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Abstract

Motivated by the fact that neighbors are generally

known in practical routing algorithms, we introduce the

notion of remote-spanner. Given an unweighted graph

G, a sub-graph H with vertex set V (H) = V (G) is an

(α, β)-remote-spanner if for each pair of points u and

v the distance between u and v in Hu, the graph H
augmented by all the edges between u and its neighbors

in G, is at most α times the distance between u and v
in G plus β. We extend this definition to k-connected

graphs by considering the minimum length sum over k
disjoint paths as a distance. We then say that an (α, β)-
remote-spanner is k-connecting.

In this paper, we give distributed algorithms for

computing (1 + ε, 1 − 2ε)-remote-spanners for any

ε > 0, k-connecting (1, 0)-remote-spanners for any

k ≥ 1 (yielding (1, 0)-remote-spanners for k = 1) and

2-connecting (2,−1)-remote-spanners. All these algo-

rithms run in constant time for any unweighted input

graph. The number of edges obtained for k-connecting

(1, 0)-remote-spanner is within a logarithmic factor

from optimal (compared to the best k-connecting (1, 0)-
remote-spanner of the input graph). Interestingly, sparse

(1, 0)-remote-spanners (i.e. preserving exact distances)

with O(n4/3) edges exist in random unit disk graphs.

The number of edges obtained for (1+ε, 1−2ε)-remote-

spanners and 2-connecting (2,−1)-remote-spanners is

linear if the input graph is the unit ball graph of a

doubling metric (even if distances between nodes are

unknown). Our methodology consists in characterizing

remote-spanners as sub-graphs containing the union of

small depth tree sub-graphs dominating nearby nodes.

This leads to simple local distributed algorithms.

1. Introduction

This paper concerns the characterization and the dis-

tributed computation of sparse remote-spanners. Given
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an unweighted graph G, a sub-graph H with vertex

set V (H) = V (G) is an (α, β)-remote-spanner if it

approximates distances in G from any node u when it

is completed with all neighboring links of u. More pre-

cisely, for any two nonadjacent nodes u, v, the inequal-

ity dHu
(u, v) ≤ α dG(u, v) + β is satisfied, where Hu

is the sub-graph with edge set E(H)∪{uv | v ∈ N(u)}
and dHu

is the distance in Hu. (Note that dHu
(u, v) =

1 = dG(u, v) when u and v are adjacent). (α, β) is

called the stretch. This can be reformulated as follows:

for each pair of nodes u and v, there exist a node x
adjacent to u in G such that the distance between x
and v in H is at most α times the distance between u
and v in G plus β − 1. Figure 1 illustrates an example

of a graph (a), a (1, 0)-remote-spanner (b) of this graph

and a (1, 1)-remote-spanner (c) which is also a (2,−1)-
remote-spanner.

We introduce this notion based on the functioning

of routing protocols used in practical networks where

each router generally knows its list of neighbors. This

is particularly the case for link state routing that was

introduced by McQuillian et al. [19] as a replacement

for distance vector routing. It was then standardized as

OSPF protocol [20], [21] which is widely used in the

Internet. With a very high level description, link state

routing basically consists in two periodic procedures.

First, each router sends regularly probing messages on

its network interfaces to discover its neighbors. Second,

it regularly floods the network with link state advertise-

ment messages containing its list of neighbors. Each

node then knows its list of neighbors and the whole

network topology. The next hop for each destination is

then deduced from a shortest path computation.

This can be very costly in a large and dense network,

a case that can be encountered in ad hoc networks where

wireless connections may provide many neighbors to

each node. To optimize link state routing in such

situations, it was proposed more recently to alleviate

the cost of link state advertisements by flooding only

a subset of links [14]. This was standardized by IETF

as the OLSR routing protocol [3]. This principle can

be indeed applied to any link state routing protocol:

broadcast only a subset of links to all nodes, thus
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Figure 1. (a) A unit disk graph Ga where two nodes are connected if one is in the unit disk centered at the other
(nodes in a dashed oval are all pairwise connected). The unit disks centered at x and z are partially plotted. (b) A
(1, 0)-remote-spanner Hb of Ga. For example, dHb

u
(u, x) = 2 = dGa(u, x). (Edge uy is in not in Ha, but is in Ha

u since

y ∈ N(u) in Ga). (c) A (2,−1)-remote-spanner Hc of Ga. For example, dHc
u
(u, v) = 3 = 2dGa(u, v) − 1 through the

path uyxv. (d) A 2-connecting (2,−1)-remote-spanner Hd of Ga. Hd
u contains two disjoint paths of length 3 from u to

v: uyxv and uy′x′v.

defining a sub-graph H . As each node u regularly

discovers its neighbors, it can augment this graph with

its neighboring links, to obtain a sub-graph Hu with

edge set E(H)∪{uv | v ∈ N(u)}. It then computes its

routing tables according to distances in Hu: it forwards

packets with destination v to a closest neighbor u′ to

v in Hu. u′ then forwards similarly the packet and so

on. This results in a classical greedy routing scheme.

As the path from u′ to v in Hu is included in H , it is

known by u′, implying dH
u′

(u′, v) ≤ dHu
(u, v)−1. We

thus see that this greedy routing from u to v results in a

route of length at most dHu
(u, v). The notion of (α, β)-

remote-spanner thus formalizes the required properties

on the broadcasted sub-graph H to ensure that greedy

routing performs with stretch at most (α, β). Note that

the definition of distances in the remote spanner, i.e.

dHu
(u, v) versus dHv

(v, u), is asymmetric with respect

to u and v as is the knowledge of u and v in a link

state routing protocol.

