4} (b_{10} - 2\eta c_2) \times \left(-\frac{2}{3} \omega_{00} \right) \right] \\ &+ d_5 \left[\left(c_2 + b_{10} H_\eta \right) \times \left(-\frac{1}{3} \omega_{00} \right) + \frac{1}{4} (b_{10} - 2\eta c_2) \times \left(-\frac{1}{6\eta} (5 + 2\eta H_\eta) \omega_{00} \right) \right] \\ &= \left[\left(-\frac{\eta}{3} c_2 d_4 - \frac{1}{6} b_{10} d_4 + \frac{\eta}{3} c_2 d_4 - \frac{1}{3} c_2 d_5 - \frac{5}{24\eta} b_{10} d_5 + \frac{5}{12} c_2 d_5 \right) \\ &+ \left(-\frac{\eta}{3} b_{10} d_4 - \frac{1}{3} b_{10} d_5 - \frac{1}{12} b_{10} d_5 + \frac{\eta}{6} c_2 d_5 \right) H_\eta \right] \omega_{00} \\ &= \frac{1}{24\eta} \left(2\eta c_2 d_5 - 4\eta b_{10} d_4 - 5b_{10} d_5 \right) \left(1 + 2\eta H_\eta \right) \omega_{00}. \end{split}$$

(d) Calcul de \hat{N}_4

$$\hat{g}_{3}d\hat{R}_{1} = (d_{4} + d_{5}H_{\eta})\frac{x}{y}d\left[-a_{11}\frac{x}{y} + \eta a_{11}\frac{x}{y^{2}}\right]$$
$$= a_{11}(d_{4} + d_{5}H_{\eta})\left(-\frac{x}{y}d\left[\frac{x}{y}\right] + \eta\frac{x}{y}d\left[\frac{x}{y^{2}}\right]\right)$$
$$= (\)dH_{\eta} + d[\],$$

d'après le Lemme 5.20.

D'où

$$\hat{N}_4 \equiv 0$$

Par conséquent,

$$\begin{split} N_4 &= \hat{N}_4 + \hat{N}_4, \\ &= \frac{1}{24\eta} \left[4a_{11}(\eta d_2 + 3d_3) + (2\eta c_2 d_5 - 4\eta b_{10} d_4 - 5b_{10} d_5) \right] (1 + 2\eta H_\eta) \omega_{00}, \\ &= \frac{1}{24\eta} \left[4a_{11} \left(-\frac{9}{4} \eta b_{10}^2 b_{11} + 3 \times \left(-\frac{5}{4} \right) b_{10}^3 \right) + 2\eta c_2 (-3a_{11} b_{10}^2) \right. \\ &\left. -4\eta b_{10} \left(-\frac{3}{4} a_{11} b_{10} (3b_{11} + 2c_2) \right) - 5b_{10} \times (-3a_{11} b_{10}^2) \right] (1 + 2\eta H_\eta) \omega_{00} \\ &= 0. \end{split}$$

Ces calculs fournissent une décomposition de $g_3\omega$:

Lemme 5.39. La 1-forme $g_3\omega$ peut se décomposer sous la forme

$$g_3\omega = g_4 dH_\eta + dR_4,$$

où g_4 et R_4 sont des fonctions analytiques sur le demi-plan $\{y > 0\}$.

On en déduit immédiatement :

Proposition 5.40. La quatrième fonction de Melnikov M_4 est identiquement nulle :

$$M_4(h) \equiv 0.$$

Le calcul des fonctions de Melnikov d'ordre supérieur devient fastidieux. Dans la prochaine partie on donne néanmoins la nature algébrique des 1-formes $(N_{k+1})_{k\geq 3}$ et de ce fait celle des fonctions de Melnikov en général.

5.4.4 Cas $c_1 = a_{11} = 3b_{10} + 2\eta c_0 = 0$

D'après la Proposition 5.26, la troisième fonction de Melnikov M_3 s'annule identiquement si et seulement si

$$A_3^2 = B_3^2 = C_3^2 = 0 \iff c_0 c_4 = 0 \iff c_0 = 0 \text{ ou } c_4 = 0.$$

Si $c_0 = 0$, on a affaire au cas intégrable $c_0 = c_1 = b_{10} = 0$.

Si $c_4 = 0$, on est dans la situation où $c_1 = c_4 = a_{11} = 0$, pour laquelle on a montré que toutes les fonctions de Melnikov d'ordre supérieur s'annulent identiquement.

5.4.5 Cas $c_0 = a_{02} = 3b_{10}(c_4 - \eta a_{11}) + 2c_1(2c_3 + \eta c_2) = 0$

La condition d'annulation de M_3

$$9b_{10}c_4(b_{10} - 2\eta c_2 - 4c_3) + 2(\eta c_1c_4 + 6b_{10}c_3)(3\eta a_{11} - c_1 - 3c_4) = 0$$

n'est pas très maniable. Par conséquent, on ne poursuit pas le calcul des fonctions de Melnikov d'ordre supérieur.

5.5 Synthèse des résultats

5.5.1 Un résultat algébrique

Dans les cas

$$c_0 = c_1 = c_4 - \eta a_{11} = a_{02} = b_{10} - 2\eta c_2 - c_4 = 0, \tag{23}$$

 et

$$c_0 = a_{02} = 3b_{10}(c_4 - \eta a_{11}) + 2c_1(2c_3 + \eta c_2)$$

= $9b_{10}c_4(b_{10} - 2\eta c_2 - 4c_3) + 2(\eta c_1 c_4 + 6b_{10}c_3)(3\eta a_{11} - c_1 - 3c_4) = 0,$ (24)

nous avons mis un terme au calcul des fonctions de Melnikov d'ordre supérieur. Afin de déterminer la forme générale de ces dernières, on introduit les fonctions $(r_{m,n})_{m,n\geq 0}$ et $(s_{m,n})_{m\geq 0,n\geq 1}$, ainsi que les 1-formes différentielles $(\tau_k)_{k\geq 1}$ comme suit :

$$r_{m,n}(y, H_{\eta}) = \frac{1}{y^n} H_{\eta}^m,$$

$$s_{m,n}(x, y, H_{\eta}) = \frac{x}{y^n} H_{\eta}^m = x \ r_{m,n}(y, H_{\eta}),$$

$$\tau_k = \frac{dx}{y^k}.$$

Signalons que par définition :

 $\tau_1 = \omega_{02}, \quad \tau_2 = \omega_{01} \quad \text{et} \quad \tau_3 = \omega_{00}.$

Lemme 5.41. Pour tout entier $k, k \ge 3$, on a l'identité

$$\eta \tau_{k+1} = -\frac{k+1}{k-1} s_{0,k-1} dH_{\eta} + d[] + \frac{2k-1}{k} \tau_k + \frac{2(k-2)}{k-1} H_{\eta} \tau_{k-1}.$$

PREUVE. Nous avons d'ores et déjà montré ce résultat pour les cas k = 3 et k = 4 dans les Lemmes 5.18 et 5.38. La preuve pour $k \ge 5$ suit le même schéma.

On écrit

$$\tau_{k+1} = d\left[\frac{x}{y^{k+1}}\right] + (k+1)\frac{x}{y^{k+2}}dy,$$

$$\tau_k = d\left[\frac{x}{y^k}\right] + k\frac{x}{y^{k+1}}dy,$$

 soit

$$\begin{split} k\eta\tau_{k+1} - (k+1)\tau_k &= d\left[\right] + k(k+1)\frac{x}{y^{k-1}} \left(\frac{\eta}{y^3} - \frac{1}{y^2}\right) dy \\ &= d\left[\right] + k(k+1)\frac{x}{y^{k-1}} \left(-dH_\eta + \frac{2x}{y^2}dx - \frac{2x^2}{y^3}dy\right) \\ &= -k(k+1)s_{0,k-1}dH_\eta + d\left[\right] + 2k(k+1)\frac{x^2}{y^{k+1}}dx - 2k(k+1)\frac{x^3}{y^{k+2}}dy. \end{split}$$

D'autre part,

$$\begin{split} d\left[\frac{x^3}{y^{k+1}}\right] &= \frac{3x^2}{y^{k+1}}dx - (k+1)\frac{x^3}{y^{k+2}}dy,\\ \frac{x^2}{y^{k+1}}dx &= \frac{x}{2y^{k-1}} \times \frac{2x}{y^2}dx = \frac{1}{2}s_{0,k-1}dH_{\eta} + \frac{x}{y^k}H_{\eta}dy + \frac{x}{2y^{k+1}}dy\\ &= \frac{1}{2}s_{0,k-1}dH_{\eta} + d[\] + \frac{1}{k-1}s_{0,k-1}dH_{\eta} + \frac{H_{\eta}}{k-1}\tau_{k-1} + \frac{1}{2k}\tau_k\\ &= \frac{k+1}{2(k-1)}s_{0,k-1}dH_{\eta} + d[\] + \frac{H_{\eta}}{k-1}\tau_{k-1} + \frac{1}{2k}\tau_k, \end{split}$$

si bien que

$$k\eta\tau_{k+1} - (k+1)\tau_k = -\frac{k(k+1)}{k-1}s_{0,k-1}dH_\eta + d\left[\right] + \frac{2k(k-2)}{k-1}H_\eta\tau_{k-1} + (k-2)\tau_k,$$

d'où le résultat.

Corollaire 5.42. Pour tout entier $k, k \ge 3$, il existe un polynôme T_k tel que

$$\tau_k = (\)dH_{\eta} + d[\] + T_k(H_{\eta})\omega_{00}.$$

PREUVE. Les cas k = 3 et k = 4 on été traités dans les Lemmes 5.18 et 5.38. Pour $k \ge 5$, c'est une conséquence immédiate du Lemme 5.41.

Proposition 5.43. Considérons les deux cas (23) et (24). Pour tout entier $k, k \ge 1$, on a les décompositions suivantes

$$g_k \omega = g_{k+1} dH_\eta + dR_{k+1} + N_{k+1},$$

où g_{k+1} est une combinaison linéaire de fonctions $(r_{m,n})_{m,n\geq 0}$ et $(s_{m,n})_{m\geq 0,n\geq 1}$, R_{k+1} est une fonction analytique du demi-plan $\{y > 0\}$ et

$$N_{k+1} = S_{k+1}(H_n)\omega_{00}$$

avec S_{k+1} un polynôme dont les coefficients dépendent uniquement de ceux de la perturbation.

