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Abstract

We present the proof of the one loop renormalizability in the strict field theoretic
sense of the Poisson-Lie σ-models. The result is valid for any Drinfeld double and it
relies solely on the Poisson-Lie structure encoded in the target manifold.



1 Introduction

At the classical level, the T -duality [10, 11, 4, 1, 7] is an isomorphism between nonlin-
ear σ-models with geometrically different target manifolds. Or, speaking more precisely,
it is the symplectomorphism between the phase spaces of the σ-models that transforms
the Hamiltonian of one model into the Hamiltonian of its dual: it relates right-invariant
geometries on a Lie group target G to certain geometries on the dual space G∗ of the
Lie algebra G := Lie(G). At the quantum level, the status of T -duality is much more
subtle, mainly because the geometries of the target manifolds generically receive quantum
corrections. However, in the particular case of the so called conformal field theories, the
σ-model geometries do not receive such corrections and the T -duality can be understood as
a unitary transformation relating the spectra and the correlation functions of the quantum

σ-models.
Outside from the conformal points, the original and the dual geometry acquire a de-

pendence on the cut-off. However, if this dependence is such that the geometries remain
T -dual to each other for every value of the cut-off then T -duality is preserved also at the
quantum level.

This equivalence problem can be analyzed either in the stringy framework where the
σ-model interacts with matter and gravity or for the pure σ-model, in which case one
has first to prove renormalizability in the strict field theoretic sense and then study the
equivalence problem. In the first setting a general proof that the one loop equivalence
works was given in [15] provided that the structure constants of G are traceless. In the
second setting, the one-loop renormalizability and the quantum equivalence work without
any restriction [3].

The standard non-Abelian T -duality has a nontrivial generalization referred to as the
Poisson-Lie T -duality [7, 8]. Both the original and the dual geometries of the Poisson-Lie
T -dualizable σ-models are derived from the so called Drinfeld double which is a Lie group
equipped with some additional structure (cf. Section 2). The one loop equivalence in
the stringy framework was shown to work in [2] provided that all the structure constants
of the double are traceless. In the restricted field theoretic framework, the one loop
renormalizability and compatibility with the renormalization were so far established only
for very few special pairs of the mutually dual σ-models [12, 9]. Those special models live
on target manifolds with small dimensions and their geometries can be explicitly calculated
in suitable coordinates. At a first sight, it appears to be too difficult a task to deepen
this result. Indeed, there are very numerous different Drinfeld doubles (they are far from
being all classified) and even for the known Drinfeld doubles (like, for example, simple
complex groups), the explicit characterization of the dualizable geometries in terms of
coordinates on group manifolds becomes forbiddingly complicated for group targets with
dimension 4 and more. In spite of all those obstacles, in this paper we do establish the one
loop renormalizability of the Poisson-Lie σ-models in full generality, i.e. for an arbitrary
Drinfeld double. We succeed to obtain this substantial generalisation of the results [12, 9]
mainly because we can express the Ricci tensor in a tractable form just using frames rather
than introducing coordinates on the target manifold.

To tell the truth, at the very beginning of our calculation, we did not aim as much as
we have eventually obtained. We simply wanted to identify which additional properties
a Drinfeld double must possess in order to ensure the one loop renormalizability. To our
satisfaction, we find that no such additional properties are needed. In fact, we have been
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impressed how naturally just the basic Poisson-Lie structure (and nothing else) has been
sufficient to tame the ultraviolet divergences. The further problem of the one loop equiva-
lence under the T-duality transformation is not considered here but has been subsequently
analyzed in [14].

The plan of the paper is as follows. In Section 2, we review the concept of the Drinfeld
double and we show how the target geometries are associated to it. In Section 3, the
riemannian geometry with torsion is developed and leads to a nice form of the Ricci
tensor. This result is then used, in Section 4, to establish the one-loop renormalizability
of the Poisson-Lie σ-model.

2 Drinfeld doubles and Poisson-Lie T -duality

Consider a basis Ta, a = 1, ..., n in a vector space G and the dual basis T̃a in the dual space
G̃. Equip both G and G̃ with Lie algebra structures

[Ta, Tb] = f s
ab Ts, [T̃ a, T̃ b] = f̃ab

s T̃ s.

