
Strong Dependencies between Software Components

Pietro Abate, Jaap Boender, Roberto Di Cosmo, Stefano Zacchiroli

To cite this version:

Pietro Abate, Jaap Boender, Roberto Di Cosmo, Stefano Zacchiroli. Strong Dependencies
between Software Components. IEEE. ESEM 2009. 3rd International Symposium on Empirical
Software Engineering and Measurement, 2009., Oct 2009, Lake Buena Vista, Florida, United
States. pp.89-99, 2009, <10.1109/ESEM.2009.5316017>. <hal-00438590>

HAL Id: hal-00438590

https://hal.archives-ouvertes.fr/hal-00438590

Submitted on 6 Dec 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Hal-Diderot

https://core.ac.uk/display/47111018?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr
https://hal.archives-ouvertes.fr/hal-00438590

Strong Dependencies between Software Components∗

Pietro Abate

abate@pps.jussieu.fr

Universitè Paris Diderot, PPS

UMR 7126, Paris, France

Jaap Boender

Jaap.Boender@pps.jussieu.fr

Roberto Di Cosmo

roberto@dicosmo.org

Stefano Zacchiroli

zack@pps.jussieu.fr

Abstract

Component-based systems often describe context re-

quirements in terms of explicit inter-component dependen-

cies. Studying large instances of such systems—such as free

and open source software (FOSS) distributions—in terms

of declared dependencies between packages is appealing.

It is however also misleading when the language to express

dependencies is as expressive as boolean formulae, which

is often the case. In such settings, a more appropriate no-

tion of component dependency exists: strong dependency.

This paper introduces such notion as a first step towards

modeling semantic, rather then syntactic, inter-component

relationships.

Furthermore, a notion of component sensitivity is de-

rived from strong dependencies, with applications to quality

assurance and to the evaluation of upgrade risks. An em-

pirical study of strong dependencies and sensitivity is pre-

sented, in the context of one of the largest, freely available,

component-based system.

1. Introduction

Component-based software architectures [21] have the

property of being upgradeable piece-wise, without neces-

sarily touching all the pieces at the same time. The more

pieces are affected by a single upgrade, the higher the im-

pact of the upgrade can be on the usual operations per-

formed by the overall system; this impact can either be ben-

eficial (if the upgrade works as planned) or disastrous (if

not). Package-based FOSS (Free and Open Source Soft-

ware) distributions are possibly the largest-scale examples

of component-based architectures, their upgrade effects are

experienced daily by million of users world-wide, and the

historical data concerning their evolution is publicly avail-

able.

Within FOSS distributions, software components are

managed as packages [6]. Packages are described

with meta-information, which include complex inter-

relationships describing the static requirements to run prop-

erly on a target system. Requirements are expressed in

terms of other packages, possibly with restrictions on the

desired versions. Both positive requirements (dependen-

cies) and negative requirements (conflicts) are usually al-

lowed.

Example 1.1. An excerpt of the inter-package relationships

of the postfix Internet mail transport agent in Debian

GNU/Linux1 currently reads:

1 Package: postfix

2 Version: 2.5.5-1.1

3 Depends: libc6 (>= 2.7), libdb4.6, ssl-cert,

4 libsasl2-2, libssl0.9.8 (>= 0.9.8f-5),

5 debconf (>= 0.5) | debconf-2.0,

6 netbase, adduser (>= 3.48), dpkg (>= 1.8),

7 lsb-base (>= 3.0-6)

8 C o n f l i c t s: libnss-db (<< 2.2-3), smail,

9 mail-transport-agent, postfix-tls

10 Prov ides: mail-transport-agent, postfix-tls

As this short example shows, inter-package relationships

can get quite complex, and there are plenty of more com-

plex examples to be found in distributions like Debian. In

particular, the language to express package relationships

is not as simple as flat lists of component predicates, but

rather a structured language whose syntax and semantics

is expressed by conjunctive normal form (CNF) formu-

lae [17]. In Example 1.1, commas represent logical con-

junctions among predicates, whereas bars (“|”) represent

logical disjunctions. Also, indirections by the mean of

so-called virtual packages can be used to declare feature

names over which other packages can declare relationships;

in the example (see line 10: “Provides”) the package de-

clares to provide the features called postfix-tls and

mail-transport-agent.

1http://www.debian.org

Within this setting, it is interesting to analyse the depen-

dency graph of all packages shipped by a mainstream FOSS

distribution. This graph is potentially very large as distribu-

tions like Debian are composed of several tens of thousands

packages, but it is surely smaller than widely studied graphs

such as the World Wide Web graph [1]. It is also more ex-

pressive though, in the sense that it contains different types

of edges (dependencies and conflicts for example) and al-

lows the use of disjunctions to express alternative paths.

Simple encodings of the package universe have been pro-

posed in the past [14, 16], to study the adherence of the

dependency graph to small-world network laws. In such

encodings, inter-package relationships were approximated

by a simple binary relation of direct dependency, which is

noted p→ q in this paper. Formally, p→ q holds whenever

package q occurs syntactically in the dependency formula

of p. This notion of direct dependency does not distinguish

between q occurring in conjunctive or disjunctive position,

ignoring the semantic difference between conjunctive and

disjunctive dependencies, as well as the presence of con-

flicts among components.

In this paper we argue that there is a different depen-

dency graph to be studied to grasp meaningful relationships

among software components: a graph that represents the se-

mantics of inter-component relationships, in which an edge

between two components is drawn only if the first cannot

be installed without installing the second. We call such a

graph the strong dependency graph, argue that it is better

suited to study package universes in component-based ar-

chitectures, and study its network properties. Finally, we

argue that the strong dependency graph can be used to es-

tablish a measure of package “sensitivity” which has several

uses, from distribution wide quality assurance to establish-

ing the potential risks of package upgrades. As a relevant,

yet empirical, case study we build and analyse the strong

dependency graph of present and past FOSS distributions,

as well as the corresponding package sensitivity.