PREUVE. On raisonne par récurrence sur l'entier $k, k \ge 1$. Le résultat est immédiat pour g_2 (et même pour g_1). De plus, dans les deux cas on a

$$M_1 \equiv 0$$
 et $M_2 \equiv 0$,

ce qui est équivalent à l'annulation des 1-formes N_1 et N_2 .

On suppose le résultat vrai pour un entier $k \ge 1$. Par définition de g_{k+1} , R_{k+1} et N_{k+1} , on a la relation

$$g_{k+1}dH_{\eta} + dR_{k+1} + N_{k+1} = g_k\omega = g_1g_kdH_{\eta} + g_kdR_1 + g_kN_1.$$

 g_1g_k contribue à g_{k+1} ne contient que des fonctions de type $(r_{m,n})_{m,n\geq 0}$ et $(s_{m,n})_{m\geq 0,n\geq 1}$. En effet, considérons des entiers m, n, i, j, on a clairement les identités suivantes :

$$\begin{aligned} r_{m,n}r_{i,j} &= r_{m+i,n+j}, \\ r_{m,n}s_{i,j} &= s_{m+i,n+j}, \\ s_{m,n}s_{i,j} &= x^2 r_{m+i,n+j} = r_{m+i+1,n+j-2} + r_{m+i,n+j-1} - \frac{\eta}{2} r_{m+i,n+j} \ (n,j \ge 1), \end{aligned}$$

d'après la relation fournie par l'intégrale première :

$$\frac{x^2}{y^2} = H_\eta + \frac{1}{y} - \frac{\eta}{2y^2}.$$

D'autre part, l'hypothèse $M_1 \equiv 0$ entraîne $N_1 \equiv 0$.

Il ne reste qu'à étudier le terme $g_k dR_1$. En tenant compte des contraintes d'annulation des coefficients a_{02} et c_0 , R_1 s'exprime comme combinaison linéaire des fonctions $r_{0,1}$, $r_{0,2}$, $r_{1,1}$, $s_{0,1}$, $s_{0,2}$ et $s_{1,1}$:

$$R_1 \in Vect(r_{0,1}, r_{0,2}, r_{1,1}, s_{0,1}, s_{0,2}, s_{1,1}).$$

Considerons deux entiers m et n d'une part et un couple d'entiers

$$(i, j) \in \{(0, 1), (0, 2), (1, 1)\}$$

d'autre part. Il nous faut étudier différents cas.

Tout d'abord,

$$\begin{aligned} r_{m,n}dr_{i,j} &= ir_{m+i-1,n+j}dH_{\eta} - jr_{m+i,n+j+1}dy \\ &= ir_{m+i-1,n+j}dH_{\eta} + d\left[\frac{j}{j+n}r_{m+i,n+j}\right] - \frac{j(m+i)}{j+n}r_{m+i-1,n+j}dH_{\eta} \\ &= \frac{in-mj}{n+j}r_{m+i-1,n+j}dH_{\eta} + d\left[\frac{j}{j+n}r_{m+i,n+j}\right]. \end{aligned}$$

Aucune contribution n'est apportée à N_{k+1} .

Considérons $j \ge 1$,

$$r_{m,n}ds_{i,j} = r_{m,n}d(x \ r_{i,j}) = r_{m+i,n+j}dx + s_{m,n}dr_{i,j}$$

= $H_{\eta}^{m+i}\tau_{n+j} + s_{m,n}dr_{i,j}.$

Le premier terme peut être traité grâce au Lemme 5.41. Sa contribution à l'expression de N_{k+1} prend la forme

$$S_{k+1}^{m,n,i,j}(H_\eta)\omega_{00},$$

où $S_{k+1}^{m,n,i,j}$ est un polynôme qui dépend des entiers m, n, i, j.

Considérons $n \ge 1$,

$$s_{m,n}dr_{i,j} = is_{m+i-1,n+j}dH_{\eta} - js_{m+i,n+j+1}dy$$

= $is_{m+i-1,n+j}dH_{\eta} + d\left[\frac{j}{j+n}s_{m+i,n+j}\right] - \frac{j}{j+n}H_{\eta}^{m+i}\tau_{j+n}$
 $-\frac{j(m+i)}{j+n}s_{m+i-1,n+j}dH_{\eta}$
= $\frac{in-mj}{n+j}s_{m+i-1,n+j}dH_{\eta} + d[] - \frac{j}{j+n}H_{\eta}^{m+i}\tau_{n+j}.$

Considérons $n, j \ge 1$,

$$s_{m,n}ds_{i,j} = x^2 r_{m,n}dr_{i,j} + xr_{m+i,n+j}dx$$
$$= x^2 r_{m,n}dr_{i,j} - \frac{x^2}{2}dr_{m+i,n+j} + d[]$$

Pour conclure, il suffit d'étudier le terme suivant :

$$\begin{aligned} x^{2}r_{m,n}dr_{i,j} &= \left(y^{2}H_{\eta} + y - \frac{\eta}{2}\right) \left(\frac{in - mj}{n+j}r_{m+i-1,n+j}dH_{\eta} + d\left[\frac{j}{j+n}r_{m+i,n+j}\right]\right) \\ &= \frac{in - mj}{n+j}(r_{m+i,n+j-2} + r_{m+i-1,n+j-1} - \frac{\eta}{2}r_{m+i-1,n+j})dH_{\eta} + d[] \\ &- \frac{j}{j+n}r_{m+i,n+j}((2yH_{\eta} + 1)dy + y^{2}dH_{\eta}), \end{aligned}$$

ce qui achève la démonstration.

Par conséquent, nous avons les résultats algébriques suivants :

Théorème 5.44. Les 1-formes $(N_k)_{k\geq 1}$ appartiennent au module de type fini engendré par ω_{00} et ω_{02} sur $\mathbb{R}_{a,b}[H_{\eta}]$, où $\mathbb{R}_{a,b} = \mathbb{R}[a_{i,j}, b_{i,j}, 0 \leq i, j \leq 2]$.

PREUVE. Les décompositions précédentes de ω , $g_1\omega$ et $g_2\omega$, obtenues dans les Lemmes 5.2, 5.14, 5.21, 5.25 et 5.30, fournissent de telles expressions pour N_1 , N_2 et N_3 . Pour $k \ge 4$, nous avons essentiellement rencontré quatre cas :

• le cas $c_0 = c_1 = b_{10} = 0$, pour lequel nous avons prouvé dans la Proposition 5.33 que

$$\forall k \geq 4, \quad N_k \equiv 0,$$

• le cas $c_1 = c_4 = a_{11} = 0$, pour lequel la Proposition 5.35 assure également l'annulation des 1-formes $(N_k)_{k\geq 4}$,

• les cas (23) et (24), pour les quels la nature des 1-formes $(N_k)_{k\geq 4}$ vient juste d'être étudiée dans la Proposition 5.43.

5.5.2 Synthèse des résultats

Nous reprenons dans cette partie les résultats trouvés sur les fonctions de Melnikov sous forme de deux théorèmes :

Théorème 5.45. La première fonction de Melnikov

$$M_1 : h \in]-1/2\eta, 0[\longmapsto -\oint_{H_{\eta=h}} \psi(fdy - gdx)$$

a au plus deux zéros dans l'intervalle $] - 1/2\eta, 0[$, en tenant compte de leurs éventuelles multiplicités.

Si $M_1 \equiv 0$, alors la seconde fonction de Melnikov M_2 a au plus deux zéros sur ce même intervalle.

Si $M_2 \equiv 0$, alors la troisième fonction de Melnikov M_3 a au plus deux zéros.

Nous avons arrêté les calculs des fonctions de Melnikov successives à l'ordre 4. Il est cependant possible d'en donner la nature :

Théorème 5.46. Les fonctions de Melnikov $(M_k(h))_{k\geq 1}$ appartiennent au module de type fini engendré par $\Pi_1(\sqrt{-h})$ et $\Pi_2(\sqrt{-h})$ sur $\mathbb{R}_{a,b}[\sqrt{-h}]$, où $\mathbb{R}_{a,b} = \mathbb{R}[a_{i,j}, b_{i,j}, 0 \leq i, j \leq 2]$, avec

$$\Pi_1(X) = 1 - \sqrt{2\eta}X, \quad et \quad \Pi_2(X) = 1 - 2\eta X^2 = (1 - \sqrt{2\eta}X)(1 + \sqrt{2\eta}X).$$

PREUVE. Il s'agit d'une conséquence du Théorème 5.44 sur la nature des 1-formes différentielles $(N_k)_{k\geq 1}$. Pour $k\geq 1$, on appelle U_k et V_k les deux polynômes à coefficients dans $\mathbb{R}_{a,b}$ pour lesquels

$$N_k = U_k(H_\eta)\omega_{00} + V_k(H_\eta)\omega_{02}.$$

Ainsi,

$$\begin{split} M_k(h) &= -\int_{H_\eta = h} N_k \\ &= -U_k(h) \int_{H_\eta = h} \omega_{00} - V_k(h) \int_{H_\eta = h} \omega_{02} \\ &= -2(U_k(h)I_3(h) + V_k(h)I_1(h)) \\ &= -2\left(U_k(h)\frac{3\pi}{2\sqrt{2\eta^{5/2}}}(1 + 2\eta h) + V_k(h)\frac{\pi}{\sqrt{2\eta}}(1 - \sqrt{2\eta}\sqrt{-h})\right) \\ &= -\frac{3\pi}{\sqrt{2\eta^{5/2}}}U_k(h)\Pi_2(\sqrt{-h}) - \pi\sqrt{\frac{2}{\eta}}V_k(h)\Pi_1(\sqrt{-h}), \end{split}$$

d'où le résultat.

Toutes les fonctions de Melnikov $(M_k)_{k\geq 1}$ peuvent ainsi s'écrire comme des polynômes en $\sqrt{-h}$.

Enfin, nous donnons dans la proposition suivante des conditions suffisantes sur les coefficients de la perturbation pour que la singularité du système perturbé reste un centre.

Proposition 5.47. On suppose que les coefficients $(a_{i,j})_{0 \le i,j \le 2}$ et $(b_{i,j})_{0 \le i,j \le 2}$ des fonctions de perturbation vérifient les conditions d'annulation de la première fonction de Melnikov M_1 , à savoir

$$\begin{cases} b_{20} = 0, \\ b_{02} = a_{11}, \\ 3b_{00} + \eta(2b_{01} - a_{10}) = 0. \end{cases}$$

Si d'autre part l'une des deux conditions est satisfaite

$$c_0 = c_1 = b_{10} = 0, (25)$$

$$c_1 = c_4 = a_{11} = 0, (26)$$

alors, pour des valeurs du paramètre de perturbation ε assez petites, la singularité du système perturbé demeure un centre.

