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destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
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A PROBABILISTIC STUDY OF NEURAL COMPLEXITY

J. BUZZI AND L. ZAMBOTTI

Abstract. G. Edelman, O. Sporns, and G. Tononi have introduced the neural

complexity of a family of random variables, defining it as a specific average of
mutual information over subfamilies. We show that their choice of weights satisfies
two natural properties, namely exchangeability and additivity, and we call any
functional satisfying these two properties an intricacy. We classify all intricacies
in terms of probability laws on the unit interval and study the growth rate of
maximal intricacies when the size of the system goes to infinity. For systems of a
fixed size, we show that maximizers have small support and exchangeable systems
have small intricacy. In particular, maximizing intricacy leads to spontaneous
symmetry breaking and failure of uniqueness.

1. Introduction

1.1. A functional over random systems. Natural sciences have to deal with
”complex systems” in some obvious and not so obvious meanings. Such notions
first appeared in thermodynamics. Entropy is now recognized as the fundamental
measure of complexity in the sense of randomness and it is playing a key role as well
in information theory, probability and dynamics [12]. Much more recently, subtler
forms of complexity have been considered in various physical problems [1, 3, 7, 11],
though there does not seem to be a single satisfactory measure yet.

Related questions also arise in biology. In their study of high-level neural net-
works, G. Edelman, O. Sporns and G. Tononi have argued that the relevant com-
plexity should be a combination of high integration and high differentiation. In [22]
they have introduced a quantitative measure of this kind of complexity under the
name of neural complexity. As we shall see, this concept is strikingly general and
has interesting mathematical properties.

In the biological [10, 13, 14, 16, 17, 18, 19, 20, 23, 24] and physical [2, 8] literature,
several authors have used numerical experiments based on Gaussian approximations
and simple examples to suggest that high values of this neural complexity are indeed
associated with non-trivial organization of the network, away both from complete
disorder (maximal entropy and independence of the neurons) and complete order
(zero entropy, i.e., complete determinacy).
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2 J. BUZZI AND L. ZAMBOTTI

The aim of this paper is to provide a mathematical foundation for the Edelman-
Sporns-Tononi complexity. Indeed, it turns out to belong to a natural class of func-
tionals: the averages of mutual informations satisfying exchangeability and weak-
additivity (see below and the Appendix for the needed facts of information theory).
The former property means that the functional is invariant under permutations of
the system. The latter that it is additive over independent systems. We call these
functionals intricacies and give a unified probabilistic representation of them.

One of the main thrusts of the above-mentioned work is to understand how sys-
tems with large neural complexity look like. From a mathematical point of view, this
translates into the study of the maximization of such functionals (under appropriate
constraints).

This maximization problem is interesting because of the trade-off between high
entropy and strong dependence which are both required for large mutual informa-
tion. Such frustration occurs in spin glass theory [21] and leads to asymmetric
and non-unique maximizers. However, contrarily to that problem, our functional is
completely deterministic and the symmetry breaking (in the language of theoretical
physics) occurs in the maximization itself: we show that the maximizers are not ex-
changeable although the functional is. We also estimate the growth of the maximal
intricacy of finite systems with size going to infinity and the size of the support of
maximizers.

The computation of the exact growth rate of the intricacy as a function of the size
and the analysis of systems with almost maximal intricacies build on the techniques
of this paper, especially the probabilistic representation below, but require additional
ideas, so are deferred to another paper [5].

1.2. Intricacy. We recall that the entropy of a random variable X taking values in
a finite or countable space E is defined by

H(X) := −
∑

x∈E

PX(x) log(PX(x)), PX(x) := P(X = x).

Given two discrete random variables defined over the same probability space, the
mutual information between X and Y is

MI(X, Y ) := H(X) + H(Y ) − H(X, Y ).

We refer to the appendix for a review of the main properties of the entropy and
the mutual information and to [6] and [12] for introductions to information theory
and to the various roles of entropy in mathematical physics, respectively. For now,
it suffices to recall that MI(X, Y ) ≥ 0 is equal to zero if and only if X and Y are
independent, and therefore MI(X, Y ) is a measure of the dependence between X
and Y .

Edelman, Sporns and Tononi [22] consider systems formed by a finite family
X = (Xi)i∈I of random variables and define the following concept of complexity.
For any S ⊂ I, they divide the system in two families

XS := (Xi, i ∈ S), XSc := (Xi, i ∈ Sc),
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where Sc := I\S. Then they compute the mutual informations MI(XS, XSc) and
consider an average of these:

I(X) :=
1

|I| + 1

∑

S⊂I

1
(
|I|
|S|

) MI(XS, XSc), (1.1)

where |I| denotes the cardinality of I and
(

n
k

)
is the binomial coefficient. Note that

I(X) is really a function of the law of X and not of its random values.
The above formula can be read as the expectation of the mutual information be-

tween a random subsystem XS and its complement XSc where one chooses uniformly
the size k ∈ {0, . . . , |I|} and then a subset S ⊂ I of size |S| = k.

In this paper we prove that I fits into a natural class of functionals, which we
call intricacies. We shall see that these functionals have very similar, though not
identical properties and admit a natural and technically very useful probabilistic
representation by means of a probability measure on [0, 1].

Notice that I ≥ 0 and I = 0 if and only if the system is an independent family
(see Lemma 3.9 below). In particular, both complete order (a deterministic family
X) and total disorder (an independent family) imply that every mutual information
vanishes and therefore I(X) = 0.

On the other hand, to make (1.1) large, X must simultaneously display two differ-
ent behaviors: a non-trivial correlation between its subsytems and a large number of
internal degrees of freedom. This is the hallmark of complexity according to Edel-
man, Sporns and Tononi. The need to strike a balance between local independence
and global dependence makes such systems not so easy to build (see however Exam-
ple 2.10 and Remark 2.11 below for a simple case). This is the main point of our
work.

1.3. Intricacies. Throughout this paper, a system is a finite collection (Xi)i∈I of
random variables, each Xi, i ∈ I, taking value in the same finite set, say {0, . . . , d−1}
with d ≥ 2 given. Without loss of generality, we suppose that I is a subset of the
positive integers or simply {1, . . . , N}. In this case it is convenient to write N for I.

We let X (d, I) be the set of such systems and M(d, I) the set of the corresponding
laws, that is, all probability measures on {0, . . . , d− 1}I for any finite subset I. We
often identify it with M(d, N) := M(d, {1, . . . , N}) for N = |I|. If X is such a
system with law µ, we denote its entropy by H(X) = H(µ). Of course, entropy is in
fact a (deterministic) function of the law µ of X and not of the (random) values of
X.

Intricacies are functionals over such systems (more precisely: over their laws)
formalizing and generalizing the neural complexity (1.1) of Edelman-Sporns-Tononi
[22]:

Definition 1.1. A system of coefficients is a family of numbers

c := (cI
S : I ⊂⊂ N

∗, S ⊂ I)

satisfying, for all I and all S ⊂ I:

cI
S ≥ 0,

∑

S⊂I

cI
S = 1, and cI

Sc = cI
S (1.2)
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where Sc := I \ S. We denote the set of such systems by C(N∗).
The corresponding mutual information functional is Ic : X → R defined by:

Ic(X) :=
∑

S⊂I

cI
S MI (XS, XSc) .

By convention, MI (X∅, XI) = MI (XI , X∅) = 0. If X ∈ X (d, I) has law µ, we
denote Ic(X) = Ic(µ). Ic is non-null if some coefficient cI

S with S /∈ {∅, I} is not
zero.

An intricacy is a mutual information functional satisfying:

(1) exchangeability (invariance by permutations): if I, J ⊂⊂ N
∗ and φ :

I → J is a bijection, then Ic(X) = Ic(Y ) for any X := (Xi)i∈I , Y :=
(Xφ−1(j))j∈J ;

(2) weak additivity: Ic(X, Y ) = Ic(X) + Ic(Y ) for any two independent
systems (Xi)i∈I , (Yj)j∈J .

Clearly, by (1.1), neural complexity is a mutual information functional with
cI
S = 1

|I|+1
1

(|I|
|S|)

, satisfying exchangeability. Weak additivity is less trivial and will

be deduced in Theorem 1.2 below. We remark that the factor (|I| + 1) in the de-
nominator is not present in the original definition in [22] but is necessary for weak
additivity and the normalization (1.2) to hold.

1.4. Main results. Our first result is a characterization of systems of coefficients c
generating an intricacy, i.e. an exchangeable and weak additive mutual information
functional. These properties are equivalent to a probabilistic representation of c.

We say that a probability measure λ on [0, 1] is symmetric if
∫

[0,1]
f(x) λ(dx) =

∫

[0,1]
f(1 − x)λ(dx) for all measurable and bounded functions f .

Theorem 1.2. Let c ∈ C(N∗) be a system of coefficients and Ic the associated
mutual information functional.

(1) Ic is an intricacy, i.e. exchangeable and weakly additive, if and only if there
exists a symmetric probability measure λc on [0, 1] such that

cI
S =

∫

[0,1]

x|S|(1 − x)|I|−|S| λc(dx), ∀ S ⊆ I. (1.3)

In this case, if {Wc, Yi, i ∈ N
∗} is an independent family such that Wc has

law λc and Yi is uniform on [0, 1], then

cI
S = P(Z ∩ I = S), ∀ I ⊂⊂ N

∗, ∀S ⊂ I,

where Z is the random subset of N
∗

Z := {i ∈ N
∗ : Yi ≥ Wc}.

(2) λc is uniquely determined by Ic. Moreover Ic is non-null iff λc(]0, 1[) > 0
and in this case cI

S > 0 for all coefficients with S ⊂ I, S /∈ {∅, I}.
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(3) For the neural complexity (1.1), we have

1

|I| + 1

1
(
|I|
|S|

) =

∫

[0,1]

x|S|(1 − x)|I|−|S| dx, ∀ S ⊆ I,

i.e., λc in this case is the Lebesgue measure on [0, 1] and the neural complexity
is indeed exchangeable and weakly additive, i.e. an intricacy.

We discuss other explicit examples in section 2 below.

Our next result concerns the maximal value of intricacies. As discussed above,
this is a subtle issue since large intricacy values require compromises. This can also
be seen in that intricacies are differences between entropies, see (2.2) and therefore
not concave.

