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Abstract

This paper proposes a numerical scheme to approximate the solution of (vectorial)
limit load problems. The method makes use of a strictly convex perturbation of the
problem, which corresponds to a projection of the deformation field under bounded
deformation and incompressibility constraints. The discretized formulation of this
perturbation converges to the solution of the original landslide problem when the
amplitude of the perturbation tends to zero. The projection is computed numerically
with a multi-steps gradient descent on the dual formation of the problem.

Keywords: limit load analysis, functions of bounded deformation, penalizations, Nes-
terov algorithm.

1 Introduction

Limit analysis, which is the simplest approach for modeling the inelastic response of
structures, is based on a very idealized representation of a rigid, perfectly plastic material
subjected to slowly increasing loads. The main problem in limit analysis is to find the
maximum multiple of the force distribution that the solid can withstand without collaps-
ing. Usually, the associated collapse flow field exhibits discontinuities on some surfaces
and the strain rates are bounded measures (strain localization). That is why, from both
mathematical and numerical points of view, limit analysis was and remains a difficult
problem.

The numerical methods in limit analysis are based on the discretization of the kinematic
or static variational principles (established in [18]) using finite element method techniques
and on convex and linear programming. The first results were obtained in [5, 23, 24], while
the literature on FE methods applied to limit analysis is very extensive (see for instance
[4, 13, 14, 30, 32, 42]). Recently, a new method, called discontinuous velocity domain
splitting (DVDS) and originated in [25] (see also [22]), was proposed in [26]. DVDS is
a mesh free method which focuses on the strain localization and completely neglects the
bulk deformations.
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The goal of this paper is to propose a new numerical technique for the limit load
problem, based on a projection with a specific weighted L2 norm. Only the Von-Mises yield
condition is considered in this paper, but the proposed numerical method may, in principle,
be extended to other plastic models. The main idea comes from a convergence result of
a perturbed problem, obtained in [7] in the anti-place case, which selects the maximal
collapse domain (called the Cheeger set in a geometrical context [12] and related to the
first eigenvalue of the degenerate 1-Laplacian operator [17, 28]). The associated numerical
method was developed in [9] using a finite difference discretization and a subgradient
projection iterative algorithm, introduced in [15].

The Cheeger constant was introduced in [12] to give a lower bound on the first eigen-
value of the Laplacian and found a wide range of applications (denoising model in image
processing, continuous max-flow/min-cut duality) in recent years [35, 3, 2, 36, 37]. For
convex domains, the uniqueness of the Cheeger set can be proved [10, 1] proved and ex-
plicit constructions (see [29]) are known. The connection between limit load analysis and
the Cheeger problem with weights was established in [25, 22] where various properties of
the minimizers can be found. The existence of Cheeger sets were proved, but uniqueness
does not hold in general which makes it difficult to compute numerically Cheeger sets.
Fortunately, there is a unique maximal Cheeger set (see [8]) and it is proved in [7] that it
can be approximated by adding a small strictly convex penalization. Starting from this pe-
nalization scheme, a convergent projection algorithm is implemented in [9] to approximate
maximal Cheeger sets.

Our aim in this paper is to generalize the strategy and the convergence results of [9] to
handle the, physically more relevant, two-dimensional in-plane flow case that is detailed
in the next paragraph. The extension of the method proposed in [9] for the anti-plane
flow to the vectorial case of the in-plane or of 3-D problems is a difficult task. It presents
several additional difficulties, both from theoretical and numerical points of view. First of
all, the coarea formula is not any more valid in the vectorial case and the link between the
variational and the geometrical problems is an open problem. Second, we have to handle
the divergence free condition and the space of bonded deformations BD (instead of BV ),
difficulties which which are not present in the anti-plane (scalar) case.

Let us outline the content of the paper. In section 2 we give the physical description
of the limit load problem. The initial variational formulation is relaxed to get a good
functional framework for the existence of a solution. In section 3 we introduce the anti-
plane and in-plane cases. For the first of them (scalar case) we recall the main theoretical
and numerical results, needed to understand the approach of the in-plane (vectorial) case
developed in the remainder of the paper. In section 4 we present the penalization scheme.
We prove the convergence of the penalization scheme and the convergence for the dis-
cretized problems. Section 5 describes a numerical scheme to solve the discretized limit
load problem. This scheme solves an unconstrained dual optimization problem using an
accelerated first order algorithm. Finally, numerical simulations for three important limit
load problems (two notched tensile, indentation and porous metals) are presented and
some caparisons with analytical and numerical results are given.
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2 Problem statement

2.1 Physical description

Let D ⊂ R
3, be the domain occupied by a rigid-plastic body. We shall denote by

σ : D → S3, (where S3 denotes the space of 3× 3 symmetric matrices), the Cauchy stress
tensor which is in equilibrium under the the body forces b and the applied forces f :

div σ + b = 0 in D, σn = f on Γ, (1)

where n is the outward unit normal to Γ = ∂D.
At each point x ∈ D, we consider the admissible set of stresses K = K(x) which will

be supposed to be a convex and closed subset of S3 with 0 ∈ K. This set is expressed
through the yield potential F : D × S3 → R and the yield limit κ:

K(x) = {τ ∈ S3 ; F (x, τ ) 6 κ(x)}. (2)

We will restrict ourselves in this paper to one of the most used yield criterium, defined
through the von-Mises yield potential

F (x, τ ) = |τ − trace(τ )

3
I| (3)

and the yield limit κ(x) =
√

2g(x). The rigid-plastic constitutive equation (flow rule)
relates the rate of deformation tensor

D = D(v) :=
1

2
(∇v + ∇

tv) i.e. D(v)ij =
∂ivj + ∂jvi

2
, 1 6 i, j 6 3,

associated to the velocity field v : D → R
3, to the stress tensor σ through

D(v)(x) ∈ ∂Φ(x,σ(x)) in D, (4)

where Φ(x, ·) is the indicator function of the convex K(x) and ∂Φ(x, .) denotes the sub-
gradient of Φ(x, .).