Our formalization is inspired by the regular notion

of graph spanner introduced by Peleg et al. [23], [22].

An (α, β)-spanner is a sub-graph H preserving (u, v)
distance by ensuring dH(u, v) ≤ α dG(u, v) + β for

all nodes u, v. In comparison, for remote spanners, the

preservation of distance is aided by including all edges

incident to the source node u even if some are not

part of the spanner H . Spanners are key ingredients

of various distributed applications, e.g., synchronizers,

compact routing, distance oracles broadcasting, etc.

Recent reviews of the literature on spanners can be

found in [24], [26]. We believe that part of this work

can be investigated in the context where a node knows

its neighboring links in addition to the spanner as this

information is usually accessible in practical routing

context. This is the reason why we introduce remote-

spanners.

Similarly to spanners, remote-spanner constructions

are to be evaluated along three worst-case measures:

approximation quality (i.e. small values of α and β),

number of edges and construction time. Additionally,

we are interested in multi-conectivity properties. Pre-

serving multi-connectivity has practical interest for im-

proving reliability of the network and to allow multi-

path routing. We say that two nonadjacent nodes u
and v are k-connected in G if there exists k pairwise

disjoint paths from u to v (i.e. having no internal node

in common). A remote-spanner H is said to be k-

connecting if for all nonadjacent nodes u, v and all

positive integer k′ ≤ k, u and v are k′-connected in

Hu if they are k′-connected in G. Additionally, we

require that the stretch of the length sum of these paths

is bounded, i.e. dk′

Hu
(u, v) ≤ α dk′

G (u, v) + k′β where

dk′

K(u, v) is minimum length sum of k′ disjoint paths

in a sub-graph K. Figure 1(d) illustrates an example of

2-connecting (2,−1)-remote-spanner.

An (α, β)-spanner is always an (α, β)-remote-

spanner. We thus obtain a wider class of sub-graphs that

allows several improvements over regular spanners.

• First, (1, 0)-remote-spanners (i.e. exact distances

are preserved) can be sparse (e.g.O(n4/3) on aver-

age in random unit disk graphs) whereas a (1, 0)-
spanner must obviously include all edges (see

Figure 1 (b) for an example). Additionally, such

(1, 0)-remote-spanners can be computed within

a logarithmic factor from optimal (compared to

the number of edges of the best (1, 0)-remote-

spanner of the input graph). In comparison, spanner

construction algorithms usually give a controlled

approximation ratio compared to the best spanner

of the worst possible graph.

• We show that remote-spanners have local charac-

terizations that yield simple distributed algorithms

for computing them. In particular, no synchroniza-

tion between node decisions is necessary (based

on the topology knowledge up to some constant

distance, a node can decide which edges to add to

the remote-spanner independently from other node

decisions). This is not the case for existing dis-

tributed algorithms computing spanners [2], [10].

• Remote-spanners allow to extend the notion of

stretch to multi-connected graphs in a novel man-



ner: by considering sum of lengths of disjoint

paths. Similar properties were only studied in

the context of (fault-tolerant) geometrical spanners

where the graph is given by all pair distances in an

euclidean space [17], [18], [7]. This setting cannot

be extended to graphs in general.

1.1. Our results

We characterize some remote-spanner classes as

unions of small depth tree sub-graphs dominating

nearby nodes. More precisely, given a node u we define

an (r, β)-dominating tree T for u as a tree sub-graph

rooted at node u such that for all v at distance r′ from

u with 2 ≤ r′ ≤ r, there exists x ∈ N(v) ∩ V (T ) with

dT (u, x) ≤ r′−1+β. In other words, V (T ) dominates

the ball BG(u, r) of radius r centered at u in the graph

G and T induces paths of stretch (1, β) to any node

v ∈ BG(u, r). (We mainly consider β = 0 or β = 1).

We say that a sub-graph H induces (r, β)-dominating

trees if it contains an (r, β)-dominating tree for each

node in the graph, i.e. for all node u there exist an

(r, β)-dominating tree T for u with E(T ) ⊆ E(H).
In Section 2, we study low stretch remote-spanners.

We provide a distributed algorithm computing a (1 +
ε, 1 − 2ε)-remote-spanner in O(ε−1) time. It has

O(nε−(p+1)) edges if the input graph is the unit ball

graph (UBG) of a metric e with constant doubling

dimension p, i.e. two nodes are neighbors iff e(u, v) ≤ 1
and any ball of radius R in the metric e can be covered

by 2p balls of radius R/2. A particular case of such unit

ball graph is the unit disk graph where e is the distance

in the plane and two nodes in the plane are neighbors if

one is in the unit disk centered at the other. Such graph

models are often used to model ad hoc networks. The

unit ball centered on a node then corresponds to the area

where a radio emission of the node can be successfully

received. The algorithm is obtained by proving that for

any ε with 0 < ε ≤ 1, a sub-graph is a (1 + ε, 1− 2ε)-
remote-spanner iff it induces

(⌈

1
ε

⌉

+ 1, 1
)

-dominating

trees.

In Section 3, we study k-connecting remote-spanners.