The weak additivity of intricacies is the key to how they grow with the size of
the system. This property of neural complexity having been brought to the fore, we
obtain linear growth and convergence of the growth speed quite easily. The same
holds subject to an entropy condition, independently of the softness of the constraint
(measured below by the speed at which δN converges to 0).

Denote by Ic(d, N) and Ic(d, N, x), x ∈ [0, 1], the supremum of Ic(X) over all
X ∈ X (d, N), respectively over all X ∈ X (d, N) such that H(x) = xN log d:

Ic(d, N) := sup{Ic(µ) : µ ∈ M(d, N)}, (1.4)

Ic(d, N, x) := sup{Ic(µ) : µ ∈ M(d, N), H(µ) = xN log d}. (1.5)

Notice that if x = 0 or x = 1, then Ic(d, N, x) = 0, since this corresponds to,
respectively, deterministic or independent systems, for which all mutual information
functionals vanish.

Theorem 1.3. Let Ic be a non-null intricacy and let d ≥ 2 be some integer.

(1) The following limits exist for all x ∈ [0, 1]

Ic(d) := lim
n→∞

Ic(d, N)

N
, Ic(d, x) := lim

n→∞

Ic(d, N, x)

N
, (1.6)

and we have the bounds

[x ∧ (1 − x)] κc ≤ Ic(d, x)

log d
≤ Ic(d)

log d
≤ 1

2
, (1.7)

where

κc := 2

∫

[0,1]

y(1 − y) λc(dy) > 0, (1.8)

and λc is defined in Theorem 1.2.
(2) Let (δN )N≥1 be any sequence of non-negative numbers converging to zero and

x ∈ [0, 1]. Then

Ic(d, x) = lim
N→∞

1

N
sup

{

Ic(X) : X ∈ X (d, N),

∣
∣
∣
∣

H(X)

N log d
− x

∣
∣
∣
∣
≤ δN

}

.
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Remark 1.4.

1. By considering a set of independent, identically distributed (i.i.d. for short)
random variables on {0, . . . , d − 1}, it is easy to see that for any 0 ≤ h ≤ N log d,
there is X ∈ X (d, N) such that H(X) = h and Ic(X) = 0. Hence minimization of
intricacies is a trivial problem also under fixed entropy.

2. It follows that for any (x, y), 0 ≤ x ≤ 1 such that 0 ≤ y < Ic(d, x)/ log d,
for any N large enough, there exists X ∈ X (d, N) with H(X) = xN log d and
Ic(X) = yN log d. Observe, for instance, that Ic is continuous on the contractile
space M(d, N).

3. In the above theorem, the assumption that each variable Xi takes values in a
set of cardinality d can be relaxed to H(Xi) ≤ log d. It can be shown that this does
not change Ic(d) or Ic(d, x).

Thus maximal intricacy grows linearly in the size of the system. What happens
if we restrict to smaller classes of systems, enjoying particular symmetries? Since
intricacies are exchangeable, their value does not change if we permute the variables
of a system. Therefore it is particularly natural to consider (finite) exchangeable
families.

We denote by EX(d, N) the set of random variables X ∈ X (d, N) which are
exchangeable, i.e., for all permutations σ of {1, . . . , N}, X := (X1, . . . , XN) and
Xσ := (Xσ(1), . . . , Xσ(N)) have the same law.

Theorem 1.5. Let Ic be an intricacy.

(1) Exchangeable systems have small intricacies. More precisely

sup
X∈EX(d,N)

Ic(X) = o(N2/3+ǫ), N → +∞,

for any ǫ > 0. In particular

lim
N→∞

1

N
max

X∈EX(d,N)
Ic(X) = 0.

(2) For N large enough and fixed d, maximizers of X (d, N) ∋ X 7→ Ic(X) are
neither unique nor exchangeable.

By the first assertion, exchangeability of the intricacies is not inherited by their
maximizers. Indeed, exchangeable systems are very far from maximizing, since the
maximum of Ic over EX(d, N) is o(Np) for any p > 2/3 whereas the maximum of Ic

over X (d, N) is proportional to N . This ”spontaneous symmetry breaking” again
suggests the complexity of the maximizers. We remark that numerical estimates
suggest that the intricacy of any X ∈ EX(d, N) is in fact bounded by const log N .

The second assertion of Theorem 1.5 follows from the first one: for N sufficiently
large, the maximal intricacy is not attained at an exchangeable law; therefore, by
permuting a system with maximal intricacy we obtain different laws, all with the
same maximal intricacy.

We finally turn to a property of exact maximizers, namely that their support is
concentrated on a small subset of all possible configuration:



NEURAL COMPLEXITY 7

Theorem 1.6. Let Ic be a non-null intricacy. let d ≥ 2. For N a large enough
integer, the following holds. For any X maximizing Ic over X (d, N), law µ of X
has small support, i.e.

#{ω ∈ Λd,N : µ({ω}) = 0} ≥ const dN

for some const > 0.

1.5. Further questions. As noted above, the exact computation of the functions
Ic(d) and Ic(d, x) from Theorem 1.3 in terms of their probabilistic representation
from Theorem 1.2 will be the subject of [5] where we shall study systems with
intricacy close to the maximum.

Second, to apply intricacy one needs to compute it for systems of interests. It
might be possible to compute it exactly for some simple physical systems, like the
Ising model. A more ambitious goal would be to consider more complex models,
like spin glasses, to analyze the possible relation between intricacy and frustration
[21].

A more general approach would be to get rigorous estimates from numerical ones
(see [22] for some rough computations). A naive approach results in an exponential
complexity and thus begs the question of more efficient algorithms, perhaps proba-
bilistic ones. A related question is the design of statistical estimators for intricacies.
These estimators should be able to decide many-variables correlations, which might
require a priori assumptions on the systems.

Third, one would to understand the intricacy from a dynamical point of view:
which physically reasonable processes (say with dynamics defined in terms of local
rules) can lead to high intricacy systems and at what speeds?

Fourthly, one could consider the natural generalization of intricacies, already pro-
posed in [22] but not explored further, is given in terms of general partitions π of I:
if π = {S1, ..., Sk} with ∪iSi = I and Si ∩ Sj = ∅ for i 6= j, then we can set

MI(Xπ) := H(XS1
) + · · · + H(XSk

) − H(X), X ∈ X (d, I), (1.9)

and for some non-negative coefficients (cπ)π

J c(X) :=
∑

π

cπ MI(Xπ). (1.10)

Most results of this paper extend to the case where the coefficients (cπ)π have a
probabilistic representation in terms of the so-called Kingman paintbox construction
[4, §2.3], see Remark 3.4 below.

One might also be interested to extend the definition of intricacy to infinite (e.g.,
stationary) processes, continuous or structured systems, e.g., taking into account a
connectivity or dependence graph (such constraints have been considered in numer-
ical experiments performed by several authors [2, 8, 18]).

Finally, our work leaves out the properties of exact maximizers for a given size.
As of now, we have no description of them except in very special cases (see Examples
2.9 and 2.10 below) and we do not know how many there are, or even if they are
always in finite number. We do not have reasonably efficient ways to determine
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the maximizers which we expect to lack a simple description in light of the lack of
symmetry established in Theorem 1.5.

1.6. Organization of the paper. In Sec. 2, we discuss the definition of intricacies,
giving some basic properties and examples. Sec. 3 proves Theorem 1.2, translating
the weak additivity of an intricacy into a property of its coefficients. As a by-
product, we obtain a probabilistic representation of all intricacies. We check that
neural complexity corresponds to the uniform law on [0, 1]. In Sec. 4 we prove
Theorem 1.3 by showing the existence of the limits Ic(d), Ic(d, x). Finally, in Sec. 5
we prove Theorem 1.5 and, in Sec. 6, Theorem 1.6. An Appendix recalls some basic
facts from information theory for the convenience of the reader and to fix notations.

2. Intricacies

2.1. Definition. We begin by a discussion of the definition 1.1 above of intricacies.
As MI(XS, XSc) = MI(XSc , XS), the symmetry condition cI

Sc = cI
S can always be

satisfied by replacing cI
S with 1

2
(cI

S + cI
Sc) without changing the functional. Also

∑

S⊂I cI
S = 1 is simply an irrelevant normalization when studying systems with a

given index set I.
The following mutual information functionals will be proved to be intricacies in

section 3.

Definition 2.1. The intricacy I of Edelman-Sporns-Tononi is defined by its
coefficients:

cI
S =

1

|I| + 1

1
(
|I|
|S|

) . (2.1)

For 0 < p < 1, the p-symmetric intricacy Ip(X) is:

cI
S =

1

2

(
p|S|(1 − p)|I\S| + (1 − p)|S| p|I\S|

)
.

For p = 1/2, this is the uniform intricacy IU (X) with:

cI
S = 2−|I|.

It is not obvious that the three above mutual information functionals are weakly
additive, but this will follow easily from Lemma 3.7 below. Proposition 3.5 below
describes all intricacies.

Remark 2.2. The coefficients of the Edelman-Sporns-Tononi intricacy I ensure
that subsystems of all sizes contribute significantly to the intricacy. This is in sharp
contrast to the p-symmetric coefficients for which subsystems of size far from pN or
(1 − p)N give a vanishing contribution when N gets large.

Remark 2.3. The global 1/(|I|+1) factor in I is not present in [22], which did not
compare systems of different sizes. However it is required for weak additivity.
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2.2. Basic Properties. We prove some general and easy properties of intricacies.
Recall that X (d, N) is the set of Λd,N -valued random variables, where Λd,N =

{0, . . . , d − 1}N . We identify it with the standard simplex in R
dN

in the obvious
way.

Lemma 2.4. Let Ic be a mutual information functional. For each d ≥ 2 and
N ≥ 1, Ic : M(d, N) → R is continuous. In particular, the suprema Ic(d, N) and
Ic(d, N, x), introduced in (1.4) and (1.5), are achieved.

If Ic is a non-null intricacy, then it is neither convex nor concave.