PREUVE. On suppose que M_1 est nulle. Les Corollaires 5.34 et 5.36 assurent que pour chacune des conditions (25) et (26), toutes les fonctions de Melnikov d'ordre supérieur ou égal à deux s'annulent. Le théorème de Poincaré-Lyapounov (*cf.* Introduction, Théorème 1.10) montre que dans ces cas là, la singularité du système perturbé est alors bien un centre.

On résume les résultats obtenus sur les fonctions de Melnikov dans le diagramme suivant.

Chapitre III

Une famille de systèmes différentiels avec domaines elliptiques

1 Introduction

On considère la famille de sytèmes différentiels (E_{λ}) suivante

$$(E_{\lambda}) \begin{cases} \dot{x} = y - 2x^2 + \lambda(y^2 - y), \\ \dot{y} = -2xy, \end{cases}$$

où λ est un nombre réel strictement positif.

On signale que pour $\lambda = 0$, il s'agit de la forme normale étudiée dans le Chapitre II.

1.1 Intégrabilité

La 1-forme ω_{λ} associée est

$$\omega_{\lambda} = \frac{1}{\psi} dH + \lambda (y^2 - y) dy$$
$$= \frac{1}{\psi} \left[dH + \lambda \left(\frac{1}{y} - \frac{1}{y^2} dy \right) \right]$$
$$= \frac{1}{\psi} d \left[H + \lambda \left(\ln |y| + \frac{1}{y} \right) \right],$$

où H est l'intégrale première de cette forme normale, dont on rappelle l'expression :

$$H(x,y) = \frac{x^2}{y^2} - \frac{1}{y}.$$

De tels systèmes sont intégrables, d'intégrale première

$$H^{\lambda}(x,y) = H(x,y) + \lambda \left(\ln|y| + \frac{1}{y} \right) = \frac{x^2}{y^2} + \frac{\lambda - 1}{y} + \lambda \ln|y|$$

et de facteur intégrant associé

$$\psi(y) = \frac{1}{y^3}.$$

1.2 Recherche des singularités

La recherche des singularités donne :

$$x = 0$$
 et $y(\lambda y + (1 - \lambda)) = 0.$

Chapitre III. Une famille de systèmes différentiels avec domaines elliptiques

Si $\lambda \neq 1$, alors les singularités sont en l'origine et en $\left(0, \frac{\lambda - 1}{\lambda}\right)$. Si $\lambda = 1$, alors l'origine est la seule singularité.

Dans la suite de ce chapitre, on distingue tout d'abord le cas général $\lambda \neq 1$ du cas particulier $\lambda = 1.$

1.2.1Le cas général $\lambda \neq 1$

Les portaits de phases font apparaître une singularité de type centre et une singularité non hyperbolique avec domaine elliptique.

D'autre part, si $\lambda > 1$, le centre se situe dans le demi-plan $\{y > 0\}$ et l'origine est une singularité avec domaine elliptique orienté dans le demi-plan $\{y < 0\}$.

Si $0 < \lambda < 1$, le centre se situe dans le demi-plan $\{y < 0\}$ et l'origine est une singularité avec domaine elliptique orienté dans le demi-plan $\{y > 0\}$.

FIG. 2 – Cas $0 < \lambda < 1$.

1.2.2Le cas particulier $\lambda = 1$

Dans ce cas particulier, on a le système (E_1) :

$$\begin{cases} \dot{x} = y^2 - 2x^2, \\ \dot{y} = -2xy, \end{cases}$$
(1)

pour lequel l'intégrale première se simplifie et vaut

$$H^{1}(x,y) = \frac{x^{2}}{y^{2}} + \ln|y|.$$

Ce système possède en outre une symétrie supplémentaire par rapport à l'axe des abscisses. Il présente en l'origine une unique singularité, non hyperbolique, avec deux domaines elliptiques.

FIG. 3 – Portait de phase du système (1).

2 Première étape : déformation générant deux centres

2.1 Le cas général $\lambda \neq 1$

On souhaite déformer la singularité avec domaine elliptique en une autre singularité de type centre. Plus précisément, on perturbe le système (E_{λ}) de manière analogue au cas $\lambda = 0$ du Chapitre II :

$$\begin{cases} \dot{x} = y - 2x^2 + \lambda(y^2 - y) - \eta, \\ \dot{y} = -2xy, \end{cases}$$
(2)

où η est un paramètre réel strictement positif.

On appelle ω_η la 1-forme associée au système perturbé (2)

$$\omega_{\eta} = \frac{1}{\psi} dH^{\lambda} - \eta dy,$$

qui s'exprime encore sous la forme

$$\omega_{\eta} = \frac{1}{\psi} d \left[H^{\lambda} + \frac{\eta}{2y^2} \right].$$

Cela assure l'intégrabilité du système (2) et fournit l'expression d'une intégrale première que l'on note H^λ_η :

$$H_{\eta}^{\lambda}(x,y) = \frac{1}{y^2} \left(x^2 + \frac{\eta}{2} \right) + \frac{\lambda - 1}{y} + \lambda \ln|y|,$$

Chapitre III. Une famille de systèmes différentiels avec domaines elliptiques

dont le facteur intégrant associé est encore ψ .

Avant de déterminer la nature des points singuliers obtenus, on recherche des conditions d'existence sur le paramètre h des lignes de niveau $C_h^{\lambda} = \{(x, y) \in \mathbb{R}^2 \mid H_n^{\lambda}(x, y) = h\}.$

Lemme 2.1. Il existe un réel h_0 tel que les lignes de niveau C_h^{λ} existent pour tout h supérieur ou égal à h_0 .

PREUVE. On procède par analyse, pour y non nul :

$$H^{\lambda}_{\eta}(x,y) = h \quad \Longleftrightarrow \quad x^2 = y^2(h - \lambda \ln|y|) - (\lambda - 1)y - \frac{\eta}{2}.$$
(3)

En notant

$$X_h^{\lambda}(y) = y^2(h - \lambda \ln |y|) - (\lambda - 1)y - \frac{\eta}{2},$$

l'équation obtenue en (3) s'écrit

$$x_h^{\lambda}(y) = \pm \sqrt{X_h^{\lambda}(y)}.$$

La fonction X_h^{λ} est de classe \mathcal{C}^{∞} sur \mathbb{R}^* . Elle l'est même sur \mathbb{R} tout entier en prolongeant par continuité à gauche et à droite de 0, grâce à la relation de comparaison

$$\lim_{y \to 0} y \ln |y| = 0.$$

Pour tout réel y non nul, on a

$$(X_h^{\lambda})'(y) = 2y(h - \lambda \ln |y|) - \lambda y + 1 - \lambda, \quad y \in \mathbb{R},$$

$$(X_h^{\lambda})''(y) = 2(h - \lambda \ln |y|) - 3\lambda, \quad y \in \mathbb{R}^*,$$

si bien que

$$(X_h^{\lambda})''(y) \ge 0 \quad \iff \quad 2\lambda \ln|y| \le 2h - 3\lambda \quad \iff \quad |y| \le y_0, \quad \text{avec} \quad y_0 = \exp\left(\frac{h}{\lambda} - \frac{3}{2}\right).$$

On en déduit les variations de $(X_h^{\lambda})'$ (voir tableau de variations ci-après).

Pour connaître le signe de $(X_h^{\lambda})'$ il suffit de regarder les valeurs que cette fonction prend en $-y_0$ et y_0 . En remarquant que

$$(X_h^{\lambda})''(y_0) = 0 \quad \Longleftrightarrow \quad 2(h - \lambda \ln|y_0|) - 3\lambda = 0,$$

on obtient

$$(X_h^{\lambda})'(-y_0) = -y_0 (2(h - \lambda \ln |y_0|) - \lambda) + 1 - \lambda = -2\lambda y_0 + 1 - \lambda, (X_h^{\lambda})'(y_0) = y_0 (2(h - \lambda \ln |y_0|) - \lambda) + 1 - \lambda = 2\lambda y_0 + 1 - \lambda.$$

Par définition de y_0 ,

$$\lim_{h \to +\infty} y_0(h) = +\infty,$$

si bien que l'on peut choisir h assez grand pour que l'on ait à la fois

$$(X_h^{\lambda})'(-y_0) < 0$$
 et $(X_h^{\lambda})'(y_0) > 0.$

Le théorème des valeurs intermédiaires confirme dans ce cas l'existence de trois réels y_1, y_2 et y_3 en lesquels $(X_h^{\lambda})'$ s'annule et tels que

$$\begin{aligned} y_1 &< -y_0 < 0 < y_2 < y_0 < y_3 \quad \text{pour } \lambda > 1, \\ \text{et } y_1 &< -y_0 < y_2 < 0 < y_0 < y_3 \quad \text{pour } 0 < \lambda < 1. \end{aligned}$$

On en déduit le tableau de variations de X_h^{λ} , pour $\lambda > 1$:

On a

$$\lim_{y \to \pm \infty} X_h^{\lambda}(y) = -\infty,$$

$$X_h^{\lambda}(-y_0) = y_0^2(h - \lambda \ln |y_0|) - (1 - \lambda)y_0 - \frac{\eta}{2} = \frac{3}{2}\lambda y_0^2 + (\lambda - 1)y_0 - \frac{\eta}{2}$$

$$X_h^{\lambda}(0) = -\frac{\eta}{2} < 0,$$

$$X_h^{\lambda}(y_0) = y_0^2(h - \lambda \ln |y_0|) + (1 - \lambda)y_0 - \frac{\eta}{2} = \frac{3}{2}\lambda y_0^2 + (1 - \lambda)y_0 - \frac{\eta}{2}.$$

Pour y_0 assez grand, soit encore pour h plus grand qu'un certain h_0 , les deux dernières quantités sont positives strictement et les lignes de niveaux C_h^{λ} ont un sens pour $h \ge h_0$. En effet, il existe dans ce cas des fonctions α , β , μ et ν en lesquelles X_h^{λ} s'annule et telles que

$$\mu(h) < y_1 < -y_0 < \nu(h) < 0 < \alpha(h) < y_0 < y_3 < \beta(h).$$

La fonction x_h^{λ} est alors bien définie sur $[\mu(h), \nu(h)] \cup [\alpha(h), \beta(h)]$.

Ce résultat reste valable dans le cas $\lambda = 1$.

L'analyse des points singuliers du système (2) fournit deux candidats : $(0, y_{-})$ et $(0, y_{+})$, où y_{-} (resp. y_{+}) est la racine strictement négative (resp. positive) de l'équation du second degré

$$\lambda y^2 + (1 - \lambda)y - \eta = 0.$$

En effet, η et λ étant strictement positifs, le produit des racines de cette équation est strictement négatif.