We provide a distributed algorithm computing a k-

connecting (1, 0)-remote-spanner in constant time and

with optimal number of edges up to a factor 2(1 +
log ∆). Interestingly, its expected number of edges is

O(k
2

3 n
4

3 log n) in the unit disk graph model with a

uniform Poisson distribution of nodes (compared to

Ω(n2) for the full topology). Additionally, we pro-

pose a distributed algorithm computing in time O(1) a

2-connecting (2,−1)-remote-spanner which has O(n)
edges if the input graph is the unit ball graph of a

metric with constant doubling dimension. To obtain

these results, we generalize the (2, β)-dominating trees

as follows. A k-connecting (2, β)-dominating tree T
for a node u is a tree sub-graph rooted at node u
such that for all node v at distance 2 from u, either

uw ∈ E(T ) for all w ∈ N(u) ∩ N(v) or v has k
neighbors in V (T ) such that the paths connecting them

to u in T are disjoint (i.e. share only node u) and have

length at most 1 + β. We then show that a sub-graph

is a k-connecting (1, 0)-remote-spanner iff it induces

k-connecting (2, 0)-dominating trees and that any sub-

graph inducing 2-connecting (2, 1)-dominating trees

is a 2-connecting (2,−1)-remote-spanner. Algorithms

computing such dominating trees allow to obtain the

two previously mentioned distributed algorithms. These

results are summarized in Table 1 which compares them

to the following related results.

1.2. Related work

One can easily see that any (α, β)-spanner is also

an (α, β)-remote-spanner and even an (α, β − α + 1)-
remote-spanner for α ≥ 1 (simply consider the spanner

stretch from u′ to v where u′ the first node on a

shortest path from u to v in G). All existing algorithms

for computing spanners thus also yield remote-spanners

(see [24] for a review of best known algorithms).

Classical spanner results show that any graph admits

a (2k − 1, 0)-spanner with O(n1+1/k) edges (see e.g.

[24]) and this is believed to be tight, i.e. stretch (α, β)
with α+β < 2k−1 cannot be obtained with o(n1+1/k)
edges (see e.g. [26]). On the positive side, any graph

thus admits a (2k − 1,−2k + 2)-remote-spanner with

O(n1+1/k) edges. Moreover, the construction in [2]

of (k, k − 1)-spanners with O(n1+1/k) edges leads to

(k, 0)-remote-spanners. We suspect that these bounds

are also tight for remote-spanners in the sense that

stretch (α, β) with 2α + β − 1 < 2k − 1 cannot be

obtained with o(n1+1/k) edges on some graphs.

Most notably, compared to our results on remote-

spanners, it is known how to distributively compute

(1 + ε, 0)-spanners with O(n) edges in the unit ball

graph of a doubling metric [8], [9]. These two papers

consider that the unit ball graph is weighted by edge

lengths (stretch is considered with respect to path length

obtained by summing edge lengths). In particular, they

assume that two neighbors are always informed of their

relative distance in the underlying metric. Computation

of a linear size (1+ε, 0)-spanner is made in that setting

in O(log∗ n) time [8]. A more general class of graphs

motivated by radio propagation models is considered in

[9], requiring logarithmic time. Both algorithms make

use of maximal independent sets (MIS). Our setting is

different: the input is reduced to the graph, and distances

in the underlying metric are unknown. This setting ap-

pears to be less tractable. For example, the MIS compu-



Type of input Type of spanner Number of edges Comp. time Ref.

Any graph (k, k − 1)-span. O(kn1+1/k) O(k) [2]

Any graph (k, 0)-rem.-span. O(kn1+1/k) O(k) using [2]

Any graph (1, 0)-span. m (all edges) – (trivial)
Any graph k-conn. (1, 0)-rem.-span. O(log n) from opt. O(1) Th. 2

rand. UDG (1, 0)-rem.-span. O(n4/3 log n) O(1) Th. 2 & [13]

UBG known dist. (1 + ε, 0)-span. O(n) O(log∗ n) [8]
UBG unknown dist. (1 + ε, 1 − 2ε)-rem.-span. O(n) O(1) Th. 1

Points in R
d k-fault-tol. (1 + ε, 0)-span. O(kn) seq. [7]

UBG unknown dist. 2-conn. (2,−1)-rem.-span. O(n) O(1) Th. 3

Table 1. Remote spanners versus regular spanners depending on assumptions on the input graph. UBG

stands for Unit Ball Graph (of a doubling metric) and “rand. UDG” for a unit disk graph with a uniform

Poisson distribution of nodes. In both cases, distances in the underlying metric can be known, i.e. are part

of the input, or not.

tation can be done in time O(log∗ n) when distances are

known [16] whereas the best algorithm in general [15]

(up to our knowledge) requires O(log ∆ · log∗ n) time.

Note that we may obviously have ∆ = Ω(n) in unit ball

graphs. With remote-spanners we get a constant time

algorithm with similar stretch and number of edges in

the more general setting where the underlying metric

distances are not given. In fact, our algorithm works

properly on any graph, i.e. computes a (1 + ε, 1 − ε)-
remote-spanner whatever the input is. The linear size of

the spanner is guaranteed only in the case of a unit ball

graph of a doubling metric.

On the other hand it is possible to compute sparse

multi-connected spanners of an euclidean space [6] or

a planar graph [5], but stretch is not controlled there.

Sparse geometrical spanners with low stretch avoiding

a given region in the plane were introduced in [1].