One says that the Lie algebras G and G̃ are compatible if the following brackets

[Ta, Tb]D = f s
ab Ts, [T̃ a, T̃ b]D = f̃ab

s T̃ s [Ta, T̃
b]D = f̃ bs

a Ts − f b
as T̃ s

define a Lie algebra structure on the direct sum vector space D := G
.

+ G̃. In this case, we
say that the Lie algebra D is the Drinfeld double of G (or, equivalently, of G̃). Note that
the Drinfeld double D comes equipped with an Ad-invariant bilinear form 〈., .〉D defined
as

〈Ta, T̃
b〉D = δb

a, 〈Ta, Tb〉D = 〈T̃ a, T̃ b〉D = 0. (1)

Consider the connected and simply connected group D the Lie algebra of which is D
and the subgroups G and G̃ of D corresponding to the subalgebras G ⊂ D and G̃ ⊂ D,
respectively. The group D is called the Drinfeld double of G (or of G̃).

In what follows, we shall be often using the matrices of the adjoint action of D on D
in the basis Ta, T̃

b:

Adg T̃ a ≡ g−1 T̃ a g = Bas(g)Ts + Aa
s(g

−1)T̃ s, g ∈ G,

Adg̃ Ta = B̃as(g̃)T̃ s + Ãs
a(g̃

−1)Ts, g̃ ∈ G̃.

We can write those matrices also in terms of the bilinear form (1) as

Ab
a(g) := 〈Adg Ta, T̃

b〉, Bab(g) := 〈Adg T̃ a, T̃ b〉;

Ãb
a(g̃) := 〈Ta, Adg̃ T̃ b〉, B̃ab(g̃) := 〈Adg̃ Ta, Tb〉.

It turns out that the algebraic structures that we have introduced so far can be used to
define certain Poisson brackets of functions on the groups G and G̃:

{f1, f2}(g) := Πab(g)∇af1(g)∇bf2(g), {f1, f2}∗(g̃) := Π̃ab(g̃)∇af̃1(g̃)∇bf ∗
2 (g̃),

where the right-invariant vector fields ∇a and ∇̃a on G and G̃ are defined by

∇af(g) :=
d

ds
f(esTag)

∣∣∣
s=0

, ∇̃af̃(g̃) :=
d

ds
f̃(esT̃ a

g̃)
∣∣∣
s=0

(2)
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and the antisymmetric matrix-valued functions Πab(g) and Π̃ab(g̃) are given by

Πab(g) := −Bas(g)Ab
s(g

−1), g ∈ G; Π̃ab(g̃) := −B̃as(g̃)Ãs
b(g̃

−1), g̃ ∈ G̃.

The Poisson structures on G and G̃ turn out to satisfy the so-called cocycle conditions in
the G ∧ G and G̃ ∧ G̃-valued group cohomologies of G and G̃, respectively:

Π(hg) = Π(h) + AdhΠ(g), g, h ∈ G; Π̃(h̃g̃) = Π̃(h̃) + Adh̃Π̃(g̃), g̃, h̃ ∈ G̃. (3)

Here we have set

Π(g) := Πab(g)Ta ⊗ Tb, Π̃(g̃) := Π̃ab(g̃)T̃ a ⊗ T̃ b.

Consider an invertible matrix Mab and the maps EM : G → G⊗G and ẼM : G̃ → G̃⊗G̃
defined by

EM(g) := EM(g)abTa ⊗ Tb; ẼM(g̃) := ẼM(g̃)abT̃
a ⊗ T̃ b, (4)

EM(g)ab := Mab + Πab(g); ẼM(g̃)ab := (M−1)ab + Π̃ab(g̃). (5)

The Poisson-Lie T -duality then establishes the isomorphism between σ-models living on
the targets G and G̃. These models are completely specified by the maps EM and ẼM .
Their respective field configurations are smooth maps g : W → G and g̃ : W → G̃, where
W is the two-dimensional world-sheet, and their respective dynamics are determined by
the least action principles:

S(g) =

∫

W

(
EM(g)−1, R(g)+ ⊗ R(g)−

)
dξ+dξ−; (6)

S̃(g̃) =

∫

W

(
ẼM(g̃)−1, R(g̃)+ ⊗ R(g̃)−

)
dξ+dξ−. (7)

Here (., .) is the duality pairing between G ⊗ G and G̃ ⊗ G̃, ξ+, ξ− are the light-cone
coordinates on W , R(g)+dξ+ + R(g)−dξ− denotes the pull-back of the right-invariant

Maurer-Cartan form on G by the map g : W → G and E−1
M : G → G̃ ⊗ G̃ is inverse to EM ,

i.e.
EM(g)

(
., EM(g)−1(., u)

)
= u, ∀g ∈ G, ∀u ∈ G.