The dual formulation of the flow rule can be expressed by using the conjugate Φ∗ of
the indicator function Φ, called the strain rate potential:

σ(x) ∈ ∂Φ∗(x,D(v)(x)) in D. (5)

For the von-Mises model, the expression of Φ∗ is simple to compute

Φ∗(x,D) =

{

κ(x)|D|, if trace(D) = 0,

+∞, if trace(D) 6= 0.
(6)

The model is supplemented by a boundary condition on velocity. For the sake of simplicity,
we will only consider here the homogeneous Dirichlet condition:

v = 0 on ΓV (7)

where ΓV is a fixed part of ∂D.
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2.2 Variational formulation

In order to give the (kinematic) variational formulation of the rigid-plastic problem we
introduce Π, the plastic dissipation power and P , the power of external loads:

Π(u) :=

∫

D
Φ∗(x,D(u)(x)) dx, P (u) :=

∫

D
b · u dx +

∫

Γ
f · u dΓ. (8)

Note that, in the von-Mises model, the plastic dissipation power is finite only for divergence-
free velocity fields (Φ∗ being infinite on matrices with non-zero trace). At least formally
(the precise functional framework and the correct expression for Π will be detailed in
the next paragraph), note that the equilibrium conditions (1), the flow rule (5) and the
Dirichlet condition (7) are nothing but the Euler-Lagrange equation for the minimization
of Π − P over the set V of divergence-free vector fields that satisfy (7). The (kinematic)
variational formulation of the rigid-plastic problem derived from (1), (5), (6) and (7) can
therefore be written as the convex optimization problem

v ∈ V, Π(u)−Π(v) > P (u− v), for all u ∈ V. (9)

The limit load problem is then defined as follows. Let us assume that the linear form
P of the power of external forces corresponds to a loading process starting from vanishing
forces, i.e. we put P (u) =: tL(u), for all u ∈ V, where t > 0 is a loading non-dimensional
parameter and L is a loading direction. If f = tf0 and b = tb0 then

L(u) :=

∫

D
b0 · u dx +

∫

Γ
f0 · u dΓ. (10)

The limit analysis problem consists in finding the largest loading parameter t for which
v ≡ 0 is a solution of (9). If we replace v ≡ 0 in (9) then we get Π(u) > tL(u), for all
u ∈ V. We define now the safety factor or the limit load as

λ =: inf
u∈V, L(u)=1

Π(u). (11)

Then, t 6 λ if and only if the rigid-plastic structure D can stand the load tL, (i.e. v ≡ 0
is a solution of (9)). For t > λ, the collapse of the structure is expected.

Let us finally notice that the above limit analysis problem can be rewritten as

1

λ
= sup

u∈V, Π(u)61
L(u). (12)

2.3 Relaxation and mathematical preliminaries

Our aim now is to give a rigorous meaning to the variational problem (12). For the
sake of completeness, we will set the framework in R

d with d > 2 rather than in R
3. Let

D be a bounded and C1 domain of R
d with Γ := ∂D. Denoting by Md×d = Md×d(D)

the space of bounded d× d-matrix valued Radon measures, the space BD of functions of
bounded deformation is by definition

BD = BD(D) :=
{

u ∈ L1(D, Rd) : D(u) ∈Md×d
}

with

D(u) :=
1

2
(∇u + ∇

tu), i.e. D(u)ij =
∂iuj + ∂jui

2
, 1 6 i, j 6 d.
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As usual, BD is equipped with the norm:

‖u‖BD := ‖u‖L1(Ω) +
∑

16i,j6d

‖D(u)ij‖M.

For any d× d matrices A and B we shall denote

|A|2 :=
∑

16i,j6d

A2
ij , A : B :=

∑

16i,j6d

AijBij .

For u ∈ BD, we recall that the bounded Radon measure |D(u)| is defined by

|D(u)|(ω) = sup
{1

2

∑

16i,j6d

∫

Ω
∂i(ϕij + ϕji)uj : ϕ ∈ C1

c (ω, Rd×d), |ϕ| 6 1
}

for every open ω ⊂ D. Of course, one can equivalently define the strong topology of BD by
the norm u 7→ ‖u‖L1 + |D(u)|(D). It is well-known that BD ⊂ Ld/(d−1) with continuous
imbedding, that the imbedding BD ⊂ Lp is compact for p ∈ [1, d/(d − 1)) and that BD
functions have an L1(Γ) trace (see [41] and [38]). As usual, the weak convergence of a
sequence (un)n in BD to some u in BD (simply denoted un ⇀ u) means by definition
that (un)n converges strongly to u in L1 and that (D(un))n converges weakly star in
Md×d to D(u). Let us also recall that a sequence (un)n in BD is said to converge for
the intermediate topology to some u in BD, if un ⇀ u and |D(un)|(D) → |D(un)|(D).
Finally, we will extend, when necessary, functions v ∈ BD by 0 outside D such an extension
being of course in BD(Rd).

Given some subset ΓV of Γ, a continuous and positive yield limit κ, define the weight
function g by

√
2g := κ, body forces b0 defined on D and boundary traction forces f0, the

limit analysis problem reads as

1

λ
:= sup

v∈V

{

L(v) :

∫

D
κd|D(v)| 6 1

}

(13)

where

L(v) :=

∫

Ω
b0 · v +

∫

Γ
f0 · v

and V is the space of all v ∈ BD such that

div(v) = 0 in D′(D), v = 0 on ΓV .

We also define
ΓS := Γ \ ΓV .