The closest work concerns fault-tolerant geometrical

spanners [17], [18], [7]. In that setting, the input is a set

of nodes in an euclidean space. The spanned graph is

thus the complete graph where edges are again weighted

by distances in the plane. A spanner is k-fault-tolerant if

the stretch is preserved after removal of any subset of at

most k nodes. Given t > 1 and k > 0 it is always pos-

sible to construct a k-fault-tolerant (t, 0)-spanner with

maximal degree O(k) and with edge length sum within

a factor O(k2) from that of a minimum spanning tree.

(The best complexities are obtained in [7]). Note that

this is not possible for a graph in general. Considered for

example a long cycle. As soon as a node is deleted, the

distance between its two neighbors increases from 2 to

the length of the cycle minus 2. This definition of stretch

in the context of multi-connectivity is well adapted for

geometrical spanners but not for spanners in general.

Our generalization of stretch to multi-connected graphs

overcomes this restriction. (Note that our definition with

length of disjoint paths can be used in the context of

regular spanners also). As far as we know, remote-

spanners are the first skeleton structure enabling at the

same time tractability, sparsity, and low stretch with

respect to disjoint-path length sum, a natural distance

when considering multi-connected graphs.

Interestingly, our dominating trees generalize the no-

tions of multipoint relays introduced in ad hoc net-

works [14], [3] for optimizing flooding and shortest

path routing. They were extended in [27] for providing

small connected dominating sets. However the concept

of remote-spanner was never introduced before and

its relationships with multipoint relays were largely

ignored. In our terms, multipoint relays as defined

in [14], [3] can be seen as (2, 0)-dominating trees. It was

already known that they provide shortest path routes,

i.e. their union forms a (1, 0)-remote-spanner. However,

it was not noticed that they are also necessary: any

(1, 0)-remote-spanner must induce multipoint relays. As

multipoint relays are also used for optimizing flooding,

this definition was extended to obtain better reliability

of flooding with the k-coverage feature [3], [4]. This ex-

tension is equivalent to k-connecting (2, 0)-dominating

trees. It was never proved that this extension indeed

ensures k-connectivity. On the other hand, the extended

multipoint relays defined in [27] are (2, 1)-dominating

trees in our terms. They were introduced for computing

small connected dominating sets. It was not noticed that

they provide (2,−1)-remote-spanners. Our definitions

of dominating trees extend these notions of multipoint

relays in various ways.

2. Remote-spanners with low stretch

We prove in Section 3 that a sub-graph is a (1, 0)-
remote-spanner iff it induces (2, 0)-dominating trees in

the more general setting of k-connecting (1, 0)-remote-

spanners. We now consider (1 + ε, O(1))-remote-

spanners.



2.1. (1 + ε, 1 − 2ε)-remote-spanners

The main idea is to consider a radius r and to

require dHu
(u, v) ≤ dG(u, v) + 1 for u, v such that

dG(u, v) ≤ r. This is clearly satisfied if H induces a

(r, 1)-dominating tree for v. Indeed, we can obtain the

following characterization.

Proposition 1: For any ε with 0 < ε ≤ 1, a sub-

graph is a (1 + ε, 1 − 2ε)-remote-spanner iff it induces
(⌈

1
ε

⌉

+ 1, 1
)

-dominating trees.

Proof: Set r =
⌈

1
ε

⌉

+1. We first show that inducing

(r, 1)-dominating trees is a necessary condition. If H is

a (1+ε, 1−2ε)-remote-spanner, it satisfies dHv
(v, u) ≤

(1 + ε)r′ + 1 − 2ε for all nodes u and v such that

dG(u, v) = r′ ≥ 2. For r′ ≤ r, we obtain dHv
(v, u) ≤

r′ + 1 + ε(r′ − 2) ≤ r′ + 1 + ε(
⌈

1
ε

⌉

− 1) < r′ + 2. As

dHv
(v, u) is integral, we must have dHv

(v, u) ≤ r′ +1.

In other words, H contains a path of length at most

r′ from u to some node in N(v). By considering the

union of such paths for all v ∈ BG(u, r)\BG(u, 1), we

obtain a (r, 1)-dominating tree for u included in H .

Now consider a sub-graph H inducing (r, 1)-
dominating trees and a pair of nodes u, v. Let ℓ =
dG(u, v) denote their distance. We show dHu

(u, v) ≤
(

1 + 1
r−1

)

ℓ + 1− 2
r−1 by induction on ℓ. It is verified

for ℓ = 1 since uv is then in E(Hu) and 2 − 1
r−1 ≥ 1

since r ≥ 2. For 2 ≤ ℓ ≤ r, H contains a (r, 1)-
dominating tree for v. This implies dHu

(u, v) ≤ ℓ+1 ≤
(

1 + 1
r−1

)

ℓ + 1 − 2
r−1 as ℓ ≥ 2. Now consider ℓ > r.

Let v′ be the node at distance r from v in a shortest path

from v to u. As H induces an (r, 1)-dominating tree T
for v, there exists x ∈ N(v′) with dT (v, x) ≤ r. As a

neighbor of v′, x is thus at distance at most ℓ − r + 1
from u. Applying the induction hypothesis, we obtain

dHu
(u, x) ≤

(

1 + 1
r−1

)

(ℓ − (r − 1)) + 1 − 2
r−1 =

(

1 + 1
r−1

)

ℓ − r + 1 − 2
r−1 . As dH(x, v) ≤ r, we

have dHu
(u, v) ≤

(

1 + 1
r−1

)

ℓ + 1 − 2
r−1 . H is thus

a (1 + ε′, 1 − 2ε′)-remote-spanner with ε′ = 1
r−1 =

1
⌈ε−1⌉ ≤ ε. It is thus a (1+ε, 1−2ε)-remote-spanner as

(1+ε′)ℓ+1−2ε′ ≤ ℓ+(ℓ−2)ε′+1 ≤ (1+ε)ℓ+1−2ε
since ℓ ≥ 2.

