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Numerical analysis of the planewave discretization
of some orbital-free and Kohn-Sham models

Eric Cances® Rachida Chakir! and Yvon Maday'*

April 8, 2010

Abstract

We provide a priori error estimates for the spectral and pseudospectral
Fourier (also called planewave) discretizations of the periodic Thomas-
Fermi-von Weizsicker (TFW) model and for the spectral discretization
of the Kohn-Sham model, within the local density approximation (LDA).
These models allow to compute approximations of the ground state energy
and density of molecular systems in the condensed phase. The TFW
model is stricly convex with respect to the electronic density, and allows
for a comprehensive analysis. This is not the case for the Kohn-Sham LDA
model, for which the uniqueness of the ground state electronic density
is not guaranteed. Under a coercivity assumption on the second order
optimality condition, we prove that for large enough energy cut-offs, the
discretized Kohn-Sham LDA problem has a minimizer in the vicinity of
any Kohn-Sham ground state, and that this minimizer is unique up to
unitary transform. We then derive optimal a priori error estimates for
the spectral discretization method.

1 Introduction

Density Functional Theory (DFT) is a powerful method for computing ground
state electronic energies and densities in quantum chemistry, materials science,
molecular biology and nanosciences. The models originating from DFT can
be classified into two categories: the orbital-free models and the Kohn-Sham
models. The Thomas-Fermi-von Weizsédcker (TFW) model falls into the first
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category. It is not very much used in practice, but is interesting from a math-
ematical viewpoint [1, 7, 12]. Tt indeed serves as a toy model for the analysis
of the more complex electronic structure models routinely used by Physicists
and Chemists. At the other extremity of the spectrum, the Kohn-Sham models
[8, 11] are among the most widely used models in Physics and Chemistry, but
are much more difficult to deal with. We focus here on the numerical analysis
of the TFW model on the one hand, and of the Kohn-Sham model, within the
local density approximation (LDA), on the other hand. More precisely, we are
interested in the spectral and pseudospectral Fourier, more commonly called
planewave, discretizations of the periodic versions of these two models. In this
context, the simulation domain, sometimes referred to as the supercell, is the
unit cell of some periodic lattice of R?. In the TFW model, periodic boundary
conditions (PBC) are imposed to the density; in the Kohn-Sham framework,
they are imposed to the Kohn-Sham orbitals (Born-von Karman PBC). Impos-
ing PBC at the boundary of the simulation cell is a standard method to compute
condensed phase properties with a limited number of atoms in the simulation
cell, hence at a moderate computational cost.

This article is organized as follows. In Section 2, we briefly introduce the func-
tional setting used in the formulation and the analysis of the planewave dis-
cretization of orbital-free and Kohn-Sham models. In Section 3, we provide a
priori error estimates for the planewave discretization of the TFW model, in-
cluding numerical integration. In Section 4, we deal with the Kohn-Sham LDA
model.

2 Basic Fourier analysis for planewave discretiza-
tion methods

Throughout this article, we denote by I' the simulation cell, by R the periodic
lattice, and by R* the dual lattice. For simplicity, we assume that I' = [0, L)3
(L > 0), in which case R is the cubic lattice LZ?, and R* = 227Z*. Our
arguments can be easily extended to the general case. For k € R*, we denote
by er(z) = [T|~/2 €** the planewave with wavevector k. The family (ex)rer
forms an orthonormal basis of

Li(I‘,(C) = {u € L} .(R?,C) | u R-periodic},

loc

and for all u € L3(T,C),

u(z) = Z Uy ex(x) with U = (ek’u)Li =|r|~Y/? / u(z)e " d.
keR* r



In our analysis, we will mainly consider real valued functions. We therefore
introduce the Sobolev spaces of real valued R-periodic functions

Hy(T) := {u(x) = Z Uy ex(x) | Z (1+ |k[*)*|ag|* < 0o and Vk, G_j, = ﬁ;},

kER* kER*

s € R (here and in the sequel a* denotes the complex conjugate of the complex
number a), endowed with the inner products

(), = Y (1+ [k*) @ -
keR*
For N, € N, we denote by

*
VNC = E CLCeL ‘ Vk, C_ = Cg (1)
kER* | |k|< 3 N.

(the constraints c_j = ¢}, imply that the functions of V,_ are real valued). For
all s € R, and each v € Hy(I'), the best approximation of v in Vy, for any

Hj-norm, r <'s, is
Iyv = Z V€.
kER* | |K|< 3T Ne
The more regular v (the regularity being measured in terms of the Sobolev

norms H"), the faster the convergence of this truncated series to v: for all real
numbers r and s with r < s, we have for each v € H;(]."),

. LN\ .
o= Thyoll = iy fo=ov iy < (5] Nl Tl

L S—1T (e
() Ml @

For N, € N\ {0}, we denote by éﬁ\FFT’NQ the discrete Fourier transform on the
carterisan grid Gy, := Nig Z? of the function ¢ € C’%(I’, C), where

C’%(F,(C) = {u € C°(R*,C) | u R-periodic} .
Recall that if ¢ = ), . &Fk ex € C’% (T', C), the discrete Fourier transform of ¢

~FFT,N,
‘EFFT’NQ = (¢ ‘)

is the Ny R*-periodic sequence ker+ where

dTY = Y e@e ™ =02 Y Gy xe
g9 xegNng KeR*

We now introduce the subspaces

) 2 2 N,—1
. Span{ el |1 e %Z, I < f” . )} (N, odd),
WNg B ily 2m 2m (Ng inNgy/L —inNgy/L
Span< e |l € TZ’ ] < T\ @ C(e™ ¥/ e g/ =) (N4 even),



(WI{[D € Cy([0,L),C) and dlm(WI{[D) Ng), and W3D WJ{,D ® WlD ® WI{[D
Note that W3D is a subspace of Hj(I',C) of dlmenswn N3, for all s E R, and
that if N is odd

o (N, — 1
WsD—Span{ek|k€R*—Z3 Ik|oo < L”( - )} (N, odd).

It is then possible to define the interpolation projector Zy, from C%(F, C) onto
Wﬁ,lg) by [Zn,(9)](z) = ¢(x) for all x € Gy, . Tt holds

3
weasro, [2o- ¥ (5] oo )
zeGn,nr NI

The coefficients of the expansion of Zy, (¢) in the canonical basis of WJ?\’,? is
given by the discrete Fourier transform of ¢. In particular, when N, is odd, we
have the simple relation

In,(¢) = ||'/* > o (N, odd).
keR* | [kloo <3 (Y57)
It is easy to check that if ¢ is real-valued, then so is Zn, (¢).

We will assume in the sequel that N, > 4N, + 1. We will then have for all
V4N, S Vleca

/FU4NC = Z (]ég)?)MNc(ﬂC) Z/FINg(U4Nc)- (4)

IGgNgﬁF

The following lemma gathers some technical results which will be useful for
the numerical analysis of the planewave discretization of orbital-free and Kohn-
Sham models.

Lemma 2.1 Let N. € N* and N, € N* such that Ny > 4N + 1.

1. LetV be a function of Cgﬁ (T',C) and vy, and wn, be two functions of V..
Then

/INg(VUNchC) = /INQ(V)UNCMNC; (5)
I I

\ / INQ<VUNC|2>]
I

2. Let s >3/2,0<r<s, andV a function of H3,(TI'). Then,

IN

IVllzeellon. 172 - (6)

10 =Zn) Wy < CosNg TV s (7)
1/2

M. 2,00, = ([ 200V s ®)

HHQNC(INQ(V))HH; S (1+Cs,s)||v||Hj¢7 (9)



for constants Cy. 5 independent of V. Besides if there existsm > 3 and C €

R, such that |Vi| < C|k|™™, then there exists a constant Cy independent
of N. and Ny such that

Mo, (1= Zn, ) (V)| < CvNEFENG™, (10)

3. Let ¢ be a Borel function from Ry to R such that there exists Cy € Ry
for which |p(t)] < Cy(1 +t%) for all t € Ry. Then, for all vy, € Vy,,

[0 | < o (il + lonlty)- ()
r
Proof For zon, € Vapy,, it holds
L\3
In (V = — |V
/FNQ( 22N.,) xegZszr(Ng) (7)z2n, ()
I \3
- ¥ (5) @@
z€Gn, NI 9
= /FINQ(V) ZQNC (12)

since In, (V)zan. € VN, 42n. C Van, is exactly integrated. The function vy, wy,
being in Vo, (5) is proved. Moreover, as |vy,|? € Vyn., it follows from (4) that

L

S (Ng)gvu)m(x)ﬁ

a:EgNg nr

\ JE
N

A

< Wh~| ¥ (&) vt

zegn, T N9

V]|~ / o, |
I

Hence (6). The estimate (7) is proved in [6]. To prove (8), we notice that
Man. (Tn, VDIZ2, < 1n, (V)2

J 0,0 (1, ()

3 (]59) (In, (V) ()*(In,(V))(x)

IGQNg nr

. (]5) V()P

z€GN, NI 9

- / In, ([VI2).