Before we make precise assumptions on the data ΓV , g (or κ), b, f , let us indicate
that it is well-known that (13) does not in general admit solutions due to the fact that
the trace map is not continuous with respect to weak convergence of BD (but it is for the
intermediate topology), hence there is no guarantee that one can pass to the limit neither
in the boundary term in L nor in the boundary condition v = 0 on ΓV . To overcome
this difficulty (very similar to what may happen in minimal surfaces problems), Temam
and Strang showed in [40] that (13) admits a relaxed formulation that can be defined as
follows. From now on, we make the following assumptions:
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• (H1) Either ΓV = ∅ or ΓV is nonempty and open in Γ and there is an open bounded
nonempty subset of R

d, Ω′, such that

D ∩ Ω′ = ∅, D ∩ Ω′ = ΓV

and
Ω0 := D ∪ ΓV ∪ Ω′ is open .

• (H2) g ∈ C(Ω0, R) and g > 0 on Ω0,

• (H3) b0 ∈ Ld(D) and the boundary traction is of the form f0 := f0n where n

denotes the exterior normal (in other words, the boundary traction is normal) and
f0 is the trace on Γ of a W 1,d function (again denoted f) such that f0 = 0 on ΓV .
One then has for all v ∈ BD,

L(v) =

∫

Ω
b0 · v +

∫

ΓS

f0v · n, where ΓS := Γ \ ΓV .

Let us then define E as

E := {v ∈ BD : div(v) = 0 in D′(D), v · n = 0 on ΓV }.

Note that in E only the normal part of the initial Dirichlet condition (7) is conserved. It
is easy to see that v ∈ BD belongs to E if and only if

∫

D
v · ∇ϕ = 0, ∀ϕ ∈ C1(D) : ϕ|ΓS

= 0

so that E is weakly closed in BD. Note also that one can take W 1,d test-functions above
to characterize E.

For every v ∈ E (extended by 0 outside D) let us set

Π(v) :=

∫

Ω0

κd|D(v)|

it follows from the weak star lower semicontinuity of measures of open sets that Π is weakly
lower semicontinuous. It is moreover classical to check that for all v ∈ E one has

Π(v) =

∫

D
κd|D(v)|+ 1

2

∫

ΓV

κ|v ⊗ n + n⊗ v|

=

∫

D
κd|D(v)|+ 1√

2

∫

ΓV

κ|v|

=

∫

D
κd|D(v)|+

∫

ΓV

g|v|.

Assumption (H3) guarantees the weak continuity of L on E; indeed for v ∈ E, one has

∫

Γ
f0 · v =

∫

Γ
f0 v · n =

∫

ΓS

f0 v · n =

∫

D
∇f0 · v.

It follows from the results of Temam and Strang [40], that the relaxation of (13) (see
theorem 1 for a precise statement) takes the form

(P0) sup
{

L(u) : u ∈ E, Π(u) 6 1
}

. (14)
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As seen above, our assumptions guarantee weak lower semicontinuity properties of the
previous problem. However, when ΓV is empty, a further natural compatibility assumption
is required if we want the previous value to be finite. Let us denote by R the set of rigid
motions, that is the set of maps of the form x ∈ D 7→ Ax + b with A skew-symmetric and
b ∈ R

d, when d = 2, this set reduces to maps x 7→ λx⊥ + c with (λ, c) ∈ R × R
2. Since,

when ΓV = ∅, for every r ∈ R and every v ∈ E, v + r is admissible, the finiteness of the
value of (14) obviously requires that if r ∈ R then L(r) = 0. Hence, in the case where
ΓV = ∅, we shall also need the following :

(H4) in the case where ΓV = ∅, L(r) = 0 for every r ∈ R.
The next relaxation statement then follows from the classical results of Temam and

Strang [40]:

Theorem 1. Under the previous assumptions, the supremum in (P0) is achieved and:

1

λ
= max(P0).

Proof. Assume first that ΓV is nonempty and satisfies (H1). Let us prove that the supre-
mum in (P0) is achieved (the relaxation statement being proved in [40]). Let (un)n be
some maximizing sequence for (P0). It is easy to check that if r ∈ R and Π(r) = 0 then
r = 0; we thus deduce from proposition 2.3 in [41] that the semi-norm Π is equivalent to
the BD norm on E so that (un) is bounded in BD. Up to a (not relabeled) subsequence, we
may assume that there is some u ∈ BD such that un ⇀ u. By weak lower semicontinuity
of Π, Π(u) 6 1 moreover u ∈ E and L(un)→ L(u) so that u solves (P0).

The previous proof carries over to the case ΓV = ∅ provided (H4) holds. Indeed, in
this case, one obtains existence of maximizers for (P0) by using Proposition 2.4 in [41]
which implies that given a maximizing sequence (un)n for (P0), one can find a sequence of
rigid motions rn such that (un − rn)n (which is still a maximizing sequence) is bounded
in BD.

Defining:

LD :=
{

v ∈ L1 : D(v) ∈ L1
}

,

in the sequel, we shall also need the following density result (which will imply density in
energy of smooth functions)

Proposition 1. Let us further assume that D is of class C2 and that either ΓV or ΓS

is empty, then, for every u ∈ E, there exists a sequence (un) ∈ E ∩ C1(D) ∩ LD that
converges to u for the intermediate topology and strongly in Ld′ with d′ = d/(d− 1). We
thus have:

max(P0) = sup
{

L(v) : v ∈ E ∩ C1(D) ∩ LD, Π(v) 6 1
}

. (15)