Proposition 2.2. Les points singuliers $(0, y_{-})$ et $(0, y_{+})$ du système (2) sont des centres.

PREUVE. Au voisinage du point singulier $(0, y_-)$ (resp. $(0, y_+)$), les lignes de niveau C_h^{λ} , pour h fixé dans l'intervalle $]h_0, +\infty[$, sont l'union de deux courbes fermées notées γ_h^- et γ_h^+ , respectivement définies sur les intervalles $[\mu(h), \nu(h)]$ du demi-plan $\{y < 0\}$ et $[\alpha(h), \beta(h)]$ du demi-plan $\{y > 0\}$.

FIG. 4 – Portrait de phase du système perturbé, $\eta = 0.1$.

2.2 Le cas particulier $\lambda = 1$

On souhaite déformer cette singularité avec deux domaines elliptiques en deux singularités de type centre. En perturbant le système de manière analogue au cas $\lambda \neq 1$, on a le résultat escompté :

$$\begin{cases} \dot{x} = y^2 - 2x^2 - \eta, \\ \dot{y} = -2xy, \end{cases}$$

$$\tag{4}$$

où η est un paramètre réel strictement positif.

Le système (4) est lui aussi intégrable et son intégrale première, que l'on note H^1_{η} , vaut :

$$H_{\eta}^{1}(x,y) = \frac{1}{y^{2}} \left(x^{2} + \frac{\eta}{2} \right) + \ln|y|,$$

dont le facteur intégrant associé est encore ψ .

D'autre part, on montre de la même manière le lemme suivant sur l'existence des lignes de niveau.

Lemme 2.3. Il existe un réel h_0 tel que les lignes de niveau $C_h^1 = \{(x, y) \in \mathbb{R}^2 \mid H_\eta^1(x, y) = h\}$ existent pour tout h supérieur ou égal à h_0 .

L'analyse des points singuliers du système (4) fournit deux candidats, $(0, -\sqrt{\eta})$ et $(0, \sqrt{\eta})$, dont la nature se vérifie comme pour le cas général $\lambda \neq 1$:

Proposition 2.4. Les points singuliers $(0, -\sqrt{\eta})$ et $(0, \sqrt{\eta})$ du système (4) sont des centres.

3. Seconde étape : recherche de cycles limites

Après une première déformation, identique quelle que soit la valeur de λ , les systèmes différentiels obtenus présentent les mêmes caractéristiques géométriques : une singularité de type centre dans chacun des demi-plans {y < 0} et {y > 0}. La suite de l'étude montre que les résultats obtenus dans le cas général se maintiennent pour le cas particulier $\lambda = 1$.

Afin de ne pas alourdir les notations, on ne signale pas toujours la dépendance en λ .

3 Seconde étape : recherche de cycles limites

On suppose désormais que η est fixé et on étudie le comportement du système précédent sous la perturbation suivante :

$$\begin{cases} \dot{x} = \lambda y^2 - 2x^2 + (1 - \lambda)y - \eta + \varepsilon f(x, y), \\ \dot{y} = -2xy + \varepsilon g(x, y), \end{cases}$$
(5)

où f et g sont des polynômes réels de degré deux donnés par

$$\begin{cases} f(x,y) = a_{00} + a_{10}x + a_{01}y + a_{20}x^2 + a_{11}xy + a_{02}y^2, \\ g(x,y) = b_{00} + b_{10}x + b_{01}y + b_{20}x^2 + b_{11}xy + b_{02}y^2, \end{cases}$$

et ε est un petit paramètre strictement positif ($\varepsilon \ll \eta$).

On note ω_{ε} la 1-forme associée au système (5)

$$\omega_{\varepsilon} = \frac{1}{\psi} dH_{\eta}^{\lambda} + \varepsilon (fdy - gdx) = \omega_{\eta} + \varepsilon (fdy - gdx).$$

Pour ε assez petit, il existe deux applications de premier retour L_{ε}^{-} et L_{ε}^{+} , définies respectivement sur des sections transverses Σ^{-} et Σ^{+} des demi-plans $\{y < 0\}$ et $\{y > 0\}$. Ces sections peuvent être paramétrées par H_{η}^{λ} lui-même :

$$L_{\varepsilon}^{-}$$
: $h \in]h_0, +\infty[\mapsto L_{\varepsilon}^{-}(h)$ et L_{ε}^{+} : $h \in]h_0, +\infty[\mapsto L_{\varepsilon}^{+}(h),$

avec

$$\begin{split} L_{\varepsilon}^{-}(h) &= h + \varepsilon M_{1}^{-}(h) + \varepsilon^{2} M_{2}^{-}(h) + \mathcal{O}(\varepsilon^{3}), \\ L_{\varepsilon}^{+}(h) &= h + \varepsilon M_{1}^{+}(h) + \varepsilon^{2} M_{2}^{+}(h) + \mathcal{O}(\varepsilon^{3}). \end{split}$$

Dans la suite, nous calculons les coefficients à l'ordre 1 et 2 du développement de ces applications en séries entières en ε .

3.1 Les premières fonctions de Melnikov

Les premières fonctions de Melnikov s'écrivent

$$M_1^-: h \in]h_0, +\infty[\longmapsto -\oint_{\gamma_h^-} \psi(fdy - gdx)$$

et $M_1^+: h \in]h_0, +\infty[\longmapsto -\oint_{\gamma_h^+} \psi(fdy - gdx).$

On introduit à nouveau la 1-forme

 $(\mathbf{1}$

$$\omega = \psi(fdy - gdx)$$

et les 1-formes élémentaires

$$\psi_{ij} = \frac{x^i y^j}{y^3} dx \quad \text{et} \quad \delta_{ij} = \frac{x^i y^j}{y^3} dy, \qquad 0 \le i+j \le 2,$$

qui la composent :

$$\omega = \sum_{0 \le i+j \le 2} a_{ij} \delta_{ij} - b_{ij} \omega_{ij}.$$

On cherche tout d'abord à exprimer ces 1-formes à l'aide de différentielles de fonctions et de la différentielle dH_{η}^{λ} .

Lemme 3.1. On a les identités suivantes

$$\begin{split} \delta_{00} &= d \left[-\frac{1}{2y^2} \right], \quad \delta_{10} = d \left[-\frac{x}{2y^2} \right] + \frac{1}{2} \omega_{01}, \\ \delta_{01} &= d \left[-\frac{1}{y} \right], \qquad \delta_{02} = d[\ln|y|], \\ \delta_{20} &= -\ln|y| dH_{\eta}^{\lambda} + d \left[\ln|y| H_{\eta}^{\lambda} + \frac{\eta}{4y^2} + \frac{\lambda - 1}{y} - \frac{\lambda}{2} \ln^2|y| \right], \\ \delta_{11} &= \frac{x}{\lambda y} dH_{\lambda}^{\eta} + d \left[\frac{x}{y} \left(-\frac{2}{3\lambda} H_{\eta}^{\lambda} + \frac{(\lambda - 1)}{6\lambda y} + \frac{2}{3} \ln|y| \right) \right] + \frac{\eta}{3\lambda} \omega_{00} + \frac{\lambda - 1}{2\lambda} \omega_{01}, \\ \omega_{10} &= \frac{3}{2y} dH_{\eta}^{\lambda} + d \left[-\frac{1}{y} H_{\eta}^{\lambda} + \frac{\lambda - 1}{4y^2} + \frac{3\lambda}{2y} + \lambda \frac{\ln|y|}{y} \right], \\ \omega_{11} &= \left(\frac{1}{2} - \ln|y| \right) dH_{\eta}^{\lambda} + d \left[\ln|y| H_{\eta}^{\lambda} + \frac{\lambda - 1}{2y} - \frac{\lambda}{2} \ln^2|y| - \frac{\lambda}{2} \ln|y| \right], \\ \omega_{02} &= \frac{x}{\lambda y} dH_{\lambda}^{\eta} + d \left[\frac{x}{y} \left(1 - \frac{2}{3\lambda} H_{\eta}^{\lambda} + \frac{(\lambda - 1)}{6\lambda y} + \frac{2}{3} \ln|y| \right) \right] + \frac{\eta}{3\lambda} \omega_{00} + \frac{\lambda - 1}{2\lambda} \omega_{01}. \end{split}$$

PREUVE. Certaines de ces relations ont déjà été prouvées dans le Lemme 5.1 du Chapitre II. Pour les autres, on utilise les expressions de l'intégrale première H_{η}^{λ} et de sa différentielle :

$$\begin{split} H_{\eta}^{\lambda}(x,y) &= \frac{1}{y^2} \left(x^2 + \frac{\eta}{2} \right) + \frac{\lambda - 1}{y} + \lambda \ln|y|, \\ dH_{\eta}^{\lambda} &= \frac{2x}{y^2} dx + \left[-\frac{2}{y^3} \left(x^2 + \frac{\eta}{2} \right) + \frac{1 - \lambda}{y^2} + \frac{\lambda}{y} \right] dy \\ &= \frac{2x}{y^2} dx - \frac{1}{y} \left[2H_{\eta}^{\lambda} - 2\lambda \ln|y| + \frac{1 - \lambda}{y} - \lambda \right] dy, \end{split}$$

On trouve

$$\begin{split} \delta_{20} &= \frac{1}{y} \left[H_{\eta}^{1} - \frac{\eta}{2y^{2}} - \frac{\lambda - 1}{y} - \lambda \ln |y| \right] dy = \frac{1}{y} H_{\eta}^{\lambda} dy - \frac{\eta}{2y^{3}} dy - \frac{\lambda - 1}{y^{2}} dy - \lambda \frac{\ln |y|}{y} dy \\ &= -\ln |y| dH_{\eta}^{\lambda} + d \left[\ln |y| H_{\eta}^{\lambda} + \frac{\eta}{4y^{2}} + \frac{\lambda - 1}{y} - \frac{\lambda}{2} \ln^{2} |y| \right], \\ \omega_{10} &= \frac{1}{2y} \left[dH_{\eta}^{\lambda} + \left(\frac{2x^{2}}{y^{3}} + \frac{\eta}{y^{3}} - \frac{1 - \lambda}{y^{2}} - \frac{\lambda}{y} \right) dy \right] \\ &= \frac{1}{2y} dH_{\eta}^{\lambda} + \frac{x^{2}}{y^{4}} dy + \frac{\eta}{2y^{4}} dy - \frac{1 - \lambda}{2y^{3}} dy - \frac{\lambda}{2y^{2}} dy \\ &= \frac{1}{2y} dH_{\eta}^{\lambda} + d \left[-\frac{x^{2}}{3y^{3}} - \frac{\eta}{6y^{3}} + \frac{1 - \lambda}{4y^{2}} + \frac{\lambda}{2y} \right] + \frac{2}{3} \omega_{10}. \end{split}$$