Similarly, R(g̃)+dξ++R(g̃)−dξ− denotes the pull-back of the right-invariant Maurer-Cartan

form on G̃ by the map g̃ : W → G̃ and Ẽ−1
M : G̃ → G ⊗ G is inverse to ẼM .

If we introduce some local coordinates Xµ e.g. on the target G, any field configuration
g can be locally viewed as a collection of real functions Xµ(ξ+, ξ−) in terms of which the
action (6) can be locally rewritten as

S =

∫

W

(gµν(X) + hµν(X))∂ξ+Xµ∂ξ−Xνdξ+dξ−. (8)

Here gµν is a symmetric tensor interpreted as a metric on G and hµν is an antisymmetric
tensor interpreted as a torsion potential on G. Thus we see that any choice of the map
EM : G → G ⊗ G defines an M -dependent geometry on G.

We note one crucial fact: the moduli space of the dual pairs of the σ-models (6),
(7) associated to a given Drinfeld double D is finite-dimensional since it is parametrized
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by the invertible matrices M . If we wish that the quantum corrections do not spoil the
T -dualizability, all ultraviolet divergences must be eliminated just by a suitable cut-off
dependence of the matrix M . In other words, if we interpret the entries of the matrix
M as the coupling constants, we simply require the renormalizability of the model (6) in
the standard field theoretic sense of this term. As we shall see in the next section, this is
precisely what happens.

The matrices Πij(g) and Π̃ij(g̃) appear explicitly in the σ-model Lagrangians on the tar-

gets G and G̃, it is therefore obvious that the countertems needed to cancel the ultraviolet
divergences must depend algebro-differentially on them. Actually, if Π and Π̃ were generic
matrix-valued functions on G and G̃, the dependence of the counterterms on them would
be too complicated to ensure renormalizability, However, due to their special definitions,
Π and Π̃ satisfy two crucial identities which, quite remarkably, are sufficient to disentangle
the counterterm structure and ensure renormalizability. They were first derived in [13] in
a completely algebraic way, but it is perhaps more insightful to understand these relations
as resulting from the Poisson-Lie geometry, as shown in [6]. The first of those identities
is the direct consequence of the cocycle condition (3) for h and h̃ respectively close to the

group units of G and G̃ . It reads

∇cΠ
ab(g) = f̃ab

c − fa
csΠ

bs(g) + f b
csΠ

as(g) (9)

∇̃cΠ̃ab(g̃) = f c
ab − f̃ cs

a Π̃bs(g̃) + f̃ cs
a Π̃as(g̃) (10)

The second identity is nothing but the Jacobi identity for the Poisson brackets on G and
on G̃:

Πsa(g)∇sΠ
bc(g) + fa

stΠ
bs(g)Πct(g) + cp(a, b, c) = 0 (11)

Π̃sa(g̃)∇̃sΠ̃bc(g̃) + f̃ st
a Π̃bs(g̃)Π̃ct(g̃) + cp(a, b, c) = 0 (12)

where cp(a, b, c) means circular permutation of the indices involved. As a consequence of
(9), (10), (11) and (12), we obtain

fa
stΠ

bs(g)Πct(g) + f̃ab
s Πcs(g) + cp(a, b, c) = 0. (13)

f̃ st
a Π̃bs(g̃)Π̃ct(g̃) + f s

abΠ̃
cs(g̃) + cp(a, b, c) = 0. (14)

3 The geometry of Poisson-Lie σ-models

3.1 Geometry with torsion

The form (6) of the model gives a prominent role to the right-invariant frames:

dg g−1 = Ra(g) Ta, dRa(g) =
1

2
fa

bc Rb(g) ∧ Rc(g), (15)

leading us to introduce

Gab Ra(g) Rb(g), Gab = g(ab) + h[ab], (16)

where g will be a riemannian metric and h the torsion potential. From h we get the torsion
3-form according to

H =
1

2
hab Ra ∧ Rb ⇒ T = dH =

1

3!
Tabc Ra ∧ Rb ∧ Rc, (17)
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and we will need also

T a =
1

2
T a

bc Rb ∧ Rc, T a
bc = gas Tsbc. (18)