Proof. Continuity is obvious and existence of the maximum follows from the com-
pactness of the finite-dimensional simplex M(d, N). To disprove convexity and
concavity of non-null intricacies, we use the following examples. Pick I with at
least two elements, say 1 and 2. Observe that K := cI

{1} + cI
{2} is positive by the

non-degeneracy of Ic (see Lemma 3.8 below). Fix d ≥ 2.
First, for i = 0, 1, let µi over {0, . . . , d − 1}I be defined by µi(i, i, 0, . . . , 0) = 1.

We have:

Ic

(
µ0 + µ1

2

)

≥ K · log d >
Ic(µ0) + Ic(µ1)

2
= 0.

Second, let ν0 be defined by ν0(0, 0, 0, . . . , 0) = ν0(1, 1, 0, . . . , 0) = 1/2 and ν1 by
ν1(0, 1, 0, . . . , 0) = ν1(1, 0, 0, . . . , 0) = 1/2. We have:

Ic

(
ν0 + ν1

2

)

= 0 < K · log d ≤ Ic(ν0) + Ic(ν1)

2
.

�

The following expression of an intricacy as a non-convex combination of the entropy
of subsystems is crucial to its understanding.

Lemma 2.5. For any intricacy Ic and X ∈ X (d, N)

Ic(X) = 2

(
∑

S⊂I

cI
S H(XS)

)

− H(X). (2.2)

Proof. The result readily follows from: MI(X, Y ) = H(X) + H(Y ) − H(X, Y ), cI
S =

cI
Sc , and

∑

S cI
S = 1. �

We introduce the notation

MI(S) := MI(XS, XI\S)

which will be used only when the understood dependence on X and I is clear.

Lemma 2.6. For any intricacy Ic and any system X ∈ X (d, N)

0 ≤ Ic(X) ≤ N

2
log d.
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Proof. The inequalities follow from basic properties of the mutual information (see
the Appendix):

0 ≤ MI(S) ≤ min{H(XS), H(XSc)} ≤ min{|S|, N − |S|} log d ≤ N

2
log d.

�

2.3. Simple examples. We give some examples of finite systems and compute their
intricacies both for illustrative purposes and for their use in some proofs below.

Let Xi take values in {0, . . . , d − 1} for all i ∈ I, a finite subset of N
∗. The first

two examples show that total order and total disorder make the intricacy vanish.

Example 2.7 (Total disorder). If the variables Xi are independent then each mutual
information is zero and therefore: Ic(X) = 0. �

Example 2.8 (Total order). If each Xi is a.s. equal to a constant ci in {0, . . . , d−1},
then, for any S 6= ∅, H(XS) = 0. Hence, Ic(X) = 0. �

For N = 2, 3, each mutual information can be maximized separately: there is no
frustration and it is easy to determine the maximizers of non-null intricacies.

Example 2.9 (Case N = 2). Let first N = 2 and Ic be a non-null intricacy. Then

by Theorem 1.2 cI
S = c

|I|
|S| and therefore

Ic(X) =
(

c
{1,2}
{1} + c

{1,2}
{2}

)

MI(X1, X2) = 2c2
1 MI(X1, X2), X ∈ X (d, 2),

and moreover c2
1 > 0. Therefore the maximizers of Ic over X (d, 2) are the maximizers

of X 7→ MI(X1, X2). By the discussion in subsection A.3 of the appendix, we have
that MI(X1, X2) ≤ min{H(X1), H(X2)}. Now, MI(X, Y ) = H(X1) = H(X2) iff each
variable is a function of the other.

Therefore, the maximizers are exactly the following systems X = (X1, X2). X1 is
a uniform r.v. over {0, . . . , d − 1} and the other is a deterministic function of the
first. X2 = σ(X1) for a given permutation σ of {0, . . . , d − 1}. In the case of the
neural complexity, maxX∈X (d,2) I(X) = (log d)/3. �

Example 2.10 (Case N = 3). Let N = 3 and I := {1, 2, 3}. By Theorem 1.2,

cI
S = c

|I|
|S|, c3

1 = c3
2 and therefore

Ic(X) = 2c3
1

(
MI(X1, X{2,3}) + MI(X2, X{1,3}) + MI(X3, X{1,2})

)
,

and moreover c3
1 > 0. Here we simultaneously maximize each of these mutual

informations. The optimal choice is a system (X1, X2, X3) where every pair (Xi, Xj),
i 6= j, is uniform over {0, . . . , d−1}2, and the third variable is a function of (Xi, Xj).
This is realized iff (X1, X2) is uniform over {0, . . . , d−1}2 and X3 = φ(X1, X2), where
φ is a (deterministic) map such that, for any i ∈ {0, . . . , d−1}, φ(i, ·) and φ(·, i) are
permutations of {0, . . . , d − 1}. For instance: φ(x1, x2) = x1 + x2 mod d. In the
case of the neural complexity, maxX∈X (d,3) I(X) = (log d)/2. �
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The maximizers of examples 2.9 and 2.10 are very special. For instance, they are
exchangeable, contrarily to the case of large N according to Theorem 1.5. For N = 4
and beyond it is no longer possible to separately maximize each mutual information
and we do not have an explicit description of the maximizers. We shall however see
that, as in the above examples, maximizers have small support, see Proposition 1.6.

Remark 2.11. Example 2.10 has an interesting interpretation: for N = 3, a system
with large intricacy shows in a simple way a combination of differentiation and
integration, as it is expected in the biological literature, see the Introduction. Indeed,
any subsystem of two variables is independent (differentiation), while the whole
system is correlated (integration).

Another interesting case is that of a large system where one variable is free and
all others follow it deterministically.

Example 2.12 (A totally synchronized system). Let X1 be a uniform {0, . . . , d−1}-
valued random variable. We define now (X2, . . . , XN) := φ(X1), where φ is any
deterministic map from {0, . . . , d − 1} to {0, . . . , d − 1}N−1. Then, for any S 6= ∅,
H(XS) = log d and, if additionally Sc 6= ∅, H(XS|XSc) = 0 so that each mutual
information MI(XS, XSc) is log d if S /∈ {∅, I}. Hence,

Ic(X) =
∑

S⊂I\{∅,I}

cI
S · log d =

(
1 − cI

∅ − cI
I

)
log d. �

In the next example we build for every x ∈ ]0, 1[ a system X ∈ X (d, 2) with
entropy H(X) = x log d2 and positive intricacy.

Example 2.13 (A system with positive intricacy and arbitrary entropy). Let first
x ∈ ]0, 1/2]. Let X1 be {0, . . . , d − 1}-valued with H(X1) = 2x log d. Such a vari-
able exists because entropy is continuous over the connected simplex of probability
measures on {0, . . . , d−1} and attains the values 0 over a Dirac mass and log d over
the uniform distribution. We define now X2 := X1 and X := (X1, X2) ∈ X (d, 2).
Therefore H(X) = 2x log d = x log d2, MI(X1, X2) = H(X1) = 2x log d and, arguing
as in Lemma 2.9

Ic(X) = 2c2
1 MI(X1, X2) = 4x c2

1 log d > 0.

Let now x ∈ ]1/2, 1[. Let (Y1, Y2, B) be an independent triple such that Yi is
uniform over {0, . . . , d − 1} and B is Bernoulli with parameter p ∈ [0, 1] and set

X1 := Y1, X2 := 1(B=0) Y1 + 1(B=1) Y2, X := (X1, X2).

Then both X1 and X2 are uniform on {0, . . . , d−1}. On the other hand, it is easy to
see that H(X), as a function of p ∈ [0, 1], interpolates continuously between log d and
2 log d. Thus, for every x ∈ ]1/2, 1[ there is a p ∈ [0, 1] such that H(X) = x log d2.
In this case MI(X1, X2) = 2(1 − x) log d and we obtain

Ic(X) = 2c2
1 MI(X1, X2) = 4(1 − x) c2

1 log d > 0. �

Intricacy can indeed reach over X (d, N) the order N of Lemma 2.6, as the next
example shows.
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Example 2.14 (Systems with uniform intricacy proportional to N). Let us fix
d ≥ 2. For N ≥ 2, we are going to build a system (Xi)i∈I , I = {1, . . . , N}, over
the alphabet {0, . . . , d2 − 1} for which IU (X)/N converges to (log d2)/4; later, in
Example 3.10, we shall generalize this to an arbitrary intricacy.

Let Y1, . . . , YN be i.i.d. uniform {0, . . . , d−1}-valued random variables and define
Xi := Yi + dYi+1 for i = 1, . . . , N − 1, XN := YN . Note that X ∈ X (d2, N) and
H(X) = N log d = (N/2) log d2. For S ⊂ I, set

∆S := {k = 1, . . . , N − 1 : 1S(k) 6= 1S(k + 1)},
US := {k = 1, . . . , N − 1 : 1S(k) = 1 6= 1S(k + 1)}.

Observe that H(XS) = (|S| + |US|) log d. Indeed, this is given by log d times the
minimal number of Yi needed to define XS; every k ∈ S counts for one if k ∈ S \US,
for two if k ∈ US; therefore we find |S| − |US| + 2|US| = |S| + |US|. Moreover,
|US| + |USc| = |∆S|. Therefore

MI(S) = (|US| + |S| + |USc| + |Sc| − N) log d = |∆S| log d.

Moreover we have a bijection:

S ∈ {0, 1}{1,...,N} 7→ (1S(1), ∆S) ∈ {0, 1} × {0, 1}{1,...,N−1}.

Hence:

IU(X)

log d
= 2−N

∑

S⊂I

|∆S| = 2−N × 2
∑

∆⊂{1,...,N−1}

|∆| = 2−N+1

N−1∑

k=0

(
N − 1

k

)

k

= 2−N+1(N − 1)2N−2 =
N − 1

2
.

Therefore for this X ∈ X (d2, N):

IU(X) =
N − 1

4
log(d2). �

The following example will be useful to show that an intricacy Ic determines its
coefficients c ∈ C(N∗) in Lemma 3.2 below.

Example 2.15 (A system with a synchronized sub-system). We consider a system
of uniform variables, with a subset of equal ones and the remainder independent.
More precisely, let I ⊂⊂ N

∗, ∅ 6= K ⊂ I and fix i0 ∈ K. (Xi)i∈I ∈ X (d, I) is the
system satisfying:

(i) the family XKc∪{i0} is uniform on {0, . . . , d − 1}Kc∪{i0};
(ii) Xi = Xi0 for all i ∈ K.