The bound (9) is a straightforward consequence of (7):
Mo, (T, V)Ml < 1wy, (Wl < IV i + 100 = I, ) (V) iy, < (14 Co) [V ]t
Now, we notice that

SFFT, N,
Mon, (In, (V) = [T]'/? ) Vi ek
kER™ | |k|<2E N,

= Z ( Z ‘7k+NgK> €. (13)

kKER* | k| <4EN, \KER*

From (13), we obtain
2

[Man. (1 = Zne, ) (V) |3, = S a4k Y Vi
# keER* | |k|<4Z N, KeR*\{0}
2

Z (1+ |k|2)‘5 max Z ‘7kt+NgK

kER* | |k|<4Z N,
kER* | |k|<2E N, LS KeR*\{0}

IN

On the one hand,

2 4 2s
> e~ g () w

kER* | |k|<4z N Ne—oo 25 + 3
> c

and on the other hand, we have for each k € R* such that k| < iZN,,

1

~ - 1
Z Virnx| < C Z k+ N, K|
KeR*\{0} KeRr*\{0}
LN\
< CCy (27r) Ny
where )
Co= mex Y L
versllyl<i/2 £ 1y — K]

The estimate (10) then easily follows. Let us finally prove (11). Using (3) and
(4), we have

[ty = | ¥ (lﬁg)gqbqvw)ﬁ)

zegNg nr

o] ¥ (&) armmen

z€GN,NT 9

Co [ (1t low [ = Co (IE1+ o Ity )
T

IN



This completes the proof of Lemma 2.1. O

3 Planewave approximation of the TFW model

In the TFW model, as well as in any orbital-free model, the ground state elec-
tronic density of the system is obtained by minimizing an explicit functional of
the density. Denoting by A/ the number of electrons in the simulation cell and
by

m—{pzou/ﬁeﬂm, /,,_N}
r
the set of admissible densities, the TFW problem reads
1T = inf {£TTV(p), e Ry (14)

where

C . 1
ETFW () = TW/F|V\/E|2+CTF/FP5/3+/FPVIOH+§DF(PaP)-

Cy is a positive real number (Cyw = 1, 1/5 or 1/9 depending on the context [8]),
and Ctf is the Thomas-Fermi constant: Ctgp = 1—??(371'2)2/ 3. The last term of

the TFW energy models the periodic Coulomb energy: for p and p’ in Hq;l(l"),

Dr(p,p)==4x > [kI7*p} P}
keR*\{0}
We finally make the assumption that Vi°" is a R-periodic potential such that
Im >3, C >0st. VkeRY, [VioU| < Clk|~™. (15)

Note that this implies that V1 is in H™~3/2=¢(T") for all € > 0, hence in C%(T")
since m — 3/2 — e > 3/2 for € small enough. It is convenient to reformulate the
TFW model in terms of v = /p. It can be easily seen that

IT*W — inf {ETFW(U), v e Hy(T), / |v|? —N} , (16)
T

where

C ; 1
ET"W(y) = 7W/|V’U|2—|—CTF/|U‘10/3+/V10n|’l}|2+§DF(|U|2,‘U‘2).
r r r

Let F(t) = Cppt®? and f(t) = F'(t) = 3Cypt?®. The function F is in
C1([0,4+00)) N C>((0,+00)), is strictly convex on [0, +00), and for all (¢1,ts) €

R+ XR+,

70
|F(t3)ta — f(t])ta — 2/ (1D)t3 (L2 — t1)| < 57 Crr max(t}/%,15/%) |t — 1] (17)



The first and second derivatives of ETFW are respectively given by

(B (), w) s gy, = 2AHERY v, w);

<ETFWN(U)U}1,UJ2>H;1,H; = <H‘l;lrzww17w2>+4DF(UW17”U}2)+4/f/(|v|2)|v|2w1w27
r

where we have denoted by H} "W the TFW Hamiltonian associated with the

density p
Cw

TFW _
H, " = 5

A + f(p) + Vion + vaCoulomb7

where
VpCoulomb(x) = A7 Z |k’|_2ﬁkek(l‘)
keR*\{0}

is the R-periodic Coulomb potential generated by the R-periodic charge distri-
bution p. Recall that VPCOulornb can also be defined as the unique solution in

H(T) to
_AVpCoulomb — 4 <P o |1—x‘—1 /Fp>

/ VpCoulomb =0.
I

Let us recall (see [12] and the proof of Lemma 2 in [3]) that

e (14) has a unique minimizer p°, and that the minimizers of (16) are u and

—u, where u = /p?;

e uisin H;fﬂ/?_e(l“) for each € > 0 (hence in C%(T') since m+1/2—¢ > 7/2
for € small enough);

e u >0 on R3;
o y satisfies the Euler equation
C 5 :
Hﬁbigyv(u) = —TWAu + (3CTFU4/3 + vien 4 Vucz"“lomb) U= \u

for some A € R, (the ground state eigenvalue of HEOFW, that is non-
degenerate).

The planewave discretization of the TF'W model is obtained by choosing

1. an energy cut-off E. > 0 or, equivalently, a finite dimensional Fourier
space Vi_, the integer N, being related to E. through the relation N, :=

[V3E: L/27];

2. a cartesian grid Gy, with step size L/N, where N, € N* is such that
Ny, > 4N, +1,



and by considering the finite dimensional minimization problem

TEFW : TEW
INC,NQ = mf{ENq (vn.), N, € VN., / lun,
. r

S B
where
c .
EXY(on) = 5 / Vo, | + Crr / In, (Jon.|"%) + / In, (V") low. |
‘ r r r

1
+3Dr(lon 2, o, ),
Iy, denoting the interpolation operator introduced in the previous section. The
Euler equation associated with (18) can be written as a nonlinear eigenvalue
problem

~TFW,N,

VUNC S VNC, <(H‘UNC,N9\|2 — )\NC)Ng)uNcgNg’vNc>H;l7H;1$ =0,

where we have denoted by

~ C 5 . .
HEFW’NQ _ 77WA +-’Z.Ng <3CTF,02/3 + Vlon) + ‘/pCoulomb

the pseudospectral TFW Hamiltonian associated with the density p, and by
AN,,nN, the Lagrange multiplier of the constraint [.|vn,[* = N. We therefore
have

2 UN,Ng |2

C 5 ‘
_—WAUNC,N9+HNC KINg (3CTF|UNC7NQ4/3 4 V10n> + VCoulomb) uNC,Ng:| = )\NC,NQUNC,NQ-
Under the condition that Ny > 4N, + 1, we have for all ¢ € C%(T),
2
V(k,1) € R* x R* s.t. |k, |I| < %Nm /INg(q’)) eler =L,
r

so that, ﬁEEWN is defined on Vi, by the Fourier matrix
¢, Ng

FFT,N, —FFT,N,
k—

~ Ch 5 — -
[HTFW7N9 e = TWWZ(SM+§CTF(|UNC,N9|4/3) l + (Viem), _,

lung,ng |2
(i) g
+47T k‘—l|2 (1_5kl)a

where, by convention, the last term of the right hand side is equal to zero for
k=1

We also introduce the variational approximation of (16)

I]TVE‘W = inf {ETFW(UNC), UN, € VNU / |’UNC‘2 = N} . (19)
T



Any minimizer uy, to (19) satisfies the elliptic equation

C 5 :
_TWAUNC +HNE gCTF|UNC|4/3UNC “FVIOHUNC +‘/'|CoulombuNc _ )\NCUNC7

un,|?
(20)
for some Ay, € R.

The main result of this section is an extension of results previously obtained by
A. Zhou [16].

Theorem 3.1 For each N, € N, we denote by un, a minimizer to (19) such
that (UNHU)Li > 0 and, for each N. € N and Ny > 4N. + 1, we denote by

un,,n, @ minimizer to (18) such that (UNC,NgaU)Li > 0. Then for N, large
enough, un, and un, N, are unique, and the following estimates hold true

lun, —ullm;, < Cy Ngmmst/2m9; (21)

Av, — Al < CNj@moime); (22)

Yun, — ulli; <YW T < Clluy, - ulli;t; (23)
lun, N, —un, s, < Cs NYPHETDE N (24)

An.N, —An.| < CON2ZN,™ (25)

W, — IV < ON3PN;™, (26)

for all —m +3/2 < s <m+1/2 and € > 0, and for some constants v > 0,
Cse>0,Cc>0,C >0 and Cs > 0 independent of N. and Ny.

Remark 1 More complex orbital-free models have been proposed in the recent
years [15], which are used to perform multimillion atom DFT calculations. Some
of these models however are not well posed (the energy functional is not bounded
from below [2]), and the others are mot well understood from a mathematical
point of view. For these reasons, we will not deal with those models in this
article.

3.1 A priori estimates for the variational approximation.

In this section, we prove the first part of Theorem 3.1, related to the variational
approximation (19). The estimates (21), (22) and (23) originate from arguments
already introduced in [3]. For brevity, we only recall the main steps of the proof
and leave the details to the reader.

10



The difference between (16) and the problem dealt with in [3] is the presence of
the Coulomb term Dr(|v|?, |v]?), for which the following estimates are available:

0< Dr(p,p) < Cllpllzz, forall pe LL(T), (27)
|Dr(uwv,uw)] < Cllvflgz lwllgz,  for all (v,w) € (L3(T))?, (28)
[Dr(p,vw)] < Clipllez vl 2 wllzz,  for all (p,v,w) € (LL(T))?, (29)

[V ool < Cllpllpz,  forall p e LE(T), (30)
vacoulomb||H;;+2 < C’||p||H;s§$7 for all p € H;;(F) (31)

Here and in the sequel, C' denotes a non-negative constant which may depend
on I', V' and N, but not on the discretization parameters.

Using (27), (28) and the fact that f' > 0 on (0, 4+00), we can then show (see the
proof of Lemma 1 in [3]) that there exist 8 > 0, v > 0 and M > 0 such that for
all v € Hy(T),

0 < (HEY = N)o,vh s gy < Mol (32)
Bllvl, < (BT (w) = 22)v,0) s gy < Mloll3,  (33)
# # o #
and for all v € H(T') such that vllLz, = N2 and (v,u)rz >0,
Ao~ ulf < (HEY =N — ), (0~ ) o s (34)

Remarking that

ET*W(un ) — ETFW () = ((HEDFW — A (un, —u), (un, — u)>H;1,H#

1
+5 Dr(jun[* = [ul?, [un.* = [ul?)