Il s'ensuit que

$$\begin{split} \omega_{10} &= \frac{3}{2y} dH_{\eta}^{\lambda} + d \left[-\frac{x^2}{y^3} - \frac{\eta}{2y^3} - \frac{3(\lambda - 1)}{4y^2} + \frac{3\lambda}{2y} \right] \\ &= \frac{3}{2y} dH_{\eta}^{\lambda} + d \left[-\frac{1}{y} H_{\eta}^{\lambda} + \frac{\lambda - 1}{4y^2} + \frac{3\lambda}{2y} + \lambda \frac{\ln|y|}{y} \right]. \end{split}$$

3. Seconde étape : recherche de cycles limites

D'autre part,

$$\begin{split} \delta_{11} &= d\left[-\frac{x}{y}\right] + \omega_{02}, \\ \omega_{11} &= \frac{1}{2}dH_{\eta}^{\lambda} + \delta_{20} + \frac{\eta}{2y^3}dy - \frac{1-\lambda}{2y^2}dy - \frac{\lambda}{2y}dy \\ &= \left(\frac{1}{2} - \ln|y|\right)dH_{\eta}^{\lambda} + d\left[\ln|y|H_{\eta}^{\lambda} + \frac{\lambda-1}{2y} - \frac{\lambda}{2}\ln^2|y| - \frac{\lambda}{2}\ln|y|\right] \\ &= -\ln|y|dH_{\eta}^{\lambda} + d\left[\left(\frac{1}{2} + \ln|y|\right)H_{\eta}^{\lambda} + \frac{\lambda-1}{2y} - \frac{\lambda}{2}\ln^2|y| - \frac{\lambda}{2}\ln|y|\right], \end{split}$$

 et

$$\begin{split} \lambda\omega_{02} &- \frac{\eta}{3}\omega_{00} = d\left[\lambda\frac{x}{y} - \frac{\eta}{3}\frac{x}{y^3}\right] + \frac{x}{y}\left(\frac{\lambda}{y} - \frac{\eta}{y^3}\right)dy\\ &= d\left[\lambda\frac{x}{y} - \frac{\eta}{3}\frac{x}{y^3}\right] + \frac{x}{y}dH_{\eta}^{\lambda} + d\left[-\frac{2}{3}\frac{x^3}{y^3}\right] + (\lambda - 1)\delta_{10}\\ &= \frac{x}{y}dH_{\eta}^{\lambda} + d\left[\lambda\frac{x}{y} - \frac{2x}{3y}\left(\frac{x^2}{y^2} + \frac{\eta}{2y^2}\right) + (1 - \lambda)\frac{x}{2y^2}\right] - \frac{1 - \lambda}{2}\omega_{01}\\ &= \frac{x}{y}dH_{\eta}^{\lambda} + d\left[\frac{x}{y}\left(\lambda - \frac{2}{3}H_{\eta}^{\lambda} + \frac{2(\lambda - 1)}{3y} + \frac{2\lambda}{3}\ln|y|\right)\right], \end{split}$$

d'où le résultat.

On en déduit la décomposition de ω :

Lemme 3.2. La 1-forme ω peut se décomposer sous la forme

$$\omega = g_1 dH_\eta^\lambda + dR_1 + N_1,$$

 $o\dot{u}$

$$g_{1}(x,y) = -\frac{b_{11}}{2} + c_{0} \ln|y| - \frac{3}{2}b_{10}\frac{1}{y} + \frac{c_{1}}{\lambda}\frac{x}{y},$$

$$R_{1}(x,y,H_{\eta}^{\lambda}) = \frac{c_{2}}{y} + \frac{c_{3}}{y^{2}} + c_{4} \ln|y| + \frac{\lambda}{2}c_{0}\ln^{2}|y| - \lambda b_{10}\frac{\ln|y|}{y} + b_{10}H_{\eta}^{\lambda}\frac{1}{y} - c_{0}H_{\eta}^{\lambda}\ln|y|$$

$$-b_{02}\frac{x}{y} + \left(-\frac{1}{2}a_{10} + \frac{\lambda - 1}{6\lambda}c_{1}\right)\frac{x}{y^{2}} + \frac{2}{3}c_{1}\frac{x}{y}\ln|y| - \frac{2}{3\lambda}c_{1}H_{\eta}^{\lambda}\frac{x}{y},$$

$$N_{1}(x,y,H_{\eta}^{\lambda}) = A_{1}\omega_{00} + B_{1}\omega_{01} + C_{1}\omega_{20},$$

et

$$c_{0} = b_{11} - a_{20}, \qquad c_{1} = a_{11} - b_{02}, \quad c_{2} = -a_{01} - \frac{3\lambda}{2}b_{10} + (\lambda - 1)a_{20} - \frac{\lambda - 1}{2}b_{11},$$

$$c_{3} = -\frac{1}{2}a_{00} + \frac{\eta}{4}a_{20} - \frac{\lambda - 1}{4}b_{10}, \qquad c_{4} = a_{02} + \frac{\lambda}{2}b_{11},$$

$$A_{1} = -b_{00} + \frac{\eta}{3\lambda}c_{1}, \qquad B_{1} = \frac{1}{2}a_{10} - b_{01} + \frac{\lambda - 1}{2\lambda}c_{1}, \qquad C_{1} = -b_{20}.$$

Cette décomposition permet de donner des expressions des premières fonctions de Melnikov.

Corollaire 3.3. Les premières fonctions de Melnikov M_1^- et M_1^+ s'expriment comme combinaisons linéaires de trois intégrales indépendantes

$$M_1^-(h) = -A_1 K_1(h) + B_1 K_2(h) - C_1 K_3(h)$$

et $M_1^+(h) = A_1 K_1(h) + B_1 K_2(h) + C_1 K_3(h),$

Chapitre III. Une famille de systèmes différentiels avec domaines elliptiques

 $o \dot{u}$

128

$$K_1 = -\oint_{\gamma_h^+} \omega_{00}, \quad K_2 = -\oint_{\gamma_h^+} \omega_{01} \quad et \quad K_3 = -\oint_{\gamma_h^+} \omega_{20},$$

PREUVE. On se place dans le demi-plan $\{y > 0\}$ et on montre en premier lieu le résultat pour la fonction M_1^+ . Par définition,

$$M_{1}^{+}(h) = -\oint_{\gamma_{h}^{+}} \omega = -\oint_{\gamma_{h}^{+}} g_{1}dH_{\eta}^{\lambda} - \oint_{\gamma_{h}^{+}} dR_{1} - \oint_{\gamma_{h}^{+}} N_{1}.$$

Il est clair que la première intégrale est identiquement nulle

$$\oint_{\gamma_h^+} g_1 dH_\eta^\lambda = 0.$$

Par ailleurs, les lignes de niveau γ_h^+ sont contenues dans le demi-plan $\{y > 0\}$. R_1 étant analytique sur ce demi-plan, on a également

$$\oint_{\gamma_h^+} dR_1 = 0$$

D'où

$$M_1^+(h) = -\oint_{\gamma_h^+} N_1 = -\oint_{\gamma_h^+} A_1\omega_{00} + B_1\omega_{01} + C_1\omega_{20}$$
$$= A_1K_1(h) + B_1K_2(h) + C_1K_3(h).$$

De même,

$$\begin{split} M_1^-(h) &= -\oint_{\gamma_h^-} N_1 = -\oint_{\gamma_h^-} A_1\omega_{00} + B_1\omega_{01} + C_1\omega_{20} \\ &= -\int_{-\beta(h)}^{-\alpha(h)} \frac{1}{y^3} [A_1 + B_1y + C_1(-x_h(-y))^2] x_h'(-y) dy \\ &- \int_{-\alpha(h)}^{-\beta(h)} \frac{1}{y^3} [A_1 + B_1y + C_1(x_h(-y))^2] (-x_h'(-y)) dy \\ &= 2\int_{\alpha(h)}^{\beta(h)} \frac{1}{y^3} [A_1 - B_1y + C_1(x_h(y))^2] x_h'(y) dy \\ &= \int_{\gamma_h^+} A_1\omega_{00} - B_1\omega_{01} + C_1\omega_{20} \\ &= -A_1K_1(h) + B_1K_2(h) - C_1K_3(h). \end{split}$$

D'autre part, on s'assure numériquement de l'indépendance des intégrales curvilignes K_1 , K_2 et K_3 , ce qui termine la preuve.

Nous ne sommes pas en mesure de calculer formellement les intégrales K_1 , K_2 et K_3 . Pour rechercher des cycles limites, on s'intéresse tout d'abord au cas où les deux premières fonctions de Melnikov ont des zéros identiques. Le corollaire précédent offre clairement une condition pour laquelle cela se produit :

Corollaire 3.4. Si $B_1 = 0$ alors les premières fonctions de Melnikov vérifient

$$\forall h \in]h_0, +\infty[M_1^+(h) = -M_1^-(h).$$

On trouve alors autant de cycles limites dans chaque demi-plan. On espère faire émerger quatre cycles emboités deux à deux, ce qui ne semble pas être le cas après simulations numériques. **Proposition 3.5.** Pour certains coefficients des fonctions de perturbation f et g, il est possible d'obtenir un zéro identique pour les premières fonctions de Melnikov.

Il semblerait que les deux degrés de liberté $(A_1 \text{ et } C_1)$ dont on dispose ne suffisent pas à obtenir plus d'un seul cycle limite autour de chaque centre.

On revient au cas $B_1 \neq 0$ et on procède ainsi : on cherche tout d'abord une plage de paramètres pour laquelle M_1^+ admet deux zéros, puis on regarde combien on peut obtenir de zéros pour M_1^- dans cette plage. Finalement, on arrive au résultat suivant :

Proposition 3.6. Pour certains coefficients des fonctions de perturbation f et g, il est possible d'obtenir deux zéros pour M_1^+ et un zéro pour M_1^- dans l'intervalle $]h_0, +\infty[$.

FIG. 5 – M_1^+ et M_1^- pour $A_1 = 0.9$, $B_1 = 0.094$ et $C_1 = -0.41$ dans la cas $\lambda = 1$.