Putting coordinates {Xµ} on the group we recover the metric and the torsion potential
defined in (8) by

gµν = gab Ra
µ Rb

ν , hµν = hab Ra
µ Rb

ν , (19)

and the symmetric connection ∇ defined as usual by

∇µvν = ∂µvν − γσ
µνvσ, γα

µν =
1

2
gασ

(
∂µgνσ + ∂νgµσ − ∂σgµν

)
. (20)

One can define two connections with torsion:

D±
µ vν = ∇µvν ±

1

2
T σ

µν vσ, D±
α gµν = 0, (21)

both compatible with the metric.
The spin connections Ω± and their structure equations are

D±
µ Ra

ν = −Ω± a
b, µ Rb

ν , dRa + Ω± a
s ∧ Rs ± T a = 0, (22)

with the components

Ω± a
b = Ω± a

b, s Rs, Ω±
ab, c = gasΩ

± s
b, c (23)

In what follows we will use the connection Ω− with components 1

Ω−
ab, c =

1

2

(
∂̃b Gac + ∂̃c Gba − ∂̃a Gbc

)
+

1

2

(
− f s

ab Gsc + f s
ca Gbs − f s

cb Gas

)
, (24)

for which we have

Ω+a
b, c − Ω−a

c, b = fa
bc, Ω− s

a, s = Ω+ s
a, s = ∂̃a ln(

√
det g) + f s

as. (25)

Working with the connection Ω−, we will define the curvature as

Ra
b = dΩ−a

b + Ω−a
s ∧ Ω−s

b =
1

2
Ra

b,st R
s ∧ Rt, (26)

which gives

Ra
b,cd = ∂̃c Ω−a

b, d − ∂̃d Ω−a
b, c + Ω−a

b, s f s
cd + Ω−a

s, c Ω−s
b, d − Ω−a

u, d Ω−u
b, c. (27)

Defining the Ricci tensor and scalar as 2

Ricab = Rs
a,sb, R = gab Ricab, (28)

and using relation (25) we end up with

Ricab = ∂̃s Ω−s
a, b − Ω−s

a, t Ω+t
b, s −Db va, va = Ω−s

a, s, (29)

using the frame covariant derivative

Db va = ∂̃b va − Ω−s
a, b vs. (30)

1To avoid confusion we change ∇a, defined by (2), into ∂̃a defined by ∂µ = Ra

µ
∂̃a.

2The sphere has positive curvature.
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3.2 Metric and torsion potential

As seen in Section 2 the classical action is

S =

∫ (
M + Π(g)

)−1

ab
Ra

+(g) Rb
−(g) dξ+dξ−. (31)

Comparing this expression with (16) we can write

Gab = (M + Π)−1
ab = gab + hab, Γab = Mab + Πab, Gas Γsb = Γbs Gsa = δb

a. (32)

The riemannian metric can be written in two ways

g =
1

2
(G + Gt) = GMS Gt = Gt MS G, MS =

1

2
(M + M t), (33)

as well as its inverse
g−1 = Γt M−1

S Γ = Γ M−1
S Γt. (34)

3.3 The spin connection

Let us write relation (24) as

2 Ω−
ab, c =

(
∂̃b Gac + f s

bc Gas

)
+

(
∂̃c Gba + f s

ca Gbs

)
−

(
∂̃a Gbc + f t

ab Gtc

)
. (35)

Using the identity (9) we can combine, in the first term of (35), the two pieces to obtain

∂̃b Gac + f s
bc Gas = −Gas Xst

b Gtc, (36)

with
Xab

c = F̃ ab
c − Πas f b

sc, F̃ ab
c = f̃ab

c − fa
cs M sb. (37)

Similar computations for the remaining terms give

2 Ω−
ab, c = −Gas Xst

b Gtc − Gbs Xst
c Gta + Gbs Y st

a Gtc, (38)

with
Y ab

c = F̂ ab
c + fa

cs Πsb, F̂ ab
c = f̃ab

c + Mas f b
sc. (39)

Raising the first index of the connection, we have

2Ω−a
b, c = −gaαGαs Xst

b Gtc − Gbs Xst
c Gtαgαa + gaαY st

α Gbs Gtc. (40)