+/ F(|UNC
T

and using (34), the positivity of the bilinear form Dr, and the convexity of the
function F', we obtain that

%) = F(jul?) = f(jul)(Jun.|* = [ul?) (35)

I, = I = BT (uy, ) = BT (w) 2 qlun, =l

For each N, € N, uyn, = /\/'1/21'INCu/||1'INCu||Lié satisfies (ENUU)Li > 0 and
||ﬁNC||Li = N2 and the sequence (Tiy,)n,en converges to u in H;;H/%E(F)
for each ¢ > 0. As the functional ET¥W is continuous on H# (T"), we have

e, =l <97t (IEFY = 1Y) < 47 (BT (@y,) - BTV () — 0.

11



Hence, (un,)n,en converges to u in H(T), and we also have
1| Cw 2 2 2 ion 2
Ave = N = | Vun P | fune P)lun. P+ | VO lun[® + Dr(fun,
r r r

Y [C;V / Vul? + / F(luP)lul + / vi°n|u|2+Dr<|u|2,|u|2>}
r r r

N.—oo

= A

] |uNC|2>]

As f(lun,|?)un, + Viiuy, + X/‘S;?llgmbuNC is bounded in L% (T), uniformly in

N,, we deduce from (20) that the sequence (un,)n.en is bounded in H;(I‘),
hence in L*°(I"). Now

Dun, = f(lul*)u+ V" (uy, —u) +

Alux, —uw) = 203 [HNC (f<|uNc

Coulomb Coulomb
VSR, — VG )

+ (1 — HN«) (f(‘u|2)u + ViOHu + ‘/|S|02ulombu>
_)\Nc (uNC - u) — ()\]\]C — )\)u:| .

Observing that the right-hand side goes to zero in Li(f‘ ) when N, goes to
infinity, we obtain that (un,)n.en converges to u in H;& ("), and therefore in
Cigl/z(F). In addition, we know from Harnack inequality [10] that u > 0 in R3.
Consequently, for N, large enough, the function uy, (which is continuous and
R-periodic) is bounded away from 0, uniformly in N.. As f € C°°(0,400), one
can see by a simple bootstrap argument that the convergence of (un,)n.en to u
also holds in H$+1/2_6(F) for each € > 0. The upper bound in (23) is obtained
from (35), remarking that

0 < / Flluy. 2) — F(|uf?) — f([uf?)(jun.|? — [uf?)
< §C 4/3 1, 14/3 2
Sy TF Fmax(|uNc| 7\U| )|UNC U\
e sl ) o, —
= g UTE M neline UNe = Uiz

and that

0 < Dr(jun.* —[ul, |u,

= |ul*) < Clllun* = ul*1Zz,

IN

2
4C (max ||UNCLOO> ||, *'LLH%Q .
N.eN #

The uniqueness of uy, for N, large enough can then be checked as follows. First,

12



(un,, Ay, ) satisfies the variational equation
TFW
Von, € Ve, ((Hjuy, 2 = ANJUNG UND ot gy, = 0-

Therefore Ay, is the variational approximation in Vi, of some eigenvalue of
Hﬁi\j’lz. As (un,)n,en converges to u in L>(T), HITuljv\iVP — H ™" converges
to 0 in operator norm. Consequently, the n'" eigenvalue of Hﬁi‘j’lz converges
to the n' eigenvalue of H;FOFW when N, goes to infinity, the convergence being
uniform in n. Together with the fact that the sequence (Ay,)n, en converges to
A, the non-degenerate ground state eigenvalue of H;FOFW, this implies that for
N, large enough, Ay, is the ground state eigenvalue of HIFELIL\:VP in Vi, and for

all vy, € Vi, such that ||UNC||L§# = N2 and (vNc,uNC)L% >0,

ET™W(uon,) = ET™W(un,) = (M N = An) (o, —un,), (on, — UN)) it

1
+§DF(|UNC|2 AR AR A

+/FF(IUNCI ) = F(lun ) = f(fun.[F)(Jon. [ = un.[7)

Y

v
> Slow. - UMH?;;

It easily follows that for N, large enough, (19) has a unique minimizer uy_ such
that (UNcaU)Li > 0.

Let us now establish the rates of convergence of [An, — Al and [lun, — ul|ms, .
First,

O [ (T

+ [ . - u>} (37)

with

_ Flun?) — £(uf?)

pp— un, | + Vool e™ (un, +u).
c

WN,

c

As up, is bounded away from 0 and f € C°°((0,+00)), the function wy, is

uniformly bounded in H;'Z_S/ >7¢(I") (at least for N, large enough). We therefore

obtain that for all 0 < r < m — 3/2, there exists a constant C, € R} such that
for all N, large enough,

A, = A< Cr (llu, =l + llux, = ully-) - (38)
In order to evaluate the Hj-norm of the error (uy, — u), we first notice that

Von. € Ve, Nlun. —ullgy, < llunve —onc ey + llowe —ullgy,  (39)
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and that

IA

THETY () = 20 (uw, = on,), (un, = oN )ty

(™) = 2w, = 0, G = 05

lun, = vn [ B
p
HUE™(0) = 20) (0 o) (o, = o ) - (40)
For all zy, € V.,
(BT (w) = 22) (un, = w), 28, 0 gy
= =2 [ [Fhun. Py, = F(ulPyun. =26 (u)lulux, = wlew,
—2Dr((un, — u)(un, +u), (un, —u)zn,) = 2Dr((un, — u)?, uzy,)

+2(>\Nc — )\)/UNCZNC. (41)
r

On the other hand, we have for all vy, € Vi, such that ||y, ”Li = N1/2,

1
/UNC(UNC —on,) =N — / un.ON. = 5 llun, = o, 132 -
r r #*

Using (17), (29), (38) with » = 0 and the above equality, we therefore obtain
for all vy, € Vi, such that ||'UNC||L§# =N1/2,

(BT () = 2) (un, = w), (. = N

HL

< 0w, = ully . = .l

(.~ + o, = ulzy) . — o ). (22
Therefore, for N, large enough, we have for all vy, € Vy, such that |lon,|| 3, =
N1/2
Jun, = on iy, < € (llun, = wllfys + llow, = ullay ) -

Together with (39), this shows that there exists N € N and C' € Ry such that
for all N. > N,

Yoy, € Vi, s.t. HUNCHL; =NY2 lu, — UHH# < Cllvn, — UHH#-

By a classical argument (see e.g. the proof of Theorem 1 in [3]), we deduce
from (2) and the above inequality that

fu, = ully <Cmin ow, = ully, < CLNZCTHEDL (43)

c
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for some constant C; . independent of N.. This completes the proof of the
estimate in the H. ;gnorm. We proceed with the analysis of the Lignorm.

For w € Liﬁ (I"), we denote by %, the unique solution to the adjoint problem

find v, € u* such that
(44)

1 ETFW N _ 9 P -
Yo e ur,  (( (u) A)z/)w,v>H#17H# (w,v>H#17H#1#,

where

ul:{veH#(F) /Fuv:0}.

The function v, is solution to the elliptic equation

C .
_TWAd)w 4 (V1on + Vu(goulomb + f(UZ) + 2f/(u2)u2 _ )\) de + 2V“C$);lombu

=2 [ £+ Drla ) Jus 5 (v (w0)0).

from which we deduce that if w € H(I') for some 0 < r < m — 3/2, then
Y € H;&“(I‘) and

[bwll gree < Crllwlly, (45)

for some constant C). independent of w. Let uy; be the orthogonal projection,
for the Li inner product, of ux, on the affine space {v € Li(F) | Jruv = N}
One has

1
uy, € H;#(F)7 Uy, —u € u’t, Uy, —UN, = WHUNC - UH%;%

15



from which we infer that

[ =, =+ [ (on, =), =)
= [~ )k, = 0 = gl — uly [ (v, =

1
= [ 0tk — 0+ gl — oly (8 [Luxca)

1 4
= [ =i =)+ g, vl

v, — ull2s

* 1 4
= (un, —u,uly, — U>H;1,HJ¢ + ZLT\/HUNc - UHLi
" N 1
= ((B™W7(u) = 2\ huy, —us U, — Wt T WHUNC - U||%i
TFW// 1
= (B () = 2\)(un. =) Yun,—ud gy, + gl = U||i;
1 7
+WHUNC - UH%;«ETFW (u) - 2)\)u, wUNL.—U>H;#17H;#
" 1
= (T ()~ 20) . — ) Y,z + ppllen. — uldy
2
b, =l | [ £t D w0
For all ¢, € Vi, it therefore holds
"
fun, —ullds = (BT () — 2, — ). Y, — N it
1 1
H((ETTV () — 2M) (un, — W) YN gyt m, T WHUNC - U||i’;‘gt
2
+opllun. = u||2Lg¢ [/ F (W) PPy, —u + Dr(u2,uwwc—u)] . (46)
r
Using (17), (29), (38) with 7 = 0 and (41), we obtain that for all ¢, € Vi, Nut,

(E™W (u) — 2X)(un, — u), UND b

< (lhuv. - uly,

. = ullzz, (lun. = ulldy + v, = ullzz) ) low . (@47)

Let us denote by H%/NC AL the orthogonal projector on Vi, N ut for the H;L
inner product and by @ZJ?VC = H%/N Aul Yuy, —u- Noticing that

9% s, < 1uy, —allmy, < 87 Mllun, — ull 2,

we obtain from (33), (46) and (47) that there exists N € N and C' € Ry such
that for all N, > N,

. =l < € (I~ . =l + . =l W, =%,y )

16



Lastly, for all v € ut and all N, € N*

NL/215/2

_ —1II 1 48
o) o=l )

o=, sl < (14

so that, in view of (2) and (45)

lune—u = %l < Clltbun,—u — T, —aull
< CNC_1||¢uN;u||H;
< ON;Mun, —ullgs.