The rest of the paper is structured as follows: Section 2

introduces the notion of strong dependency, highlights the

differences with plain dependencies and proposes related

sensitivity metrics. Section 3 computes dependencies and

sensitivity of components of a large and popular FOSS dis-

tribution. Section 4 gives an efficient algorithm to compute

strong dependencies for large software repositories. Sec-

tion 5 discusses applications of the proposed metrics for

quality assurance and upgrade risk evaluation. Before con-

cluding, Section 6 discusses related research.

2. Strong dependencies

Component dependencies can be used to compute rele-

vant quality measures of software repositories, for instance

to identify particularly fragile components [7, 13, 15]. It is

well known that small-world networks are resilient to ran-

dom failures but particularly weak in the presence of at-

tacks, due to the existence of highly connected hub nodes

[2]. To identify the components whose modification (e.g.,

removal or upgrade) can have a high potential impact on the

stability of a complex software system, it is natural to look

for hubs on which a lot of other components depend.

In FOSS distributions, not unlike other component-based

systems [3, 4], the language used to encode inter-package

relationships is expressive enough to cover propositional

logic. As a consequence, considering only plain connec-

tivity—i.e., the possibility of going from one package to an-

other following dependency arcs—is no longer meaningful

to identify hubs. For example, if p is to be installed and

there exists a dependency path from p to q, it is not true that

q is always needed for p, and in some cases q may even be

incompatible with p.

In other terms, the syntactic connectivity notion does not

tell much about the real structure of dependencies: we need

to go further and analyse the semantic connectivity among

software components induced by the explicit dependencies

in the graph. That has led us to the following definition.

Definition 2.1 (Strong dependency). Given a repository R,

we say that a package p in R strongly depends on a package

q in R, written p⇒R q, if there exists a healthy installation

of R containing p, and every healthy installation of R con-

taining p also contains q. We write Spreds(p)R for the set

{q|q ⇒R p} of strong predecessors of a package p in R,

and Scons(p)R for the set {q | p ⇒R q} of strong succes-

sors of p in R.

In the following, we will drop the R subscript when the

repository is clear from the context.

The above notions of repository and healthy installation

come from [17]; the underlying intuitions are as follows. A

repository is a set of packages, together with dependencies

and conflicts encoded as propositional logic predicates over

other packages contained therein; an installation is a subset

of the repository; an installation is said to be healthy when

all its packages have their dependencies satisfied within the

installation and dually their conflicts unsatisfied.

Intuitively, p strongly depends on q with respect to R if

it is not possible to install p without also installing q. No-

tice that the definition requires p to be installable in R as

otherwise it would vacuously depend on all the packages q
in the repository. Due to the complex nature of dependen-

cies, there can be a huge gap with the syntactic dependency

graph as naively extracted from the metadata.

Example 2.2 (Direct vs strong dependencies). In simple

cases, conjunctive direct dependencies translate to identi-

cal strong dependencies whereas disjunctive ones vanish,

as for the packages of the following repository:

Package: p

Depends: q, r

Package: a

Depends: b | c

p

����
��
��

��3
33

33
3

q r

a
W

����
��

��

��4
44

44
44

b c

We have that p → q, p → r and p ⇒ q, p ⇒ r (be-

cause p cannot be installed without either q or r), and that

a → b, a → c whereas a 6⇒ b, a 6⇒ c (because a does

not forcibly require neither b nor c). In general however,

the situation is much more complex, like in the following

repository:

Package: p

Depends: q | r

Package: r

C o n f l i c t s: p

Package: q

p
W

����
��
��

��3
33

33
3

q r

#

Notice that p ⇒ q in spite of q not being a conjunctive

dependency of p, and r is incompatible with p, despite the

fact that p→ r.

Proposition 2.3 (Transitivity). If p⇒R q and q ⇒R r then

p⇒R r.

Proof. Trivial from Definition 2.1.

On top of the strong and direct dependency notions, we

can define the corresponding dependency graphs.

Definition 2.4 (Dependency graphs). The strong depen-

dency graph SG(R) of a repository R is the directed graph

having as vertices the packages in R and as edges all pairs

〈p, q〉 such that p ⇒ q. Note that the SG(R) is transitively

closed as direct consequence as the transitivity of the strong

dependency relation.

Similarly, the direct dependency graph DG(R) is the di-

rected graph having as vertices the packages in R and as

edges all pairs 〈p, q〉 such that p→ q.

The dependency graphs can be used to formalise, via the

notion of impact set, the intuitive notion of the set of pack-

ages which are potentially affected by changes in a given

package.

Definition 2.5 (Impact set of a component). Given a repos-

itory R and a package p in R, the impact set of p in R is the

set Is(p, R) = {q ∈ R | q ⇒ p}.
Similarly, the direct impact set of p is the set

DirIs(p, R) = {q ∈ R | q → p}.

While the impact set gives a sound lower bound to the set

of packages which can be potentially affected by a change in

a package, the direct impact set offers no similar guarantees.

Note that by Definition 2.1, for all package p, p ∈ Is(p, R).
Package sensitivity—a measure of how sensitive is a pack-

age, in terms of how many other packages can be affected

by a change in it—can now be defined as follows.

Definition 2.6 (Sensitivity). The strong sensitivity, or sim-

ply sensitivity, of a package p ∈ R is |Is(p, R)| − 1, i.e.,

the cardinality of the impact set minus 1.2

Similarly, the direct sensitivity is the cardinality of the

direct impact set.

The higher the sensitivity of a package p, the higher the

minimum number of packages which will be potentially af-

fected by a change, such as a new bug, introduced in p. We

write |p| and ||p|| to denote the direct and strong sensitivity

of package p, respectively. The following basic property of

impact sets and sensitivity follows easily from the defini-

tions.

Proposition 2.7 (Inclusion of impact sets). If p⇒R q then

Is(p, R) ⊆ Is(q, R). As a consequence, the sensitivity of p
in R is smaller than the sensitivity of q in R.