Proof. It follows from Theorem 3.4 and remark 3.5 in [39], that there exists a sequence
(wn) in C∞(D) ∩ LD that converges to u both strongly in Ld′ and for the intermediate
topology and such that wn = u on Γ (in the sense of traces) and such that

div(wn)→ 0 strongly in L2

let then ϕn be the solution of










∆ϕn = div(wn) in D,

ϕn = 0 on ΓS ,

∇ϕn · n = wn · n = 0 on ΓV .
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By standard elliptic regularity (since here we have either purely Dirichlet or purely Neu-
mann boundary conditions), we have ϕn → 0 in H2 and in particular |D(∇ϕn)| → 0
strongly in the sense of measures, hence the sequence

un := wn −∇ϕn

belongs to E and satisfies the desired claim. The identity (15) easily follows : let u ∈ E
be such that Π(u) 6 1 and let un be a sequence in E ∩ C1(D) ∩ LD that converges to
u for the intermediate topology. Then by the continuity of L for this topology, we have
L(un) → L(u). Now for δ > 0, for large enough n, we deduce from the continuity of Π
with respect to the intermediate topology, that un/(1 + δ) is admissible for (P0) and then

L(u) = (1 + δ) lim
n

L
( un

1 + δ

)

6 (1 + δ) sup{L(v) : v ∈ E ∩ C1(D) ∩ LD, Π(v) 6 1}.

The claim thus simply follows from letting δ → 0+ and taking the supremum with respect
to u.

Let us remark that when ΓV and ΓS are nonempty, then it is not true in general that
the solution ϕn of the mixed problem above is H2 up to the boundary. Nevertheless,
when d = 2 and D is a rectangle (with sides parallels to the canonical axes, say), and
ΓV consists of its vertical (or horizontal) sides, then the previous argument works (it is
enough to proceed by reflexion and invoke standard elliptic regularity). This is a relevant
variant, since we will treat numerically this case.

3 The anti-plane and the in-plane cases

In this section, we focus on two particular two-dimensional (one scalar and vectorial
respectively) cases, namely, the anti-plane case (which as, recalled below, is tightly related
to the, purely geometric, Cheeger problem) and the in-plane case.

3.1 The anti-plane case and Cheeger sets

In the case of a unidirectional- or anti-plane-flow, the domain is of the form D = Ω×R

where Ω is a bounded domain in R
2 with a smooth boundary ∂Ω divided into parts Γ0,Γ1

such that ΓV = Γ0 × R, ΓS = Γ1 × R. The flow is in the Ox3 direction i.e. v = (0, 0, u)
and does not depend on x3 so that the incompressibility condition div(v) = 0 is satisfied.
Supposing that f = 0 and since the non-vanishing components of the rate deformation
tensor D(v) are D13 = D31 = ∂1u/2, D23 = D32 = ∂2u/2, we get that the limit load can
be written in this case as

λ = inf
u∈BV, l(u)=1

π(u), π(u) =

∫

Ω
g d|∇u|+

∫

Γ0

g|u| (16)

where l(u) :=

∫

Ω
b(x)u(x) dx and b denotes the component of the forces b0 in the Ox3

direction. If b and g are positive and continuous functions, one can reduce the minimization
to nonnegative u’s. If, in addition Γ0 = ∂Ω, then it follows from the coarea formula that
the minimization of the Rayleigh quotient π(u)/l(u) may be reduced to characteristic
functions of sets of finite perimeter:

λ := inf
u∈BV

π(u)

l(u)
= inf

A⊂Ω

∫

∂A g
∫

A b
. (17)
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For b = g = 1, the previous problem is known as Cheeger’s problem [12]. Subsets of O that
minimize the ratio perimeter over area are called Cheeger sets and the minimal value of
this ratio is known as the Cheeger constant of Ω. The Cheeger constant was introduced in
[12] to give a lower bound on the first eigenvalue of the Laplacian. Interestingly, Cheeger’s
problem has found a wide range of applications in recent years. For instance, Cheeger sets
arise quite naturally from the analysis of the Rudin-Osher-Fatemi [35] denoising model
in image processing and in the minimizing total variation flow [3, 2]. Cheeger’s problem
is also tightly related to the continuous max-flow/min-cut duality [36, 37]. Finally, the
Cheeger constant may also be viewed as the first eigenvalue of the 1-Laplacian [17, 28]. In
the case where Ω is convex, the recent papers [10, 1] prove uniqueness of the Cheeger set.
Also, in two dimensions and when Ω is convex, an explicit construction for the Cheeger
set is known (see [29]).

The connection between limit load analysis and the generalized Cheeger problem with
weights (17) was established in [25, 22] which motivated the study of such weighted versions
of Cheeger’s problem. Various properties of the minimizers can be found in [25, 22, 8].
Existence of Cheeger sets for the weighted problem (17) follows from the direct methods of
the calculus of variations but uniqueness does not hold in general which makes it difficult to
compute numerically Cheeger sets. Fortunately, there is a unique maximal (for inclusion)
Cheeger set (see [8]) and it is proved in [7] that it can be approximated by adding a small
strictly convex penalization εΦ to the original problem. More precisely, it is proved in [7]
that the solution uε of

sup
u∈BV, π(u)61

l(u)− εΦ(u)

converges as ε → 0+ to a multiple of the characteristic function of the maximal Cheeger
set. Starting from this penalization scheme, with a quadratic Φ, a convergent projection
algorithm is implemented in [9] to approximate maximal Cheeger sets. Figure 1 shows
example of maximal Cheeger sets approximated with this projection method.

Figure 1: Example of 2D domain Ω (left) and the corresponding maximal Cheeger sets
(right), computed using the method of [9].