2.2. Computing dominating trees

It is always possible to compute a (r, β)-dominating

tree for node u with size within a logarithmic factor

from the minimal such dominating tree for u. However,

due to space limitations, we only include algorithms

that are used in the results of the paper. The particular

case of (2, 0)-dominating trees is treated in Algorithm 3

(DOMTREEGDY2,0,1(u)) presented in Section 3.

Algorithm 1 (DOMTREEMISr,1(u)) computes a

(r, 1)-dominating tree for node u. It consists in comput-

ing greedily a local maximum independent set (MIS)

for dominating nodes at distance at most r. This is

particularly interesting if the input graph is the unit ball

graph of a doubling metric as the size of a MIS is then

bounded.

T := ({u} , ∅)
M := ∅, B := BG(u, r) \ BG(u, 1)

while B 6= ∅ do
Pick x ∈ B at minimal distance from u

(i.e. dG(u, v) ≥ dG(u, x) for all v ∈ B).

M := M ∪ {x}
Add to T a shortest path from u to x in G.

B := B \ BG(x, 1)

Algorithm 1: Algorithm DOMTREEMISr,1(u) for a

node u. The tree T is the dominating tree computed

for u.

Proposition 2: Algorithm 1 DOMTREEMISr,1(u)
computes an (r, 1)-dominating tree for node u. Addi-

tionally, if the input graph is the unit ball graph of a

metric with constant doubling dimension p, then the

computed tree has O(rp+1) edges.

Proof: Consider a node v at distance r′ from u.

Either v is added to T and dT (u, x) ≤ r′ − 1 where x
is the next node on the path from v to u in T . Or v is

in N(x) for some node x added to M . The choice of

x in the while loop implies r′ = dG(u, v) ≥ dG(u, x).
As a shortest path from u to x is added to T , we have

dT (u, x) = dG(u, x) ≤ r′.
Note that the set M is a maximum independent

set (MIS) of BG(u, r) \ BG(u, 1) at the end of the

algorithm: for x, y in M where y was added after

x in M , we have y /∈ BG(x, 1). As the metric is

doubling, the metric ball of center u and radius r can

be covered by 2p(⌈log
2

r⌉+1) metric balls of radius 1
2 .

Such a ball of radius 1
2 contains one node of M at

most since M is a MIS. We thus deduce |M | ≤ (4r)p

and |E(T )| ≤ r |M | ≤ 4prp+1.

2.3. Computing remote-spanners

According to the previous characterizations, dis-

tributed algorithms for computing remote-spanners can

be obtained by locally computing dominating trees.

The general form of our distributed algorithms for

computing remote-spanner is thus given by Algorithm 2

which give the procedure REMSPANr,β(u) run by each

node u.

Running Algorithm REMSPANr,β(u) for all u in

parallel allows to compute a remote-spanner inducing



Send u to all neighbors and receive identities of

neighbors.

Send N(u) to all nodes in BG(u, r − 1 + β) (and

receive N(v) from each v in BG(u, r − 1 + β)).
Compute an (r, β)-dominating tree Tu for u.

Send Tu to all nodes in BG(u, r − 1 + β).

Algorithm 2: Algorithm REMSPANr,β(u) for node

u.

(r, β)-dominating trees as the union of all Tu in time

2r−1+2β. Using Algorithm DOMTREEMISr,1(u) and

relying on Proposition 1, we obtain the following result.

Theorem 1: For any ε > 0 with ε ≤ 1, a (1 + ε, 1−
2ε)-remote-spanner can be computed in time O(ε−1)
such that its number of edges is O(ε−(p+1)n) if the

input graph is the unit ball graph of a metric with

constant doubling dimension p.

Note that Algorithm REMSPANr,β(u) can be run as

in practical link state routing protocols by regularly per-

forming its four operations in an asynchronous fashion

every period of time T and using regular flooding of

neighbor lists and computed trees. If a topology change

occurs, the computed spanner will stabilize after a time

period of T + 2F where F is the time duration of a

flooding up to distance r − 1 + β.

3. Remote-spanners providing multi-con-

nectivity

We now consider the case where multiple paths from

a node s to a node t can be found in G. We consider

only simple paths, i.e. a node appears at most once in a

path. We say that two paths are disjoint if they do not

have any internal node in common. Several paths are

disjoint if they are pairwise disjoint. We define the k-

connecting distance dk
G(s, t) between two nodes s and

t as the minimum length sum obtained over all sets of

k disjoint paths from s to t. (We set dk
G(s, t) = ∞ if

there do not exist k disjoint paths from s to t). We thus

have d1
G(s, t) = dG(s, t). We similarly define dk

H(s, t)
for any sub-graph H .