When analysing a large component base, like Debian’s,

which contains about 22,000 components, it is important to

be able to identify some measure that can be used to eas-

ily pinpoint “interesting” packages. Sensitivity can be (and

actually is, in our tools) used to order packages, bringing

the most sensitive to the forefront. To this end is important

to note that (strong) sensitivity can be computed automat-

ically (and efficiently, see Section 4) from dependencies;

that is an important feature: given the sheer size of systems

like Debian, it would be unreasonable to try mix sensitivity

with hand-maintained classifications such as “core” pack-

ages, “end-user” packages, etc. But sensitivity alone is not

enough: we do not want to spend time going through hun-

dreds of packages with similar sensitivity to find the one

which is really important, so we need to keep some of the

structure of the strong dependency graph.

A first step is to group together only those packages that

are related by strong dependencies, but our analysis of the

Debian distribution led us to discover that we really need

to go further and distinguish the cases of related compo-

nents in the strong dependency graph from the cases of un-

related ones: in the picture in Figure 1,3 configuration 1c

shows q that clearly dominates r, as the impact set of r re-

ally comes from that of q, in configuration 1d, q and r are

clearly equivalent, while in configuration 1a, q and r are to-

tally unrelated, and in configuration 1b, q strong depends on

r but q does not generate all the impact set of r.

2The −1 accounts for the fact that the impact set of a package always

contains itself. This way we ensure that sensitivity 0 preserves the intuitive

meaning of “no package potentially affected”.
3Edges implied by transitivity are omitted from the diagrams for the

sake of clarity.

p1

�� !!D
DD

DD
DD

DD
DD

DD
DD

DD
D

___ pi

��2
22

22
22

22
22

22

����
��
��
��
��
��
�

___ pn

}}zz
zz

zz
zz

zz
zz

zz
zz

zz

��
q r

(a) Coincidence

p1

 A
AA

AA
AA

A
___ pi

��

___ pn

~~||
||

||
||

s1

}}||
||

||
||

||
||

||
||

||
|

___ sk

yyrrrrrrrrrrrrrrrrrrrrrrrrr

q

��
r

(b) General case of strong dependency

p1

 A
AA

AA
AA

A
___ pi

��

___ pn

~~||
||

||
||

q

��
r

(c) Ordered

p1

 A
AA

AA
AA

A
___ pi

��

___ pn

~~||
||

||
||

q

��
r

HH

(d) Equivalent

Figure 1. Significant configurations in the strong dependency graph

Yet, the packages q and r all have essentially the same

sensitivity values (n or n + 1) in all the first three cases

(and n + k in the fourth, which can also contribute to the

mass of packages of sensitivity similar to n). To distinguish

these different configurations in strong dependency graphs,

we introduce one last notion.

Definition 2.8 (Strong dominance). Given two packages p
and q in a repository R, we say that p strongly dominates q
(p <Is q) iff

• Is(p, R) ⊇ (Is(q, R) \ Scons(p)), and

• p strongly depends on q

The intuition of strong dominance, is that a package p
dominates q if the strong dependency of p on q “explains”

the impact set of q: the packages that q has an impact on

are really those that p has an impact on, plus p. This no-

tion has some similarity in spirit with the standard notion

of dominance used in control flow graphs, but is technically

quite different, as strong dependency graphs are transitive,

and have no single start node.

Using the transitivity of strong dependencies, the follow-

ing can be established.

Proposition 2.9. The strong domination relation is a par-

tial pre-order.

Proof. Reflexivity is trivial to check. For transitivity, sup-

pose we have p <Is q and q <Is r: first of all, p strongly

depends on r is a direct consequence of the fact that the

strong dependency relation is transitive, so the second con-

dition for p <Is r is established. For the first condi-

tion, we know that Is(p, R) ⊇ (Is(q, R) \ Scons(p))
and Is(q, R) ⊇ (Is(r, R) \ Scons(q)). By transitivity of

strong dependencies, since p ⇒ q ⇒ r, we also have that

Scons(p) ⊇ Scons(q) ⊇ Scons(r). Then we have eas-

ily that Is(p, R) ⊇ (Is(q, R) \ Scons(p)) ⊇ (Is(r, R) \
Scons(q)) \ Scons(p) = Is(r, R) \ Scons(p).

This pre-order is now able to distinguish among the cases

of Figure 1. In Figure 1c we have that q <Is r, but not the

converse; in 1d both q <Is r and r <Is q hold, i.e., q and

r are equivalent according to strong domination; in 1a and

1b no dominance relationship can be established between q
and r.

It is possible, and actually quite useful, to generalise

the strong dominance relation to cover also the case shown

in 1b, where a part of the impact set of the package r is not

covered by the impact set of q, as follows.

Definition 2.10 (Relative strong dominance). Given two

packages p and q in a repository R, we say that p strongly

dominates q up to z (p <z
Is q) iff

• |(Is(q,R)\Scons(p))\Is(p,R)|
|Is(p,R)| ∗ 100 = z, and

• p strongly depends on q

It is easy to see that p <Is q iff p <0
Is q, and one can

compute in a single pass on the repository the values z for

each pair of packages such that p⇒ q, leaving for later the

choice of a threshold value for z. In the case of figure 1b,

we have that q dominates r up to k/n ∗ 100.

3. Strong dependencies in Debian

Due to the different properties of direct and strong de-

pendencies, the two measures of package sensitivity can dif-

fer substantially. To verify that, as well as other properties

of the underlying dependency graphs, we have chosen De-

bian GNU/Linux as a case study.4 The choice is not casual:

Debian is the largest FOSS distribution in terms of number

of packages (about 22, 000 in the latest stable release) and,

to the best of our knowledge, the largest component-based

system freely available for study.

All stable releases of Debian have been considered, from

1994 to February 2009. For each release the archive sec-

tion main and in particular the i386 architecture has been

4The data presents in this section, as well as what was omitted due

to space constraints, are available to download from http://www.

mancoosi.org/data/strongdeps/. The tools used to compute

the data are released under open source licenses and are available from

the Subversion repository at https://gforge.info.ucl.ac.be/

svn/mancoosi/.