3.2 Les secondes fonctions de Melnikov

Les deux fonctions de Melnikov M_1^- et M_1^+ sont identiquement nulles si et seulement si

$$A_1 = B_1 = C_1 = 0.$$

Dans ce cas, il faut étudier les secondes fonctions de Melnikov M_2^- et M_2^+ . D'après l'algorithme de Françoise, ces fonctions valent

$$M_2^-(h) = -\oint_{\gamma_h^-} g_1\omega \quad \text{et} \quad M_2^+(h) = -\oint_{\gamma_h^+} g_1\omega.$$

Afin d'estimer M_2^- et M_2^+ , on décompose la 1-forme $g_1\omega$ en cherchant des fonctions analytiques g_2 et R_2 sur les demi-plans $\{y < 0\}$ et $\{y > 0\}$, ainsi qu'une 1-forme N_2 telles que

$$g_1\omega = g_2 dH_\eta^\lambda + dR_2 + N_2.$$

Faisant appel à la décomposition de ω obtenue dans le Lemme 3.2, on a

$$g_1 \omega = g_1^2 dH_{\eta}^{\lambda} + g_1 dR_1 + g_1 N_1,$$

avec

$$N_1 \equiv 0,$$

Chapitre III. Une famille de systèmes différentiels avec domaines elliptiques

car

$$A_1 = B_1 = C_1 = 0.$$

Le terme g_1^2 contribue uniquement à la fonction g_2 . Par conséquent, il suffit d'étudier le second terme. On le décompose comme suit

$$g_1 dR_1 = d \left[-\frac{b_{11}}{2} R_1 \right] + \tilde{g}_1 d\tilde{R}_1 + \tilde{g}_1 d\hat{R}_1 + \hat{g}_1 d\tilde{R}_1 + \hat{g}_1 d\tilde{R}_1 + \hat{g}_1 d\hat{R}_1 +$$

avec

$$\begin{split} \tilde{g}_1(y) &= c_0 \ln|y| - \frac{3}{2} b_{10} \frac{1}{y}, \quad \hat{g}_1(x,y) = \frac{c_1}{\lambda} \frac{x}{y}, \\ \tilde{R}_1(y, H_\eta^\lambda) &= c_2 \frac{1}{y} + c_3 \frac{1}{y^2} + c_4 \ln|y| + \frac{\lambda}{2} c_0 \ln^2|y| - \lambda b_{10} \frac{\ln|y|}{y} + b_{10} \frac{1}{y} H_\eta^\lambda - c_0 \ln|y| H_\eta^\lambda, \\ \hat{R}_1(x,y) &= -b_{02} \frac{x}{y} + \left(-\frac{1}{2} a_{10} + \frac{\lambda - 1}{6\lambda} c_1 \right) \frac{x}{y^2} + \frac{2}{3} c_1 \frac{x}{y} \ln|y| - \frac{2}{3\lambda} c_1 \frac{x}{y} H_\eta^\lambda. \end{split}$$

Pour calculer les fonctions de Melnikov à l'ordre deux uniquement, on s'intéresse juste aux contributions des termes $\tilde{g}_1 d\tilde{R}_1$, $\tilde{g}_1 d\hat{R}_1$, $\hat{g}_1 d\tilde{R}_1$ et $\hat{g}_1 d\hat{R}_1$ pour la 1-forme N_2 de la décomposition de $g_1\omega$. On appelle $\tilde{\tilde{N}}_2$, $\tilde{\tilde{N}}_2$, $\tilde{\tilde{N}}_2$ et $\hat{\tilde{N}}_2$ ces contributions respectives.

3.2.1 Calcul de $\tilde{\tilde{N}}_2$

la 1-forme $\tilde{g}_1 d\tilde{R}_1$ ne fait intervenir que la variable y et l'intégrale première H_{η}^{λ} . Par conséquent, elle s'ecrit sous la forme

$$\tilde{g}_1 d\tilde{R}_1 = () dH_\eta^\lambda + d[],$$

où () et [] sont des fonctions analytiques sur les demi-plans considérés et dont l'expression importe peu pour la détermination des secondes fonctions de Melnikov.

Ainsi, on a

$$\tilde{\tilde{N}}_2 \equiv 0.$$

3.2.2 Calcul de \hat{N}_2

On a

$$\begin{split} \tilde{g}_{1}d\hat{R}_{1} &= \left(c_{0}\ln|y| - \frac{3}{2}b_{10}\frac{1}{y}\right)d\left[-b_{02}\frac{x}{y} + \left(-\frac{1}{2}a_{10} + \frac{\lambda - 1}{6\lambda}c_{1}\right)\frac{x}{y^{2}} + \frac{2}{3}c_{1}\frac{x}{y}\ln|y| - \frac{2}{3\lambda}c_{1}\frac{x}{y}H_{\eta}^{\lambda}\right] \\ &= -c_{0}\left(b_{02} + \frac{2}{3\lambda}c_{1}H_{\eta}^{\lambda}\right)\ln|y|d\left[\frac{x}{y}\right] + \left(-\frac{1}{2}a_{10} + \frac{\lambda - 1}{6\lambda}c_{1}\right)c_{0}\ln|y|d\left[\frac{x}{y^{2}}\right] \\ &+ \frac{2}{3}c_{0}c_{1}\ln|y|d\left[\frac{x}{y}\ln|y|\right] + \frac{3}{2}b_{10}\left(b_{02} + \frac{2}{3\lambda}c_{1}H_{\eta}^{\lambda}\right)\frac{1}{y}d\left[\frac{x}{y}\right] \\ &+ \left(\frac{3}{4}a_{10} - \frac{\lambda - 1}{4\lambda}c_{1}\right)b_{10}\frac{1}{y}d\left[\frac{x}{y^{2}}\right] - b_{10}c_{1}\frac{1}{y}d\left[\frac{x}{y}\ln|y|\right] - \frac{2}{3\lambda}c_{1}\frac{x}{y}\left(c_{0}\ln|y| - \frac{3}{2}b_{10}\frac{1}{y}\right)dH_{\eta}^{\lambda} \end{split}$$

Lemme 3.7. On a les identités suivantes

$$\begin{aligned} \ln|y|d\left[\frac{x}{y}\right] &= (\)dH_{\eta}^{\lambda} + d[\] - \frac{\eta}{3\lambda}\omega_{00} - \frac{\lambda - 1}{2\lambda}\omega_{01}, \qquad \frac{1}{y}d\left[\frac{x}{y}\right] = d[\] + \frac{1}{2}\omega_{01}, \\ \ln|y|d\left[\frac{x}{y^2}\right] &= d[\] - \frac{1}{2}\omega_{01}, \qquad \qquad \frac{1}{y}d\left[\frac{x}{y^2}\right] = d[\] + \frac{1}{3}\omega_{00}, \\ \ln|y|d\left[\frac{x}{y}\ln|y|\right] &= (\)dH_{\eta}^{\lambda} + d[\] + \frac{\eta}{6\lambda^2}(\lambda - 2H_{\eta}^{\lambda})\omega_{00} + \frac{\lambda - 1}{2\lambda^2}(\lambda - H_{\eta}^{\lambda})\omega_{01} + \frac{1}{\lambda}\omega_{20}. \end{aligned}$$

3. Seconde étape : recherche de cycles limites

PREUVE. En effet, on a

$$\ln |y|d\left[\frac{x}{y}\right] = d\left[\frac{x}{y}\ln|y|\right] - \delta_{11} = (\)dH_{\eta}^{\lambda} + d[\] - \frac{\eta}{3\lambda}\omega_{00} - \frac{\lambda - 1}{2\lambda}\omega_{01},$$

$$\ln |y|d\left[\frac{x}{y^2}\right] = d\left[\frac{x}{y^2}\ln|y|\right] - \delta_{10} = d[\] - \frac{1}{2}\omega_{01},$$

$$\frac{1}{y}d\left[\frac{x}{y}\right] = \omega_{01} - \delta_{10} = d\left[\frac{x}{2y^2}\right] + \frac{1}{2}\omega_{01},$$

$$\frac{1}{y}d\left[\frac{x}{y^2}\right] = \omega_{00} - \frac{2x}{y^4}dy = \omega_{00} + d\left[\frac{2x}{3y^3}\right] - \frac{2}{3}\omega_{00} = d[\] + \frac{1}{3}\omega_{00},$$

$$\ln |y|d\left[\frac{x}{y}\ln|y|\right] = d[\] - \frac{\ln|y|}{y}dx - \omega_{02}.$$

Or

$$\frac{\ln|y|}{y}dx = \frac{1}{\lambda y}\left(H_{\lambda}^{\eta} - \frac{x^2}{y^2} - \frac{\eta}{2y^2} - \frac{\lambda - 1}{y}\right)dx = \frac{1}{\lambda}H_{\eta}^{\lambda}\omega_{02} - \frac{1}{\lambda}\omega_{20} - \frac{\eta}{2\lambda}\omega_{00} - \frac{\lambda - 1}{\lambda}\omega_{01},$$

d'où

$$\ln|y|d\left[\frac{x}{y}\ln|y|\right] = (\)dH_{\eta}^{\lambda} + d[\] + \frac{\eta}{6\lambda^2}(\lambda - 2H_{\eta}^{\lambda})\omega_{00} + \frac{\lambda - 1}{2\lambda^2}(\lambda - H_{\eta}^{\lambda})\omega_{01} + \frac{1}{\lambda}\omega_{20},$$

ce qui achève la démonstration.