Our aim in the remainder of the paper is to generalize the strategy and the convergence
results of [9] to handle the, physically more relevant, two-dimensional in-plane flow case
that is detailed in the next paragraph. Of course, this two-dimensional extension presents
several additional difficulties, both from a theoretical and numerical points, with respect
to the unidimensional Cheeger case because of the incompressibility constraint on the one
hand and the BD constraint on the other hand.
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3.2 The in-plane case

In order to state the limit load problem (14) for the in-plane flow case, let us set
D = Ω×R where Ω is a bounded domain in R

2 with a smooth boundary ∂Ω divided into
parts Γ0,Γ1 such that ΓV = Γ0 × R, ΓS = Γ1 × R. We are looking for a flow in the plane
Ox1x2, i.e. with v3 = 0. We put v = (v, 0) (independent of x3) and we will use the same
notation for the two components velocity field v : Ω→ R

2. In all examples we considered
that the third components body and applied forces are vanishing (b03 = f03 = 0). We
again use the notations ∇v and D(v) for the two dimensional gradient operator of a
two-dimensional vector field v = (v1, v2) and for its symmetric part

D(v) =

(

∂1v1
1
2(∂1v2 + ∂2v1)

1
2(∂1v2 + ∂2v1) ∂2v2

)

. (18)

The limit analysis problem (14) can then be rewritten as

1

λ
= sup

u∈E, Π(u)61
L(u), (19)

where
E := {u ∈ BD(Ω) ; div(u) = 0 in D′(Ω), u · n = 0 on Γ0},

and the plastic power

Π(u) =

∫

Ω
κ(x) d|D(u)| (x) +

∫

Γ0

g|u|.

This variational problem has exactly the form studied in paragraph 2.2 for d = 2. This
the precisely this two-dimensional case that we will treat in our numerical simulations.

4 Penalization scheme and convergence results

4.1 Convergence of the penalized scheme

Our strategy to approximate numerically the relaxed form of the limit load problem
(P0) given by (14) is simply to consider the following strictly concave perturbation of (P0).
For ε > 0, let us consider the penalization

(Pε) sup
{

Lε(v) : v ∈ E, Π(v) 6 1
}

(20)

where

Lε(v) := L(v)− ε

d′

∫

Ω
|v|d′

where d′ = d/(d−1) is the conjugate exponent of the dimension d. Using both the density
result of Proposition 1 (both for the intermediate and strong Ld′ topology), we deduce
that the maximum in (Pε) is also the supremum when one restricts the maximization of
Lε to more regular test-functions:

sup(Pε) = sup
{

Lε(v) : v ∈ E ∩ C1 ∩ LD, Π(v) 6 1
}

.

Then, one easily gets the following:

Theorem 2. Under the same assumptions as in paragraph 2.2, one has:
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1. the set S of solutions of (P0) is a nonempty convex and closed subset of Ld′,

2. for every ε > 0, (Pε) admits a unique solution uε,

3. (uε)ε converges weakly in BD and strongly in Ld′ to u the element of S with minimal
Ld′ norm as ε→ 0+.

Proof. 1. Nonemptyness of S has already been proved in theorem 1. The fact that S is
convex follows from the concavity properties of problem (P0) and the fact that it is closed
in Ld/(d−1) follows again from the weak compactness in BD of the admissible set of (P0)
and the lower semicontinuity properties described above.

2. Existence for (Pε) is exactly as in theorem 1 and uniqueness follows from the strict
concavity of Lε.

3. Since Π(uε) 6 1 for every ε > 0, the family (uε)ε is bounded in BD (and thus also
in Ld′)). Let then εk → 0 as k → +∞ be such that (uεk

)k weakly converges in Ld′ to some
u as k →∞. Since for every ε > 0 and every v ∈ E such that Π(v) 6 1 one has

L(uε)−
ε

d′
‖uε‖d

′

Ld′
> L(v)− ε

d′
‖v‖d′

Ld′
(21)

taking ε = εk and letting k → ∞, we deduce that u ∈ S. Taking v = u in (21), we then
get

‖u‖Ld′ > lim inf
k
‖uεk

‖Ld′ > ‖u‖Ld′

so that u = u and the convergence of uεk
is strong in Ld′ since Ld′ is uniformly con-

vex. Finally, the whole family (uε)ε converges to u by standard uniqueness/compactness
arguments.

In our numerical examples, we will consider the case d = 2, in this case d′ = 2 so that
(Pε) simply amounts to project for the L2 norm (b0 +∇f0)/ε onto the closed and convex
subset of L2, K := {v ∈ E, Π(v) 6 1}. In this case, we then simply have

uε = projK

(b0 +∇f0

ε

)

.

Of course, the L2 projection is easier to handle than the Ld′ one in general and this is
why we will focus on the two-dimensional case in the sequel (although the penalization
approach developed here also works in higher dimensions).

4.2 Convergence for the discretized problems

The aim of this paragraph is to prove, in dimension 2 and for fixed ε > 0, the conver-
gence of the solution of the discretization of the penalized problem (Pε) to the solution of
(Pε). As shown above, in dimension 2, (Pε) is the L2 projection problem:

inf
u∈K
‖u− u0‖L2 (22)

where
K := {u ∈ E : Π(u) 6 1}

and u0 is related to the body forces, the normal traction and the penalization parameter
ε via

u0 =
b0 +∇f0

ε
.

11



In this paragraph, the form of u0 is not important, and one should rather think as u0 as
an arbitrary L2 vector field. The solution of (22) is denoted projK(u0).

For the sake of simplicity, we assume that ΓV = ∅ (i.e. there is no Dirichlet boundary
condition) and thus that the linear form L vanishes on rigid motions. For mesh size
h > 0, we discretize the smooth two-dimensional domain D as follows. Denote by Dh

the polyhedral domain whose closure is the union of all square cells Ch
ij = [ih, (i + 1)h]×

[jh, (j + 1)h] (with (i, j) ∈ Z
2) that intersect D. We then set

Ih := {(i, j) ∈ Z
2 : Ch

ij ∩ D 6= ∅},

and
IDh := {(i, j) ∈ Ih : Ch

ij , Ch
(i−1)j , Ch

i(j−1) ⊂ D}.