Figure 2. Evolution of packages, direct, and

strong dependencies in Debian releases.

considered; the choices are justified by the fact that they

identify both the most used parts of Debian,5 and that they

are the only parts which have been part of all Debian re-

leases and hence can be better compared over time. The

obtained archive parts have been analysed by building both

the direct and strong dependency graphs; while the con-

struction of the former is a trivial exercise, the implemented

efficient way of constructing the latter is discussed in Sec-

tion 4. To build the direct dependency graph the Depends

and Pre-Depends inter-package relationships have been

considered [12].

Figure 2 shows the resulting evolution of the number of

graph nodes and edges across all Debian releases. The size

of the distribution has grown steadily, yet super-linearly,

across most releases [20, 11], but the growth rate has de-

creased in the past two releases. As expected, strong and

direct sensitivity are not entirely unrelated, given that the

former is the semantic view of the latter, hence they tend to

grow together.

More precisely the total number of strong dependen-

cies is higher, in all releases, than the total number of di-

rect dependencies. A partial explanation comes from the

fact that the strong dependency graph is a transitive closed

graph—property inherited by the underlying strong depen-

dency relationship—whereas the direct dependency graph

is not. Performing the transitive closure of the direct depen-

dency graph however would be meaningless, because the

propagation rules of disjunctive and conjunctive dependen-

cies are not expressible simply in terms of transitive arcs.

We have studied the apparent correlation between strong

and direct dependencies analysing the respective sensitivity

5According to the Debian popularity contest, available at http://

popcon.debian.org

measures for each release. Table 1 confirms the correla-

tion and gives some statistical data about package sensitiv-

ity. The first column is the Spearman ρ correlation index,6

a commonly used non-parametric correlation index that is

not sensible to exceptional values [8]. An index between

0.5 and 1.0—in all the releases we have ρ ∈ [0.91, 0.94]—
is commonly interpreted as a strong correlation between the

two variables. The more common correlation index r for the

same set of data (not shown in the table) gives consistently a

value of 0.55: the huge difference among ρ and r indicates

that the few exceptional values in the data series have re-

ally high weight; when analyzing some of these exceptional

values, we will see how this is indeed the case.

The remaining columns show mean and standard devi-

ation for, respectively, direct sensitivity, strong sensitivity,

and ∆ = ||p|| − |p|. In particular we note an increasingly

high standard deviation in latest Debian releases, which

hints that there is an increasing number of peaks.

Figure 3 shows in more detail the correlation phe-

nomenon for Debian 5.0 “Lenny”, the latest (and largest)

Debian release. The figure plots strong vs direct sensitiv-

ity for each package in the release. In most cases, strong

sensitivity is higher than direct sensitivity, yet close: 82.9%

of the packages fall in a standard deviation interval from the

mean of ∆; the next percentile ranks are 97.4% for two stan-

dard deviations, and 99.8% for three. The remaining cases

allow for important exceptions of packages with very high

strong sensitivity and very low direct sensitivity. Such ex-

ceptions are extremely relevant: metrics built on direct sen-

sitivity only would totally overlook packages with a huge

potential impact.

6The statistical info for the first two rows are possibly not relevant, due

to the small size of the two releases.

Table 1. Direct and strong sensitivity in De-
bian: correlation, mean, standard deviation.

Rel. ρ | · | || · || ∆
.93 .92 1.00, σ2.79 1.05, σ4.73 1.00, σ4.00

1.1 .93 1.70, σ13.9 2.90, σ25.9 1.88, σ18.5

1.2 .91 1.79, σ18.4 2.99, σ32.2 1.73, σ22.4

1.3 .91 1.92, σ21.9 3.06, σ38.2 1.69, σ25.8

2.0 .93 2.29, σ26.7 4.03, σ50.8 2.50, σ36.5

2.1 .94 2.60, σ34.9 4.93, σ64.5 2.93, σ46.6

2.2 .92 3.29, σ44.2 6.89, σ90.4 4.88, σ68.7

3.0 .92 3.99, σ59.2 10.4, σ131. 8.02, σ92.3

3.1 .92 5.29, σ91.4 22.3, σ282. 19.3 , σ246.

4.0 .92 5.55, σ85.1 28.2, σ352. 24.5 , σ313.

5.0 .93 5.07, σ86.1 36.0, σ480. 32.5 , σ440.

Figure 3. Correlation between strong and di-

rect sensitivity in Debian 5.0

3.1. Strong vs direct sensitivity: exceptions

It’s time now to look at some of these exceptional cases

to see how relevant they are. Table 2 lists the top 30 pack-

ages of Lenny having the largest ∆.

libc6 is the package shipping the C standard library

which is required, directly or not, by almost all applications

written or otherwise linked to the C programming language.

About a half of all the packages in the distribution depends

directly on libc6, as can be seen in row 13 of the table,

but almost all packages in the archive cannot be installed

without it, as the strong sensitivity of libc6 is 20’126, on

a total of 22’311 packages. In this case direct sensitivity

does not inhibit identifying the package as a sensitive one,

though, even if it underestimates widely its importance.

Now consider row 1 of Table 2: gcc-4.3-base,

which is a package without which libc6 cannot be in-

stalled. It is the package with the largest ∆, having di-

rect sensitivity of only 43 and strong sensitivity of 20’128.

Ranking its sensitivity with the direct metric would have

led to completely miss its importance: a bug into it can po-

tentially affect all packages in the distribution. Note how-

ever that gcc-4.3-base is not a direct dependency of

libc6, showing once more that to grasp this kind of inter-

package relationships the semantics, rather than the syntax,

of dependencies must be put into play.