Recall that an (α, β)-remote-spanner H is said to be

k-connecting if it satisfies dk′

Hs
(s, t) ≤ α dk′

G (s, t)+ k′β
for all nonadjacent nodes s and t and all positive integer

k′ ≤ k. This definition is equivalent to the (α, β)-
remote-spanner definition for k = 1. Let us recall also

the definition of a k-connecting (2, β)-dominating tree

T . For that purpose, let BT (u, r) denote the ball of

radius r centered at u in a tree sub-graph T . Given a

node u, a k-connecting (2, β)-dominating tree T for u is

a tree sub-graph rooted at node u dominating every node

v at distance 2 from u in the following sense: either v
has k neighbors in BT (u, 1 + β) such that the paths

connecting them to u in T are disjoint, or uw ∈ E(T )
for all w ∈ N(u) ∩ N(v). This definition is equivalent

to the (2, β)-dominating tree definition for k = 1.

3.1. 2-connecting (2,−1)-remote-spanners

We now show the following result.

Proposition 3: Any sub-graph H inducing 2-

connecting (2, 1)-dominating trees is a 2-connecting

(2,−1)-remote-spanner.

In the rest of the section, we consider such a sub-

graph H and two nonadjacent nodes s and t such that

d2
G(s, t) < ∞.

Let |P | denote the length of a path P in number of

edges. If two nodes u and v belong to a path P , let

P [u, v] denote the sub-path from u to v. If P is a path

from u to v and Q is a path from v to w (for disjoint

P and Q and u 6= w), let P + Q denote the path from

u to w obtained by concatenation of P and Q.

If H is a sub-graph and P a path from s to t, we

say that P lies outside H by i edges if its last |P | − i
edges are in E(H), i.e. it has an internal node w such

that |P [s, w]| = i and all edges of P [w, t] are in E(H).
The proof relies on the following lemma.

Lemma 1: Among all pairs P,Q of disjoint paths

from s to t such that P lies outside H by i ≥ 2 edges

and Q lies outside H by j ≥ 1 edges, consider one with

minimal length sum ℓ. Then there exists two disjoint

paths P ′, Q′ from s to t with length sum ℓ + 1 such

that P ′ lies outside H by i′ ≥ 1 edges and Q′ lies

outside H by j′ ≥ 1 edges with i′ + j′ < i + j.

Proof: The proof consists in considering the nodes

u and w on P at respective distances i−2 and i from s
in P . The 2-connecting (2, 1)-dominating tree rooted at

w either contains a branch disjoint from P [s, w] and Q
that dominates u or two disjoint branches intersecting

both Q. In each case, we can construct P ′ and Q′ from

P , Q and these branches. We now go more into details.

Let u, v, w be the nodes of P before the |P | − i last

edges of P , i.e. P = P [s, u] + uv + vw + P [w, t]
with |P [s, w]| = i. The minimal length condition

implies that u and w are nonadjacent. Note that H
induces a 2-connected (2, 1)-dominating tree T for w. If

wv ∈ E(T ), P and Q then satisfy the desired property.

Otherwise, T must contain two disjoint paths of length

at most 2 from w to two neighbors of u. Let R and S
denote the two disjoint paths thus obtained from u to

w. They have length at most 3 and lie outside H by

one edge.

The minimality of |P |+ |Q| implies that the internal

nodes of R and S cannot belong to P [s, u] or P [w, t].
Suppose first that one of these paths has no internal

node in Q. Assume without loss of generality that it

is R. P ′ = P [s, u] + R + P [w, t] has length at most



|P | + 1 and lies outside H by i − 1 edges. P ′ and Q
thus satisfy the desired property.

Now consider the case where both R and S intersect

Q. The minimality of |P | + |Q| implies that each of

them has at most one internal node in Q. Let x (resp. y)

denote the node of R (resp. S) belonging to Q. Without

loss of generality, suppose that x is closer to s than y
in Q. Then set P ′ = Q[s, x] + R[x,w] + P [w, t] and

Q′ = P [s, u] + S[u, y] + Q[y, t]. Note that R[x,w] and

S[u, y] are disjoint and share no extremity. Moreover,

their length is at most 2. P ′ and Q′ are thus disjoint

and their length sum is at most |P |+ |Q| − |P [u, w]| −
|Q[x, y]|+ |R[x,w]|+ |S[u, y]| ≤ ℓ + 1. P ′ lies outside

H by min {|Q[s, x]|, j} edges.

If all edges of Q[y, t] are in E(H), then S[u, y] +
Q[y, t] lies outside H by one edge and Q′ lies outside

H by i − 1 edges. In that case, P ′ lies outside H by

j edges at most. Otherwise, Q[y, t] lies outside H by

j−|Q[s, y]| edges and Q′ lies outside H by |P [s, u]|+
|S[u, y]| + j − |Q[s, y]| < i + j − |Q[s, x]| edges. In

that case, P ′ lies outside H by |Q[s, x]| edges. In both

cases, P ′ and Q′ satisfy the desired properties.

of Proposition 3: Using Proposition 1 with ε = 1,

we already know that H is a (2,−1)-remote-spanner.

Consider two nonadjacent nodes s and t such that there

exists two internally node-disjoint paths from s to t. Let

ℓ = d2
G(s, t) denote the minimal length sum of such a

pair of paths.

By applying p times Lemma 1, we deduce that there

exists two disjoint paths P and Q from s to t with

length sum at most ℓ+ p such that P lies outside H by

i ≥ 1 edges and Q lies outside H by j ≥ 1 edges with

i + j ≤ ℓ − p.