Therefore,

v, ~uly, < € (lux. —ully + N . = ol )
< CO,ENC_(m+1/2_€)'

By means of the inverse inequality

o (r—s) -
Von, € Vv, lonelag < (L) N |low, [l (49)
which holds true for all s < r and all N. > 1, we obtain that
lun, = ullms, < Cs N msH/279 forall 0 <'s <m+1/2. (50)

To complete the first part of the proof of Theorem 3.1, we still have to compute
the H "-norm of the error (un, —u) for 0 < r < m —3/2. Let w € Hj(T).
Proceeding as above we obtain

JLwts, = = (T @) = 220, = 0. Wy )y
+<(ETFW//(u) —2X)(un, —u), Yy — H%/NCQUJ_?/)QU>H;1)H;1¢
2 !
# oy, —ulty | [ 7200+ Dre(a2 )

1
_WHUNC —u||%i/ruw (51)

Combining (33), (45), (47), (48), (50) and (51), we obtain that there exists a
constant C' € Ry such that for all N, large enough and all w € H(T'),

[ wtun =)

IN

- 1
C" (lun, =l +Ne™ D, = ullg ) lwlry

< O—r,e ch(m+r+1/27s)||w“H;'

17



Therefore

w(un, —u)
lun, — UHH_T — sup L < C’_TysNC*(m+r+1/276), (52)
# o weHL(M\{0} [[wl| 5,
for some constant C_, . € R independent of N.. Using (38), (43) and (52), we

end up with
Ay, — | < C. N (@m=1=9)

3.2 A priori estimates for the full discretization.

Let us now turn to the pseudospectral approximation (18) of (16). First, we
notice that

C" .
TWHVUNC,NgH%i—||V1°nHL°°N < EXV(un,.n,)
< BV
< CTFN5/3‘F|_2/3 + ||Vi0nHLooN7

from which we infer that uy, y, is uniformly bounded in Hj(T'). We then see
that

_ C ion
Aven, = N 1[;V/|VUNC,N5|2JF/ZN_(,(VO lun,.n, I* + f(lun..n, ) un,, v, %)
r I

De(fun.m, P luno, |2>] .

Using (6), (11) and (27), we obtain that Ay, n, also is uniformly bounded. Now,

Aunen, = 205 Tn, (In, (f(funey,P)unn,)) + 20w Ty, (Zn, (V"un.n, )

-1 Coulomb —1
+2C 1IN, (V\UNC,N_QWNC,NQ) = 20W AN, N, UN,N, s

and we deduce from (4), (6) and (8) that

1/2
HHNC (In, (f(‘uNc,Ng|2)UNC,Ng))||Li < (/F (INg(f(\UNC,NgF)))Q |UNC.,N9|2>

L

3
— > (N) Funen, (@)2)? lun, v, ()]

ze€GN, NI 9

IN

z€GN, NI 9

) 1/3
= LCrrllun, N, L/oo||uNmNg||%;a

3
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and that

M, (In, (V"un.n,)) ez < ey, (Zn, (VIun,y, ) ez
' 1/2
< ( / zNg<|v1°“|2|uNc,Ng|2>)
T
< ||Vi0n||LooN1/2.

Besides, using (30),

Iy, (VCeiomun, v, ) g, < IV, g
Coul
< Nl/QHV Ic\),uoml ||L°°
<

N, v, 1

As un,,n, is uniformly bounded in H%é (T"), and therefore in Li& (I"), we get

/
2 2
huve iy = (v, 135, + I8unx, 13:)
<

C (1 + llun,,N, ||1L/o§)

c(1+ [ ||1/3).

IN

Therefore uy,,n, is uniformly bounded in H;E(F), hence in L>°(R3).

Returning to (53) and using (9), (15), and a bootstrap argument, we conclude

that upy, n, is in fact uniformly bounded in H7/2+6 (1).

Next, using (36),

%HUNC,Ng - UMH?@ < E™W(un,n,)— ET"V(un,)
— ETFW(UNC,N ) ETFW( Nc)
+ / (1= T, )(V)) (o, 2 — . )
T
+ / (1= Zn,) (Flun. v, 12) — F(lun.|?))
< / (1= Zn, ) (V) |2 — . )
T

“)-

+ /F (1= Zn, ) (F(fu,., *) — F(

Let g(t,t') = 7F(t/2t),_f(t2)

from zero; besides, both uy, and uy, N, are uniformly bounded in H

. For N, large enough, uy, is uniformly bounded away
7/2+E (F) )

Therefore, g(un,,un,,n,) is uniformly bounded in H/ 7/ 2+6( I'). This nnphes that
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—-7/2

the Fourier coefficients of g(un,,un,,n,) go to zero faster that |k , which in

turn implies, using (5) and (10), that

[ 0= T ), ) - F<|uNC2>>\

/r(l —In,) (9(un,,un,,N,)) (un, N, —un,)

< [t (0= Zw, ) (gCumes unevg )l v, —unc iz

< CNZPN;|un, N, — un,llzz, - (54)

On the other hand,

[ =T e, P = e )
< [Man (0= Zn, ) (V)22 [lun,. n, + un |z lun, v, —unllzz,
< CN}2N;™|un, N, — un |2,
Therefore,
lunen, —un iy, < CNP2NGT/2 (55)

We then deduce from (55) and the inverse inequality (49) that (un,, N, )N.,N,>4N.+1
converges to u in H%(I‘), and therefore in L>°(R3). It follows that for N, large
enough, uy, n, is bounded away from zero, which, together with (53), implies
that (un,,n,)N.,N,>4N,.+1 is bounded in H;;H/Z_E(F). The estimates (54) and
(55) can therefore be improved, yielding

/F(l —In,)(F(lun,n,|?) — F(lun,|*))| < CNf/zN;(mH/Q%)||UNC,N9—UNC||L;

and
June. Ny —un |y, < CNZPNS™.

We deduce (24) from the inverse inequality (49). For N, large enough, un, v, is

bounded away from zero, so that f(|un,,n,|?) is uniformly bounded in H;ZZH/Q*E(F).

Therefore, the k™ Fourier coefficient of (V" + f(|un, n,|?)) is bounded by

Clk|~™ where the constant C' does not depend on N, and Ny. Using the equal-

ity

AN.N, = AN, = NI [((Hﬁfvﬁvz = An)(Une N, = un.)s (UneN, = UND) ot a,
- [A=Za )V + Fuve, w2

+Dr(lun, n, I* lun, n, 1> = [un, [?)

4 [, P) = £ P, .
r
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(24) and (29), we obtain (25). A similar calculation leads to (26).

Lastly, we have for all vy, € Vi,
BN Y (on,) = Exy Y (un,.v,) (56)
= (A, = v, ) (on, = unen,), (0n, = unen,)) g

1
+5Dr(low, * = lun, v, % [on, |? = Jun, n, 1)

2 L\
+ 0y (N) (F(lon, (@)*) = F(lun,(@)*) = f(Jun. (@)[*) (Jon, (@) = Jun, (2)]*))
€GN, NI g
> ((Has™,, = AN, (on, — un,n, ), (o, = UNeN, ) bt (57)

S TFW,Ng 5/ TFW
H|UNC,N9|2 HPO

to zero in operator norm. Reasoning as in the proof of the uniqueness of uy,,
we obtain that for N, large enough and Ny > 4N.+1, we have for all vx, € Vi,

such that ””Nc”Li = N2 and (vNC,uNC)Li >0,

As un, N, converges to u in Hi(F), the operator converges

>

-2

(Hax e =ANeN,) (0N, —un, N, )s (UN,~UN.N, ) =1 11

2
UN¢,Ng P %& ||UNc_uNc;NgHH#'

Thus the uniqueness of ux, n, for N, large enough.

4 Planewave approximation of the Kohn-Sham
LDA model

The periodic Kohn-Sham LDA model with norm-conserving pseudopotentials [14]
leads to the constrained optimization problem

I%S = inf {E¥5(®), ® € M} (58)
where

M= {<I>—(¢>1,~~ Lon)" € (Hy M)V | /F¢i¢j —51-]},

N being the number of valence electron pairs in the simulation cell, and where

s B N - N | | DA
E (q)) - Z r ‘V¢z| + . p@vlocal +2 Z<¢z|‘/nl|¢z> + J(P@) + Exc (,Oq>).
i=1

i=1 (59)
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The density pg associated with @, the Coulomb energy J(pg) and the LDA
exchange-correlation energy ELXP*(pg) are respectively defined as
N
pol@) = 23 |ou(a)2,
i=1

1

—

Jps) = 5Dr(pa,pe) =27 > 1wkl
keR*\{0}
EPA(pg) = / DA (o) + pa(2)) diz,

where p. > 0 is the nonlinear core correction and where eXPA(p) is an approxi-

mation of the exchange-correlation energy per unit volume in a uniform electron
gas with charge density p [8].

The local and nonlocal contributions to the pseudopotential model the inter-
actions between valence electrons on the one hand, and nuclei and core elec-
trons on the other hand. The local contribution is represented by a function
Viocal € C% (T") (and therefore defines a bounded self-adjoint operator on Li(l"));
the nonlocal contribution is represented by the bounded self-adjoint operator V)
defined on L% (T) by

M
an(b = Z(Xj7 ¢)L§# Xj»
j=1

where the functions x; are regular enough functions of Li (I). In all what
follows, we will assume that

Im >3, C > 0s.t. Yk € R*, |(Vioal),| < Clk|™™ (60)
and that
VI<j<M, Ve>0, x;e€Hy **7D). (61)

Troullier-Martins pseudopotentials [14] constitute a popular class of pseudopo-
tentials for which the Fourier coefficients (Viocal), decay as |k|~™ with m = 5.