In the second row, libgcc1 shows a similar pattern,

being this time a direct dependency of libc6. The third

row and many others in the table show more complex

patterns. Ordering packages only according to sensitivity

might lead to oversee other important characteristic. Pos-

sibly the most extreme cases are those of ncurses-bin

and libx11-data, which are mentioned just once in all

Table 2. Packages from Debian 5.0, sorted by

gap between strong / direct impact set sizes.

Package |p| ||p|| ||p|| − |p|
1 gcc-4.3-base 43 20128 20085

2 libgcc1 3011 20126 17115

3 libselinux1 50 14121 14071

4 lzma 4 13534 13530

5 coreutils 17 13454 13437

6 dpkg 55 13450 13395

7 libattr1 110 13489 13379

8 libacl1 113 13467 13354

9 perl-base 299 13310 13011

10 libstdc++6 2786 14964 12178

11 libncurses5 572 11017 10445

12 debconf 1512 11387 9875

13 libc6 10442 20126 9684

14 libdb4.6 103 9640 9537

15 zlib1g 1640 10945 9305

16 debianutils 86 8204 8118

17 libgdbm3 68 8148 8080

18 sed 11 8008 7997

19 ncurses-bin 1 7721 7720

20 perl-modules 214 7898 7684

21 lsb-base 211 7720 7509

22 libxdmcp6 15 6782 6767

23 libxau6 42 6795 6753

24 libx11-data 1 6693 6692

25 libxcb-xlib0 3 6695 6692

26 libxcb1 87 6778 6691

27 x11-common 137 6317 6180

28 perl 2169 7898 5729

29 libmagic1 28 5585 5557

30 libpcre3 164 5668 5504

. . .

the explicit dependencies, and yet are really necessary for

several thousand other packages.

We believe this is sufficiently conclusive evidence to to-

tally dismiss, from now on, any analysis based on the syn-

tactic direct dependency graph, when considering compo-

nent based systems with expressive dependency languages.

3.2. Using strong dominance to cluster data

Now we turn to the problem of presenting the sensitive-

ness information in a relevant way to a Quality Assurance

team: we could simply print a list of package names, or-

dered by their sensitiveness; this would give a result quite

similar to that of table 2 above, just dropping the first and

fourth column. A smart Debian developer will surely spot

the fact that gcc-4.3-base, libgcc1 and libc6 are

Table 3. Small-world figures for Debian 5.0.
Direct dep.

graph

Strong dep.

graph

Vertices 22,311 22,311

Edges 107,796 40,074

Average degree 4.83 1.80

Clustering coeff. 0.41 0.39

Average distance 3.18 2.86

Components (WCCs) 1,425 2,809

Largest WCC 20,831 19,200

Density 0.00022 0.000081

related and would look at them together, but it would be dif-

ficult to see relationships among the other packages in the

list, even if we can see that many packages have impact sets

of similar size.

Here is where our definition of relative strong dominance

comes into play, allowing to build meaningful clusters that

provide sensible information to the maintainers: Figure 4

shows the graph of relative strong domination between the

first 20 packages of Table 2. Bold edges show strong dom-

ination as defined in Definition 2.8. Normal edges show

relative domination, where the install sets of the two pack-

ages almost fully overlap, apart from a few packages (edges

are labelled with the percentage z of Definition 2.10).

This figure shows clearly that it is possible to isolate five

clusters of related packages with similar sensitivity values;

some of them may look surprising at first sight to a Debian

developer, and evident after a little time spent exploring the

package metadata: this actually confirms the real value of

this way of presenting data.

3.3. Debian is a small world

We expected the strong dependency graph to retain the

small world characteristics previously established for the

direct dependency graph [14], but this required some ex-

tra effort to get sensible results: indeed, computing clus-

tering coefficients and other similar measures on the strong

dependency graph will yield very different values (as the

strong dependency graph is transitive), so we first built a

non-transitive version of the strong dependency graph, and

computed the usual small world measures on it.

Note that, since the strong dependency graph con-

tains some cycles, the obtained non-transitive graph is not

unique. The differences are however minor enough to not

alter the overall results.

The clustering coefficient and average path length of

the non-transitive graph are, though slightly smaller, well

within the range of small-world networks. More than half

the edges of the direct graph have disappeared, but this has

not significantly affected either the graph clustering or the

path length. The relevant statistics are summarised in Ta-

ble 3.3.

Some additional notes about obtained small-world statis-

tics. First, both graphs contain one enormous (weakly con-

nected) component, next to which all other components are

of insignificant size (for the direct graph, there are 1’480 re-

maining packages in 1’424 components, which would make

their average size just above 1; the ratio is similar for the

strong graph). Second, when we look at the density of

both graphs (the number of edges in the graph divided by

the maximum possible number of edges), we see that both

graphs are extremely sparse.

4. Efficient computation

It is not evident that strong dependencies as defined in

Section 2 are actually tractable in practise: from previous

results [17, 5] it is known that checking installability of a

package (or co-installability of a set of packages) is an NP-

complete problem. Even if in practise checking installabil-

ity turns out to be tractable on real-world problem instances,

the sheer number of instances that computing strong depen-

dencies may require in the general case makes the problem

much harder. We start by observing that the problem of de-

termining strong dependencies is decidable.

Proposition 4.1 (Decidability). Strong dependencies for

packages in a finite repository R are computable.

Proof. Since R is finite, the set of all installations is also

finite. Among these installations, finding the healthy one is

just a matter of verifying locally the dependency relations.

Then, for each p and q, it is enough to check all healthy

installations to see whether q is present whenever p is.

If we want to know if a particular packages p strongly

depends on q in a repository R however, the argument used

in the proof of decidability leads to an algorithm that has ex-

ponential worst-case complexity in the size n of a repository

R. One possible algorithm to find all strong dependencies

in a repository R is as follows.