Using gab = (Γ M−1
S Γt)ab one gets

gaαGαs = 2δa
s − (Γ M−1

S )a
s, Gtαgαa = (Γ M−1

S )a
t, (41)

leading to

2Ω−a
b, c = −2Xas

b Gsc + (Γ M−1
S )a

v

(
Xvt

u Γsu − Xsv
u Γut + Y st

u Γuv
)
Gbs Gtc. (42)

6



The second term in the right hand side is a polynomial of degree 2 in the Π’s. Getting rid
of the quadratic terms upon use of the identity (13) all the terms linear in Π cancel out
and

Ω−a
b, c = −Xas

b Gsc + Gbs Γau F̂ st
u Gtc, (43)

with

F̂ st
u =

1

2
(M−1

S )uv

(
F̂ st

a Mav + F̃ vt
a M sa − F̃ sv

a Mat
)
. (44)

For further use, let us define

F̃ st
u =

1

2
(M−1

S )uv

(
F̃ st

a M va + F̂ sv
a Mat − F̂ vt

a M sa
)
, (45)

and mention the identities

F̂ ab
c + F̃ ab

c − F̂ab
c − F̃ab

c = f̃ab
c , ∂̃s Πab = Xab

s + fa
su Γub = Y ab

s − Γau f b
us. (46)

Using these relations and (25) and (43) we can write

Ω+a
b, c = −∂̃c Πas Gsb + Gcs Γau F̂ st

u Gtb. (47)

If, instead of relations (41), we use for the inverse metric its form gab = (Γt M−1
S Γ)ab,

then instead of (41) we have

gaα Gαs = (Γt M−1
S )a

s, Gtα gαa = 2δa
t − (Γt M−1

S )a
t, (48)

leading this time to

2Ω−a
b,c = −2Xsa

c Gbs + (Γt M−1
S )a

v

(
Y st

u Γvu − Xvt
u Γsu + Xsv

u Γut
)
Gbs Gtc. (49)

Computations similar to the ones leading to (43) give then

Ω−a
b, c = −Xsa

c Gbs + Gbs (Γt)au
(
Y st

u − F̂ st
u

)
Gtc. (50)

3.4 The Ricci tensor

Let us start from (29):

Ricab = ∂̃s Ω−s
a, b − Ω−s

a, t Ω+t
b, s −Db va, va = ∂̃a(ln

√
det g) + f s

as.

In the first term we use (43), while in the product we use (50) for Ω− and (47) for Ω+.
The resulting expression is either cubic or quadratic in G. We will write it as

Ricab = Gaα Lαβ Gβb + Gaα Mαβ,λµ Gλµ Gβb. (51)

The quantities L (resp. M) are quadratic (resp. cubic) with respect to Π. Let us first
explain how one can get rid of the terms cubic in G. Let us consider:

Mαβ,λµ Gλµ = (Γαs X tλ
s + Y αλ

s Γst − 2F̂αλ
s M st

S ) Gλµ∂̃t Πµβ ≡ Hαtλ Gλµ∂̃t Πµβ. (52)

7



The terms in H are quadratic in Π and can be reduced as follows. Using the identity (13)
the terms quadratic in Π reduce to

f t
uv Παv Πuλ = f t

uv Παv Γuλ − f t
uv Παv Muλ, (53)

and the first piece, when multiplied by Gλµ , gives a contribution quadratic in G. Then
the terms remaining in H are just linear in Π and they combine to

F̃αt
s Πsλ = F̃αt

s Γsλ − F̃αt
s M sλ. (54)

The first piece gives another contribution quadratic in G. The remaining terms in H are
now independent of Π and vanish as a consequence of (44).

Gathering all of the pieces quadratic in G we get, apart from a few trivial cancellations

∂̃s Ω−s
a, b−Ω−s

a, t Ω+t
b, s = Gaα

{
(fβ

tu Γαu+F̂αβ
t )∂̃sΠ

st−(Y αs
t −F̂ tβ

s +fα
utΓ

us)F̂ tβ
s

}
Gβb. (55)

The second term, in the right hand part simplifies, using (46), to

∂̃s Ω−s
a, b − Ω−s

a, t Ω+t
b, s = Gaα

{
(fβ

tu Γαu + F̂αβ
t )∂̃sΠ

st + F̃αs
t F̂ tβ

s

}
Gβb. (56)

To get rid of the residual Π dependence, we will consider the vector field wa = Gas ∂̃tΠ
ts.

