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Abstract

We consider asynchronous message-passing systems in whichsome links are timely and processes
may crash. Each run defines atimeliness graphamong correct processes:(p, q) is an edge of the time-
liness graph if the link fromp to q is timely (that is, there is bound on communication delays fromp to
q). The main goal of this paper is to approximate this timeliness graph by graphs having some properties
(such as being trees, rings,... ). Given a familyS of graphs, for runs such that the timeliness graph
contains at least one graph inS then using anextraction algorithm, each correct process has to converge
to the same graph inS that is, in a precise sense, an approximation of the timeliness graph of the run. For
example, if the timeliness graph contains a ring, then usingan extraction algorithm, all correct processes
eventually converge to the same ring and in this ring all nodes will be correct processes and all links will
be timely.

We first present a general extraction algorithm and then a more specific extraction algorithm that is
communication efficient (i.e., eventually all the messages of the extraction algorithm use only links of
the extracted graph).

1 Introduction

Designing fault-tolerant protocols for asynchronous systems is highly desirable but also highly complex.
Some classical agreement problems such asconsensusand reliable broadcastare well-known tools for
solving more sophisticated tasks in faulty environments (e.g., [17, 15]). Roughly speaking, with consensus
processes must reach a common decision on their inputs, and with reliable broadcast processes must deliver
the same set of messages.

It is well known that consensus cannot be solved in asynchronous systems with failures [14], and sev-
eral mechanisms were introduced to circumvent this impossibility result: randomization[7], partial syn-
chrony[11, 12] and(unreliable) failure detectors[6].

Informally, a failure detector is a distributed oracle thatgives (possibly incorrect) hints about the process
crashes. Each process can access a local failure detector module that monitors the processes of the system
and maintains a list of processes that are suspected of having crashed.

Several classes of failure detectors have been introduced,e.g., P, S, Ω, etc. Failure detectors classes can
be compared by reduction algorithms, so for any given problemP , a natural question is “What is the weakest
failure detector (class) that can solveP ?”. This question has been extensively studied for several problems
in systemswith infinite process memory(e.g., uniform and non-uniform versions of consensus [5, 13],
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non-blocking atomic commit [9], uniform reliable broadcast [1, 19], implementing an atomic register in a
message-passing system [9], mutual exclusion [10], boosting obstruction-freedom [16], set consensus [21,
22], etc.). This question, however, has not been as extensively studied in the context of systemswith finite
process memory.

In this paper, we consider systems where processes have finite memory, processes can crash and links
can lose messages (more precisely, links are fair lossy and FIFO1). Such environments can be found in many
systems, for example in sensor networks, sensors are typically equipped with small memories, they can crash
when their batteries run out, and they can experience message losses if they use wireless communication.

In such systems, we consider (the uniform versions of) reliable broadcast, consensus and repeated con-
sensus. Our contribution is threefold: First, we establishthat the weakest failure detector for reliable broad-
cast isP− — a failure detector that is almost as powerful than the perfect failure detectorP.2 Next, we
show that consensus can be solved using failure detectorS. Finally, we prove thatP− is the weakest failure
detector for repeated consensus. SinceS is strictly weaker thanP−, in some precise sense these results
imply that, in the systems that we consider here, consensus is easier to solve than reliable broadcast, and
reliable broadcast is as difficult to solve as repeated consensus.

The above results are somewhat surprising because, when processes have infinite memory, reliable
broadcast is easier to solve than consensus3, and repeated consensus is not more difficult to solve than
consensus.

Roadmap. The rest of the paper is organized as follows: In the next section, we present the model con-
sidered in this paper. In Section??, we show that in case of process memory limitation and possibility of
crashes,P− is necessary and sufficient to solve reliable broadcast. In Section??, we show that consensus
can be solved using a failire detector of typeS in our systems. In Section??, we show thatP− is necessary
and sufficient to solve repeated consensus in this context.

For space considerations, all the proofs are relegated to anoptional appendix.

2 Informal Model

Graphs. We begin with some definitions and notations concerning graphs. For a directed graphG =
〈N,E〉, Node(G) andEdge(G) denoteN andE, respectively. Given a graphG and a setM ⊆ Node(G),
G[M ] is the subgraphof G induced byM , i.e., G[M ] is the graph〈M,Edge(G)[M ]〉 where(p, q) ∈
Edge(G)[M ] if and only if p, q ∈ M and(p, q) ∈ Edge(G).

The tuple(X,Y ) is a directed cut(dicut for short) ofG if and only if X andY define a partition of
Node(G) and there is no directed edge(y, x) ∈ Edge(G) such thatx ∈ X andy ∈ Y . We say thatG′

is adicut reductionfrom G if there exists a dicut(X,Y ) of G such thatG′ = G[X]. A setS of graphs is
dicut-closedif and only if it is closed under dicut reduction, namely ifG ∈ S then all the graphs obtained
by a dicut-reduction ofG are inS.

Processes and Links. We consider distributed systems composed ofn processes which communicate by
message-passing through directed links. We denote the set of processes byΠ = {p1, ..., pn}. We assume
that the communication graph is complete,i.e., for each pair of distinct processes(p, q), there is a directed
link from p to q.

1 The FIFO assumption is necessary because, from the results in [20], if lossy links are not FIFO, reliable broadcast requires
unbounded message headers.

2Note thatP ⊆ P
− andP− is unrealisticaccording to the definition in [8].

3With infinite memory and fair lossy links, (uniform) reliable broadcast can be solved usingΘ [4], andΘ is strictly weaker than
(Σ,Ω) which is necessary to solve consensus.
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A process may fail by crashing, in which case it definitively stops its local algorithm. A process that
never crashes is said to becorrect, faulty otherwise.