Let Fh denote the vector space (R2)ID
h . For u = (u1

ij , u
2
ij)ij ∈ Fh, partial derivatives of u

are simply discretized by finite differences

∂h
1 uij =

1

h
(uij − u(i−1)j), ∂h

2 uij =
1

h
(uij − ui(j−1)),

as well as the divergence operator

divh(u)ij := ∂h
1 u1

ij + ∂h
2 u2

ij ,

and the symmetrized gradient matrix

Dh(u) :=
1

2

(

∂h
k ul + ∂h

l uk
)

16k,l62
. (23)

Let us then define

Eh := {u ∈ Fh : divh(u)ij = 0, ∀(i, j) ∈ IDh }. (24)

Finally, let us define, for every u ∈ Fh:

Πh(u) := h2
∑

(i,j)∈ID
h

κij |Dh(u)ij | (25)

Jh(u) := h2
∑

(i,j)∈ID
h

|uij − u0
ij |2

and
Kh :=

{

u ∈ Eh : Πh(u) 6 1
}

where κij , and u0
ij stand respectively for some discrete approximations (by mean values,

say) of the data κ, and u0 respectively. The discretization of (22) then reads as

inf
u∈Kh

Jh(u). (26)

Let then uh be the unique solution of the discretized projection problem (26) and, slightly
abusing notations we shall also denote by uh the piecewise constant vector field with value
uh

ij on the interior of the cell Ch
ij . The convergence of this scheme is then given by

Theorem 3. As h → 0+, uh converges strongly in L2 and weakly in BD to projK(u0),
the solution of (22).

12



Proof. Since uh is easily seen to be bounded in BD, it possesses a (not relabeled) subse-
quence that converges weakly in BD to some limit u. Let us show that u ∈ K i.e.

div(u) = 0, and Π(u) 6 1.

Let ϕ ∈ C1
c (D), setting ϕij := ϕ(ih, jh), we first have

∫

D
∇ϕ · u = lim

h

∑

(i,j)∈ID
h

h
(

(u1)h
ij(ϕi+1,j − ϕij) + (u2)h

ij(ϕi,j+1 − ϕij)
)

and for h small enough, since ϕ has compact support in D and since uh ∈ Eh, the latter
sum equals

−h
∑

(i,j)∈ID
h

divh(uh)ijϕij = 0

so that div(u) = 0. To prove that Π(u) 6 1, we use the representation formula

Π(u) = sup
{

∫

D
div(σ) · u : σ ∈ C1

c (D,S2), |σ| 6 κ
}

we then take σ ∈ C1
c (D,S2) such that |σ| 6 κ pointwise and discretize σ at points (ih, jh)

by values σij such that |σij | 6 κij , we then have

∫

D
div(σ) · u = − lim

h

∑

(i,j)∈ID
h

h2Dh(uh)ij : σij

6 lim sup
∑

(i,j)∈ID
h

h2κij |Dh(uh)ij |

= lim supΠh(uh) 6 1.

Which proves that u ∈ K.

Now let v = (v1, v2) ∈ K∩C1(D)∩LD and define the discretization , vh = ((v1)h, (v2)h)
by

(v1)h
ij := h−1

∫

h[(i,j−1),(i,j)]
v1, (v2)h

ij := h−1

∫

h[(i−1,j),(i,j)]
v2

since v is divergence-free, its flux through ∂Ch
ij is zero and then vh ∈ Eh. Let δ > 0 since

v ∈ C1(D) ∩ LD, it easily follows from Lebesgue’s dominated convergence theorem that

lim
h

Πh(vh) = Π(v) 6 1

hence (1 + δ)−1vh ∈ Kh i.e. is admissible for (26) for h small enough. We thus have

Fh(uh) 6 Fh

( vh

1 + δ

)

letting h→ 0+, we thus have

‖u− u0‖L2 6

∥

∥

∥

v

1 + δ
− u0

∥

∥

∥

L2

letting δ → 0+, we deduce that

‖u− u0‖L2 6

∥

∥

∥

v

1 + δ
− u0

∥

∥

∥

L2

, ∀v ∈ K ∩ C1(D) ∩ LD

13



and we thus conclude from proposition 1 that u = projK(u0). By standard compact-
ness/uniqueness argument, the whole sequence (uh) thus converges to projK(u0) weakly
in BD. Finally, strong L2 convergence comes from

‖uh − u0‖L2 → ‖u− u0‖L2 as h→ 0+

and the uniform convexity of L2.

The case where ΓV 6= ∅ is not covered by the previous convergence result. In this more
general case, one has two extra difficulties : discretizing in a consistent way the boundary
conditions and the density in energy of smooth functions (which was a crucial point in the
previous proof). Again, when D is a rectangle and ΓV consists of its vertical boundary,
these difficulties may be overcome.

5 Numerical computation of limit load

This section describes a numerical scheme to solve the discretized version (26) of the
limit load approximation problem (22). This scheme solves an unconstrained dual opti-
mization problem using an accelerated first order algorithm.

5.1 Dual unconstrained problem

The following proposition shows that the discretized projection uh that solves (26)
can be computed by solving an unconstrained dual optimization problem. This dual
optimization extends the result of [19] that was used to compute the projection of an
image on a total variation ball.

Theorem 4. The solution uh of (26) satisfies

uh = P h(u0 −Dh∗(σh)),

where σh
ij ∈ R

2×2 is a solution of

min
σ

J(σ) =
1

2
||P h(u0 −Dh∗(σ))||2 + ||σ||∞ (27)

where Dh∗ is the operator dual to Dh defined in (23), P h is the orthogonal projector on
the space Eh defined in (24), and the ℓ∞ norm of a tensor field σij ∈ R

2×2 reads

||σ||∞ = max
(i,j)∈ID

h

κ−1
ij |σij |.