The function p — eXP*(p) does not have a simple analytical expression. Al-

though this function is of class C>° on the open set (0,+0c0), DFT simulation
softwares make use of approximate functions which are C* on (0, p,)U(px, +00)
but only C! in the neighborhood of the density p. := 3/(47) (atomic units) [8].
In order not to deteriorate the convergence rate of the pseudospectral approx-
imation, it is better to ressort to more regular approximations of the function
ePA (see [5]). We will assume here that

the function p — eXP2(p) is in C([0, +00)) N CIM((0, +00)), (62)

XC
deLDA

LDA _ XC —
exc (O)_Oa dp (0) 07 (63)
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(where [m] denotes the integer part of [m]) and that there exists 0 < o < 1 and
C € R, such that

d2elDA 3 LDA .
Vp € Ry \ {0}, =) +|p—5— ()| <CA+p"). (64
dp dp
Note that the Xa exchange-correlation functional (eX®(p) = —Cxp*/?, where

Cx > 0 is a given constant) satisfies the assumptions (62)-(64) with o = 1/3.
Let us also remark that (62) and (64) imply that

elDA ¢ ¢le([0,L]) for each L > 0, (65)
a property we will make use of below. Lastly, we assume for simplicity that

pe € CF(I). (66)

It is easy to prove that under assumptions (60)-(66), (58) has a minimizer ®° =
(89, ,¢%)T with density p° = pgo. The regularity assumptions on Vigcal,

on elPA and on the functions y; allow to state that the minimizer ®° is in

[H%(F)]N, and even in [H;L+1/2_€(F)}N for any € > 0, if at least one of the
following conditions is satisfied: eXPA € C™1(]0, +00)) or po+p° > 0in R3. The
former condition is not satisfied for usual LDA exchange-correlation functionals.
On the other hand, it is satisfied for the Hartree (also called reduced Hartree-
Fock) model, for which eEP# = 0. The latter condition seems to be satisfied in

Xc
practice, but we were not able to establish it rigourously.

Let us introduce the Kohn-Sham Hamiltonian

HKS _ _EA +(w VCoulomb + de)%(]:DA 0 Vv
o 9 local 1 V0 dp (pc+p°) ) + Var.
= h+ Vpo
where )
h = _§A + Viocal + Vnh (67)
and
_ 17Coulomb de)lg(]:)A 0
Vo =V5 + “dp (pc +p°). (68)

We notice that EXS'(90) = AHIP 0 in (H,' (T'))" and thus the Euler equations
associated with the minimization problem (58) read

N
VI<i<N, HESe =D 260,
Jj=1
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where the N x N matrix A} = (AY;), which is the Lagrange multiplier of the
matrix constraint fr ¢i¢; = 05, is symmetric.

In fact, (58) has an infinity of minimizers since any unitary transform of the
Kohn-Sham orbitals ®° is also a minimizer of the Kohn-Sham energy. This is a
consequence of the following invariance property:

VO e M, YU cUN), Ude M and EX5(UD) = EXS5(®),  (69)
where U(N) is the group of the real unitary matrices:
UN) = {U e RVN | UTU =15},

1n denoting the identity matrix of rank A/. This invariance can be exploited
to diagonalize the matrix of the Lagrange multipliers of the orthonormality
constraints (see e.g. [8]), vielding the existence of a minimizer (still denoted
by ®°) with same density p°, such that

M) = elof, (70)

0 0 0
for some € < ey <o <€y

Remark 2 The Kohn-Sham Hamiltonian Hffos is an unbounded self-adjoint op-

erator on Li(l"), bounded below, with compact resolvent. Its spectrum therefore
s purely discrete. More precisely, it is composed of an increasing sequence of
eigenvalues going to infinity, each of these eigenvalues being of finite multiplic-
ity. It is not known whether €Y, ..., €} are the lowest eigenvalues (counted with
their multiplicities) of H?OS (Aufbau principle). However, it seems to be most
often (though not always) the case in practice. On the other hand, the Aufbau
principle is always satisfied for the extended Kohn-Sham model, for which the
first order optimality conditions read

HEP0) = €0 ?

“+oo
Px) =23 niléd (@)
i=1

/¢2¢2=5U, 1<i,j <400

r e

nizlz’fe?<ep, ni:Oz'fe?>eF, Ogmglifegzep, ZWZN;
i=1

where e is the Fermi level (see []] for details). In this article, we focus on the
standard Kohn-Sham model with integer occupation numbers. We do not need
to assume that the Aufbau principle is satisfied, but our analysis requires some
coercivity assumption on the second order condition at ®° (see (73)).
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For each ® = (¢, -+ ,¢n7)T € M, we denote by

Tart = {(n, -+ )7 € LDV | [ 0wty + 0y =0}
the tangent space to M at ®, and by
vt = fo = o) e @)Y | o o).
Let us recall (sce e.g. Lemma 4 in [13]) that

ToM = AP @ oL,

where A = {A € RNV | AT = —A} is the space of the N x A antisymmetric
real matrices.

Since the problem we are considering is a minimization problem, the second
order condition further states

VIV € Too M, ago(W, W) > 0,

where
" N
ago (¥, Y) = EKS (@)W, 1) = e /wivi (71)
i—1 r
N N
= Z - 6 ’(/}zyvz> ;17}1# +4 Z DF((b?ww(b?Uj)
i=1 i,j=1
2 LDA
"y / (pe + 1°) 8000, (72)
3,j=1

Tt follows from the invariance property (69) that
ago (U, V) =0 for all ¥ € AD°.

This leads us, as in [13], to make the assumption that ago is positive definite

n ®%4 5o that, as in Proposition 1 in [13], ago is coercive on ®%- (for the
H # norm). Thus, in all what follows, we assume that there exists a positive
constant cgo such that

VU € % g0 (T, W) > c¢o||\1/||§,#. (73)

In the linear framework (J = 0 and ELPA = 0 in (59)), this condition amounts
to assuming that there is a gap between the lowest A*® and (N +1)%* eigenvalues
of the linear self-adjoint operator h = —fA + Viocal + Val-
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The planewave approximation of (58) reads
158 y, = inf { EXS(@w,), @n, € VI N M}, (74)

where

N N
KS _ 12 . i
B = % L1962+ [ otioca + 23 0i1Val6)

i=1

+J(po) + / T, (P (pe + o, p)). (75)

Here N, is a given positive integer, equal to [\/2E. L/27], E. denoting the so-
called cut-off energy, and Ny > 4N, + 1 is the number of integration points per
direction used to evaluate the exchange-correlation contribution. The energy
E]If,f(@) is defined for each ® € M. For ® ¢ V]GZ NM, Ilan, ps = pa, so that on
this set, EJI\(,E differs from EXS only by the presence of the Fourier interpolation
operator Iy, in the exchange-correlation functional. Let us mention that in
practice, the terms involving the local and nonlocal components of the pseu-
dopotential are also computed by some interpolation procedure. However, these
terms are calculated using spherical harmonics and a very fine one dimensional
radial grid, so that the resulting integration error is usually much smaller than
the interpolation error on the exchange-correlation term. Note that, in addi-
tion, the pseudopotential gives rise to linear contributions that can be computed
very accurately once and for all (and not at each iteration of the self-consistent
algorithm). We postpone the analysis of (74) to a forthcoming article [5], and
focus here on the variational approximation

155 = inf {E¥S(dy,), @y, € VI N M) (76)
of (58). The unitary invariance of the Kohn-Sham model must be taken into
account in the derivation of optimal a priori error estimates. One way to take

this invariance into account is to work with density matrices (see e.g. [4]). An
alternative is to define for each ® € M the set

M?® = {\1/ EM|||¥ -2 = min |[|[UT — D, }
# UeU(N) #

and to use the fact that all the local minimizers of (76) are obtained by unitary
transforms from the local minimizers of

155 = inf { ES(@,), n, € VI nM™'}. (77)
The main result of this section is the following.
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Theorem 4.1 Assume that (60)-(66) hold. Let ®° be a local minimizer of (58)
satisfying (73). Then there exists r° > 0 and N? such that for N. > N9, (77)
has a unique local minimizer ®Y; in the set

{@Nc eV nM® | By, — 8|y < TO}.

If we assume either that P € CI™I([0,400)) or that pe + p° > 0 on T, then
we have the following estimates:

1%, = @llm;, < Co NG mmst1/2e), (78)
€0y, — €] < CN G179, (79)
VIO, — @ <IND -1 < Cflofy, — @7, (80)

forall—m+3/2 < s <m+1/2 and € > 0, and for some constants v > 0, Cs >
0, C. > 0 and C > 0, where the €?7Nc ’s are the eigenvalues of the symmetric
matric A?VC, the Lagrange multiplier of the matriz constraint fr i N, Oj,N, = 0ij-

4.1 Some technical lemmas

For ® = (¢1,--- ,¢n)" € (Hy(D)N and W = (¢1,--- , )" € (Hy(D)N, we
denote by Mg ¢ the N’ x N matrix with entries

My )i Z/Fdliqﬁj.

The following lemma is useful for the analysis of (77). We recall that if A
and B are symmetric N X N real matrices, the notation A < B means that
2T Ax < 2T Bz for all z € RV,

Lemma 4.2

1. Let® € M and ¥ € M. If My g is invertible, then Uy o = M{ o(My o MJ ) 7/?
is the unique minimizer to the problem miny ey UV — q)”Li&'

2. Let ® € M. Then
M® = { (1 = M) 20+ W | W € &%, 0 < My < 1}
where 15 denotes the identity matriz of rank N .
3. Let ® = (¢1,--- ,on)T € M. If N, € N is such that

dim(span(nNcgbla o 7HNC¢N)) = N7
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then the unique minimizer of the problem ming , cyx qaq [P, — (I)”Li is
< c

M = (Mg omy.e) Ty, ®. (81)
In addition, 771/\\,/5@ € VIGZ nM?®,
I — Bl < V2T, @ — @5, (82)
and for all N, large enough,

|74 ® — Bl gy < @]y [Tn,® — @25 + [Tx, @ — @y (83)

4. Let N, such that dim(Vn,) > N and @y, € VJGZ NM. Then

VY AmENe = {(1N — My, wy)?®n, + W, | Wi, € VI N®E 0 < My, wy, < 1N} .