On en déduit

$$\begin{split} \hat{\tilde{N}}_2 &= -c_0 \left(b_{02} + \frac{2}{3\lambda} c_1 H_\eta^\lambda \right) \times \left(-\frac{\eta}{3\lambda} \omega_{00} - \frac{\lambda - 1}{2\lambda} \omega_{01} \right) + \left(-\frac{1}{2} a_{10} + \frac{\lambda - 1}{6\lambda} c_1 \right) c_0 \times \left(-\frac{1}{2} \omega_{01} \right) \\ &+ \frac{2}{3} c_0 c_1 \left(\frac{\eta}{6\lambda^2} (\lambda - 2H_\eta^\lambda) \omega_{00} + \frac{\lambda - 1}{2\lambda^2} (\lambda - H_\eta^\lambda) \omega_{01} + \frac{1}{\lambda} \omega_{20} \right) + \frac{3}{2} b_{10} \left(b_{02} + \frac{2}{3\lambda} c_1 H_\eta^\lambda \right) \times \frac{1}{2} \omega_{01} \\ &+ \left(\frac{3}{4} a_{10} - \frac{\lambda - 1}{4\lambda} c_1 \right) b_{10} \times \frac{1}{3} \omega_{00} - b_{10} c_1 \frac{1}{y} d \left[\frac{x}{y} \ln |y| \right], \end{split}$$

d'où

$$\begin{split} \hat{\tilde{N}}_{2} &= \left(\frac{\eta}{3\lambda}b_{02}c_{0} + \frac{\eta}{9\lambda}c_{0}c_{1} + \frac{1}{4}a_{10}b_{10} - \frac{\lambda - 1}{12\lambda}b_{10}c_{1}\right)\omega_{00} \\ &+ \left(\frac{\lambda - 1}{4\lambda}(2b_{02}c_{0} + c_{0}c_{1}) + \frac{1}{4}a_{10}c_{0} + \frac{3}{4}b_{10}b_{02} + \frac{1}{2\lambda}b_{10}c_{1}H_{\eta}^{\lambda}\right)\omega_{01} \\ &+ \frac{2}{3\lambda}c_{0}c_{1}\omega_{20} - b_{10}c_{1}\frac{1}{y}d\left[\frac{x}{y}\ln|y|\right]. \end{split}$$

3.2.3 Calcul de $\tilde{\hat{N}}_2$

On a

$$\begin{split} \hat{g}_{1}d\tilde{R}_{1} &= \frac{c_{1}}{\lambda}\frac{x}{y}d\left[c_{2}\frac{1}{y} + c_{3}\frac{1}{y^{2}} + c_{4}\ln|y| + \frac{\lambda}{2}c_{0}\ln^{2}|y| - \lambda b_{10}\frac{\ln|y|}{y} + b_{10}\frac{1}{y}H_{\eta}^{\lambda} - c_{0}\ln|y|H_{\eta}^{\lambda}\right] \\ &= \frac{c_{1}}{\lambda}(c_{2} + b_{10}H_{\eta}^{\lambda})\frac{x}{y}d\left[\frac{1}{y}\right] + \frac{1}{\lambda}c_{1}c_{3}\frac{x}{y}d\left[\frac{1}{y^{2}}\right] + \frac{c_{1}}{\lambda}(c_{4} - c_{0}H_{\eta}^{\lambda})\frac{x}{y}d\left[\ln|y|\right] \\ &+ \frac{1}{2}c_{0}c_{1}\frac{x}{y}d\left[\ln^{2}|y|\right] - b_{10}c_{1}\frac{x}{y}d\left[\frac{\ln|y|}{y}\right] + \frac{c_{1}}{\lambda}\frac{x}{y}\left(b_{10}\frac{1}{y} - c_{0}\ln|y|\right)dH_{\eta}^{\lambda}. \end{split}$$

Lemme 3.8. On a les identités suivantes

$$\begin{aligned} \frac{x}{y}d\left[\frac{1}{y}\right] &= d\left[\frac{x}{2y^2}\right] - \frac{1}{2}\omega_{01}, & \frac{x}{y}d\left[\ln|y|\right] = (\)dH_{\eta}^{\lambda} + d[\] + \frac{\eta}{3\lambda}\omega_{00} + \frac{\lambda - 1}{2\lambda}\omega_{01}, \\ \frac{x}{y}d\left[\frac{1}{y^2}\right] &= d[\] - \frac{2}{3}\omega_{00}, & \frac{x}{y}d\left[\frac{\ln|y|}{y}\right] = d[\] + \frac{1}{2}\omega_{01} - \frac{1}{y}d\left[\frac{x}{y}\ln|y|\right]. \\ \frac{x}{y}d\left[\ln^2|y|\right] &= (\)dH_{\eta}^{\lambda} + d[\] - \frac{\eta}{3\lambda^2}(\lambda - 2H_{\eta}^{\lambda})\omega_{00} - \frac{\lambda - 1}{\lambda^2}(\lambda - H_{\eta}^{\lambda})\omega_{01} - \frac{2}{\lambda}\omega_{20}. \end{aligned}$$

PREUVE. Par des calculs élémentaires, on obtient

$$\begin{split} &\frac{x}{y}d\left[\frac{1}{y}\right] = -\delta_{10} = d\left[\frac{x}{2y^2}\right] - \frac{1}{2}\omega_{01}, \\ &\frac{x}{y}d\left[\frac{1}{y^2}\right] = -\frac{2x}{y^4}dy = d\left[\frac{2x}{3y^3}\right] - \frac{2}{3}\omega_{00} = d[\] - \frac{2}{3}\omega_{00}, \\ &\frac{x}{y}d\left[\ln|y|\right] = \delta_{11}, \\ &\frac{x}{y}d\left[\frac{\ln|y|}{y}\right] = \delta_{10} - \frac{x}{y^3}\ln|y|dy = \delta_{10} + \frac{x}{y}\ln|y|d\left[\frac{1}{y}\right] = d[\] + \frac{1}{2}\omega_{01} - \frac{1}{y}d\left[\frac{x}{y}\ln|y|\right]. \\ &\frac{x}{y}d\left[\ln^2|y|\right] = \frac{2x}{y^2}\ln|y|dy = d\left[-2\ln|y| \times \frac{x}{y}\ln|y|\right] - 2\ln|y|d\left[\frac{x}{y}\ln|y|\right], \end{split}$$

d'où le résultat d'après les Lemmes 3.1 et 3.7.

En utilisant ces résultats, on a

$$\begin{split} \tilde{\hat{N}}_2 &= \frac{c_1}{\lambda} (c_2 + b_{10} H_\eta^\lambda) \times \left(-\frac{1}{2} \right) \omega_{01} + \frac{1}{\lambda} c_1 c_3 \times \left(-\frac{2}{3} \right) \omega_{00} \\ &+ \frac{c_1}{\lambda} (c_4 - c_0 H_\eta^\lambda) \left(\frac{\eta}{3\lambda} \omega_{00} + \frac{\lambda - 1}{2\lambda} \omega_{01} \right) \\ &- \frac{1}{2} c_0 c_1 \left(\frac{\eta}{3\lambda^2} (\lambda - 2H_\eta^\lambda) \omega_{00} + \frac{\lambda - 1}{\lambda^2} (\lambda - H_\eta^\lambda) \omega_{01} + \frac{2}{\lambda} \omega_{20} \right) \\ &- b_{10} c_1 \left(\frac{1}{2} \omega_{01} - \frac{1}{y} d \left[\frac{x}{y} \ln |y| \right] \right), \end{split}$$

 soit

$$\begin{split} \tilde{\hat{N}}_{2} &= \left(-\frac{2}{3\lambda} c_{1}c_{3} - \frac{\eta}{6\lambda} c_{0}c_{1} + \frac{\eta}{3\lambda^{2}} c_{1}c_{4} \right) \omega_{00} \\ &+ \left(-\frac{1}{2\lambda} c_{1}c_{2} - \frac{1}{2} b_{10}c_{1} + \frac{\lambda - 1}{2\lambda^{2}} (c_{1}c_{4} - \lambda c_{0}c_{1}) - \frac{1}{2\lambda} b_{10}c_{1}H_{\eta}^{\lambda} \right) \omega_{01} \\ &- \frac{1}{\lambda} c_{0}c_{1}\omega_{20} + b_{10}c_{1}\frac{1}{y}d\left[\frac{x}{y}\ln|y| \right]. \end{split}$$

3.2.4 Calcul de \hat{N}_2

$$\begin{split} \hat{g}_1 d\hat{R}_1 = & \frac{c_1}{\lambda} \frac{x}{y} d\left[-b_{02} \frac{x}{y} + \left(-\frac{1}{2} a_{10} + \frac{\lambda - 1}{6\lambda} c_1 \right) \frac{x}{y^2} + \frac{2}{3} c_1 \frac{x}{y} \ln|y| - \frac{2}{3\lambda} c_1 \frac{x}{y} H_\eta^\lambda \right] \\ = & - \frac{c_1}{\lambda} \left(b_{02} + \frac{2}{3\lambda} c_1 H_\eta^\lambda \right) \frac{x}{y} d\left[\frac{x}{y} \right] + \frac{c_1}{\lambda} \left(-\frac{1}{2} a_{10} + \frac{\lambda - 1}{6\lambda} c_1 \right) \frac{x}{y} d\left[\frac{x}{y^2} \right] \\ & + \frac{2}{3} \frac{c_1^2}{\lambda} \frac{x}{y} d\left[\frac{x}{y} \ln|y| \right] + (\) dH_\eta^\lambda. \end{split}$$

3. Seconde étape : recherche de cycles limites

Or, le lemme suivant nous fournit des identités supplémentaires :

Lemme 3.9. On a les identités suivantes

$$\frac{x}{y}d\left[\frac{x}{y}\right] = d\left[\frac{x^2}{2y^2}\right], \qquad \frac{x}{y}d\left[\frac{x}{y^2}\right] = (\)dH_{\eta}^{\lambda} + d[\], \qquad \frac{x}{y}d\left[\frac{x}{y}\ln|y|\right] = (\)dH_{\eta}^{\lambda} + d[\].$$

PREUVE. La première est immédiate, pour les autres, on a

$$\frac{x}{y}d\left[\frac{x}{y^2}\right] = \omega_{10} - \frac{2x^2}{y^4}dy = \omega_{10} + d\left[\frac{2x^2}{3y^3}\right] - \frac{4}{3}\omega_{10} = (\)dH_{\eta}^{\lambda} + d[\],$$

$$\frac{x}{y}d\left[\frac{x}{y}\ln|y|\right] = d\left[\frac{x^2}{y^2}\ln|y|\right] - \ln|y|\left(\frac{x}{y^2}dx - \frac{x^2}{y^3}dy\right)$$

$$= d[\] - \frac{1}{2}\ln|y|\left(dH_{\eta}^{\lambda} + \frac{\eta}{y^3}dy - \frac{1-\lambda}{y^2}dy - \frac{\lambda}{y}dy\right) = (\)dH_{\eta}^{\lambda} + d[\].$$

Par conséquent,

$$\hat{N}_2 \equiv 0,$$

et on en déduit la décomposition suivante de la 1-forme $g_1\omega$.