Require: R 6= ∅
strongdeps← ∅
for all p, q ∈ R do

if strong dependency(p, q,R) then

strongdeps← strongdeps ∪ {p, q}
end if

end for

return strongdeps

Where the function strong dependency uses a SAT solver

to check whether it is possible to install p without installing

q (in repository R). This algorithm requires checking n2

SAT instances, which is unfeasible with n ≅ 22, 000. We

libc6

gcc-4.3-base

0.004968 libgcc1

0.004968

dpkg

libselinux1

4.973608coreutils

0.022303

lzma

0.617054

libattr1

0.267638libacl1

0.111516

4.949833 0.245262

libacl2

0.089186

perl-base

1.044249

1.066787 1.667794

1.314702

1.156938

0.155925

perl-modules

libgdbm3

3.152298 perl

3.152298

lsb-base

sed

3.717135

libxcb1

libxdmcp6

0.044254

libxau6

0.236023

libxcb-xlib0

1.224612

1.269415 1.463560

Figure 4. Dominance relations among the topmost 20 sensitive packages

need to look for an optimised approach; the following re-

mark is the key observation.

Remark 4.2 (Reducing the search space). All packages q
on which a given package p strongly depends are included

in any installation of p. Furthermore, if a package p con-

junctively depends on a package q, then q is a strong depen-

dency of p.

This leads to the following improved algorithm that

strongly relies on the notion of installation sets and the

property of transitivity of strong dependencies.

for all p ∈ R do

strongdeps← strongdeps ∪ conj deps(p, R)
end for

for all p ∈ R do

S ← install(p, R)
for all q ∈ S do

if (p, q) 6∈ strongdeps ∧ strong dep(p, q,R)
then

strongdeps← strongdeps ∪ {p, q}
end if

end for

end for

return strongdeps

The function conj deps(q, R) returns all packages in R
that are connected to q, considering only conjunctive paths.

We add to the strongdeps set all couples (p, q) such that

there exists a conjunctive path between p and q, and then

for all remaining packages in the install set of p, we check

if there is a strong dependency using the SAT solver.

On one hand, the analysis of the structure of the repos-

itories shows that it is in practise possible to find installa-

tion sets that are quite small. Considering only the instal-

lation set for a given package drastically reduces the num-

ber of calls to the SAT solver. On the other hand, since

the large majority of strong dependencies can be derived di-

rectly from conjunctive dependencies, building the graph of

conjunctive dependencies beforehand can further reduce the

computation time.

In our experiments, calculating the strong dependency

graph and sensitivity index for about 22, 000 packages takes

about 5 minutes on a modern commodity Unix worksta-

tion.7

5. Perspective applications

The given notions of strong dependency, impact set, sen-

sitivity, and strong dominance can be used to address issues

showing up in the maintenance of large component reposi-

tories. In particular, we have identified two areas of applica-

tion: repository-wide Quality Assurance (QA) and upgrade

risk evaluation for user machines.

Quality Assurance FOSS distribution the size of Debian

are not easily inspectable by hand, without specific tools.

The work of release managers in such scenario is about

maintaining a coherent package repository, i.e., in which

each package is installable in at least one healthy installa-

tion. Such repositories are usually not built from scratch,

but rather evolve from an unstable state to a stable one

which is periodically released as the new major release of

the distribution. Day to day maintenance of the repository

includes actions such as adding packages to the repository

(e.g., newly packaged software, or new releases) as well as

removing them (e.g., superseded softwares or sub-standard

quality packages which are not considered suitable for re-

leasing). Quality assurance is meant to spot repository-wide

incompatibilities or sub-standard quality packages, accord-

ing to various criteria.

In such ecosystems, removing a package can have non-

local effects which are not evident by just looking at the

direct dependencies of the involved packages. For instance,

removing a package p such that several packages depends

on p | q might be appropriate only if q is installable in

7Intel Xeon 3 GHz processor, 3 Gb of memory

the archive. The strong dependency graph can be used to

detect similar cases efficiently. Once the graph has been

computed—and Section 4 showed that the cost is afford-

able even for large distributions—detecting if a package is

removable in isolation reduces to check whether its node

has inbound edges or not. If really needed, following in-

bound edges can help building sets of packages removable

as a whole.

In the same context, sensitivity can be used to decide

when to freeze packages during the release process (deci-

sion currently delegated to folklore): the higher the sensi-

tivity, the sooner a package should be frozen. Sensitivity

can also be used to activate heuristic warnings in archive

management tools when apparently innocuous packages

are acted upon: attempting to remove or otherwise alter

gcc-4.3-base at the end of the Lenny release process

(see Table 2) would have surely been an error, in spite of

the few packages mentioning it directly in their dependen-

cies.

Upgrade risk evaluation System administrators of ma-

chines running FOSS distributions would like to be able

to judge the risks of a certain upgrade. Risk evaluation

not necessarily in the sense of deciding whether or not to

perform an upgrade—not performing one is often not an

option, due to the frequent case of upgrades that fix secu-

rity vulnerability. Upgrade risk evaluation is nevertheless

important to allocate suitable time slots to deploy upgrade

plans proposed by package managers: the riskier the up-

grade, the longer the time slot that should be planned for

it.

The general principle we propose is that a package that is

not strongly depended upon by other packages is relatively

safe to upgrade; conversely, a package that is needed by

many packages on the system might need some safety mea-

sures in case of problems (backup servers, . . .). However

this measure should be computed in relation to the actual

user installation and not as an absolute value with respect to

the distribution such as plain impact sets. Once the strong

dependency graph of a user installation has been computed,

the legacy package manager can be used to find upgrade

plans as usual. On that plan the overall upgrade sensitivity

can then be computed by summing up the size of the instal-

lation impact sets of all packages touched by the proposed

plan; where the installation impact set of a package p is de-

fined as the intersection of the strong impact set with the

local installation.

The strong dependency graph used for risk evaluation

must be the one corresponding to the distribution snapshot

which was known before planning the upgrade. This is be-

cause we want to evaluate the risks with respect to the cur-

rent installation, not to a future potential one in which pack-

age sensitivity can have changed. The maintenance of such

graph on user machines is straightforward and can be post-

poned to after upgrade runs have been completed, in order

to be ready for future upgrades.