Proof. Introducing dual variables σij ∈ R
2×2, one can write the indicator function of the

BD unit ball as

1Πh(·)61(u) = max
σ

〈σ, Dhu〉 − ||σ||∞ =

{

0 if Πh(u) 6 1,
+∞ otherwise,

,

where the discrete BD norm is defined in (25). This allows one to rewrite (26) as

max
σ

− ||σ||∞ + min
u∈Eh

〈σ, Dhu〉+ 1

2
||u− u0||2. (28)
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The inner minimization is solved using the projector P h as

uh = argmin
u∈Eh

〈σ, Dhu〉+ 1

2
||u− u0||2 = P h(u0 −Dh∗σ),

and

〈σ, Dhu〉+ 1

2
||u0 − u||2 = −1

2
||P h(u0 −Dh∗σ)||2 + c (29)

where c is a constant that does not depends on σ. Combining equations (28) and (29)
leads to the optimization (27).

5.2 Dual minimization algorithm

To ease notations, we drop the dependency on the grid size h in the remaining part of
the paper.

Several iterative first order schemes exist to minimize (27), which is a sum of a smooth
functional ||P (u0 −D∗σ)||2 and a non-smooth functional ||σ||∞.

Proximal operator. The non-smooth part ||σ||∞ of the functional is regularized during
the iteration of a first order scheme by computing the proximal operator, for some ρ > 0,

proxρ||·||∞(σ) = argmin
σ̃

1

2
||σ̃ − σ||2 + ||σ̃||∞. (30)

Proposition 2 shows that the proximal operator defined in (30) is computed explicitly
using a soft thresholding Sλ for a well chosen value of λ.

Computing the precise value of λ for a given matrix field σij ∈ R
2×2 requires the

computation of d0 6 d1 6 . . . 6 dN−1 that orders the set of norms

{dt}|I
D

h
|

t=0 = {|σij |}(i,j)∈ID
h

, (31)

and also the cumulated ordered norms

Ds =

N−1
∑

t=s+1

dt. (32)

Proposition 2. For σij ∈ R
2×2, one has

proxρ||·||∞(σ) = σ − Sλ(σ)

where

Sλ(σ)ij = max

(

1− λκij

|σij |
, 0

)

σij (33)

and λ > 0 is computed as

λ = dt + (dt+1 − dt)
Dt+1 − ρ

Dt+1 −Dt
(34)

where d and D are defined in (31) and (32), and where t is such that Dt+1 6 ρ < Dt.
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Proof. The resolution of (30) is computed using the relationship between the proximal
operator of the norm || · ||∞ and the projection on the dual norm || · ||1, see [16],

proxρ||·||∞(σ) = σ − Proj||·||16ρ(σ)

where the ℓ1 norm is defined as

||σ||1 =
∑

(i,j)∈ID
h

κij |σij |.

and where Proj||·||16κ(σ) is the orthogonal projection of σ onto the set {σ \ ||σ||1 6 ρ}

Proj||·||16ρ(σ) = argmin
σ̃, ||σ̃||16ρ

||σ − σ̃||.

The projection Proj||·||161(σ) is computed by noticing that is the solution of a regular-
ized minimization

Proj||·||16ρ(σ) = argmin
σ̃

1

2
||σ − σ̃||2 + λ||σ̃||1.

for a well chosen value of λ > 0.
As noticed for instance in [11] for wavelet thresholding, the solution of such a ℓ1

regularized is computed using a soft thresholding

Proj||·||161(σ) = Sλ(σ).

One can then check that the value (34) of λ ensure that ||Sλ(σ)|| = ρ.

Multi-step First Order Scheme Y. Nesterov in [34, 33] proposes a first order scheme
to find a minimizer σh of functional of the form J(σ) as defined in (27). It computes
iterates σ(k) that converges to a solution σh using a multi-steps generalized gradient
descent that makes use of previous iterates σ(i), i < k to compute σ(k).

For a restricted set of non-smooth functionals, such as the functional J minimized in
(27), he shows that this method reaches the energy decay lower bound

J(σ(k))− J(σ⋆) = O(1/k2) (35)

achievable by first order schemes. This method have found many applications recently in
image processing, see for instance [43, 19].

Table 1 details the steps of Nesterov scheme to minimize (27). The step size µ should
satisfy µ < 2/||DD∗|| for the method to converge. This algorithm can be seen as an
extension of the algorithm of Fadili and Peyré [19] that computes the projection on a ball of
image with bounded variation. Our algorithm consider instead vector fields with bounded
deformation, and includes a divergence free constraint that makes the computations more
difficult.

A slight generalization of the result in [19] shows that not only one have a fast decay
(35) on the objective function J , but also on the primal iterates, which is much more
interesting for our application.

Theorem 5. If µ < 2/||DD∗||, the iterates u(k) = P (u0 −D∗σ(k)) computed with the
algorithm of Table 1 satisfy

||u(k) − uh||2 = O(1/k2)

where uh is the solution of (26).
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Algorithm 1: Multi-step dual projection.

Initialization: set σ
(0)
ij = 0 ∈ R

2×2, k = 0, A = 0, α
(0)
ij = 0 ∈ R

2×2 ;

repeat

• First proximal computation: compute

β(k) = proxA||·||∞(σ(0) −α(k))

where the proximal operator is computed as defined in Proposition 2 with ρ = A.
Set a = (µ +

√

µ2 + 4µA)/2.

• Second proximal computation: compute

γ(k) =
Aσ(k) + aβ(k)

A + a
,

γ̃(k) = γ(k) +
µ

2
DP (u0 −D∗γ(k)),

σ(k+1) = proxµ/2||·||∞(γ̃(k)).

where the proximal operator is computed as defined in Proposition 2 with ρ = µ/2.