It follows that
H(XS) =

(
|S \ K| + 1(S∩K 6=∅)

)
log d

and therefore
MI(S) =

(1(S∩K 6=∅) + 1(Sc∩K 6=∅) − 1
)
log d,

i.e. MI(S) = 0 unless S and Sc both intersect K and then MI(S) = log d. Thus

Ic(X) = log d
∑

S⊂I

cI
S 1(∅6=S∩K 6=K), H(X) = (|Kc| + 1) log d. �
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3. Weak additivity, projectivity and representation

In this section we prove Theorem 1.2, by studying the additivity of mutual infor-
mation functionals and characterizing it in terms of the coefficients. We establish a
probabilistic representation of all intricacies and check that the neural complexity
is indeed an intricacy. We conclude this section by some useful consequences of this
representation.

Throughout this section, X = (Xi)i∈I and Y = (Yi)i∈J , will be two systems
defined on the same probability space and we shall consider the joint family (X, Y ) =
{Xi, Yj : i ∈ I, j ∈ J}. (X, Y ) is again a system and its index set is the disjoint
union I ⊔ J of I and J .

3.1. Projectivity and Additivity. We show that weak additivity and exchange-
ability can be read off the coefficients and that non-null intricacies are neither sub-
additive nor super-additive.

Proposition 3.1. Let Ic be a mutual information functional. Then

(1) Ic is exchangeable if and only if cI
S depends only on |I| and |S|

(2) Ic is weakly additive if and only if the coefficients are projective, i.e., satisfy

∀ I ⊂⊂ N
∗, ∀ J ⊂⊂ N

∗ \ I, ∀S ⊂ I, cI
S =

∑

T⊂J

cI⊔J
S⊔T . (3.1)

(3) Let Ic be an intricacy. Then, for non-necessarily independent systems X, Y ,
we have: Ic(X, Y ) ≥ max{Ic(X), Ic(Y )} and the approximate additivity:

|Ic(X) + Ic(Y ) − Ic(X, Y )| ≤ MI(X, Y );

(4) Ic can fail to be super-additive or sub-additive.

To prove this proposition we shall need the following fact:

Lemma 3.2. Let d ≥ 2 and I be a finite set. The data Ic(X) for X ∈ X (d, J) for
all J ⊂⊂ I determine c ∈ C(I).

Proof. Using cI
Sc = cI

S, we restrict ourselves to coefficients with |S| ≤ |Sc|, i.e.,
|S| ≤ |I|/2. Let us first consider a system (Xi)i∈I ∈ X (d, I) where all variables
are equal: Xi = Xj for all i, j ∈ I and Xi is uniform on {0, . . . , d − 1}. Then
MI(S) := MI(XS, XSc) = 0 for S = ∅ or S = I, otherwise MI(S) = log d. Hence,
using the normalization 1 =

∑

S cI
S:

1 − Ic(X)

log d
=
∑

S

cI
S −

∑

∅(S(I

cI
S = cI

∅ + cI
I .

In particular, cI
∅ = cI

I = (1 − Ic(X)/ log d)/2.
For each K ⊂ I, let XK be the system as in Example 2.15. Fix i0 ∈ K. Recall

that MI(S) := MI(XS, XSc) is 0 if S ⊃ K or Sc ⊃ K, and is log d otherwise. Assume
by induction that, for 1 ≤ s ≤ |I|/2, cI

S is determined for |S| < s (a trivial assertion
for s = 1). Picking K ⊂ I with |K| = |I| − s ≥ |I|/2 ≥ |Kc| = s, we get:

• if |S| < s, we say nothing of MI(S) but will use the inductive assumption;
• if S = K or S = Kc, then MI(S) = 0;
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• if s ≤ |S| ≤ |K|, S ⊃ K implies S = K, S ⊂ Kc implies S = Kc since
s = |Kc|. In all other cases: MI(S) = log d.

Therefore,

Ic(XK)

log d
= 2

∑

S⊂I

cI
S

MI(S)

log d
− H(XK)

log d

= 4
∑

|S|<|I|/2

cI
S

MI(S)

log d
+ 2

∑

|S|=|I|/2

cI
S

MI(S)

log d
− H(XK)

log d

= 4
∑

|S|<s

cI
S

MI(S)

log d
+ 4

∑

s≤|S|<|I|/2

cI
S + 2

∑

|S|=|I|/2

cI
S − 2(cI

K + cI
Kc) − H(XK)

log d

(the sum over |S| = |I|/2 is non-zero only if |I| is even). Using
∑

S cI
S = 1 and

cI
S = cI

Sc , we get:

Ic(XK)

log d
+

H(X)

log d
− 2 = 2

∑

S⊂I

cI
S

(
MI(S)

log d
− 1

)

= 4
∑

|S|<s

cI
S

(
MI(S)

log d
− 1

)

− 4cI
Kc.

It follows that cI
K = cI

Kc is determined for any K with |K| = s. This completes the
induction step and the proof of the lemma. �

Proof of Proposition 3.1. The characterization of exchangeability is a direct conse-
quence of Lemma 3.2.

Let us prove the second point. We first check that weak additivity implies pro-
jectivity. For any X ∈ X (d, I) with I ⊂⊂ N

∗ and J ⊂⊂ N
∗ \ I, we have:

Ic(X) = Ic(X, Z) =
∑

S⊂I

∑

T⊂J

cI∪J
S∪T MI(XS, XSc)

for Z = (Zj)j∈J with each Zj a.s. constant and therefore independent of X. Lemma
3.2 then implies that (3.1) holds. Moreover, (A.6) yields the monotonicity claim of
point (2).

For the approximate additivity, we consider (A.7) for any S ⊂ I, T ⊂ J :

MI((XS, YT ), (XSc , YT c)) = MI(XS, XSc) + MI(YT , YT c) ± MI(X, Y )

where ±MI(X, Y ) denotes a number belonging to [−MI(X, Y ), MI(X, Y )]. The
projectivity now gives:

Ic(X, Y ) =
∑

S⊆I,T⊆J

cI⊔J
S⊔T MI(S ⊔ T )

=
∑

S⊆I,T⊆J

cI⊔J
S⊔T (MI(XS, XSc) + MI(YT , YT c) ± MI(X, Y ))

= Ic(X) + Ic(Y ) ± MI(X, Y ).

This is the approximate additivity of point (2). If X and Y are independent, then
MI(X, Y ) = 0, proving the weak additivity.
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We finally give the counter-examples. For sub-additivity, it is enough to assume
the intricacy to be non-null and to consider X = Y a single random variable uniform
on {1, 2} and compute:

Ic(X) = Ic(Y ) = 0 whereas Ic(X, Y ) = 2c2
1 log 2 > 0.

For super-additivity, we assume cI
∅ + cI

I < 1
2
+

cI⊔I
∅

+cI⊔I
I⊔I

2
and take X = Y a collection

of N = |I| copies of the same variable uniform over {0, 1}. Then MI(S) = log 2
except if S ∈ {∅, I}, in which case MI(S) = 0. By example 2.12

Ic(X, Y )

log 2
= 1 − cI⊔I

∅ − cI⊔I
I⊔I < 2

(
1 − cI

∅ − cI
I

)
=

Ic(X) + Ic(Y )

log 2
.

�

3.2. Probabilistic representation of intricacies. In this section, we give the
probabilistic representation for intricacies. This will provide us with a way to esti-
mate the maximal value of intricacy for large systems in [5]. For notational conve-
nience, we consider intricacies over the positive integers N

∗.
We say that a random variable W over [0, 1] is symmetric if W and 1−W have

the same law. A measure on [0, 1] is symmetric if it is the law of a symmetric random
variable.

Proposition 3.3. Let Ic be a mutual information functional defined by some system
of coefficients c ∈ C(N∗) over some infinite index set, which we assume to be N

∗ for
notational convenience.

(1) Ic is an intricacy, i.e., it is exchangeable and weakly additive, if and only
if there exists a symmetric random variable Wc over [0, 1] with law λc such
that for all I ⊂⊂ N

∗ and S ⊂ I

cI
S = E

(
W |S|

c (1 − Wc)
|I|−|S|

)
=

∫

[0,1]

x|S|(1 − x)|I|−|S| λc(dx). (3.2)

(2) Formula (3.2) is equivalent to

cI
S = P(Z ∩ I = S), ∀ I ⊂⊂ N

∗, ∀S ⊂ I, (3.3)

where Z is the random subset of N
∗

Z := {i ∈ N
∗ : Yi ≥ Wc}, (3.4)

with (Yi)i≥1 an i.i.d. sequence of uniform random variables on [0, 1], inde-
pendent of Wc.

(3) If Ic is an intricacy, then the law λc of Wc is uniquely determined by Ic.
Moreover for all X ∈ X (d, I) independent of Z

Ic(X) = E(MI(Z ∩ I)), MI(S) := MI(XS, XI\S).

Remark 3.4. The definition (3.4) of the random set Z is a particular case of the
so-called Kingman paintbox construction, see [4, §2.3]. In this setting, it yields a
random exchangeable partition of N

∗ into a subset Z and its complement, each with
asymptotic density a.s. equal to Wc, respectively 1 − Wc. Therefore it is natural
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to expect a similar probabilistic representation for coefficients (cπ)π of exchangeable
and weakly additive generalized functionals defined in (1.9) and (1.10).

After the proof of the proposition we give the measures µ, µU , µp representing re-
spectively I, IU and Ip. We start with the following

Lemma 3.5. Let C(N∗) be the set of systems of coefficients of intricacies. Let
PS([0, 1]) be the set of symmetric probability measures λ on [0, 1]. Then, the map
λ 7→ c defined from PS([0, 1]) to C(N∗) according to (n := |I|, k := |S|):

cI
S = cn

k =

∫

[0,1]

xk(1 − x)n−k λ(dx), ∀S ⊂ I ⊂⊂ N
∗, (3.5)

is a bijection.

Proof of Lemma 3.5. We first show that for an exchangeable weakly additive Ic,
there exists a probability measure λ on [0, 1] such that

cn+k
n =

∫

[0,1]

xn(1 − x)k λ(dx), n ≥ 1, k ≥ 0 (3.6)

i.e., the main claim of the Lemma, up to a convenient renumbering. We need the
following classical moment result, see e.g. [9, VII.3].