The (directed) links arereliable, i.e. every message sent through a link(p, q) is eventually received by
q if q is correct and if a messagem from p is received byq, m is received byq at most once, and only ifp
previously sentm to q.

The links being reliable, an implementation of thereliable broadcast[18] is possible. A reliable broad-
cast is defined with two primitives:rbroadcast〈m〉 andrdeliver〈m〉. Informally, after a correct
processp invokesrbroadcast〈m〉, all correct processes eventuallyrdeliver〈m〉; after a faulty process
p invokesrbroadcast〈m〉, either all correct processes eventuallyrdeliver〈m〉 or correct processes
neverrdeliver〈m〉.

Timeliness. To simplify the presentation, we assume the existence of a discrete global clock. This is
merely a fictional device: the processes do not have access toit. We take the rangeT of the clock’s ticks to
be the set of natural numbers.

We assume that every correct processp is timely, i.e., there is a lower and an upper bound on the
execution rate ofp. Correct processes also have clocks that are not necessarily synchronized but we assume
that they can accurately measure intervals of time.

A link (p, q) is timely if there is an unknown boundδ such that no message sent byp to q at timet may
be received byq after timet+ δ.

A timeliness graphis simply a directed graph whose set of nodes are a subset ofΠ. The timeliness graph
represents the timeliness properties of the links. Intuitively, for timeliness graphG, Node(G) is the set of
correct processes and(p, q) is inEdge(G) if and only if the link(p, q) is timely.

Runs. An algorithmA consists ofn deterministic (infinite) automata, one for each process; the automaton
for processp is denotedA(p). The execution of an algorithmA proceeds as a sequence of processsteps.
Each process performs its steps atomically. During a step, aprocess may send and/or receive some messages
and changes its state.

A run r of algorithmA is a tupler = 〈T, I,E, S〉 whereT is a timeliness graph,I is the initial state
of the processes inΠ, E is an infinite sequence of steps ofA, andS is a list of increasing time values
indicating when each step inE occurred. A run must satisfy usual properties concerning sending and
receiving messages. Moreover, we assume that (1) all correct processes make an infinite number of steps:
p ∈ Node(G) if and only if p makes an infinite number of steps inE and (2) the timeliness of links is
deduced from the timeliness graph:(p, q) ∈ Edge(G) if and only if the link(p, q) is timely inE.

In the following for runr = 〈T, I,E, S〉, T (r) denotesT the timeliness graph ofr, andCorrect(r)
is the set of correct processes for the runr, namely,Correct(r) = Node(T (r)). Note that by definition,
(p, q) is a timely link if and only if(p, q) ∈ Edge(T ).

Remark that in the definition given here a link may be timely even if no message is sent on the link.
If link (p, q) is FIFO (i.e., messages fromp to q are received in the order they are sent) andp regularly
sends messages toq, then the timeliness of these messages implies the timeliness of the link itself. So in the
following we always assume that links are FIFO.

2.1 Some Systems

We say that timeliness graphG is compatible with timeliness graphG′ if and only if (1) Node(G) =
Node(G′) and (2)Edge(G) ⊆ Edge(G′). By extension, timeliness graphG is compatible with runr if G
is compatible withT (r), the timeliness graph ofr. Hence, timeliness graphG is compatible with runr if
Node(G) is the set of correct processes inr and if (p, q) is an edge ofG then(p, q) is timely in r.
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A systemX is defined as a set of timeliness graphs. The set of runs of systemX denotedR(X ) is the
set of all runsr such that there exists a timeliness graphG in X compatible withr.

Below, we define the systems considered in this paper:

• ASYNC is the set of all timeliness graphsG such thatEdge(G) = ∅. In ASYNC there is no
timeliness assumption about links andR(ASYNC) is the set of all runs in an asynchronous system.

• COMPLET E is the set of all complete graphs whose nodes are the subsets of Π.

• ST AR is the set of all timeliness graphs with asource, i.e.,G ∈ ST AR if and only ifNode(G) ⊆ Π
and there existsp0 ∈ Node(G) (the center of the star or the source) such thatEdge(G) = {(p0, q)|q ∈
Node(G) \ {p0}}. Clearly a runr is in R(ST AR) if and only if there is at least onesourcein r.

• T REE is the set of all timeliness graphsG that are rooted directed trees,i.e., |Edge(G)| = |Node(G)|−
1 and there existsp0 in Node(G) such that∀q ∈ Node(G), there is a directed path ofG from p0 to q.
Clearly a runr is in R(T REE) if and only if there is at least one timely path from a correct process
to all correct processes.

• RING is the set of all timeliness graphsG such thatG is a directed cycle (a ring). Clearly a runr is
in R(RING) if and only if there is a timely (directed) cycle over all correct processes.

• SC is the set of all timeliness graphs that are strongly connected. Clearly, a runr is in R(SC) if and
only if there exists a (directed) timely path between each pair of distinct correct processes.

• BIC is the set of all timeliness graphsG such that for allp, q ∈ Node(G), there exist at least two
distinct paths fromp to q. BIC corresponds to the set of 2-strongly-connected graphs. Clearly, a runr
is inR(BIC) if and only if there exists at least two distinct timely pathsbetween each pair of distinct
correct processes.

• PAIR is the set of all timeliness graphsG such thatEdge(G) = {(p0, p1), (p1, p0)} with p0, p1 ∈
Node(G) andp1 6= p0. Clearly, a runr is inR(PAIR) if and only if there exists two distinct correct
processesp0 andp1 such that(p0, p1) and(p1, p0) are timely links.