For p = ℓ− 2, we obtain two disjoint paths of length

sum at most 2ℓ − 2 connecting s to t in Hs. We thus

deduce d2
Hs

(u, v) ≤ 2ℓ − 2.

3.2. k-connecting (1, 0)-remote-spanners

We now characterize k-connecting (1, 0)-remote-

spanners as sub-graphs inducing k-connecting (2, 0)-
dominating trees. (Note that (2, 0)-dominating trees

have depth 1 and are thus stars). It is clearly a necessary

condition: if H is a k-connecting (1, 0)-remote-spanner,

consider two nodes u and v such that dG(u, v) = 2. If u
and v have k′ common neighbors with 1 ≤ k′ ≤ k, then

the stretch condition implies that dk′

Hv
(v, u) ≤ 2k′. As

minimal path length between u and v is 2, u and v must

thus have at least k′ common neighbors in Hv . H must

thus contain a k-connecting (1, 0)-dominating tree for

u. Indeed, we can obtain the following characterization.

Proposition 4: A sub-graph is a k-connecting (1, 0)-
remote-spanner iff it induces k-connecting (2, 0)-
dominating trees.

Consider a sub-graph H inducing k-connecting

(2, 0)-dominating trees and two nonadjacent nodes s
and t such that dk′

G (s, t) < ∞ for some k′ with

1 ≤ k′ ≤ k. In that case, we can generalize Lemma 1

to k′ paths as follows.

Lemma 2: Among all tuples P1, . . . , Pk′ of k′ dis-

joint paths from s to t, consider one with minimal length

sum. If P1 lies outside H by i ≥ 2 edges, then there

exists a path P ′
1 from s to t with same length as P1 such

that P ′
1, P2, . . . , Pk′ are disjoint and P ′

1 lies outside H
by i − 1 edges.

Let us first mention that Proposition 4 easily follows

from this lemma. By iteratively applying Lemma 2, we

obtain that there exist k′ disjoint paths with minimal

length sum, all of them lying 1-outside H . This implies

that dk′

Hs
(s, t) = dk′

G (s, t) and H is thus a k-connecting

(1, 0)-remote-spanner.

of Lemma 2: Similarly to the proof of Lemma 1,

let u, v, w be the nodes of P1 before the |P1| − i last

edges of P1, i.e. P1 = P1[s, u] + uv + vw + P1[w, t]
with |P1[s, w]| = i. Note that H induces a k-connected

(2, 0)-dominating tree T for w. If wv ∈ E(H), then

P1, . . . , Pk′ satisfy the desired property. Otherwise, T
must contain k disjoint paths of length at most 1 from

w to k neighbors of u. In other words, k neighbors of

u are adjacent to w in H .

We now show that each path Pj contains at most

one of these k common neighbors of u and w. Suppose

that by contradiction that two of them, say x and y lie

on path Pj . Suppose without loss of generality that x is

closer to s than y in Pj . Then we can set P ′
1 = Pj [s, x]+

xw + P1[w, t], P ′
j = P1[s, u] + uy + Pj [y, t], and P ′

a =
Pa for a /∈ {1, j}. We then we have a contradiction

since P ′
1 lies outside H by i edges, P ′

1, . . . , P
′
k′ are

disjoint and have length sum less than |P1|+ · · ·+ |Pk′ |.
The minimality of the length sum of the paths and

wv /∈ E(H) implies that P1 contains none of the k
neighbors of u adjacent to w in H . As k′ ≤ k, one

of them, say x, is not in any of the paths P1, . . . , Pk′ .

Then P1[s, u]+ux+xw+P1[w, t], P2, . . . , Pk′ has the

desired property.

Interestingly, we can bound the expected number

of edges of a k-connecting (1, 0)-remote-spanner in

the unit disk graph model where nodes are placed in

a fixed square in the plane according to a uniform

Poisson distribution (two nodes are neighbors if their

distance in the plane is at most one unit). The average

number of edges of an optimal k-connecting (1, 0)-
remote-spanner in such a random graph is O(k

2

3 n
4

3 )
where n is the average number of nodes. In comparison,

a (1, 0)-spanner must contain all edges and has Ω(n2)
edges. This analysis is proved in [13]. For k = 1, this

result can be deduced from the analysis of the average

number of multipoint relays in [12].



3.3. Computing k-connecting remote-spanners

Algorithm 3 (DOMTREEGDY2,0,k(u)) computes a k-

connecting (2, 0)-dominating tree. It consists in solving

greedily a set cover problem for dominating k times

nodes at distance 2 from u. We use the heuristic consist-

ing in adding iteratively in the dominating tree a node

covering a maximal number of nodes at distance 2 that

are still not covered by k nodes. This classical greedy

heuristic in this generalization of the set-cover problem

performs within a factor 1 + log ∆ from optimal [11],

[25] where ∆ denotes the maximum degree of a node.

T := ({u} , ∅)
M := ∅, S := BG(u, 2) \ BG(u, 1), X := N(u)
while S 6= ∅ do

Pick x ∈ X \ M such that |BG(x, 1) ∩ S| is

maximal.

M := M ∪ {x}
Add edge ux to T .

S := S \ {v ∈ S | N(v) ∩ N(u) ⊆ M
or |N(v) ∩ M | ≥ k}

Algorithm 3: Algorithm DOMTREEGDY2,0,k(u) for

a node u. The tree T is the dominating tree com-

puted for u.

Note that M is the set of nodes added as leaves of T .