Using (30) and (50) we get

Db wa = Gaα

{
(∂̃ 2

stΠ
tα − fα

su ∂̃tΠ
tu)Γsβ − (Y αβ

s − F̂αβ
s )∂̃tΠ

ts
}

Gβb. (57)

The relation (80), proved in appendix A, shows that the coefficient of Γsβ in the previous
relation does vanish. So we can use (57) in the following way

Gaα F̂αβ
s ∂̃tΠ

ts Gβb = Db wa + Gaα ∂̃t Πts Y αβ
s Gβb, (58)

to transform (56) into

∂̃s Ω−s
a, b − Ω−s

a, t Ω+t
b, s = Db wa + Gaα

{
F̃αs

t F̂ tβ
s + ∂̃sΠ

st ∂̃tΠ
αβ

}
Gβb. (59)

The residual term quadratic in the derivatives of Π does vanish as a consequence of the
relation (79) proved in appendix A. Therefore we have





Ricab = Gaα r
αβ
0 Gβb + Db (wa − va),

r
αβ
0 = F̃αs

t F̂ tβ
s ,

va = ∂̃a(ln
√

det g) + f s
as, wa = Gas ∂̃tΠ

ts.

(60)

Of course the Ricci tensor is uniquely defined, however the writing of the result is not
unique for the following reason. Let us consider a vector of the form Wa = Gaα ξα. Using
the connection given by (50), we get

Db Wa =
(
∂̃s ξα Γsβ − ξs(fα

us Γuβ + Y αβ
s − F̂αβ

s )
)
Gaα Gβb. (61)

The second term simplifies and if we consider coordinate independent ξα we get

Db Wa = −ξs F̃αβ
s Gaα Gβb. (62)

This generates an ambiguity since we can write

Ricab = Gaα rαβ Gβb + Db (wa + Wa − va), rαβ = r
αβ
0 + ξt F̃αβ

t , (63)

for any coordinate independent ξα. From the previous result, by the obvious duality
substitutions, one can easily get the Ricci tensor for the dual model.
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4 One loop renormalizability

We started from the classical action

S =
1

2

∫
Gab Ra

+ Rb
− dξ+dξ−. (64)

The one loop counterterm was first computed by Fridling and van de Ven [5] for σ-models
with general torsion. Their result is

1

4πǫ

∫
Ricab Ra

+ Rb
− dξ+dξ−, ǫ = 2 − d, (65)

where the Ricci tensor is computed with the D− connection.
Renormalizability in the strict field theoretic sense requires that these divergences

have to be absorbed by field independent deformations of the coupling constants M st

and possibly a non-linear field renormalization of the fields Xµ. We have first to define
the coupling constants of the theory. Since we are analyzing the most general Poisson-Lie
model, which is built up from an arbitrary constant matrix M , we will take as independent
coupling constants all the matrix elements of M . When working in coordinates, we have
to check the relations

Ric(µν) = χst ∂

∂M st
gµν + ∇(µuν), Ric[µν] = χst ∂

∂M st
hµν + T σ

µν uσ + ∂[µUν], (66)

for some vectors u, U and coordinate independent χst. Adding these relations we can write

Ricµν = χst ∂

∂M st
Gµν + D−

ν uµ + ∂[µ(u + U)ν], (67)

and since the frames are independent of the parameters of the matrix M , this relation
becomes, using frame components

Ricab = χst ∂

∂M st
Gab + Db ua + ∂̃[a(u + U)b] + f s

ab (u + U)s. (68)

Writing relation (63)

Ricab = Gaα rαβ Gβb + Db (wa + Wa − va), (69)

we obtain
χab = −rab, Ua = −ua, ua = wa + Wa − va, (70)

and this concludes the one loop renormalizability proof.
Let us observe that the non-uniqueness of rab explained in the previous section has

for effect that the renormalization constants themselves are not uniquely defined. This
phenomenon had already been observed in [9]. This non-uniqueness should be present for

the dual model (let us denote it as ξ̃) when fa
bc ≡ 0 but was missed in [3], for a simple

reason: the one loop equivalence of the original model and its dual was proved in this
reference just by taking ξ̃ = 0. This means that imposing the one loop equivalence under
T-duality fixed the value of ξ̃ to be zero in this particular case. It will be interesting to
see if, in the most general case, the equivalence under T-duality will be sufficient to fix the
values of ξ and ξ̃.
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A Some identities

We have gathered in this Appendix the proofs of various identities used in the article.