3 Extraction Algorithms

Given a systemX , the goal of anextraction algorithmis to ensure that in each runr in X , all correct
processes eventually agree on the same element ofX and that this element is, in some precise sense, an
approximation of the timeliness graph of runr.

For example, inRING, all processes have to eventually agree on some ring and thisring has to be
compatible with the timeliness graph of the run. In particular this ring contains all the correct processes.
However, the compatibility relation may be too strong: In many systems, it is not possible to distinguish
between a crashed process and a correct one, so the graphG on which the processes eventually agree may
contain crashed processes and then the graph is not exactly compatible with the run. Then we weaken the
compatibility and impose only that the subgraph ofG induced by the set of correct processes of the run is a
dicut reduction of the timeliness graph of the run.

We now formally define what an extraction algorithm is. First, in such an algorithm, every processp
maintains a local variableGp which contains a timeliness graph. Then, we say that an algorithm extracts a
timeliness graph inX if and only if for every runr in X there is a timeliness graphG (called theextracted
graph) such that:

• Convergence:for all correct processesp there is a timet after whichGp = G
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• Compatibility:G[Correct(r)] is compatible withT (r)

• Closure:G[Correct(r)] is a dicut reduction ofG or is equal toG

• Validity: G is in X

Remark that for all systems that containASYNC there is a trivial extraction algorithm: for each run
processes extract the graphG such thatNode(G) = Π andEdge(G) = ∅.

A more constrained version of the extraction problem is the following: an algorithmA extracts exactly
timeliness graphs inX if for every runr in systemX , the extracted graphG is compatible withT (r). In
this case, all correct processes eventually know the exact set of correct processes: it is the set of nodes of
the extracted graph.

Some Results about Extraction Algorithms. First we show that an extraction algorithm may help to
route messages using only timely links:

Lemma 3.1 LetG be a graph extracted from runr, if (p, q) is in Edge(G) andq is a correct process then
p is correct.

Proof. By contradiction, assume thatp is not correct, then(Correct(r), Node(G) − Correct(r)) is not a
dicut because(p, q) ∈ Edge(G), p ∈ Node(G) − Correct(r) andq ∈ Correct(r), which contradicts the
Closure property. ⊓⊔

From this lemma and the Compatibility property, we deduce directly:

Proposition 3.2 If (p = p0, . . . , pi, . . . , q = pm) is a path in the extracted graph andp andq are correct
processes, then for everyi such that0 ≤ i < m the link(pi, pi+1) is timely and processpi is correct.

From a practical point of view, this proposition shows that the extracted graph may be used to route
messages between processes using only timely links: the route fromp to q is a path in the extracted graph
(if any). All intermediate nodes are correct processes and agree on the extracted graph and then on the path.

For example withT REE , the tree extracted by the algorithm enables to route messages from the root of
the tree to any other processes and the routing uses only timely links.

Generally, the main goal of the extraction algorithm is not only to extract a graphG in X but also to
ensure thatG[Correct(r)] is in X (even if the processes do not know the set of correct processes). In
particular, this property is ensured ifX is dicut-closed: the Closure property implies thatG[Correct(r)] is
in X .

Among the systems we consider, only systemPAIR is not dicut-closed:H = 〈{x}, ∅〉 is a dicut
reduction ofG = 〈{x, y, z}, {(y, z), (z, y)}〉 but is not inPAIR. It is easy to verify that every other
previously introduced system is dicut-closed. For these systems we obtain:

Proposition 3.3 Consider any extraction algorithm for the systemX .

• If X = ST AR, then the center of the extracted star is a correct process.

• If X = T REE , then the root of the extracted tree is a correct process.

• If X ∈ {SC, COMPLET E ,RING,BIC}, then the extraction is exact.
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Proof. ForST AR andT REE , all the dicut reductions of the extracted graph contain at least respectively
the center and the root, then the restriction of the extracted graph contains at least these nodes, proving that
they are correct processes.

There is no dicut for a strongly connected graph. Hence inSC, there is no dicut reduction then by the
Closure property the subgraph induced by the set of correct processes of the extracted graph is the extracted
graph itself.COMPLET E , RING, andBIC are particular cases of systems only composed of strongly
connected timeliness graphs. ⊓⊔

An immediate consequence of Proposition 3.3 is that any extraction algorithm gives an implementation
of eventual leader election (failure detectorΩ) for systemsST AR andT REE as well as an implementation
of failure detector♦P for systemsCOMPLET E , RING, SC andBIC.

Due to the lack of space, the proofs of the two following propositions have been moved in the appendix.
In the first proposition we show that extraction is not alwayspossible. Actually, in the proof we exhibit
some non dicut-closed systems, namelyPAIR, where no extraction algorithm can be implemented.

Proposition 3.4 There exist some systemsX for which there is no extraction algorithm.

In the next section we show that for all dicut-closed systemsthere is an extraction algorithm. For systems
like ST AR, T REE andPAIR, there exists noexactextraction algorithm.

Proposition 3.5 There exist some systemsX for which there is an extraction algorithm and there is no exact
extraction algorithm.

4 An Extraction Algorithm

The aim of this section is to show that the dicut-closed property of a system is sufficient to solve the extrac-
tion problem. To that end, we propose in Figure 1 an extraction algorithm, calledA(X ), for dicut-closed
systemsX .

The basic idea of AlgorithmA(X ) is to make processes select a graph that is compatible with the
timeliness graph of the run. For this, each process maintains for each graphx in X anaccusation counter
Acc[x]. This counter infinitely grows if some correct process is notin x or if some directed edge ofx is not
timely. Then,Acc[x] is bounded if and only ifx contains all correct processes and all timely links between
pairs of correct processes.