Lemma 3.6. Let (an)n≥1 be a sequence of numbers in [0, 1]. We define (Da)n :=
an − an+1, n ≥ 1. There exists a probability measure λ on [0, 1] such that an =
∫

xn λ(dx) if and only if

(Dka)n ≥ 0, ∀n ≥ 1, ∀k ≥ 1.

Moreover such λ is unique.

Remark that, setting N = |I| and M = |J |, projectivity is equivalent to

cN
k =

M∑

ℓ=0

cM+N
k+ℓ

(
M

ℓ

)

, ∀ 0 ≤ k ≤ N. (3.7)

For M = 1 we obtain

cN+1
k + cN+1

k+1 = cN
k , ∀ 0 ≤ k ≤ N. (3.8)

Let us set mn := cn
n. One proves easily by (3.8) and recurrence on k that

(Dkm)n = cn+k
n ∈ [0, 1], ∀ k, n ≥ 1.

Therefore (mn)n≥1 defines a unique measure λ satisfying (3.6) for k = 0. (3.6) for
general k follows by induction from:

cn+k+1
n = cn+k

n − cn+k+1
n+1 =

∫

[0,1]

[
xn(1 − x)k − xn+1(1 − x)k

]
dλ

=

∫

[0,1]

xn(1 − x)k+1 dλ.
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Thus λ is the unique solution to the claim of the Lemma. This uniqueness together
with cn

k = cn
n−k, implies that λ is symmetric. Thus any intricacy defines a measure

as claimed.
We turn to the converse, considering a symmetric measure λ on [0, 1] and defining

c by means of (3.5). The coefficients depending only on the cardinalities, Ic is
trivially exchangeable. The symmetry of λ yields immediately cn

k = cn
n−k, and the

normalization condition is given by

N∑

k=0

(
N

k

)

cN
k =

∫

[0,1]

N∑

k=0

(
N

k

)

xk(1 − x)N−k λ(dx) = 1,

i.e. c ∈ C(N∗). To prove the projectivity of c, namely (3.7), we compute:

M∑

ℓ=0

cM+N
k+ℓ

(
M

ℓ

)

=

∫

[0,1]

[
M∑

ℓ=0

(
M

ℓ

)

xℓ(1 − x)M−ℓ

]

xk(1 − x)N−kλ(dx)

=

∫

[0,1]

xk(1 − x)N−kλ(dx) = cN
k .

Thus (3.7) and projectivity follow. The Lemma is proved. �

Proof of Proposition 3.3. First, let Ic be an intricacy. Lemma 3.3 yields a symmetric
probability measure λc on [0, 1] satisfying (3.5). If Wc be a random variable with
law λc, then (3.2) is equivalent to (3.5).

Conversely, suppose that c = (cI
S)S⊂I has the form (3.2) for some probability P

defined by Wc, Y1, Y2, . . . as in the statement. Obviously cI
S ≥ 0 and

∑

S⊂I cI
S = 1.

cI
S = cI

Sc follows from the symmetry of Wc. Thus c is a system of coefficients.
Exchangeability of c follows from exchangeability of the random variables 1(Yi≥Wc),
i ∈ I. By (3.2) we know that

cI
S = c

|I|
|S| = E

(
(1 − Wc)

|I\S| W |S|
c

)
=

∫

[0,1]

x|S|(1 − x)|I\S| λc(dx).

Therefore, by Lemma 3.5 the functional Ic is an intricacy.
Let now Wc, Y1, Y2, . . . be defined as in point 2 of the statement and Z defined by

(3.4). Each i ∈ N
∗ belongs to the random set Z if and only if Yi ≥ Wc. Conditionally

on Wc, the probability of {Yi ≥ Wc} is therefore 1−Wc. As the variables Y1, Y2, . . .
are independent:

P(Z ∩ I = S |Wc) = (1 − Wc)
|I\S| W |S|

c .

Averaging over the values of Wc we obtain

P(Z ∩ I = S) = E
(
(1 − Wc)

|I\S| W |S|
c

)

and therefore (3.2) and (3.3) are equivalent. The last assertion follows from Lemma
3.5 and from (3.3). The Proposition is proved. �
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3.3. Examples of intricacies. We show that the Edelman-Sporns-Tononi neural
complexity (1.1) and the uniform and p-symmetric intricacies correspond to nat-
ural probability laws on [0, 1]. In particular, they are weakly additive and really
intricacies:

Lemma 3.7. In the setting of Lemma 3.5

(1) If Wc is uniform on [0, 1] then Ic is the Edelman-Sporns-Tononi neural com-
plexity (1.1).

(2) If Wc is uniform on {p, 1 − p} then Ic is the p-symmetric intricacy Ip; in
the case p = 1/2, Wc = 1

2
a.s. yields the uniform intricacy IU .

Proof. Let Wc be uniform on [0, 1]. Then

P(Z ∩ I = {1, . . . , k}) = P(Z1 = · · · = Zk = 1, Zk+1 = · · · = ZN = 0)

=

∫

[0,1]

xk(1 − x)N−k dx =: a(k, N − k).

We claim now that for all k ≥ 1 and j ≥ 0

a(k, j) =
j!

(k + 1) · · · (k + j + 1)
=

1

(k + j + 1)
(

k+j
k

) ,

i.e., the Edelman-Sporns-Tononi coefficient ck+j
j .

Indeed, for j = 0 this reduces to
∫ 1

0
xk dx = 1/(k + 1). To prove the general case,

one fixes k and uses recurrence on j. Indeed, suppose we have the result for j ≥ 0.
Then

∫ 1

0

xk(1 − x)j+1 dx =

∫ 1

0

xk(1 − x)j dx −
∫ 1

0

xk+1(1 − x)j dx

=
1

(k + j + 1)
(

k+j
k

) − 1

(k + j + 2)
(

k+j+1
k+1

) =
1

(k + j + 2)
(

k+j+1
k

) .

If Wc is uniform over {p, 1 − p} then
∫

[0,1]

xk(1 − x)N−k 1

2
(δp + δ1−p)(dx) =

1

2
(pk(1 − p)N−k + (1 − p)kpN−k),

which is the coefficient cN
k of Ip. �

3.4. Further properties. We deduce some useful facts from the above represen-
tation.

Lemma 3.8. The following are equivalent for an intricacy Ic with associated mea-
sure λc as in Lemma 3.5.

(1) Ic is non-null, i.e. cN
k > 0 for at least one choice of N ≥ 2 and 1 ≤ k < N ;

(2) cN
k > 0 for all N ≥ 2 and 1 ≤ k ≤ N − 1;

(3) λc(]0, 1[) > 0.
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Proof. We have:

cn
j =

∫

[0,1]

xj(1 − x)n−j λc(dx)

with xj(1−x)n−j zero exactly at x ∈ {0, 1} whenever 0 < j < n and strictly positive
on ]0, 1[. Thus (1) =⇒ (3) =⇒ (2) =⇒ (1). �

Lemma 3.9. If Ic is non-null, then Ic(X) = 0 for a X ∈ X (d, N) if and only if
X = (X1, . . . , XN) is an independent family.

Proof. It is enough to show that: Ic(X) = 0 ⇐⇒ H(X) =
∑

i∈I H(Xi). If Ic is
non-null and Ic(X) = 0, then by Lemma 3.8 we have MI(S) = 0 for all S ⊂ I with
S /∈ {∅, I}. Therefore H(X) = H(XS) + H(XSc) and an easy induction yields the
claim. �

Example 3.10 (Systems with intricacy proportional to N). We generalize the result
of Example 2.14 from IU to a non-null intricacy Ic. Considering the same system
X as in Example 2.14, we get by Proposition 3.3

Ic(X)

log d
=
∑

S⊂I

cI
S |∆S| = E (|∆Z∩I |)

=

N−1∑

k=1

P(1Z(k) 6= 1Z(k + 1)) = (N − 1) P(1Z(1) 6= 1Z(2)).

By the probabilistic representation (3.2) through a random variable Wc with law λc

on [0, 1],

κc := P(1Z(1) 6= 1Z(2)) =

∫

[0,1]

2x(1 − x) λc(dx) ∈ ]0, 1/2]. (3.9)

Then we have obtained a system X ∈ X (d2, N) such that

Ic(X) =
κc

2
(N − 1) log d2. � (3.10)

4. Bounds for maximal intricacies

In this section we prove Theorem 1.3. We recall the definition (3.9) for a non-null
intricacy Ic

κc = 2

∫

[0,1]

x(1 − x) λc(dx) = 2c2
1 > 0. (4.1)

Recall that Ic(d, N) and Ic(d, N, x), defined in (1.4) and (1.5), denote the maximum
of Ic over M(d, N), respectively over {µ ∈ M(d, N) : H(µ) = xN log d}. We are
going to show the following

Proposition 4.1. Let Ic be a non-null intricacy and d ≥ 2. Then for all N ≥ 2

κc log d

2

(

1 − 1

N

)

≤ Ic(d, N)

N
≤ log d

2
, (4.2)
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and for any x ∈ [0, 1]

[x ∧ (1 − x)] κc log d

(

1 − 1

N

)

≤ Ic(d, N, x)

N
≤ 1

2
log d, (4.3)

where κc > 0 is defined in (4.1).

Proof. The upper bound for Ic(d, N)/N follows from Lemma 2.6. We show now the
lower bound for Ic(d, N, x)/N . Let x ∈ ]0, 1[. In example 2.13 we have constructed
a system X = (X1, X2) ∈ X (d, 2) with

H(X) = x log d2, Ic(X) = 2κc [x ∧ (1 − x)] log d > 0.

Let now (Y2i+1)i≥0 an i.i.d. family of copies of X1 and set Y2(i+1) := Y2i+1 for all
i ≥ 0. Then, for M ≥ 1, Y := (Yi)i=1,...,2M ∈ X (d, 2M) is the product of M
independent copies of (X1, X2) and by weak additivity

Ic(Y ) = M Ic(X) = 2M κc [x ∧ (1 − x)] log d, H(Y ) = 2Mx log d.

If S is a {0, . . . , d−1}-valued random variable independent of Y with H(Z) = x log d,
then Z := (Y1, . . . , Y2M , S) ∈ X (d, 2M + 1) satisfies by weak additivity

Ic(Z) = Ic(Y1, . . . , Y2M) = 2M κc [x ∧ (1 − x)] log d, H(Z) = (2M + 1)x log d.