Proof In order to simplify the notation, we set M = Mgy . For each U €
UWN),
U — (I’H%i = 2N — 2Tr (MU).

Any critical point U of the problem

Tr (MU) (84)

max
UERN XN | UTU=1,

satisfies an Euler equation of the form AUT = M for some symmetric matrix A.
Besides, Tr (MU) = Tr (A) and A2 = MM”. Any maximizer U of (84) therefore
satisfies M = (MM7T)Y/2UT. Consequently, if M is invertible, the maximizer
of (84) is unique and reads Uy o = MT(MMT)~1/2. Tt also follows from the
definition of the matrix M that ¥ = M® + W with W € ®&. Thus,

UgoW® = MT(MMT)'2M& + W,
with W = Uy oW € &L,

Let us now prove the second statement. Each ¥ € (H#(F))N can be written

as W = M® + W for some matrix M € RNV and some W € &, A simple
calculation leads to

/Fﬂ)ﬂ/)j = [MM™"];; + [Mww)i;.

Hence ¥ = M® + W € M if and only if MMT + My w = 1. In addition,
T € M?® if and only if ¥ € M and Uy e = MT(MMT)=1/2 = 1,, that is to
say if and only if M is symmetric, 0 < My yw < 1y and M = (1y — Myw)"/2.
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Let (Xu)1<u<dim(vy,) be an orthonormal basis of Vi, (for the Li inner product)
and let C' € RI™(VNe)XN be the matrix with entries

é,u,i = / d)ZX,LL
r
Note that
dim(V.)
HNC¢i = Z Cu,ix;u (85)
p=1
For all ®n, = (¢n, 1, - ,(;SNC,N)T e VJGg N M, each ¢y, ; can be expanded as
dim(Vy,)
(chﬂ' = Z Cm'X;u (86)
p=1

where the matrix C' = [C,,;] € RIM(VN)XN gatisfies the constraint CTC = 1.
The expansions (85) and (86) can be recast into the more compact forms

Iy ®=C"x and @y =CTx,

where we have denoted by X = (x1,--- s Xdim(viy ))T. A simple calculation
then leads to _
[®n, — cI>||ii =2N - 2Tr (CT0). (87)

Reasoning as above, we obtain that the unique solution to the problem

max Tr (CTC)

CeRdim(VNc)xN |CTC=1y

is C = C(CTC)~/2. Note that the rank of the matrix C' is A" provided that
dim(Vy,) is large enough so that the matrix CTC is invertible provided that
dim(Vy, ) is large enough. As a consequence, the unique solution to the problem
ming . evy nm |PN, — (I)”Li is '@ = (CTC)~Y/2CTx = (CTC)~'/ 1y, ®.

It is then easy to check that CTC = My, o1y, e Hence (81). Then, for all
U € RV*N such that UTU = 1,
1/2
IUm® — @|Fs = 20V = Tr (UMK .11, 5):

and the same argument as above leads to the result that this quantity is min-
o o 1/2 1/2 1/2 —1/2
imized for U = MHNC<I>,HNC<I>(MHNC<I>,HNC<I>MHNC<I>,HNC<I>) /
ﬂ'%fb c M?.

We also infer from (87) that

= 1n. Therefore,

I ® — B||7, = 2N —2Tr ((57‘5)1/2) 9Ty (1N B (5T5)1/2> '
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Besides, an easy calculation leads to
Iy, ® = @2, = Tr (1N - éTé) .
Using the fact that
0< (1N - (éTé)l/Q) < <1N - (éTé)l/Q) (1N + (éTé)l/Q) — 1y - CTC,
we obtain
It @—@[3; = 2T (1 = (CTE)/?) < 2T (1 = CTC) = 2|y, >3 .
Hence (82). We also have

ImNi® = @y, < (TP — Ty, @, + [Ty, @ — @y

I((Mity, @11y, 2) 72 = L) N, @[l gy, + Ty, @ — @]y,

< My, oy, 0) "2 = I le Ty, @[l + [Ty, @ — @[5
< (Mg, amy,0) "2 = Wllel @l + 1T, ® = @l
where || - |p denotes the Frobenius norm. We then notice that

Mny ony,e =1y — My, o—o 11y, o—o-
Consequently, for N, large enough,
[(Mny,emy.e)? = Inllr < [ My, o-omy,e-olr < [Ty, ® - q’Hii

Therefore (83) is proved.

Lastly, the fourth assertion easily follows from the second one. O

Lemma 4.3 Let

K={We LDV |0< Myw <1n},
and S : K — R/SVXN (the space of the symmetric N x N real matrices) defined
by SW) = (Iy — Mw,w)? — 1.

The function S is continuous on K and differentiable on the interior I% of K.
In addition,
YW e K, |[SW)llr < [[WIIZ: , (88)
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and for all Wy, Wy, Z) € K x K x (Li(F))N such that ||W1HL§¢ < 1 and

IWallzs <3,
SOV = SWa)lle < 2(1Willzg + [ Wall iz Wi = Wallzz., (89
I8/ W) = SOW2)- Ze < AIWs = Wallgg 1] (90)
I(S"WZDlle < 41212, o)

Proof Diagonalizing My and using the properties of the function ¢ +— (1 —

t)1/2 — 1, we see that S is continuous on K and differentiable on K , and that
IS)le < [|Mww e < [WIZs -

Hence (88). As

1 1
S(W)+ 55(W)2 = 5 Mww,

we have for all W € IO(,

S'W)-Z+ % [SW)(E' (W) - 2) + (S (W) - 2)S(W)]

1
=5 Mw.z + Mzw].
Denoting by A = §'(W) - Z, we deduce from the above equality that
IAIE + T (A2S(W) < Allp | Mw.zlle < |AIp W 22 1Z]] 2 -

As [Te(AZS(W))] < [AIEISW)l2 < [IAIRISOV)le < (AW, we fi-
nally obtain the inequality

AR (= IW1I72) < W22 ]I Zls, (92)

which straightforwardly leads to (89) under the conditions ||[WWq|| 13, < 1 and
[Wallzs, < 3. Lastly

(§'(Wa) = S'(Wh)) - Z + % [S(Wo)((S8'(Wa) = S'(Wh)) - Z) + (8" (W2) — S'(Wh)) - Z)S(W>)]

. [(S"(Wh) - Z)(S(W2) = S(W)) + (S(W2) = S(W))(S'(Wh) - Z)] = - [Mw,—w,.z + Mzw,-w],

+2 2

so that still under the conditions HW1||L§¢ < 1and ||W2HL3% <4
, , 28
I(8"(W2) = S" (W) - Zllp < W2 = Willoz [1Z]] 2 -

Hence (90). Lastly, taking Wy = Wy +¢Z in (90) and letting ¢ go to zero, we
obtain (91). O
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Lemma 4.4 Let ®° be a local minimizer of (58) satisfying (73). Then ago
defines a continuous bilinear form on (H#(F))N X (H#(F))N, and there exists
N} such that for all No > N,

It @0 — @0, < 1, (93)

ago (18" — @°, m1 90 — 0°) > 2wl @” — 003, . (94)

Cpo
2

VW € [rni @01, age (W W) > == WG, . (95)

In the sequel, we denote by Cgo the continuity constant of ago, i.e.

V(U W) € (Hy(@)N)?, laso (9, )] < Cool W] gy [¥']] s (96)

Proof Estimate (93) immediately results from the closeness of W]Q,’i o0 to @Y.
Using the fact that W% 0 ¢ M®’ (see Lemma 4.2, point 3), we get

e — 0 = S(W)e’ + W (97)
with W € [®°]*-, from which we derive, using (88), that

ago (Tt @0 — @ 100 — @%) = ago(W, W) + 2age (W, S(W)2°) + ago (S(W)2°, S(W)2?)
Cpo0 HWlligﬁ = 2Cq0 [W g, ||<I>°||H;ﬁIIWIIii - C«poIIWH‘i; ||<I>°|I?J;E

v

v

(cw0 — 2Ca0 [ W23 18 s, — Caol W25 8012, ) W,

As by (82), [|[mp®Y — (I’OHLi goes to zero when N, goes to infinity, so does

||WHL§#. Using again (88), we deduce from (97) that ||WHH# v [t @0 —

<I>0HH;&. Hence (94).

c

Finally, for cach W € [r3! @14, W* = W — My 50®° belongs to [@°]*-. Re-
marking that My go = My g0 _rat g0, We derive

[Mw.gollr < [My,g0_rptaollr < e(Ne)[|W][ 12,
where (N,.) = ||®° — WJ/\‘,’l (I’O”Li — 0 when N, goes to infinity. Therefore,
IW = Wy, < NI s W
As

ago (W, W) = ago(W*, W*) + 2ag0 (W*, W — W*) + age(W — W*, W — W*),
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we obtain

ago (W, W) > cao[W [, = 2Ca0 W[y [[W = W[y, — Cao[W = W31
Cpo 2
> 1
> g,
for N, large enough. O

Lemma 4.5 There exists C > 0 such that
3
1. for all (Y1, T2, T5) € ((H#(F))N) ,

" " a
(B (@ 4 1) = BS"(0)) (X2, 5)| < € (Tl + 1Tl ) I0lliry, sl

2. for all Yy € (HL(T) N LET)N and (T2, T3) € ((H#(F))N)z,

" " —a a
| (BRS"(@° 4+ 11) = BXS"(@)) (Y2, To)| < € (14 I02l3=) I0aligs, 1 2lliry, 175 s

Proof Let us denote by
reo(Y1, T2, Ts) = (BF"(00 4 11) = E"(@)) (T2, Ts)

Splitting rgo(Y1, Yo, T3) in its Coulomb and exchange-correlation contribu-
tions, we obtain