We implement accusation counters as follows. A process regularly blames all the graphs inX in which
it is not a node: it increments the accusation counters of allthese graphs. Note that if the process is correct
this accusation is justified and if the process is not correct, after some time, the process being dead stops
to increment the accusation counters. Moreover, each process regularly sends on its outgoing linksalive
messages. Each process maintains an estimate of the communication delays for each incoming link (∆[q]
for the incoming link(q, p)). If it does not receivealive messages within these estimates on some incoming
link it blames all timeliness graphs inX containing this link (i.e., increments the accusation counters for
these graphs). As the estimate of the communication delay may be too short, each time it is exceeded the
process increases it for the link. In this way, if the link is timely, at some time the estimate will be greater
than the bound on communication delay.

The accusation counters are broadcast by reliable broadcasts. Each time a process receives a new value
of accusation counter it updates its own accusation counterto the maximum of the received values and its
current values. Hence, if some timely graph stops to be blamed then all correct processes eventually agree
on the value of its accusation counter.
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By selecting the graphG with the lowest accusation value (to break ties, we assume a total order among
the graphs ofX ) if any, correct processes eventually agree on the same timeliness graph ofX , moreover we
can prove that this graph contains (1) all the correct processes, and (2) all edges between correct processes
are timely links. As a consequence, the Convergence, the Compatibility and the Validity properties of
the extraction algorithm are ensured. Nevertheless, this graph can also contain faulty processes and edges
between correct and faulty processes.

Consider now the Closure property. IfG contains only correct processes then the Closure property
is trivially satisfied. Otherwise,G containsCorrect(r) and a setF of faulty processes. In this case,
(Correct(r), F ) is a dicut reduction ofG: Indeed if there is an edge inG from a faulty processq to a
correct processp, eventually the processp stops to receive messages fromq and the accusation counter of
G grows infinitively often. Hence, in all cases, the Closure property is satisfied.

Hence, ifX is dicut-closed, AlgorithmA(X ) extracts a graph inX . Moreover from Proposition 3.3, if
all the graphs ofX are strongly connected then the algorithm exactly extractsa graph inX .

In the algorithm, each processp uses local timers, one per process. The timer ofp dedicated toq is
set (by settingsettimer(q) to a positive value) to a time interval rather than absolutetime. The timer is
decremented until it expires. When the timer expirestimerexpire(q) becomestrue. Note that a timer
can be restarted before it expires.

In the algorithm, we denote by≺ the total order relation onX and by≺lex (see Line 2) the total order
relation defined as follows:∀x, y ∈ X , ∀cx, cy ∈ N, (cx, x) ≺lex (cy, y) ≡ [cx < cy ∨ (cx = cy ∧ x ≺ y)].

Code for each process p

1: ProcedureupdateExtractedGraph()
2: G← x such that(Acc[x], x) = min≺lex

{(Acc[x′], x′) such thatx′ ∈ X}

3: On initialization:
4: for all x ∈ X do Acc[x]← 0
5: for all q ∈ Π \ {p} do
6: ∆[q]← 1
7: settimer(q)← ∆[q]
8: updateExtractedGraph()
9: start tasks 1 and 2

10: task 1:
11: loop forever
12: send〈alive〉 to everyq ∈ Π \ {p} everyK time
13: rbroadcast〈ACC,⊥,p〉 everyK time /∗ to accuse graphs that do not containp ∗/

14: task 2:
15: upon receive〈alive〉 from q do
16: settimer(q)← ∆[q]

17: upon timerexpire(q) do
18: rbroadcast〈ACC, q, p〉 /∗ to accuse graphs that contain the link(q, p) ∗/
19: ∆[q]← ∆[q] + 1
20: settimer(q)← ∆[q]

21: upon rdeliver〈ACC,q,h〉 do /∗ information fromh ∗/
22: for all x ∈ X do
23: if q =⊥ then
24: if h /∈ Node(x) then Acc[x]← Acc[x] + 1
25: else
26: if (q, h) ∈ Edge(x) then Acc[x]← Acc[x] + 1
27: updateExtractedGraph()

Figure 1: AlgorithmA(X ) extracts a graph inX

A sketch of the correctness proof ofA(X ) is given below. In this sketch, we consider a runr of A(X )
in dicut-closed systemX . We will denote byvartp the value ofvar of processp at timet.

We first notice that all variablesAccp[x] are monotonically increasing:
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Lemma 4.1 For all timest and t′ such thatt ≥ t′, for all processesp, for all graphsx in X , Acctp[x] ≥

Acct
′

p [x].

Let sup(Accp[x]) be the supremum ofAcctp[x] for all t, we say thatAccp[x] is unbounded ifsup(Accp[x])
is equal to∞ and bounded otherwise. AsAccp[x] is also updated by reliable broadcast each time some
processq modifiesAccq[x] we have:

Lemma 4.2 For all correct processesp andq, for all graphsx in X , sup(Accp[x]) = sup(Accq[x])

Let sup(Acc[x]) be the supremumsup(Accp[x]) over all correct processp of Accp[x], thensup(Acc[x]) is
well-defined. If there is a least onex ∈ X such thatsup(Acc[x]) is bounded, thenmin{sup(Acc[x])|x′ ∈
X} is finite, henceG the graph such that(Acc[G], G) = min≺lex

{(Acc[x′], x′)|x′ ∈ X} is well defined.
Then all correct processes converge to the same graph:

Lemma 4.3 If there existsx in X such thatsup(Acc[x]) is bounded then there is a time after which for
every correct processp, Gp isG.