• Set A← A + a,
α(k+1) = α(k) − aDP (u0 −D∗σ(k+1)),

and k ← k + 1.

until ||σ(k+1) − σ(k)|| 6 η ;

Return: the projection σh = P (u0 −D∗σ(k+1)).
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Proof. A similar result for the projection on the total variation ball has been proved in
[19] (without linear constraints). The proof of [19] adapts directly to our situation.

The main computational bottleneck of the algorithm is the computation of the projec-
tion P on the set Eh of divergence free vectors. In practice, this projection is computed
approximately using a conjugate gradient descent. This projection should be computed
with high enough precision to avoid convergences issue. In practice, one can use a warm
restart and use the previous iterate as an initialization for the conjugate gradient, so that
only a few steps are required at each iteration.

6 Numerical results

We present here some numerical simulations for three important limit load problems
(two notched tensile, indentation and porous metals). For all numerical experiments, we
have used a finite grid of 200× 200 points, and the approximation parameter was chosen
to be ε = Πh(∇f0)/100.

6.1 Two Notched Tensile Problem

The two notched tensile problem is a popular benchmark test used for rigid-plastic and
elasto-plastic analysis which was introduced by Nagtegaal et al. [32] to illustrate locking.
The structure depicted in Figure 2 (left) consists of a rectangular specimen of length 2
with two thin notches under an in-plane tensile load τ0. Using the above notations we put
Γ0 = ∅,Γ1 = ∂Ω and f0 = (0, τ0) on the right side, f0 = (0,−κ) on the left side. The
yield limit is constant κ =

√
2τ0 and the body forces are vanishing (b = 0), which means

that L(u) =
∫

Γ f0 · u dΓ. We considered here only the case a = 1.

c

r
f

0
f

0f
0

f
0Ω a

uc,r

[ht]

Figure 2: Left: schematic view of the two notched tensile problem. Right: semi-analytical
solution obtained with DVDS [26].

The ”reference” value of is provided by Christiansen and Andersen [14], considered
widely to be extremely accurate λ ≈ 1.136. The same value was found by Ionescu and
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Oudet [26] with the discontinuous velocity domain splitting (DVDS) method. The corre-
sponding fracture configurations are plotted in Figure 2 (right). DVDS uses a parametric
family of vector field uc,r parameterized by a center c ∈ R

2 and a radius r > 0, see an
example in Figure 2, right. The vector field uc,r corresponds to rotation movement outside
the circle of center c and radius r and DVDS computes optimal parameters (c, r) (see [26])
and they found

λ 6 λ(uc,r) =
Π(uc,r)

L(uc,r)
≈ 1.136.

This result, obtained without any finite element discretization, is more accurate than
λ ≈ 1.166 obtained by Tin-Loi and Ngo [42] using a p-version finite element method
(p = 15).

Figure 3, left, shows the solution uh computed with our algorithm. The arrows shows
some vectors uh

ij , and the color maps indexes the red (resp. blue) channel using the X
(resp. Y) value of the vector field. Colors allows one to better visualize the discontinuities
in the vector field. The numerical constant computed with our algorithm is

λ(uh) =
Π(uh)

L(uh)
≈ 1.094.

This value is slightly smaller than the value computed in [26] and [14].

Figure 3: Numerical solution uh computed with our algorithm for the two notched tensile
problem.

6.2 Indentation Problem

In this problem, we consider a half space, that is handled numerically as an infinite rod
with a elongated rectangle Ω section. The loading force f0 is localized on a small semgent
[A,B] of the upper boundary of the rod. Dirichlet condition v = 0 are imposed on the
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lower boundary ΓV of Ω. The yield limit κ = 1 is constant within the road. Figure 4, left,
shows the setting for this numerical experiment.

Two explicit vector fields v have been proposed by Hill and by Prandtl to find an upper
estimation for λ (see for instance [27]). They all give the same value

λ 6 λ(v) =
Π(v)

L(v)
=

2 + π√
2
≈ 3.64. (36)

Figure 4, right, shows such an explicit solution, proposed by Prandlt (see [27]). It is
constant over three orthogonal triangles (ABE), (BCF ), (CGD) and corresponds to a
rotation over the two quarter of discs (BEF ), (CFG).

f
0

v

A B C D

E F
G

ΓV

B C

f
0

Ω

Figure 4: Left: schematic view of the indentation problem. Right: analytical solution of
Prandlt.

Figure 5, right, shows the solution uh computed with our algorithm. The numerical
constant computed with our algorithm is

λ(uh) =
Π(uh)

L(uh)
≈ 3.85.

This value is close but slightly larger than the value computed using the explicit solutions
in (36), which shows that there is still room for improvements.

Figure 5: Numerical solution uh computed with our algorithm for the indentation problem.
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6.3 Compression of porous metals

The ductile failure of porous metallic materials are usually studied using the lower
and upper bound methods of limit load analysis. For cylindrical and spherical cavities,
the problem wad firstly treated by Gurson with his famous kinematical approach [21],
which gives an analytical upper bound of the homogenized yield criterion. There are lot of
numerical approaches, using various limit load technics (see for instance [31, 20, 6]) which
confirmed and corrected the original Gourson model.

We want to illustrate here how our numerical method can be used to compute the limit
load for metals with cavities. For that we consider Ω to be a square of unit side length,
with a smaller square hole of side length 1/3. The yield limit κ = 1 is constant within Ω
and the loading force (see Figure 6 left) is f0 = −1

2n on the left and the right sides and

f0 = −
√

3
2 n, on the upper and bottom sides (here n is the exterior normal to the external

boundary). In Figure 6 right we have plotted the numerical solution computed with our
algorithm. We remark that the algorithm is able to capture the presence of two symmetric
discontinuities(fractures) in the velocity field.

f
0

Ω

Figure 6: Left: plane-strain compression of a square with a square void. Right: numerical
solution computed with our algorithm.
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