If there remains a node v in S which is initially the set

of nodes at distance 2 from u, then v is not dominated

k times and it has a common neighbor x with u which

is not in M . It is thus always possible pick some x at

the beginning of the while loop until S is empty. We

can thus state the following proposition.

Proposition 5: Algorithm DOMTREEGDY2,0,k(u)
computes a k-connecting (2, 0)-dominating tree for

node u with minimal number of edges up to a factor

1 + log ∆.

According to Proposition 4, Algorithm REMSPAN2,0

in conjunction with DOMTREEGDY2,0,k then leads to

the following result.

Theorem 2: A k-connecting (1, 0)-remote-spanner

with number of edges within a factor 2(1 + log ∆)
from optimal can be computed in time O(1). If the

input graph is the unit disk graph of a uniform Poisson

distribution in a fixed square, its average number of

edges is O(k2/3n4/3 log n).
The approximation ratio on the number of edges of

the computed (1, 0)-remote-spanner comes from the fol-

lowing remarks. An optimal k connecting (1, 0)-remote-

spanner H∗ induces k-connecting (2, 0)-dominating

trees for each node u. As such a tree has depth 1

the degree of u in H∗ is at least the size of an

optimal k-connecting (2, 0)-dominating tree T ∗
u for u.

We thus obtain 2|E(H∗)| ≥
∑

u∈V (G) |E(T ∗
u )|. As the

computed dominating tree for node u with Algorithm

DOMTREEGDY2,0,k(u) has at most (1+log ∆)|E(T ∗
u )|

edges, the remote-spanner made of the union of these

trees has thus at most 2(1 + log ∆)|E(H∗)| edges.

As mentioned at the end of Section 3.2, we have

|E(H∗)| = O(k2/3n4/3) in expectation in the unit

disk graph of a uniform Poisson distribution in a

fixed square [13]. The average number of edges in

the remote-spanner computed by our algorithm is thus

O(k2/3n4/3 log n).

Additionally, Algorithm 4 generalizes Algorithm

DOMTREEMIS2,1(u) for computing k-connecting

(2, 1)-dominating trees. It consists in dominating nodes

at distance 2 from u with k maximum independent sets

computed greedily.

T := ({u} , ∅)
S := BG(u, 2) \ BG(u, 1)
for k′ := 1 to k do

M := ∅, X := S
while X 6= ∅ and S 6= ∅ do

Pick x ∈ S ∩ X .

M := M ∪ {x}
k′ := min {k, |(N(x) ∩ N(u)) \ V (T )|}
Pick y1, . . . , yk′ in (N(x) ∩ N(u)) \ V (T ).
Add path uy1 + y1x and edges

uy2, . . . , uyk′ to T .

S := S \ {v ∈ S | N(v) ∩ N(u) ⊆ V (T )
or v has k neighbors in BT (u, 2) con-

nected to u by k disjoint paths in T}
X := X \ BG(x, 1)

Algorithm 4: Algorithm DOMTREEMIS2,1,k(u) for

a node u. The tree T is the dominating tree com-

puted for u.

Proposition 6: Algorithm DOMTREEMIS2,1,k(u)
computes a k-connecting (2, 1)-dominating tree for

node u. This tree has O(k2) edges if the input graph

is the unit ball graph of a doubling metric.

Proof: The k-connected (2, 1)-dominating tree

condition on nodes v at distance 2 from u is clearly

verified for nodes x ∈ X ∩S added to T as we connect

min {k, |N(x) ∩ N(u)|} of their neighbors to u in the

tree T .

At each iteration of the for loop, the set M contains

the nodes added to T in that iteration. As these nodes

are picked in X , the last instruction of the while loop

implies that M is a maximum independent set of M∪S
at the end of the iteration. At end of iteration k′, the

nodes remaining in S are thus dominated by k′ nodes

in V (T ): one in each computed MIS. Note additionally,

that for each node x added to M , we add at least



one path uy1 + y1x disjoint from all previous paths

added to T (otherwise x would have been removed

from S previously). Each node remaining in S is thus

dominated by k′ nodes in T connected to u in T by

disjoint paths of length 2. At the end of the last iteration,

we thus have S = ∅ and T is a k-connecting (2, 1)-
dominating tree.

If the input graph is the unit ball graph of a doubling

metric, each computed MIS set has size O(1). We thus

add O(k) edges to T in each iteration and O(k2) in

total.

According to Proposition 3, Algorithm REMSPAN2,0

in conjunction with DOMTREEMIS2,1,2 then leads to

the following result.

Theorem 3: A 2-connecting (2,−1)-remote-spanner

can be computed in time O(1). Its number of edges

is O(n) if the input graph is the unit ball graph of a

doubling metric.

4. Concluding remarks

We have introduced the notion of remote-spanner

which is well suited for grasping the trade-offs when

optimizing the subset of links advertised in a link state

routing protocol. Most strikingly, we have proposed dis-

tributed construction of sparse remote-spanners provid-

ing at the same time multi-connectivity and controlled

stretch for any input graph. Their size is optimal up

to a poly-logarithmic factor for (1, 0)-remote-spanners,

and linear if the input graph is the unit ball graph of

a doubling metric. An interesting followup resides in

constructing sparse k-connecting (1 + ε, O(1))-remote-

spanners for any ε > 0 and k > 1. Additionally, it seems

possible to extend our results to edge-connectivity

where we consider paths that are edge-disjoint rather

than internal-node disjoint.
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