Now prove the Compatibility property. Consider any timeliness graph compatible withT (r), and assume
thatx ∈ X , then there is a timet0 after which all faulty processes are dead and the estimates of communi-
cation delays are greater than the bounds of communication delays of timely links of the run. After timet0,
(1) asx contains all correct processes, no process will blamex because it is not a node ofx, and (2) as all
edges ofx are timely, no process will blamex for one of its edges then:

Lemma 4.4 If x in X is compatible withT (r), thensup(Acc[x]) is bounded.

Reciprocally, letx be a timeliness graph ofX that is not compatible with the run. If processp is not
correct there is a timet after which it does not send anyalive message, and there is a time after the timers on
p expire forever for all correct processes, then ifp is a node of somex ∈ X ,Accp[x] is incremented infinitely
often andsup(Acc[x]) = ∞. In the same way if(p, q) is not timely, by the fifo property of the link, the
timer for p expires infinitely often for processq and if (p, q) is an edge ofx thenAccq[x] is incremented
infinitely often andsup(Acc[x]) = ∞.

Then:

Lemma 4.5 For everyx in X , if sup(Acc[x]) is bounded thenx[Correct(r)] is compatible withT (r).

Hence:

Lemma 4.6 (Compatibility)G[Correct(r)] is compatible withT (r).

It remains to prove thatG satisfies the Closure property:G[Correct(r)] is a dicut reduction ofG or is
equal toG. AsG[Correct(r)] is compatible withT (r), we have:

Lemma 4.7 Correct(r) ⊆ Node(G).

LetF = Node(G)−Correct(r). If F is empty the Closure property is trivially ensured. Consider now the
case whereF is not empty.F contains only faulty processes and(Correct(r), F ) is a partition ofG(Node).
If there is an edge inEdge(G) from a faulty processq to a correct processp, eventually the processp never
receives a message fromq and the accusation counter ofG will be unbounded, contradicting the choice of
G. So, we have:

Lemma 4.8 If F 6= ∅ thenEdge(G) ∩ (F × Correct(r)) = ∅.
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Hence,(Correct(r), F ) is a dicut ofG.
Lemma 4.3 and Lemma 4.4 prove the Convergence property, Lemma 4.6 proves the Compatibility prop-

erty and Lemma 4.8 proves the Closure property. Moreover,G is clearly inX proving the Validity. Propo-
sition 3.3 shows that the extraction is exact when all graphsof X are strongly connected. Hence, we can
conclude with the following theorem:

Theorem 4.9 Let X be a dicut-closed system. AlgorithmA(X ) extracts a graph inX . Moreover if all
graphs ofX are strongly connected, AlgorithmA(X ) exactly extracts a graph inX .

5 An Efficient Extraction Algorithm

In this section, we propose another extraction algorithm called AF(X ) (Figures 2 and 3). This algorithm is
efficient meaning that the (correct) processes eventually only send messages along the edges of the extracted
graph.

AF(X ) (exactly) extracts a timeliness graph from systemX , where (1)X is dicut-closed and (2) for all
graphsg ∈ X there is some processp, calledroot, such that there is a directed path fromp to every node of
g. For example,T REE andRING systems have this property.

In the following, we refer to these systems asdicut-closed systems with a root. For every graphg in X ,
the functionroot(g) returns a root ofg.

In the algorithm, every processp stores several values concerning the graphsx ∈ X such thatroot(x) =
p: (1) Acc[x] is the accusation counter ofx whose goal is the same as in Algorithm 1, (2)Prop[x] is a
proposition counterwhose goal will be explained later, and (3)∆[x] gives the expected time for a message
to go fromp (the root of thex) to all the nodes ofx.

Every process also maintains a set variableCandidates. Each element of this set is a 4-tuple composed
of a graphx of X and the newest values ofAcc[x], Prop[x], and∆[x] known by the process (the exact
values are maintained atroot(x)). Each element in this set is calledcandidateand each process selects its
extracted graph among the graphs in the candidate elements.

As in Algorithm 1:

(1) Each processp sendsalive messages on its outgoing links and monitors its incoming links. However,
we restrain here thealive message sendings: processp sendsalive messages on its outgoing link
(p, q) only if (p, q) is in a graph candidate.

(2) A graph candidate is blamed if (a) a correct process is notin the graph or (b) a process receives an out
of date message through one of its incoming links. In both cases the candidate is definitively removed
from theCandidates sets of all processes. To achieve this goal the process sendsan accusation
message (ACC) using a reliable broadcast and uses an arrayHeard that ensures that an identical
candidate (that is, the same graph with the same accusation and proposition values) can never be
added again. Moreover, upon delivery of an accusation message for graphx, root[x] increments
Acc[x].

We now present different mechanisms used to obtain the efficiency.
For all graphsx ∈ X , only the processroot(x) is allowed to proposex as a candidate to the rest.

Each processp stores its better candidate in its variableme, that is, the least blamed graphx such that
root(x) = p.

• If a process finds inCandidates a better candidate thanme, it removesme from Candidates.
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• If a process finds thatme is better, it addsme to Candidates and sends anew message containing
me (1) to all processes that are not inNode(me), and (2) to immediate successors ofp in me. The
immediate successors inme addme to theirCandidates set and relay thenew message, and so on.
By the reliability of the links, every correct process that is not inme eventually receives this message
and blamesme.

These mechanisms are achieved by the procedureupdateExtractedGraph(). This procedure is called
each time a graph candidate is blamed or a new candidate is proposed. Note that theCandidates set is
maintained with the setOtherCand (the candidates of other processes), a booleanLocal that is true when
the process has a candidate, andme, the graph candidate.