Lemme 3.10. La 1-forme $g_1\omega$ peut se décomposer sous la forme

$$g_1\omega = g_2 dH_\eta^\lambda + dR_2 + N_2,$$

оù

$$g_2 \ et \ R_2 \ sont \ des \ fonctions \ analytiques \ sur \ les \ demi-plans \ \{y < 0\} \ et \ \{y > 0\}, N_2 = A_2 \omega_{00} + B_2 \omega_{01} + C_2 \omega_{02},$$

avec

$$A_{2} = \frac{\eta}{3\lambda}b_{02}c_{0} - \frac{\eta}{18\lambda}c_{0}c_{1} + \frac{1}{4}a_{10}b_{10} - \frac{2}{3\lambda}c_{1}c_{3} + \frac{\eta}{3\lambda^{2}}c_{1}c_{4} - \frac{\lambda - 1}{12\lambda}b_{10}c_{1},$$

$$B_{2} = \frac{1}{4}a_{10}c_{0} + \frac{3}{4}b_{10}b_{02} - \frac{1}{2}b_{10}c_{1} - \frac{1}{2\lambda}c_{1}c_{2} + \frac{\lambda - 1}{4\lambda^{2}}(2c_{1}c_{4} + 2\lambda b_{02}c_{0} - \lambda c_{0}c_{1}), \quad C_{2} = -\frac{1}{3\lambda}c_{0}c_{1}.$$

On en déduit le corollaire suivant :

Corollaire 3.11. Les secondes fonctions de Melnikov M_2^- et M_2^+ s'expriment comme combinaisons des trois intégrales indépendantes K_1 , K_2 et K_3 ,

$$M_2^-(h) = -A_2K_1(h) + B_2K_2(h) - C_2K_3(h)$$

et $M_2^+(h) = A_2K_1(h) + B_2K_2(h) + C_2K_3(h).$

Ayant les mêmes expressions que les premières fonctions de Melnikov, on ne peut espérer trouver plus de zéros pour les secondes fonctions de Melnikov.

On arrête le calcul des fonctions de Melnikov d'ordre supérieur : il se complexifie et nécessite la connaissance de g_2 . De plus, contrairement au cas $\lambda = 0$ traité dans le Chapitre II, nous ne sommes pas en mesure de donner la nature algébrique de ces fonctions.
Table des figures

1	Section transverse au voisinage d'un centre ($\varepsilon = 0$)
2	Application de premier retour ($\varepsilon > 0$)
3	Singularité avec domaine elliptique
4	Les deux composantes connexes de l'intégrale première
1	Lignes de niveau de H
2	Place du système de Liénard dans le diagramme de bifurcation de Q_3^{LV} (figure
-	$1ssue de [14]). \dots \dots$
3	Ligne de niveau critique $\mathcal{C}_{h_0}: y \mapsto x_{h_0}(y)$
4	Minoration de l'aire par concavité
5	$A = 1.05, B = -1, C = 0, 05. \dots 28$
6	A = 0.95, B = -1, C = -0.05.
7	A = 3, B = -11, C = -8.
8	A = 1, B = -1,0005, C = -0,0005. 29
9	Rectangles d'intégration
10	$\varepsilon = 0, 38. \dots \dots \dots \dots \dots \dots \dots \dots \dots $
11	$\varepsilon = 0, 45. \dots \dots \dots \dots \dots \dots \dots \dots \dots $
12	Portrait de phase pour $\varepsilon = 0, 38. \dots 58$
1	Portrait de phase pour $\alpha = 1.$
2	Portrait de phase pour $\alpha = 1/268$
3	Portrait de phase au voisinage du point singulier avec domaine elliptique en $(0,0)$. 72
4	Portrait de phase de la forme normale
5	Portrait de phase de la forme normale après la première perturbation 76
6	Place de la forme normale dans le diagramme de bifurcation de Q_3^R (Figure issue
	de [14]). Les points S_2 , S_3 et S_4 correspondent aux centres isochrones
7	La première fonction de Melnikov M_1
8	Le cycle limite attractif
9	Existence d'un cycle limite répulsif
1	Cas $\lambda > 1$
2	Cas $0 < \lambda < 1$
3	Portait de phase du système (1)
4	Portrait de phase du système perturbé, $\eta = 0.1124$
5	M_1^+ et M_1^- pour $A_1 = 0.9, B_1 = 0.094$ et $C_1 = -0.41$ dans la cas $\lambda = 1. \dots 129$

Remarque

Les portraits de phases ont été réalisés à l'aide de MAPLE.

Bibliographie

- N. N. BAUTIN, On the number of limit cycles which appear with the variation of the coefficients from an equilibrium point of focus or center type, Amer. Math. Soc. Transl. series I, 5 (1962), 396-413. (Matsbornik 30 (1952), 181-196).
- [2] A. BUICA, A. GASULL and J. YANG, The third Melnikov function of a quadratic center under quadratic perturbations, J. Math. Anal. Appl. 331 (2007), 443-454.
- [3] E. S. CHEB-TERRAB and A. D. ROCHE, Abel ODEs : Equivalence and Integrable Classes, Computer Physics Communications **130** (2000), 197.
- [4] C. CHICONE and M. JACOBS, Bifurcations of limit cycles from quadratic isochrones, J. Differential Equations 91 (1991), 268-326.
- [5] C.B. COLLINS, Conditions for a center in a simple class of cubic systems, *Differential Integral Equations* 10-2 (1997), 333-356.
- [6] F. DUMORTIER, J. LLIBRE and J.C. ARTÉS, Qualitative Theory of Planar Differential Systems, Springer (2006)
- [7] F. DUMORTIER and R. ROUSSARIE, Canard cycles and center manifolds, Memoirs of A.M.S., 121-577 (1996), 1-100.
- [8] F. DUMORTIER, R. ROUSSARIE, J. SOTOMAYOR and H. ZOLĄDEK, Generic 3-parameter families of planar vector fields, unfoldings of saddle, focus and elliptic singularities with nilpotent linear parts, *Lect. Notes in Math.* 1480, Bifurcations of planar vector fields, (1991), 1-164.
- [9] J.-P. FRANÇOISE, Successive derivatives of a first return map, application to the study of quadratic vector fields, *Ergodic theory Dynam. Systems* **16** (1996), 87-96.
- [10] J.-P. FRANÇOISE, The successive derivatives of the period function of a plane vector field, J. Differential Equations 146 (1998), 320-335.
- [11] J.-P. FRANÇOISE, Local bifurcations of limit cycles, Abel equations and Liénard systems, Normal Forms, Bifurcations and finiteness Problems in Differential Equations édité par Yu. Ilyashenko et C. Rousseau, Nato Sciences Series, II. Mathematics, Physics, Chemistry-Vol 137 (2004), Kluwer, 187-209.
- [12] J.-P. FRANÇOISE, Géométrie analytique et systèmes dynamiques, PUF (1995)
- [13] M. GENTES, Center conditions and limit cycles for the perturbation of an elliptic sector, Bull. Sci. Math. 133 (2009), 597-643.
- [14] I. ILIEV, Perturbation of quadratic centers, Bull. Sci. Math. 122 (1998), 107-161.
- [15] A.LINS, W. DE MELO and C. C. PUGH, On Liénard's Equation, Lect. Notes in Math. 597 (1977), 335-357.
- [16] R. LIOUVILLE, Sur une équation différentielle du premier ordre, Acta Math. 27 (1903), no.1, 55-78.
- [17] L. PERKO, Differential Equations and Dynamical Systems, Springer (2001).
- [18] R. ROUSSARIE and C. ROUSSEAU, Finite cyclicity of nilpotent graphics of pp-type surrounding a center, Bull. Belg. Math. Soc. Math. Simon Stevin 15 (2008), 889-920.

- [19] S. SONGLING, A concrete example of the existence of four limit cycles for plane quadratic systems, *Scientia Sinica* vol.XXIII No.2 (1980), 153-158.
- [20] G. N. WATSON, A treatise on the theory of Bessel functions, *Cambridge University Press* (1944).
- [21] H. ŻOŁĄDEK, Quadratic Systems with Center and Their Perturbations, J. Differential Equations 109 (1994), 223-273.

Résumé

La recherche de cycles limites pour des sytèmes polynômiaux du plan est historiquement motivée par le 16^e problème de Hilbert. Les résultats obtenus dans cette thèse concernent des systèmes différentiels quadratiques intégrables perturbés pour lesquels on met en œuvre une adaptation d'un algorithme théorique proposé par Jean-Pierre Françoise permettant le calcul des dérivées successives de l'application de premier retour, encore appelées fonctions de Melnikov.

Le premier exemple étudié est de type Liénard et présente un centre en l'origine. Le calcul par deux méthodes différentes de la première fonction de Melnikov assure l'existence d'un cycle limite pour le système perturbé. Dans certains cas, on calcule les fonctions de Melnikov d'ordre supérieur et on donne des conditions pour lesquelles le système reste à centre.

Le second exemple est issu d'une équation d'Abel remarquée par Liouville, dont l'étude des singularités à l'infini fait apparaître une singularité non hyperbolique avec domaine elliptique. On perturbe quadratiquement une forme normale quadratique présentant cette singularité. Le calcul des trois premières fonctions de Melnikov assure l'existence de perturbations faisant apparaître deux cycles limites. D'autre part, on est en mesure de donner certains cas intégrables ainsi que la nature algébrique des fonctions de Melnikov d'ordre supérieur.

Dans le troisième exemple, on étudie une famille de systèmes présentant soit une singularité avec deux secteurs elliptiques, soit un centre et une singularité avec un domaine elliptique. On espère trouver une perturbation quadratique générant quatre cycles limites imbriqués deux à deux. L'étude des fonctions de Melnikov jusqu'à l'ordre deux ne révèle cependant que l'existence de perturbations pour lesquelles on a deux cycles autour de l'un des centres et un seul autour de l'autre.

Résumé

Abstract

The research of limit cycles for planar polynomial differential systems is historically motivated by Hilbert's 16^{th} problem. This thesis work is devoted to the study of quadratic integrable perturbed systems for which we adapt Jean-Pierre Françoise theoretical algorithm. This algorithm enables to compute the successiv derivatives of the first return map. These derivatives are also called Melnikov functions.

First, we investigate a Liénard system presenting a center at the origin. The computation of the first Melnikov function by two different methods ensures the existence of one limit cycle for the perturbed system. In some cases, we are able to compute higher order Melnikov functions and we give conditions for which the system still has a center.

The second example arises from an Abel equation mentioned by Liouville having a non hyperbolic singularity with elliptic domain at infinity. We perturb a quadratic normal form that presents this singularity. The computation of the first three Melnikov functions yields the existence of perturbations for which two limit cycles appear. In addition, our results provide some integrable cases and the algebraic nature of higher order Melnikov functions.

In the third example, we consider a family of differential systems having either a singularity with two elliptic domains or a center and a singularity with one elliptic domain. We hope to find quadratic perturbations for which the phase portrait presents four limit cycles, two to two nasted. Nevertheless the computation of the first two Melnikov functions only exhibits the existence of perturbations that generate two cycles around one center and a lonely one around the other center.