70 (Y1, Yo, T3) = rGo™o™P (Y1, Ta, T3) + 155 (Y1, T2, T3),

with

N
rgetom (T, T2, T3) = 16 Z (Dr(¢{v1,5,v2,jv3,5) + Dr(Yve,i, v1,50s,5) + Dr(¢jvs,i, v1,jv25))

ij=1
N N
+16 Y Dr(v1v,4,v1,5035) +8 Y Dr(vf 5, va5035),

ij=1 ij=1

and

55 (Y1, Yo, Ts) = 0 (T4, Lo, T3) + 156 (L1, To, Ts),
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where

1 deLDA de LDA
rpo (Y1,12,T3) = 4/ < dp (pec + paosr,) — d (pc + pao ) sz Ui |
r

d2eLDA N N
16/ { d;; (pe + p<1>0+“r1 Z ¢5 + v ’U2 i Z((;S? + Ul,z‘)US,i
F —

i=1

e (Y1, T2, Ts)

d2 LDA

;;; (pc + pao) <Z $jvs z) (Z ¢?U3,i> } :
i=1

Using (29), we obtain that there exists a constant C' > 0, such that for all
3
(T1, 702, Ts) € ((H#(F))N) :

[rE8 o (01, 02, )| < C (Il + 1 Ta3s ) Il I Cally (98)

Using (64), we get

deLDA deLDA B
‘ < C(|paosr, — pao| + o paorr, — paol®)

2 (et panir,) = (o + pun)

< C{p%/f + Pn],
from which we infer
35 (1, T, Ts)] < c/F (5302 + v P42 L2 (99)

Introducing the function
O(t) = % 4+ 17,

. 2
we can rewrite 730" (Y1, T2, T3) as

o2 dQeLDA N N
rpo (T1,T2,T3) = 16/F{ i (pe + pa()) (Z ¢i(1)U2,z‘> (Z ¢i(1)v3,i>
d2e LDA N
7, *o—(pe + pa(0)) (Z ¢i(0)v2,i> Z¢i(0)v3,i>:|

16// [dQ e (pe + pas)) (Z @(t)vz,i) (i qus,z)
2 LDA

d*e; N
s dp s—(pc + pa(r)) <ZU1 i'UZ,i>

3 LDA N
+2 d;?, (Pe + pat)) Zd’i(t)vl,i
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Thus, using again (64), we obtain

1
xc, 2 1/2 1/2 1/2
P2 (11, T, T3)| < c// (14 (pe + po) ™ pa XL o o dt

1/2 1/2 1/2 1/2
C// (1 +p<b(t) p‘i’/(t)pT/1 PT/2 pT/s dt.

IN

Now

1 ) 1 N , N N a—1/2
a—1/2 —1/2 0 0 2 2
/0 Pay dt =2° //0 (z;qb +2tz;¢m,i+t Z;%) dt

a—1/2

N 0 )2 2
1 j - . N N
poe [ (S (ZEs oo +<2¢> <ZU%> B
N N K
0 \i=1 Zi:l U%,i Zi:l U%,i i=1

1 N 2a-1 , pr a—1/2
: I 4 1 —
< 20471/2/ t+ Ez:l (bzvl,z Uzi dt < « 1/2.
B 0 Zi\; v3, ; : = q2er12Pn
Therefore,
xc,2 mmal/?) 1/2 1/2
LTl < 0 [ (o Foe) A2 (00)
Gathering (98), (99) and (100), we obtain the desired estimates. O

Lemma 4.6 Let ®° be a local minimizer of (58) satisfying (73). Then there
exists C > 0 such that for all Ve M,

EXS(0) = E¥S(0%) 4 2440 (U — ®°, ¥ — &°) + R(V — @), (101)

with

R — )] < O (1[0 - 0I5 + v — 2|1}, ). (102)

Proof Using the fact that the first order optimality condition (70) also reads
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[EXS"(@0)); = 4HES¢? = 4e0¢) in H ' (I'), we have for all ¥ € M,
1
EXS(U) = ESS(9%) + (B (9%),w — )t gy, + 5EKS”(@O)(\IJ — 0¥ — Y

+ /1(EKS”(<I>° + 5(T — ®%)) — EXS"(3%))(T — 00, ¥ — %) (1 — s) ds
0

EXS(90) +4Z /¢0 ) +2EKS”(<I>°)(\I' o0, v — ¢°)

+ / (BXS" (20 4 s(T — @0)) — EXS"(@%))(T — 00, ¥ — °) (1 — s) ds
0

= EXS(@%) — QZ / EKS”@O)(\D 0, W — @)

+ / (EXS" (@0 + s(¥ — °)) — EXS"(9%))(¥ — @°, & — °) (1 — s)ds
= EX5(0%) 4 2aq0 (¥ — ®°, ¥ — ®°) + R(V — @),

where

R(Y) = /Ol(EKSH(CI)O +8T) — EXS"(@9)) (T, 1) (1 — s) ds.

The estimate (102) then straightforwardly follows from Lemma 4.5. O

4.2 Existence of a discrete solution

In this subsection, we derive, for N, large enough, the existence of a unique

local minimum of the discretized problem (77) in the neighborhood of 7! ®°.

Let
By, = {W"e e Vi n[ap @14 |0 < Mypwe e < 1},

and €y, be the energy functional defined on By, by
En,(Whe) = BXS (a3 @0 + S(WNe)nd1 @0 + Whe) . (103)
According to the fourth assertion of Lemma 4.2, the application

C: By, — VN M N2’
Whe s a1 @0 + SWhe )t el + whe
defines a global map of V/\X N M ™Ve®" guch that C(0 (0) = 74! ®°. Therefore the

minimizers of

inf{EKS(beC), &N e VY mMﬁvﬁ@‘)} (104)
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are in one-to-one correspondence with those of the minimization problem

inf {Ex, (W), WNe € By, }. (105)

In a first stage, we prove that for N, large enough, (105) has a unique solution
in some neighborhood of 0. As a consequence (104) has a unique solution in
the vicinity of 74/ ®® (for N, large enough). In a second stage, we make use of
the unitary invariance (69) to prove that for N, large enough, (77) has a unique
solution in the vicinity of ®°.

Lemma 4.7 There exists r > 0 and N? such that for all N. > N2, the func-
tional En, has a unique critical point Wé\’c in the ball

{Wh € VR [t a1 | W gy <7}

Besides, WONC is a local minimizer of (105) and we have the estimate

3208,
c%o

W[, < It @ — @0l g, (106)

Proof We infer from Lemma 4.6 that
En.(WNe) = E*5(0° 4 (my! @0 — @%) + S(WNe)mp ! @0 4 Whe)
— [pKs ((I)O)
+2ag0 (73 @0 — %) + S(WN )10 + Whe, (m{1 20 — @) + S(WNe )y @0 + W)
+R ((my' @0 — @°) + S(WNe)my @0 4 Whe)
= EX5(0%) + 2a00 (W, W) + dago (W, (my @0 — @7))
F2ag0 (141 D0 — 30, 7 M B0 — 00) + Ry (W)
where
Ryn.(Wn,) = 2ag0(SWN )0, S(WNe)ry! @)
+ago (SWN )t @0, (mi1 @0 — 9°) + W)
+R ((ryt @0 — @°) + SWN )10 + W) .
Thus,
YW € By,, En,(WNe) = En.(0) + 2ag0(WNe, WNe) 4+ dago (W, (r3! 20 — @7))

+R, (W) = Ru, (0). (107)

Tt follows from Lemma 4.6, (88) and the continuity of ago on (H#(F))N that

vwhe € By, |Rn.(WNe)| < Cn(IIWN“

2 N. (|18 M &0 0112
e W5+ [t - 202
HITE0 - 000y + e — 0y IR, ),
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for a constant C'z > 0 independent of N.. Let us introduce for N, > 0 and
r > 0 the ball

By, (r) = {W™ € VI 0 [ 001 | ago (W, Whe) < r2ago(np! @0 — 0%, 74100 — 0°)} .
We deduce from Lemma 4.4, that for all » > 0 and all N, > N}, we have

2Cgo0

Cpo

Cpo
2C g0

VIV € 9By, (r), Pl @000, < Wy < Pl @0 =00 .

Let ro = 2(2Cq0 /ca,)*/?. For all r > r(, there exists N, > N such that

VN.> N.,, OBn.(r)C By, and YWY € 9By (r), |W"e

my <1
Therefore, for all r > r¢ and all N, > N, , we have 0By, (r) C By, and

vW™Ne € OBy, (1),
En.(WNe) > En (0)+ cwllWN”Hi@ - 4C<1>0HWNCIIH; |t @0 — (I)OHH:}%

O (I 28+ I 15 + 2t - a0

S0 = 00l o+ IRl — 80 [ )

> En.(0) + oo W B — ACu W gy w00 — 8]
50w (I I3 + nita? - a2 )
2
Cpo
> En.(0)+ 2620 r(r —ro)||myt @ — ‘I’OH%@
20 14+a/2
~5Cx <1 + < q’“) r2+a> Irit e — 0|2,
Cpo ¢ #

As ||y 90— <I>0||H; goes to zero when N, goes to infinity, we finally obtain that
for all r > g, there exists some N, > N7 such that for all N. > N;

c,r

OBn,(r) C By, and VW™ € 0By.(r), En.(WNe) > En.(0).

This proves that for each N, > N/ En, has a minimizer Wév ¢ in the ball

c,2rg?
Bn.(2r¢). In particular,
3203
N. 0
Wy, < 2252 — 80 . (108)
P9

Let WV be a critical point of £y, such that ||W1N°HL§# < 3. We denote by
SWNe = We — W',

o = e+ SV )ma e + W,
Oy = MO+ SN0 + W
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As both W' and W¥e are critical points of €., we have
En. (W) - (Wi — W) =0,
En, (W) - (W' = W) =0,

so that
(en, (W) = e (W) ) - (WY = i) = o.