Setting N = 2M , respectively N = 2M + 1, we obtain the upper bound for
Ic(d, N, x)/N . Taking the supremum over x ∈ [0, 1] in (4.3), we obtain (4.2). �

4.1. Super-additivity. We are going to prove that the maps N 7→ Ic(d, N) and
N 7→ Ic(d, N, x) are super-additive. By Lemma 2.4, the suprema defining Ic(d, N)
and Ic(d, N, x) are maxima. The measures achieving the first supremum are called
maximal intricacy measures.

Lemma 4.2. For any intricacy Ic and d ≥ 2, the following limits exist. First,

Ic(d) = lim
N→∞

Ic(d, N)

N
= sup

N≥1

Ic(d, N)

N
∈ ]0, +∞[ (4.4)

and, for each x ∈ ]0, 1[,

Ic(d, x) = lim
N→∞

Ic(d, N, x)

N
= sup

N≥1

Ic(d, N, x)

N
∈ ]0, +∞[. (4.5)

Proof. We prove (4.5), (4.4) being similar and simpler. Fix x ∈ ]0, 1[. For each
N ≥ 1, let aN := Ic(d, N, x). We claim that this sequence is super-additive, i.e.,

aN+M ≥ aN + aM , ∀ N, M ≥ 1.

Indeed, let XN and XM such that

Ic(XN) = Ic(d, N, x), H(XN) = xN log d,

Ic(XM) = Ic(d, M, x), H(XM) = xM log d.

Assume that XN and XM are independent. By weak-additivity

Ic(XN , XM) = Ic(XN) + Ic(XM),

H(XN , XM) = H(XN) + H(XM) = x(N + M) log d.
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Thus,

aN + aM = Ic(d, N, x) + Ic(d, M, x) = Ic
(
XN
)

+ Ic
(
XM

)

= Ic
(
XN , XM

)
≤ Ic(d, N + M, x) = aN+M .

Moreover, by Proposition 4.1, we have supN≥1 aN/N ≤ (log d)/2. Therefore, by
Fekete’s Lemma aN/N → supM aM/M ≤ (log d)/2 as N → +∞. Moreover, the
limit is positive by (4.3). �

4.2. Adjusting Entropy. To strengthen the previous result to obtain the second
assertion of Theorem 1.3, we must adjust the entropy without significantly changing
the intricacy.

Lemma 4.3. Let X(1), . . . , X(r) ∈ X (d, N). Let U be a random variable over
{1, . . . , r}, independent of {X(1), . . . , X(r)}. Let Y := X(U) ∈ X (d, N), i.e., Y =
X(u) whenever U = u. Then:

0 ≤ H(YS) −
r∑

u=1

P(U = u) H(X
(u)
S ) ≤ log r, ∀S ⊂ {1, . . . , N}, (4.6)

− log r ≤ Ic(Y ) −
r∑

u=1

P(U = u) Ic(X(u)) ≤ 2 log r. (4.7)

Proof. We first prove (4.6). By (A.2),

H(YS|U) ≤ H(YS) ≤ H(YS, U) = H(YS|U) + H(U).

Now H(U) ≤ log r. (4.6) follows as:

H(YS|U) =
r∑

u=1

P(U = u) H(YS|U = u) =
r∑

u=1

P(U = u) H(X
(u)
S ).

(4.7) follows immediately, using (2.2) and (4.6). �

Lemma 4.4. Let 0 < x < 1 and ǫ > 0 and Ic be some non-null intricacy. Then
there exists δ0 > 0 and N0 < ∞ with the following property for all 0 < δ < δ0 and

N ≥ N0. For any X ∈ X (d, N) such that
∣
∣
∣

H(X)
N log d

− x
∣
∣
∣ ≤ δ, there exists Y ∈ X (d, N)

satisfying:
H(Y ) = xN log d, |Ic(Y ) − Ic(X)| ≤ ǫN log d.

Proof. We fix δ0 = δ0(ǫ, x) > 0 so small that:

δ0

min{1 − x − δ0, x − δ0}
< ǫ/4

and N0 = N0(ǫ, x, δ0) so large that:

log 2

N0 min{1 − x − δ0, x − δ0} log d
< ǫ/4.

Let N ≥ N0 and X ∈ X (d, N) be such that
∣
∣
∣

H(X)
N log d

− x
∣
∣
∣ ≤ δ ≤ δ0. There are

two similar cases, depending on whether H(X) is greater or less than xN log d.
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We assume h := H(X)/N log d < x and shall explain at the end the necessary
modifications for the other case.

Let Z = (Zi, i = 1, . . . , N) be i.i.d. random variables, uniform over {0, . . . , d−1}.
We consider Y t ∈ X (d, N) defined by

Y t := X 1(U≤1−t) + Z 1(U>1−t),

where U is a uniform random variable over [0, 1] independent of X and Z. Ic(Y 0) =
Ic(X) and Ic(Y 1) = Ic(Z) = 0. Hence, by the continuity of the intricacy, we get
that there is some 0 < t0 < 1 such that H(Y t0) = xN log d. Let us check that t0 is
small.

By (4.6)

0 ≤ H(Y t) − (1 − t) H(X) − t H(Z) = H(Y t) − (1 − t)hN log d − tN log d ≤ log 2.

so that, for some α ∈ [0, 1],

0 < t0 =
x − h

1 − h
− α log 2

N(1 − h) log d
≤ δ

1 − x − δ
<

ǫ

2
,

since δ ≤ δ0. Thus, by (4.7), setting Y := Y t0 ,

|Ic(Y ) − (1 − t0)Ic(X) − t0 Ic(Z)| = |Ic(Y ) − (1 − t0)Ic(X)| ≤ 2 log 2,

and therefore by (4.2)

|Ic(Y ) − Ic(X)| ≤ t0Ic(X) + 2 log 2 ≤ ǫ

2
N log d + 2 log 2.

Dividing by N log d ≥ N0 log d we obtain the desired estimate.
For the case h > x, we use instead a system Z with constant variables, so that

H(Z) = 0 = Ic(Z) and a similar argument gives the result. �

4.3. Proof of Theorem 1.3. Assertion (1) is already established: see Proposition
4.1. It remains to complete the proof of the second assertion.

Let us set for δ ≥ 0

Ic(d, N, x, δ) := sup

{

Ic(X) : X ∈ X (d, N),

∣
∣
∣
∣

H(X)

N log d
− x

∣
∣
∣
∣
≤ δ

}

.

We want to prove that

Ic(d, x) = lim
N→+∞

1

N
Ic(d, N, x, δN).

for any sequence δN ≥ 0 converging to 0 as N → +∞. We first observe that (4.5)
gives that the limit exists and is equal to Ic(d, x) if δN = 0, for all N ≥ 1. Consider
now a general sequence of non-negative numbers δN converging to zero. Obviously,
Ic(d, N, x, δN) ≥ Ic(d, N, x, 0), so that

lim inf
N→∞

1

N
(Ic(d, N, x, δN) − Ic(d, N, x, 0)) ≥ 0.

Let us prove the reverse inequality for the lim sup. Let ǫ > 0. Let XN ∈ X (d, N)
realize Ic(d, N, x, δN). Let δ0 and N0 be as in Lemma 4.4. We may assume that
N ≥ N0 and δN < δ0. It follows that there is some Y N ∈ X (d, N) with the entropy
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Nx log d such that Ic(Y N) ≥ Ic(XN)−ǫN . Hence, Ic(d, N, x, 0) ≥ Ic(d, N, x, δN)−
ǫN . We obtain

lim sup
N→∞

1

N
(Ic(d, N, x, δn) − Ic(d, N, x, 0)) ≤ ǫ,

Assertion (2) follows by letting ǫ → 0. �

5. Exchangeable systems

In this section we prove Theorem 1.5, namely we prove that exchangeable systems
have small intricacy. In particular, one cannot approach the maximal intricacy with
such systems.

Proposition 5.1. Let Ic be any mutual information functional and d ≥ 2. Then
for all ε > 0 there exists a constant C = C(ε, d) such that for all exchangeable
X ∈ X (d, N)

Ic(X) ≤ CN
2

3
+ε, N ≥ 2. (5.1)

In particular

lim
N→∞

1

N
max

X∈EX(d,N)
Ic(X) = 0.

Proof. Fix ε > 0. Throughout the proof, we denote by C constants which only
depend on d and ε and which may change value from line to line. Also k =
(k1, . . . , kd) ∈ N

d, x := 1
n
k and |k| := k1 + · · · + kd = n and the multinomial

coefficients and the entropy function are denoted by:
(

n

k

)

=
n!

k1!k2! . . . kd!
, h(x) = −

d∑

i=1

xi log xi.

We are going to use the following version of Stirling’s formula

n! =
√

2πn
(n

e

)n

eζn ,
1

12n + 1
< ζn <

1

12n
, n ≥ 1.

Therefore, for all k ∈ N
d such that |k| = n

(
n

k

)

=

[

enh(x)(2πn)1/2
∏

xi 6=0

(2πnxi)
−1/2

]

g(k, n),

where g(k, n) := exp(ζn − ζk1
− · · · − ζkd

) and therefore

exp(−d) ≤ g(k, n) ≤ exp(1).

In particular, as all non-zero xi satisfy xi ≥ 1/n,
∣
∣
∣
∣

1

n
log

(
n

k

)

− h(x)

∣
∣
∣
∣
≤ C

log n

n
. (5.2)

Let X ∈ EX(d, N). We set for 0 ≤ n ≤ N and |k| = n

pn,k = P(X1 = · · · = Xk1
= 1, . . . , Xk1+···+kd−1+1 = · · · = Xn = d).
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These
(

n+d−1
d−1

)
numbers determine the law of any subsystem XS of size |S| = n. It

is convenient to define also Yi := #{1 ≤ j ≤ n : Xj = i} for i = 0, . . . , d − 1 and

qn,k := P(Yi = ki, i = 0, . . . , d − 1) =

(
n

k

)

pn,k.

Since the vector (qn,k)|k|=n gives the law of the vector (Y1, . . . , Yd) we have in par-
ticular

∑

|k|=n

qn,k = 1.