Note that in this way, what is computed is an under

approximation of the upgrade risk measure. For exam-

ple consider the following scenario: a package p having

Depends: q | r, and a healthy installation I = {p, q}.
The direct dependencies of p entail no strong dependency,

but in the given installation q has been “chosen” to solve

p dependencies. Even if p 6∈ Is(q,R) ∩ I , an upgrade of

q in that specific installation has potentially an impact on

p. The under approximation is nevertheless sound—i.e., all

packages in the installation impact set are installed.

Release upgrades A particular case of upgrade are the

so called release upgrades (or distribution upgrades) which

are performed periodically to switch from an older stable

release of a given distribution to a newer one. The rele-

vance of such upgrades is that they usually affect almost all

of the packages present in user installation. Such kind of

upgrades are usually already performed wisely by system

administrators devoting to them large time slots.

During release upgrades system administrators can be

faced with the choice of whether to switch to a new major

version of some available software or to stay with an older,

legacy one. For instance, one can have the choice to switch

to the Apache Web server 2.x series, or to stay with Apache

1.x. The upgrade is not forced by strict package version-

ing by either offering packages with different names (e.g.

apache1 vs apache2 in Debian and its derivatives) or

by avoiding explicit conflicts among the two set of versions

(as it happens in RPM-based distributions). The choice is

currently not technically well assisted: if apache2 is ten-

tatively chosen, the package manager will propose to up-

grade all involved packages to the most recent version with-

out highlighting which upgrades are mandatory to fulfil de-

pendencies and which are not.

While this is a deficiency of state of the art solving al-

gorithms [22], strong dependencies offer a cheap technical

device to work around the problem with current solvers. It

is enough to compute the strong dependency graph of both

distributions and, in particular, the strong dependencies of

the two (or more) involved packages. Then, by taking the

difference of the strong dependencies in the new and in the

old graph, the list of package which must be forcibly up-

graded to do the switch is obtained. All such forced up-

grades can then be presented to the administrator to better

guide her or his choice.

6. Related works

Several interesting works have dealt with issues related

to the topics touched by this paper. In the area of complex

networks, [14, 16] used FOSS distributions as case stud-

ies. The former is the closest to our focus, as it studies the

network structure obtained from Debian inter-package rela-

tionships, showing that it is small-world, as the node con-

nectivity follows a near power-law distribution. However,

the analysis is performed on the direct dependency graph

which, as discussed, misses the semantics of dependencies.

We could not get more information on how the data

of [14] has been computed, as the snapshot of Debian used

there comes from late 2004, and is no longer available in

the Debian archives; based on the figures presented in the

paper, and our analysis of the closest Debian stable distri-

bution, we conclude that their analysis dropped all informa-

tion about Conflicts and Pre-Depends. As a conse-

quence, the figures produced for what is called in the pa-

per “the 20 most highly depended upon packages” falls ex-

tremely short of reality: libc6 is crucial for 3 times more

packages than what is reported, and other critical packages

such as gcc-4.3-base are entirely missed.

In the area of quality assurance for large software

projects, many authors correlate component dependencies

and past failure rates in order to predict future failures [24,

18, 19]. The underlying hypothesis is that software “fault-

proneness” of a component is correlated to changes in com-

ponents that are tightly related to it. In particular if a

component A has many dependencies on a component B
and the latter changes a lot between versions, one might

expect that errors propagates through the network reduc-

ing the reliability of A. A related interesting statistical

model to predict failures over time is the “weighted time

damp model” that correlates most recent changes to soft-

ware fault-proneness [9]. Social network methods [10] were

also used to validate and predict the list of sensitive compo-

nents in the Windows platform [24].

Our work differs for two main reasons. First, the source

of dependency information is quite different. While depen-

dency analysing for software components is inferred from

the source code, the dependency information in software

distributions are formally declared and can be assumed to

be, on the average, trustworthy as reviewed by the package

maintainer. Second, FOSS distributions still lack the needed

data to correlate upgrade disasters with dependencies and

hence to create statistical models that allow to predict future

upgrade disasters. In more detail, the FOSS ecosystem is re-

ally fond of public bug tracker systems, but generally lacks

explicit logging of upgrade attempts and a way to associate

specific bugs to them. One of the goal of the Mancoosi8

project—in which the authors are involved—is to create a

corpus of upgrade problems which will be a first step in this

direction.

The key idea behind the notion of sensitivity can be seen

as a direct application of the evaluation of “disease spread-

8http://www.mancoosi.org

ing speed” in small world networks [23]: the higher the sen-

sitivity, the larger the impact sets, the higher the (potential)

bug spreading speed. The semantic definition of impact sets

is crucial in this analysis: using the direct dependency graph

would give no guarantee about which components will be

effectively installed and therefore help bug spreading.

7. Conclusion and future work

This paper has introduced the novel notions of strong de-

pendencies between software components, and of sensitiv-

ity as a measure of how many other components rely on the

availability of a specific components; strong dominance has

been introduced as well as a criterion to order and group

components with similar sensitivity into meaningful clus-

ters. We have shown concretely on a large scale real world

example that such notions are better suited to describe true

inter-component relationships than previous studies, which

were solely based on the analysis of the syntactic (or di-

rect) dependency graph. The main applications of these new

notions are tools for quality assurance in large component

ecosystems and upgrade risk evaluation.

The new notions have been tested on one of the largest

known component-based system: Debian GNU/Linux, a

popular FOSS distribution. Historical analysis of Debian

strong and direct dependency graphs have been performed.

Empirical evidence shows that, while the two notions are

generally correlated, there are several components on which

they give huge differences, with direct dependencies en-

tirely missing key components that are correctly pinpointed

by strong dependencies. We believe the case shown in this

paper is strong enough to totally dismiss, in the future, mea-

sures built on direct dependencies as soon as the depen-

dency language is expressive enough to encompass propo-

sitional logics.