A processp may give up a candidate without this candidate being blamed:in this case,p is the root of the
candidate, it finds a better candidate inOtherCand, and removesme from Candidates. Then,p must not
incrementAcc[me] when it receives accusations caused by this removing, indeed these accusations are not
due to delayed messages. That is the goal of the proposition counter (Prop): in Prop[x], root(x) counts the
number of times it proposesx as candidate and includes this value in each of itsnew messages (to inform
other process of the current value of the counter). Hence, whenq wants to blamex, it now includes its own
view of Prop[x] in the accusation message. This accusation will be considered as legitimate byroot[x]
(that is, will cause an increment ofAcc[x]) only when the proposition counter inside the message matches
Prop[x]. Also, wheneverroot[x] removesx from Candidates, root[x] incrementsProp[x] and does not
send the new value to the other processes. In this way accusations due to this removing will be ignored.

For any timely candidate, the accusation counter will be bounded and its proposition counter increased
each time it is proposed. In this way the graph with the smallest accusation and proposition values eventually
remains forever in theCandidates set of all correct processes and it is chosen as extracted graph. (This is
done in the procedureupdateExtractedGraph().) Moreover, eventually all other candidates are given up
and it remains only this graph inCandidates. In this way, onlyalive messages are sent and they are sent
along the directed edges of the extracted graph ensuring theefficiency.

Code for each process p

1: ProcedureupdateExtractedGraph()
2: Let (amin,min) = min≺lex

{(acc, c) such that(c, acc,−,−) ∈ OtherCand} ∪ {(∞,∞)}
3: if (amin,min) < (Acc[me],me) ∧ Local then /∗ Give upme ∗/
4: rbroadcast〈ACC,me,Acc[me],Prop[me],∆[me]〉
5: Prop[me]← Prop[me] + 1
6: Local← false
7: Candidates ← OtherCand
8: me← x such that(a, x) = min≺lex

{(acc, c) such thatc ∈ X ∧ root(c) = p}
9: if (Acc[me],me) < (amin,min) ∧ Local = false then /∗ Proposeme ∗/

10: Local← true
11: Candidates ← Candidates ∪ {(me,Acc[me], P rop[me],∆[me])}
12: send〈new,me,Acc[me],Prop[me],∆[me]〉 to every process not inNode(me)
13: for all h ∈ Π \ {p} do
14: if (h,p)∈ Edge(me) then
15: ∆[h]←max(∆[h],∆[me])
16: settimer(h)←∆[h]
17: if (p,h)∈ Edge(me) andh 6= root(me) then
18: send〈new,me,Acc[me], P rop[me],∆[me]〉 to h
19: G← x such that(a, x)min≺lex

{(a′, x′) such that(x′, a′, p′, d′) ∈ Candidates}

Figure 2: Procedure updateExtractedGraph of AlgorithmAF(X )

A sketch of the correctness proof ofAF(X ) is given in the appendix. Then, we can conclude with the
following theorem:

Theorem 5.1 LetX be a dicut-closed system with a root. AlgorithmA(X ) efficiently extracts a graph in
X . Moreover if all graphs ofX are strongly connected, AlgorithmA(X ) efficiently and exactly extracts a
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Code for each process p

20: On initialization:
21: for all x ∈ X such thatroot(x) = p do
22: Acc[x]← 0; Prop[x]← 0; ∆[x]← n
23: for all x ∈ X such thatroot(x) 6= p doHeard[x]← (−1,−1)
24: for all q ∈ Π \ {p} do∆[q]← 1
25: OtherCand← ∅
26: Local← false
27: me← min{x such thatx ∈ X ∧ root(x) = p}
28: updateExtractedGraph()
29: start tasks 1 and 2

30: task 1:
31: loop forever
32: send〈alive〉 to every processq such that∃(x,-,-,-)∈ Candidates and(p, q) ∈ Edge(x) everyK time

33: task 2:
34: upon receive〈alive〉 from q do
35: settimer(q)←∆[q]

36: upon timerexpire(q) do /∗ Link (q, p) is not timely, blame all candidates that contains(q, p) ∗/
37: for all (x, a, pr, d) ∈ OtherCand such that(q, p) ∈ Edge(x) do
38: rbroadcast〈ACC,x,a,pr,d〉
39: if (q, p) ∈ Edge(me) then
40: rbroadcast〈ACC,me,Acc[me],Prop[me],∆[me]〉

41: upon receive〈new,x, a, pr, d〉 from q do /∗ Proposition of a new candidate∗/
42: if p /∈ Node(x) then /∗ Blamex that does not containp ∗/
43: rbroadcast〈ACC,x,a,pr〉
44: else
45: newCand← false
46: if (x,−,−,−) /∈ OtherCand andHeard(x) < (a, pr) then /∗ New candidate∗/
47: newCand← true
48: if ∃(x, ac, prc, dc) ∈ OtherCand with (ac, prc) < (a, pr) then /∗ New candidate∗/
49: OtherCand← OtherCand \ (c, ac, prc, dc)
50: newCand← true
51: if newCand then
52: OtherCand← OtherCand ∪ (x, a, pr, d)
53: updateExtractedGraph()
54: Heard[x]← (a, pr)
55: for all h ∈ Π \ {p} do
56: if (h,p)∈ Edge(x) then
57: ∆[h]←max(∆[h], d)
58: settimer(h)← ∆[h]
59: if (p,h)∈ Edge(x) andh 6= root(x) then send〈new, x, a, pr, d〉 to h

60: upon rdeliver〈ACC,x,a,pr,d〉 do
61: if root(x) = p then
62: if x = me ∧ a = Acc[me] ∧ pr = Prop[me] then /∗ Check if the accusation is up to date∗/
63: Acc[me]← Acc[me] + 1; ∆[me]← ∆[me] + 1
64: Local← false
65: else
66: OtherCand← OtherCand \ (x, a, pr, d)
67: if Heard[x] < (a, pr) then Heard[x]← (a, pr)
68: updateExtractedGraph()

Figure 3: AlgorithmAF(X ) that efficiently extracts a graph inX

graph inX .