Second, we observe that for |S| = n
∣
∣
∣
∣
∣
∣

H(XS)

n
− 1

n

∑

|k|=n

qn,k h(x)

∣
∣
∣
∣
∣
∣

≤ C
log n

n
. (5.3)

Indeed

H(XS)

n
= −1

n

∑

|k|=n

qn,k log
qn,k
(

n
k

) =
∑

|k|=n

qn,k
1

n
log

(
n

k

)

− 1

n

∑

|k|=n

qn,k log qn,k

=
1

n

∑

|k|=n

qn,k h(x) + G(n), |G(n)| ≤ C
log n

n
,

where we use (5.2) and the fact that

−
∑

|k|=n

qn,k log qn,k = H(Y1, . . . , Yd) ≤ d log n,

since the support of the random vector (Y1, . . . , Yd) has cardinality at most nd.
Third, we claim that, for ε > 0, there exists a constant C such that for all N and

all X ∈ EX(d, N), for all n ∈ [Ñ, N ] with Ñ := ⌊N 2

3
+ε + 1⌋,

∣
∣
∣
∣
∣
∣

∑

|k|=n

qn,kh(x) −
∑

|K|=N

qN,Kh(X)

∣
∣
∣
∣
∣
∣

≤ C N− 1

3
+ε, (5.4)

where X := 1
N
K (no relation with the random variable X). By (5.3) and (5.4) we

obtain for all n ∈ [Ñ , N ] and |S| = n
∣
∣
∣
∣

H(XS)

n
− H(X)

N

∣
∣
∣
∣
≤ C N− 1

3
+ε. (5.5)

Let us show how (5.5) implies (5.1). Using H(XS) ≤ log d · |S|, ∑S⊂I cI
S = 1, we get

∑

|S|<Ñ

cI
S MI(S) ≤

∑

S⊂I

cI
S × log d · Ñ = log d · Ñ .
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Using (2.2), exchangeability of X,
∑N

n=0 cN
n

(
N
n

)
= 1 and (5.5), we estimate

Ic(X) ≤ 2 · log d · Ñ + 2

N∑

n=Ñ

(
N

n

)

cN
n H(X{1,...,n}) − H(X)

≤ 2

N∑

n=0

(
N

n

)

cN
n n

(
H(X)

N
+ C N− 1

3
+ε

)

− H(X) + CÑ.

Finally, using cN
n

(
N
n

)
= cN

N−n

(
N

N−n

)
and

∑N
n=0 cN

n

(
N
n

)
= 1

Ic(X) ≤
(

2
N∑

n=0

cN
n

(
N

n

)
n

N
− 1

)

H(X) + CN × N− 1

3
+ε + CÑ

≤
(

N∑

n=0

cN
n

(
N

n

)(
n

N
+

N − n

N

)

− 1

)

H(X) + CN
2

3
+ε = CN

2

3
+ε

and (5.1) is proved.
We turn now to the proof of (5.4). We claim first that

pn,k =
∑

|K|=N,K≥k

pN,K

(
N − n

K − k

)

. (5.6)

Indeed, notice that

pn,k =

d∑

j=1

pn+1,k+δj , ∀ 0 ≤ n < N, ∀ |k| = n,

where δj := (δj
1, . . . , δ

j
d) with δj

i = 1 if i = j, 0 otherwise. This in particular yields
(5.6) for N = n + 1. Moreover if |K| = n + 1 then

(
n + 1

K

)

=

d∑

j=1

(
n

K − δj

)1(K≥δj).

Then, arguing by induction on N ≥ n

pn,k =
∑

|K|=N,K≥k

pN,K

(
N − n

K − k

)

=
∑

|K|=N,K≥k

d∑

j=1

pN+1,K+δj

(
N − n

K − k

)

=
∑

|K′|=N+1

pN+1,K′

d∑

j=1

(
N − n

K′ − k − δj

)1(K−k≥δj)

=
∑

|K′|=N+1,K′≥k

pN+1,K′

(
N + 1 − n

K′ − k

)

.

We recall that qn,k =
(

n
k

)
pn,k. Notice that it is enough to prove claim (5.4) in the

case qN,k′ = δk′,K, i.e., pN,k′ =
(

N
k′

)−1
for k′ = K and zero otherwise, if we find a

constant C which does not depend on (N, n,K). Indeed, the two expressions are
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linear and the average of CN−1/3+ε will remain of the same order. Thus, we need
to estimate:

a(N,K, n,k) := qn,k =

(
n

k

)

×
(

N

K

)−1(
N − n

K − k

)

.

Let x := k/n ∈ [0, 1]d, X := K/N ∈ [0, 1]d and ν =: n/(N − n). Formula (5.2)
implies that 1

n
log a(N,K, n,k) is equal to:

h(x) − (1 + ν−1)h(X) + ν−1h(X + ν(X − x))
︸ ︷︷ ︸

=:φν,X(x)

+G(N, n),

where |G(N, n)| ≤ κ(log N)/n, for some κ = κ(d).
Let us now write for all (x1, . . . , xd−1) ∈ [0, 1]d−1 such that

∑

i xi ≤ 1

H(x1, . . . , xd−1) := h(x1, . . . , xd), xd := 1 − x1 − . . . − xd−1.

Observe that for i, j ≤ d − 1

∂H

∂xi
= log

(
xd

xi

)

,
∂2H

∂xi∂xj
= − 1

xd
− 1

xi
1(i=j).

In particular the Hessian of H is negative-definite, since for all a ∈ R
d−1\{0}

d−1∑

i,j=1

aiaj
∂2H

∂xi∂xj
= − 1

xd

(
d−1∑

i=1

ai

)2

−
d−1∑

i=1

1

xi
a2

i ≤ −
d−1∑

i=1

a2
i

where we use the fact that xi ≤ 1. Hence, h is concave and we obtain

φν,X(x) =
ν + 1

ν

[
ν

ν + 1
h(x) +

1

ν + 1
h((1 + ν)X − νx) − h(X)

]

≤ 0,

so that the maximum of φν,X is 0 = φν,X(X). The second order derivative estimate
gives:

φν,X(x) ≤ −2‖x − X‖2 where ‖x‖ :=
√

x2
1 + · · ·+ x2

d.

Combining with the bound |G(N, n)| ≤ κ(log N)/n above, we get, for all n < N :

a(N,K, n,k) ≤ Nκ × e−2n‖x−X‖2

.

Recall n ≥ Ñ = N
2

3
+ε and set δ := N− 1

3 and

ω := sup
‖x−X‖<δ

‖h(X) − h(x)‖ ≤ C δ log
1

δ
.

Finally, using h(x) ≤ log d,
∣
∣
∣
∣
∣
∣

∑

|k|=n

qn,kh(x) − h(X)

∣
∣
∣
∣
∣
∣

≤ ω
∑

‖x−X‖<δ

qn,k + 2 log d
∑

‖x−X‖≥δ

qn,k

≤ C δ log
1

δ
+ C nd Nκ e−2Ñδ2 ≤ C(log N)N− 1

3 + CNκ+de−2Nε ≤ CN− 1

3
+ε.

Then (5.4) and the proposition are proved. �
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6. Small support

In this section we prove Theorem 1.6, namely we show that exact maximizers
have small support. Numerical experiments suggest that this support has in fact
cardinality of order dN/2. We are able to prove the following weaker estimate. For
a fixed law µ ∈ M(d, N), we call forbidden configurations the elements of Λd,N :=
{0, . . . , d − 1}N with zero µ-probability.

Proposition 6.1. Let Ic(X) be a non-null intricacy. Let d = 2 and N large enough.
Let µ ∈ X (d, N) be a maximizer of Ic. The forbidden configurations are a lower-
bounded fraction of all configurations:

#{ω ∈ Λd,N : µ([ω]) = 0} ≥ c(d)|Λd,N |,
for some c(d) > 0 independent of N .

Proof. If Ic is non-null, then λc({0, 1}) = 2λc({0}) < 1 and therefore λc({0}) < 1/2.
However we can without loss of generality suppose that λc({0}) = 0: indeed it is
enough to remark that

(1) the probability measure λ0 := δ0+δ1
2

is associated with the null intricacy
I0 ≡ 0,

(2) the correspondence λc 7→ Ic is linear and one-to-one,
(3) we can write λc = αλ0 + (1 − α)λc′, where

α := 2λc({0}) < 1, λc′([a, b]) =
λc([a, b]∩ ]0, 1[)

λc(]0, 1[)
, ∀ a ≤ b.

Therefore Ic = αI0 + (1 − α)Ic′ = (1 − α)Ic′ and Ic′ has the same maximizers as
Ic but with λc′({0}) = 0

We fix some large integer z (how large will be explained below), N > z and d ≥ 2
and we consider the intricacy Ic as a function defined on the simplex M(d, N) =

{(pω)ω∈Λd,N
∈ R

dN

+ :
∑

ω∈Λd,N
pω = 1}. A straightforward computation yields:

∂Ic

∂pω
= −2

∑

S⊂I

cI
S log




∑

α≡ω[S]

pα



 + log pω − 1

where α ≡ ω[S] iff αi = ωi for all i ∈ S. The second derivatives are:

∂2Ic

∂p2
ω

= −2
∑

S⊂I

cI
S

∑

α≡ω[S] pα
+

1

pω
,

∂2Ic

∂pω0
∂pω1

= −2
∑

S⊂I

cI
S

∑

α≡ω0[S] pα
1(ω0=ω1[S]),

for ω0 6= ω1.
Let p = (pω)ω∈Λd,N

be a maximizer of Ic. We show that for each β ∈ {0, . . . , d −
1}N−z,

Ωβ :=
{
(α1, . . . , αz, β1, . . . , βN−z) ∈ {0, . . . , d − 1}N : α ∈ {0, . . . , d − 1}z

}

must contain at least one configuration forbidden by p. The claim will follow since
the cardinality of {0, . . . , d − 1}N−z is dN/dz.
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We assume by contradiction the existence of some β ∈ {0, . . . , d − 1}N−z such
that no configuration in Ωβ is forbidden. Let ω0 ∈ Ωβ be such that

pω0
:= min{pω : ω ∈ Ωβ} > 0.