We hence strongly advocate the evaluating of sensitiv-

ity on top of strong dependencies, and we have shown

clearly how clustering components according to the notion

of strong dominance allows to build a meaningful presenta-

tion of data, and uncover deep relationships among compo-

nents in a repository.

Despite the theoretical complexity of the problem, and

the sheer size of modern component repositories, we have

succeeded in designing a simple optimised algorithm for

computing strong dependencies that performs very well on

real world instances, making all the measures proposed in

this paper not only meaningful, but actually feasible.

Previous studies on network properties—such as small

world characteristics—have been redone on the Debian

strong dependency graph, showing that it stays small world.

Future works is planned in various directions. First of

all the notion of installation impact set needs to be refined.

While it is clear that the strong impact set is an under ap-

proximation of it, it is less clear how to further refine it. On

one hand we want to get closer to the actual set of poten-

tially affected packages on a given machine. On the other

it is not clear, for a package p depending on q | r to which

extent both packages should be considered as potentially

impacted by a bug in p. It appears to be a limitation in the

expressiveness of the dependency language which does not

state an order between q and r, but needs further investiga-

tion. Interestingly enough, the implicit syntactic order “p
before q” is already taken into account by some distribution

tools such as build daemons and is hence worth modelling.

Distributions like Debian use a staged release strategy, in

which two repositories are maintained: an “unstable” and a

“testing” one. Packages get uploaded to unstable and mi-

grate to testing when they satisfy some quality assurance

criteria, including the goal of maintaining testing devoid of

uninstallable packages. Current modelling of the problem

is scarce and implementations rely on empirical package-

by-package, brute force migration attempts. We believe that

the notion of strong dependency and the clusters entailed by

strong dominance can help in identifying clusters of pack-

ages which should forcibly migrate together.

Acknowledgements The authors would like to thank

Yacine Boufkhad, Ralf Treinen, and Jerôme Vouillon for

many interesting discussions on these issues.

References

[1] R. Albert, H. Jeong, and A. Barabasi. The diameter of the

world wide web. Nature, 401:130–131, July 1999.

[2] R. Albert, H. Jeong, and A. Barabasi. Error and attack toler-

ance of complex networks. Nature, 406:378, 2000.

[3] Apache Software Foundation. Maven project. http://

maven.apache.org/, 2009.

[4] E. Clayberg and D. Rubel. Eclipse Plug-ins. Addison-

Wesley Professional, 3 edition, Dec. 2008.

[5] R. Di Cosmo, B. Durak, X. Leroy, F. Mancinelli, and

J. Vouillon. Maintaining large software distributions: new

challenges from the FOSS era. In FRCSS 2006, 2006.

EASST Newsletter.

[6] R. Di Cosmo, P. Trezentos, and S. Zacchiroli. Package up-

grades in FOSS distributions: Details and challenges. In

HotSWup’08, 2008.

[7] S. Dick, A. Meeks, M. Last, H. Bunke, and A. Kandel. Data

mining in software metrics databases. Fuzzy Sets and Sys-

tems, 145(1):81–110, 2004.

[8] N. E. Fenton and S. L. Pfleeger. Software Metrics: A Rigor-

ous and Practical Approach, Revised. Course Technology,

2 edition, Feb. 1998.

[9] T. L. Graves, A. F. Karr, J. S. Marron, and H. Siy. Predicting

fault incidence using software change history. IEEE Trans.

Softw. Eng., 26(7):653–661, 2000.

[10] R. A. Hanneman and M. Riddle. Introduction to social net-

work methods. University of California, Riverside, 2005.

[11] I. Herraiz, G. Robles, R. Capilla, and J. Gonzalez-Barahona.

Managing libre software distributions under a product line

approach. In COMPSAC’08, pages 1221–1225, 2008.

[12] I. Jackson and C. Schwarz. Debian policy manual. http:

//www.debian.org/doc/debian-policy/, 2009.

[13] T. M. Khoshgoftaar, E. B. Allen, W. D. Jones, and J. P.

Hudepohl. Data mining for predictors of software quality.

International Journal of Software Engineering and Knowl-

edge Engineering, 9(5):547–564, 1999.

[14] N. LaBelle and E. Wallingford. Inter-package dependency

networks in open-source software. CoRR, cs.SE/0411096,

2004.

[15] B. Livshits. Dynamine: Finding common error patterns by

mining software revision histories. In In ESEC/FSE, pages

296–305. ACM Press, 2005.

[16] T. Maillart, D. Sornette, S. Spaeth, and G. V. Krogh. Em-

pirical tests of zipf’s law mechanism in open source linux

distribution. 0807.0014, June 2008.

[17] F. Mancinelli, J. Boender, R. Di Cosmo, J. Vouillon, B. Du-

rak, X. Leroy, and R. Treinen. Managing the complexity of

large free and open source package-based software distribu-

tions. In ASE, pages 199–208, 2006.

[18] N. Nagappan and T. Ball. Using software dependencies and

churn metrics to predict field failures: An empirical case

study. In ESEM, pages 364–373, 2007.

[19] S. Neuhaus, T. Zimmermann, C. Holler, and A. Zeller. Pre-

dicting vulnerable software components. In ACM Con-

ference on Computer and Communications Security, pages

529–540, 2007.

[20] G. Robles, J. M. Gonzalez-Barahona, M. Michlmayr, and

J. J. Amor. Mining large software compilations over time:

another perspective of software evolution. In MSR ’06,

pages 3–9. ACM, 2006.

[21] C. Szyperski. Component Software: Beyond Object-

Oriented Programming. Addison Wesley Professional,

1997.

[22] R. Treinen and S. Zacchiroli. Solving package dependen-

cies: from EDOS to Mancoosi. In DebConf 8: 9th confer-

ence of the Debian project, 2008.

[23] D. J. Watts and S. H. Strogatz. Collective dynamics of small-

world networks. Nature, 393(6684):440–442, June 1998.

[24] T. Zimmermann and N. Nagappan. Predicting defects using

network analysis on dependency graphs. In ICSE’08, pages

531–540. ACM, 2008.