6 Conclusion

Failure detector implementations in partially synchronous models generally use the timeliness properties of
the system to approximate the set of correct (or faulty) processes. In some way, the extraction problem is
a kind of generalization: instead of only searching the set of correct processes, here we try to extract also

11



information about the timeliness of links. Besides, our solutions are based on already existing mechanisms
used in failure detectors implementations as in [2, 3].

Information about the timeliness of links is useful for efficienecy of fault-tolerant algorithms. In partic-
ular, in any extracted graph, any path between a pair of correct processes is only constituted of timely links.
This property is particulary interesting to get efficient routing algorithms.

We gave an extraction algorithm for dicut-closed set of timeliness graphs. Moreover, we proved that the
extraction is exact when all the timeliness graphs are also strongly connected.

Given dicut-closed timeliness graphs that contains a root,we shown how to efficiently extract a graph
from it. By efficiency we mean giving a solution where eventually messages are only sent over the links of
the extracted graph.

It is important to note that the main purpose of the algorithms we proposed is to show the feasability of
the extraction under some conditions. So, the complexity ofour algorithms was not the main focus of this
paper.

As a consequence, our algorithms are somehow unrealistic because of their high complexity. Giving
more practical solutions will be the purpose of our future works.
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A Appendix

A.1 Proof of Proposition 3.4

Proposition 3.4There exists some systemsX for which there is no extraction algorithm.

Sketch of Proof.
Assume there is an extraction algorithmA for PAIR with 5 processes.
Consider a runr of A in systemPAIR with T (r) = 〈{p1, p2, p3, p4, p5}, {(p1, p2), (p2, p1), (p3, p4), (p4, p3)}〉.

To satisfy the properties of the extraction,〈{p1, p2, p3, p4, p5}, {(p1, p2), (p2, p1)}〉 or 〈{p1, p2, p3, p4, p5}, {(p3, p4),
(p4, p3)}〉must be extracted from the runr. There is a timet1 after whichr converges for example to〈{p1, p2, p3, p4, p5},
{(p1, p2), (p2, p1)}〉.

Consider now runr′ of A in systemPAIR with T (r′) = 〈{p3, p4, p5}, {(p3, p4), (p4, p3)}〉 such thatr andr′

are indistinguishable until timet1 andp1 andp2 crash inr′ at timet1 + 1. There is a timet2 after whichr′ converges
to a graph with the directed edges{(p3, p4), (p4, p3)}.

Consider now that inr all messages fromp1 and p2 to {p3, p4, p5} sent after timet1 are delayed after time
t2. For p5, the runsr andr′ are indistinguishable untilt2. So, at timet2, p5 outputs a graph with directed edges
{(p3, p4), (p4, p3)}.

Now consider runr′′ of A in systemPAIR with T (r′′) = 〈{p1, p2, p5}, {(p1, p2), (p2, p1)}〉 such thatr andr′′

are indistinguishable until timet2 andp3 andp4 crash inr′′ at timet2+1. There is a timet3 after whichr′′ converges
to a graph with the directed edges{(p1, p2), (p2, p1)}.

Consider again that in the runr all messages fromp3 andp4 to {p1, p2, p5} sent after timet2 are delayed af-
ter t3. For p5 the runsr and r′′ are indistinguishable. So, at timet3, p5 outputs a graph with directed edges
{(p1, p2), (p2, p1)}.

Inductively, we can construct the runr in such a way thatp5 alternates forever between a graph with directed
edges{(p1, p2), (p2, p1)} and a graph with directed edges{(p3, p4), (p4, p3)} and never converges definitively. This
contradicts the existence of an algorithm that extracts a graph inPAIR. ⊓⊔

A.2 Proof of Proposition 3.5

Proposition 3.5There exists some systemsX for which there is an extraction algorithm and there is no exact extraction
algorithm.

Sketch of Proof. Consider the systemT REE with 3 processes. We prove in the next section that there is anextraction
algorithm for this system. Assume there is anexactextraction algorithmA for this system.

Consider a runr of A in this system withT (r) = 〈{p1, p2, p3}, {(p1, p2), (p1, p3)}〉. To satisfy the properties of
the exact extraction, there is a timet1 after which the graph〈{p1, p2, p3}, {(p1, p2), (p1, p3)}〉 is extracted.

Consider now runr′ of A in systemT REE with T (r′) = 〈{p1, p2}, {(p1, p2)}〉 such thatr and r′ are in-
distinguishable until timet1 and p3 crashes inr′ at time t1 + 1. There is a timet2 after whichr′ converges to
〈{p1, p2}, {(p1, p2)}〉 .

Consider now that inr all messages fromp3 to {p1, p2} sent after timet1 are delayed after timet2. For p1, the
runr andr′ are indistinguishable untilt2. So, at timet2, p1 outputs〈{p1, p2}, {(p1, p2)}〉.