Let now ω1 ∈ Ωβ \ {ω0}, which exists since |Ωβ| ≥ d ≥ 2, so that pω1
≥ pω0

> 0. We
set for t ∈ ] − ε, ε[ and 0 < ε < pω0

pt
ω :=







pω1
+ t, ω = ω1,

pω0
− t, ω = ω0,

pω, ω /∈ {ω0, ω1}.
Then pt is still a probability measure for t ∈ ] − ε, ε[, since pω1

≥ pω0
> ε > 0.

Since p is a maximizer, then ϕ(t) := Ic(pt) ≤ ϕ(0) := Ic(p) for t ∈ ]− ε, ε[. Then

0 ≥ ϕ′′(0) =
∂2Ic

∂p2
ω0

+
∂2Ic

∂p2
ω1

− 2
∂2Ic

∂pω0
∂pω1

=
1

pω1

+
1

pω0

− 2
∑

S⊂I

1(ω0 6=ω1[S])

[

cI
S

∑

α∈[ω0]S
pα

+
cI
S

∑

α∈[ω1]S
pα

]

where [ω]S = {α : α = ω mod [S]} is the equivalence class of ω. Therefore

0 ≥ 1

pω1

+
1

pω0

(

1 − 2
∑

S⊂I

cI
S

|[ω0]S ∩ Ωβ|
− 2

∑

S⊂I

cI
S

|[ω1]S ∩ Ωβ |

)

and for some ω ∈ Ωβ

∑

S⊂I

cI
S

|[ω]S ∩ Ωβ |
>

1

4
. (6.1)

On the other hand, we have:

|[ω]S ∩ Ωβ| = d|Sc∩{1,...,z}|

so that by Proposition 3.3 the left hand side of (6.1) is equal to:

E
(
d−|Zc∩{1,...,z}|

)
=

∫

[0,1]

λc(dx) E

(
z∏

i=1

d−1(Yi<x)

)

=

∫

[0,1]

λc(dx)
(x

d
+ (1 − x)

)z

= λc({0}) +

∫

]0,1]

λc(dx)
(x

d
+ (1 − x)

)z

.

Since we have reduced above to the case λc({0}) = 0, then the latter expression
tends to 0 as z → +∞, contradicting (6.1). �

Appendix A. Entropy

In this Appendix, we recall needed facts from basic information theory. The main
object is the entropy functional which may be said to quantify the randomness of a
random variable.
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Let X be a random variable taking values in a finite space E. We define the
entropy of X

H(X) := −
∑

x∈E

PX(x) log(PX(x)), PX(x) := P(X = x),

where we adopt the convention

0 · log(0) = 0 · log(+∞) = 0.

We recall that

0 ≤ H(X) ≤ log |E|, (A.1)

More precisely, H(X) is minimal iff X is a constant, it is maximal iff X is uniform
over E. To prove (A.1), just notice that since ϕ ≥ 0 and ϕ(x) = 0 if and only if
x ∈ {0, 1}, and by strict convexity of x 7→ ϕ(x) = x log x and Jensen’s inequality

log |E| − H(X) =
1

|E|
∑

x∈E

PX(x) |E| (log(PX(x)) + log |E|)

=
1

|E|
∑

x∈E

ϕ (PX(x) |E|) ≥ ϕ

(

1

|E|
∑

x∈E

PX(x) |E|
)

= ϕ(1) = 0,

with log |E| − H(X) = 0 if and only if PX(x) |E| is constant in x ∈ E.

If we have a E-valued random variable X and a F -valued random variable Y
defined on the same probability space, with E and F finite, we can consider the
vector (X, Y ) as a E × F -valued random variable The entropy of (X, Y ) is then

H(X, Y ) := −
∑

x,y

P(X,Y )(x, y) log(P(X,Y )(x, y)), P(X,Y )(x, y) := P(X = x, Y = y).

This entropy H(X, Y ) is a measure of the extent to which the ”randomness of the
two variables is shared”. The following notions formalize this idea.

A.1. Condidional Entropy. The conditional entropy of X given Y is:

H(X | Y ) := H(X, Y ) − H(Y ).

We claim that

0 ≤ H(X | Y ) ≤ H(X) ≤ H(X, Y ). (A.2)

Remark that PX(x) and PY (y), defined in the obvious way, are the marginals of
P(X,Y )(x, y), i.e.

PX(x) =
∑

y

P(X,Y )(x, y), PY (y) =
∑

x

P(X,Y )(x, y).

In particular, PX(x) ≥ P(X,Y )(x, y) for all x, y. Therefore

∑

x,y

P(X,Y )(x, y) log

(
P(X,Y )(x, y)

PX(x)

)

≤ 0
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which yields

H(X, Y ) = −
∑

x,y

P(X,Y )(x, y) log P(X,Y )(x, y) ≥ −
∑

x

PX(x) log PX(x) = H(X),

i.e. H(X, Y ) ≥ H(X) and H(X|Y ) ≥ 0. Therefore

H(X, Y ) ≥ max{H(X), H(Y )}. (A.3)

Moreover H(X, Y ) = H(X), i.e. H(Y |X) = 0, if and only if P(X,Y )(x, y) = PX(x)
whenever P(X,Y )(x, y) 6= 0, i.e. Y is a function of X. On the other hand,

H(X, Y ) ≤ H(X) + H(Y ) (A.4)

with equality, i.e., H(Y |X) = H(Y ), if and only if X and Y are independent. This
shows that H(X | Y ) ≤ H(X) and completes the proof of (A.2). Formula (A.4) can
be shown by considering the Kullback-Leibler divergence or relative entropy:

I :=
∑

x,y

P(X,Y )(x, y) log

(
P(X,Y )(x, y)

PX(x) PY (y)

)

.

Since log(·) is concave, by Jensen’s inequality

−I ≤ log

(
∑

x,y

P(X,Y )(x, y)
PX(x) PY (y)

P(X,Y )(x, y)

)

= log

(
∑

x,y

PX(x) PY (y)

)

= 0.

By strict concavity, I = 0 if and only if P(X,Y )(x, y) = PX(x) PY (y) for all x, y, i.e.,
whenever X and Y are independent.

By the above considerations, H(X | Y ) ∈ [0, H(X)] is a measure of the uncertainty
associated with X if Y is known. It is minimal iff X is a function of Y and it maximal
iff X and Y are independent.

A.2. Adding information decreases uncertainty. Let us consider three random
variables (X, Y, Z) 7→ E × F × G with E, F, G finite. Then we have that

H(X | (Y, Z)) ≤ H(X | Y ). (A.5)

Indeed, this is equivalent to

H(X, Y, Z) + H(Y ) ≤ H(X, Y ) + H(Y, Z).

Consider the quantity

J :=
∑

x,y,z

P(X,Y,Z)(x, y, z) log

(
P(X,Y,Z)(x, y, z) PY (y)

P(X,Y )(x, y) P(Y,Z)(y, z)

)

.

Since − log(·) is convex, by Jensen’s inequality

J ≥ − log

(
∑

x,y

P(X,Y )(x, y)
∑

z P(Y,Z)(y, z)

PY (y)

)

= − log

(
∑

x,y

P(X,Y )(x, y)

)

= 0,

and the inequality follows.
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A.3. Mutual Information. Finally, we recall the notion of mutual information
between two random variables X and Y defined on the same probability space:

MI(X, Y ) := H(X) + H(Y ) − H(X, Y )

= H(X) − H(X | Y ) = H(Y ) − H(Y |X)

=
∑

x,y

P(X,Y )(x, y) log

(
P(X,Y )(x, y)

PX(x) PY (y)

)

.

This quantity is a measure of the common randomness of X and Y . By (A.3) and
(A.4) we have MI(X, Y ) ∈ [0, min{H(X), H(Y )}]. MI(X, Y ) is minimal (zero) iff
X, Y are independent and maximal, i.e. equal to min{H(X), H(Y )}, iff one variable
is a function of the other.

Mutual information is non-decreasing. Let X, X ′, Y, Y ′, X̂, Ŷ be random variables
such that X, X ′, resp. Y, Y ′, are (deterministic) functions of X̂, resp. Ŷ . Then:

MI(X, Y ) ≤ MI(X̂, Ŷ ). (A.6)

Mutual information is almost additive:

|MI((X, Y ), (X ′, Y ′)) − (MI(X, X ′) + MI(Y, Y ′))| ≤ MI(X̂, Ŷ ). (A.7)

These properties follow from the properties of conditional entropy. First,

MI(X̂, Ŷ ) = H(X̂) + H(Ŷ ) − H(X̂, Ŷ )

= H(X) + H(X̂|X) + H(Y ) + H(Ŷ |Y ) − H(X, Y ) − H(X̂|X, Y ) − H(Ŷ |X̂, Y )

= MI(X, Y ) + (H(X̂|X) − H(X̂|X, Y )) + (H(Ŷ |Y ) − H(Ŷ |X̂, Y )).

(A.6) now follows from (A.5). Second,

MI((X, Y ), (X ′, Y ′)) = H(X, Y ) + H(X ′, Y ′) − H(X, X ′, Y, Y ′)

= H(X) + H(Y ) − MI(X, Y ) + H(X ′) + H(Y ′) − MI(X ′, Y ′)

− H(X, X ′) − H(Y, Y ′) + MI((X, X ′), (Y, Y ′))

= H(X) + H(X ′) − H(X, X ′) + H(Y ) + H(Y ′) − H(Y, Y ′)

+ (MI((X, X ′), (Y, Y ′)) − MI(X, Y ) − MI(X ′, Y ′))

= MI(X, X ′) + MI(Y, Y ′) + (MI((X, X ′), (Y, Y ′)) − MI(X, Y ) − MI(X ′, Y ′)).

The nonnegativity of mutual information and (A.6) yields

− min(MI(X, Y ), MI(X ′, Y ′)) ≤ MI((X, Y ), (X ′, Y ′)) − (MI(X, X ′) + MI(Y, Y ′))

≤ MI((X, X ′), (Y, Y ′)).

(A.7) follows.
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Paris-Sud, Université Paris-Sud, F-91405 Orsay Cedex, France

E-mail address : jerome.buzzi@math.u-psud.fr

Laboratoire de Probabilités et Modèles Aléatoires (CNRS U.M.R. 7599) and
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