A.1 Derivative of the bivector

Let us start from the relation which defines the matrices A and B :

g T̃ a g−1 = Bsa(g) Ts + Aa
s(g) T̃ s. (71)

Differentiating both sides, expressing dg as Ra Ta g and using the commutation relations
for the Drinfeld double gives

dBab(g) = Rs(g)
(
fa

st B
tb − f̃at

s Ab
t(g)

)
, dAa

b (g) = −Rs(g) Aa
t (g) f t

sb. (72)

Recalling the definition of the directional derivative

∂̃s f(g) =
d

ds
f(esT a

g)
∣∣∣
s=0

= Rs
a(g)

∂

∂xs
f(g), g = exsTs ∈ G, (73)

we end up with




∂̃s Bab(g) = fa
st B

tb(g) − f̃at
s Ab

t(g),

∂̃s Aa
b (g) = −Aa

t (g) f t
sb, ∂̃s Aa

b (g
−1) = fa

st A
t
b(g

−1).
(74)

Recalling the definition of the bivector Πab(g) = −Bas(g) Ab
s(g

−1), we conclude to

∂̃s Πab(g) = f̃ab
s − fa

st Πbt(g) + f b
st Πat(g). (75)

This derivative can also be interpreted as

∂̃c Πab(g) = f̃ab
c (g) ≡ Aa

s(g
−1) Ab

t(g
−1) f̃ st

u Au
c (g). (76)

To prove this relation, let us start from

f̃ st
u = 〈[T̃ s, T̃ t], Tu〉 ⇒ f̃ab

c (g) = 〈[Aa
s(g

−1) T̃ s, Ab
t(g

−1) T̃ t], Au
c (g) Tu〉.

Using (71) we can write

f̃ab
c (g) = 〈[g−1T̃ ag − Bau(g) Tu, g

−1T̃ bg − Bbv(g) Tv], g
−1T̃ ag〉.

Due to the isotropy property only three terms out of four do not vanish. The Adg invariance
gives for the first term

〈g−1[T̃ a, T̃ b]g, g−1Tsg〉 = 〈[T̃ a, T̃ b], Ts〉 = f̃ab
c .

The second term is

= −Bau(g)〈[Tu, g
−1T̃ bg], g−1Tsg〉 = −Bau(g)〈[g−1Tug, T̃ b], Ts〉 =

= −Bau(g) Av
u(g

−1)〈[Tv, T̃
b], Ts〉 = Πav(g) (−f b

vs) = f b
st Πat(g),

and the third term is just the opposite of the second term with the exchange (a ↔ b), and
this concludes the proof.
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A.2 Identities involving Π derivatives

The transition from f̃ab
c to f̃ab

c (g) amounts to a change of basis in the Lie algebra G. It
follows that they do verify the Jacobi identity:

f̃ st
c (g) f̃ab

t (g) + f̃at
c (g) f̃ bs

t (g) + f̃ bt
c (g) f̃ sa

t (g) = 0. (77)

Contracting the indices c and s we get

f̃ st
s (g) f̃ab

t (g) = 0, (78)

which becomes, using relation (76)

∂̃s Πst(g) ∂̃t Πab(g) = 0. (79)

Let us notice that
f̃ sa

s (g) = f̃ st
s Aa

t (g
−1).

Using the last relation in (74) we get

∂̃t f̃
sa
s (g) = f̃ st

s fa
tu Au

t (g
−1) = fa

tu f̃ su
s (g),

and from (76) we conclude to the identity

∂̃t ∂̃s Πsa(g) = fa
tu ∂̃sΠ

su(g). (80)
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[1] E. Alvarez, L. Alvarez-Gaumé and Y. Lozano, Nucl.Phys.Proc.Suppl. 41 (1995) 1.

[2] A. Bossard and N. Mohammedi, Nucl. Phys. B 619 (2001) 128.

[3] P. Y. Casteill and G. Valent, Nucl. Phys. B 591 (2000) 491.

[4] B.E. Fridling and A. Jevicki, Phys. Lett. B 134 (1984) 70; E.S. Fradkin and A.A.
Tseytlin, Ann. Phys. 162 (1985) 31; X. de la Ossa and F. Quevedo, Nucl. Phys. B

403 (1993) 377.

[5] B. E. Fridling and A. E. M. van de Ven, Nucl. Phys. B, 268 (1986) 719.
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