Inductively, we can construct the runr in such a way thatp1 alternates forever between a graph〈{p1, p2, p3},
{(p1, p2), (p1, p3)}〉 and a graph〈{p1, p2}, {(p1, p2)}〉 and never converges definitively. This contradicts the existence
of an algorithm that exactly extracts a graph inT REE . ⊓⊔

A.3 Proof of Theorem 5.1

In this section, we propose a sketch of the correctness proofof the efficient extraction algorithmAF(X ) (Figures 2
and 3). In this sketch, we consider a runr of AF(X ) in dicut-closed system with a root,X . We will denote byvartp
the value ofvarp at timet.

We first notice that all variablesAcc[x] andProp[x] can only be modified by the processroot(x) and are increas-
ing:
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Lemma A.1 For all time t andt′, t ≥ t′, for all processesp, for all graphsx in X such thatp = root(x), Acctp[x] ≥

Acct
′

p [x] andProptp[x] ≥ Propt
′

p [x].

Consider a graphx such that its rootp crashes. Eventually, every processq such thatx ∈ OtherCand and
(p, q) ∈ Edge(x) reliably broadcasts an accusation forx. This way,x is removed from theOtherCand set of any
correct process and never more added (becausep is crashed), hence:

Lemma A.2 If p is faulty, there exists a timet such that for all graphsx of X with root(x) = p, for all correct
processesq in r, for all t′ ≥ t: x /∈ OtherCandt

′

q .

As r is a run ofX , there exists some timeliness grapho in X such thato is compatible withT [r]. In this case,
Nodes(o) = Correct(r) and the processroot(o) is a correct process:

Lemma A.3 There exists a timeliness grapho of X such thato is compatible withT (r) and root(o) is a correct
process.

Moreover:

Lemma A.4 Let o be a timeliness graph ofX such thato[Correct(r)] is a compatible withT (r) and root(o) is a
correct process:Accroot(o)[o] is bounded.

For all correct processesp, for all graphsx in X with root(x) = p, letA[x]p be the largest value ofAcc[x]p in r
(∞ if Acc[x]p is unbounded). Letg to be the graph with the smallestA[g]p (break ties by the total order on graphs).
LetC be the value ofA[g]p.

Note that from Lemma A.3 and Lemma A.4,C < ∞. Moreover, by construction ofg, root(g) is a correct process,
root(g) eventually electsg forever (meroot(g) = g), and as a consequenceProp[g]root(g) becomes constant:

Lemma A.5 There exists a time after whichmeroot(g) = g.

Lemma A.6 There exists a time after whichProp[g]root(g) stops changing.

Let P be the largest value of the proposition counter ofg (Prop[g]). The following three lemmas are immediate
consequences of Lemma A.5:

Lemma A.7 For every correct processp 6= root(g), there exists a time after whichg ∈ OtherCandp.

Lemma A.8 There exists a time after whichmeroot(g) = g andLocalroot(g) = true andOtherCandroot(g) = ∅.

Lemma A.9 For every correct processp 6= root(g), there exists a time after whichOtherCandp = {g} and
Localp = false.

From Lemmas A.8 and A.9, the algorithm converges to a graph ofX :

Lemma A.10 There exists a timeliness graphx ∈ X (actuallyg) such that every correct processq outputsx forever.

From Lemma A.8 and Lemma A.9, we can deduce that the algorithmis efficient:

Lemma A.11 There is a time after which every correct processp sends messages only to the processq such that there
is a directed edge(p, q) in Edge(g).

From the Lemma A.10, we deduce the Convergence and the Validity properties.
It remains to prove thatg satisfies the properties of the approximation: (1)g[Correct(r)] is compatible withT [r],

and (2)g[Correct(r)] is a dicut reduction ofg or is equal tog.
Whenroot(g) setsLocal to true andme to (g, C, P,−), it sends a messagenew to all processes (recall thatC the

final value of the accusation counter ofg andP the final value of its the proposition counter.). As the linksare reliable,
all correct processes eventually receives this message. Ifa correct processq is not inNode(g), it reliably broadcasts
an accusation messageACC. When processroot(g) delivers such a broadcast, it increments the accusation counter
of g contradicting the fact thatAcc[g] is bounded byC, hence:
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Lemma A.12 Correct(r) ⊆ Node(g).

When a correct process receives thisnew message, it sends〈alive〉 to every processq such that(p, q) in Edge(g).
And it monitors all incoming links(q, p) such that(q, p) in Edge(g). If there is a link(a, b) of Edge(g) between two
correct processesa andb, thena sends regularlyalive message tob. By construction ofg, b never blamesg, thenb
receives no out of date message. By the FIFO property of the link, the link is timely:

Lemma A.13 g[Correct(r)] is compatible withT [r].

By Lemma A.12,Node(g) = Correct(r) ∪ F .
If F is empty the Closure property is trivially ensured. We now consider the case whereF is not empty. F

contains only faulty processes. If there is an edge inEdge(g) from a faulty processq to a correct processp, eventually
the processp stops receiving messages fromq and the accusation counter ofg will be incremented, which contradicts
the fact that the accusation counter ofg remains equal toC forever. So we have:

Lemma A.14 If F 6= ∅ thenEdge(g) ∩ (F × Correct(r)) = ∅.

We showed the Convergence (Lemma A.10), the Validity (LemmaA.10), the Compatibility (Lemma A.13), the
closure (Lemma A.14), and the Efficiency (Lemma A.11). Moreover, Proposition 3.3 shows the exact extraction when
all graphs ofX are strongly connected. Hence, we can conclude with the following theorem:

Theorem 5.1LetX be a dicut-closed system with a root. AlgorithmA(X ) efficiently extracts a graph inX . Moreover
if all graphs ofX are strongly connected, AlgorithmA(X ) efficiently and exactly extracts a graph inX .
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