Using the expression (107) for Ex,, we can rewrite this equality as

ago (SWNe, sWNe) = bl (We, W¥e, sWNe) 4 dgo (B, DY, Wo'e, We, gWNe),
where
bR (W, WV oWhNe) = —ago((S(WYe) — S(Wyve)) it @0, (8" (WVe) - sWhe)md @0 + sWe)

—ago (S (W) = 8'(Wy¥e)) - SWN)mf1 @0, (wh! @0 — @°) + S(W')ma! @0 + W)
—ago ((S'(W¥e) - W) r {1 @0, sWhe)

and

~ ~ 1 ~
dgo (CI)S)\/'LJ (I)Jl\fcv WONCv WlNca(SWNC) = 1 |:R/(CI)9VL - (I)O) : ((S/<WONC) ’ 6WNC)7TZ/\\T/iq)O + 6WNC)
~R(®}, — %) - ((S'(We) - sW o) @0 + s e |

Using Lemma 4.3 and (108), we obtain that there exists Cgo (depending only
on ®°%) and N, such that for all N. > N,

035 (e, Wi, W) < G (w100 — @y + W13 ) 603,
On the other hand, remarking that for all ¥ € M and all §¥ € Ty M,
R(U —3°) 6T = EXS' (W) - 60 — dago (U — 30, 5),
and introducing the path (¥(t)).c,1), drawn on the manifold M and connecting
Y and @}, , defined as
U(t) = 0 + SEWN + (1 — YW )md @0 + tWi¥e + (1 — )Wy,

we obtain

dao (S, Y, W, W, 51 Ne) [EKS%\I/(o» W(0) — B5 (1)) v(l)]
—ago(V(0) — ®°, ¥ (0)) + ago(T(1) — %, V(1))
1

- / LEKS"(\P(t))(\I”(t), w(5) + LB (W) ()

—ago (V' (1), V' (1)) — ago (U (t) — @7, \I/”(t))} dt.
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As U(t) = (¢P1(t), -+ ,¥ar(t)) € M for all t € [0,1], we have for all 1 <i <N
and all ¢ € [0,1],

/wé(taw)de: _/wz(tam)w:/(ta‘r) dl‘,
T T
so that
1 ’ N
A COR AUET M AUR A0 SR R0
=1

L KS g0y (0! ! S 0 "(4)?
— B @) (t),\p(t))+;ei/rwi(t)

N ]. 1
= =Y [0 - o) - 1B @)@ 0. v 0),

i=1
Consequently,
o @8, B e ow ) = = [ (B i) - B @) (w0, v
N
1 (B w0) - 55 @) v - 3o / (:() = O (1) — aao (W(2) - @, @'(t))] dt.

2

Using Lemma 4.5, we obtain
1
(@, B, W W) <[] (190 - 90l + e - 90l ) 10,

I(0) = L 19|

V) = (S'EWN+ (1 —t)Wee) - sWhe)rpt a0 4 swie,
Ut = (S"(W + (1 — )W) (W e, sWle)) 1 @,
we obtain that there exists some constant C' € R such that for N, large enough,
(Ao (B, By, e, W, 5w )| < € (|t — @)y + W3, ) 69 e 1,

Thus,
Cpo
2

oW ™l < Jago (SWNe, 6W )]
= [bRs (WgYe, W, aWNe) + do (8%, @y, W', WYe, oW Ne)
< O (Jlmte® — @5y + W ll5 ) oW ™%,

This proves that there exists a constant » > 0 such that for all N, large enough,
||W1NCHH;€ < r implies §W™e = 0. Hence the result. O

40



As the mapping By, (2r9) > WNe o 73! ®% + SW)my! @0 + We defines
a local map of VK}{ N M i the neighborhood of ﬂjj\\[/i ®Y we obtain that
EI;S’VC = M@0 + S(Wy¥)mp @0 + W' is the unique local minimizer of

inf { ES(@y,), @n, € VR n ML

in the vicinity of W{‘V/i ®°. Besides,

&%, — Oy < %, — TFJJ\\ﬂ‘I’OllH;# + ||t e — %,
N, N,
< IS(Wete)mat @0 + Wy ||H;+||W%@0—¢O||H;
< Oy, @° - (I)OHH;U

for a constant C independent of N.. We then have
1Mz, g0 = Inllp < 18, = °llzz, < TN, @0 — %) 3.

0 _ 0 _ AT T ~1/2
Let % = 5(}]\,0,4)0(1)]\,6, where U;I;?qu)o = M:I;?V 7<P°(M&’%C7‘I’°M‘5?V 74)0) /2,
Then for each N. > N/, , <I)9\,c is the unique local minimizer of (77) in the

set
0
{on eV AM™ [ lon, - 2%y <"},

for some constant 0 > 0 independent of N, and it satisfies
8%, — @)1, < O[Ty, @° — @] 1, (109)
for some C' € R, independent of N..
As @Y € M®” | we can decompose Y as
Y =0 + S} 0 + Wy, (110)
where S = S(W§ ) and W§ € ®%4 (note that W ¢ VJ<,\£ in general). As

1S le < IWR,,

(111)

and ||(I>9\,c - (I)OHH;& goes to zero when N, goes to infinity, we have, for N, large
enough,

1
SIWR Nz, < 9%, — @01z < 2AW8 Iz, (112)
1
SIWR e, < 10%, = Il < 20WS, |y (113)

The discrete solution @}, satisfies the Euler equations

N
Yy, € VR, <H§9§C ¢?,NC’%'>H;1,H; = Z[)\?vc]z'j(d??,zvd%)%,

j=1
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where p?vc = pgo, and where the N X N matrix A(J)VC is symmetric (but generally

not diagonal). Of course, it follows from the invariance property (69) that (77)
has a local minimizer of the form U®Y; with U € U(N) for which the Lagrange
multiplier of the orthonormality constraints is a diagonal matrix.

4.3 A priori error estimates

We are now in position to derive a priori estimates for ||®} — @°||p; and

(AR, — A"), where we recall that Ao = diag(e}, -, €}).

Using (2), (109) and the inverse inequality (49), we obtain for each s > 1 such
N

that ®° € (H;&(I‘)) and each 1 <r <s,

9%, =, < (19K, — U@l ay, + [Ty, @0 — 0%l a,
< ONTH@R, — %, + [Ty, @° — 9% 1y
< NI (1195, = @y + 180 — Ty, @y ) + [Ty, @ — @y
< ON;7H[Iy, @° = 0%y, + [Ty, ®° — °|
< ON; U7y, @0 — 0|4, (114)

In particular, for s = 3 and r = 2, we obtain that <I>9\,c converges to ®° in
(HZ(T))N, hence in (L (I))V.

We then proceed as in (37) and remark that

0 0 KS 40 0 KS 10 10
Aij N, = Nig = <Hp(}vc¢i,NC7¢j,Nc>H;1,H;¢ - <Hp0 ¢i7¢j>H;17H;

= <H,I;<OS( ?,Nc - ¢?)a( ?,Ne - ¢9‘)>H;1,H#
+et [ o0, =+ [ 6506, — o)
")

Coulomb 0
4 /F VSR (0~ p

i, Ne
LDA LDA

dey, 0 dey; 0 0 0
¢ - c i ; . 11
/p< dp Pe N = =g = e tp )> v, @, (115)

As, from (110),

@t [ ot =)+ [ hiotn, — oD = (€ + ISk L.
we easily obtain, using the convergence of ®}; to ®° in (H# (In LO#O(I‘))N,

IAR, = A%l ,— 0. (116)
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For W e (L% (T))", we introduce the adjoint problem
#

{ find ¥y € &% guch that (117)

VZ € ‘ZI)O’JJ‘7 a<1>0(\I/W7Z) = (VV, Z)Li’

the solution of whom exists and is unique by the coercivity assumption (73).
Clearly,
10w s, < CIW . (118)

In addition, it follows from standard elliptic regularity arguments that
12wl < CIW s,
yielding
[Ww — TN, Wwllzz, < CNC_ZHWHL; (119)

1w — Ty, W |l gy, < ONZHIW e - (120)

Denoting by ¥ = Wgo _go and using (110), we get

2%, - 2°l7: - 0%, 8%, — ")z
— %, 5%, q’o)m + (oY, — @7, W]%C)Li
— ®%, 5% %) 12 + ago (¥, W)

(5
(3
(3 )
= (<1>° — 0%, SR, %) 12 — ago (W, SY, °) + ago (¥, 2f, — ©°)
(@}, )

ESN]

+ago(Ily, ¥, @Y — @°).
From the definition (71), the last term in the above expression reads

N N
ago (TIy, W, 8%, —0°) = EKS”(@O)(HN\IJ L A DI / (6% n, — o)Ly, ¥,
i=1 j=1 r

so that from the definition of the continuous and discrete eigenvalue problems

— @0, SR @%) 2 — ago (P, Y, B°) + ago (¥ — Iy, ¥, O — @°)

dago(Ty, U, 8 — %) = EKS”(<I>O)(HN 0, 0% — @) — EXS'(0%, )(TTy, ¥) + EXS(9%)(TTy, ¥)

+4ZZ )\ZJN )‘?j)/F%Q,NCHNcwi-

=1 j=1

The definition of Iy, and the fact that ¥ € % yields
/¢?,NCHNJ/% = /(¢?,Nc — ¢D)Yi,
r r
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which finally provides the estimate

2%, — <I>0||2L§¢ = (B}, — P, SRIC@O)L; — ago (¥, 5% %) + ago (¥ — In, ¥, 0 — @°)
L ! ! "
~1 (EKS (@) (Iy, U) — EXS(0°)(ITy, ) — EXS7(0%) (8}, — <I>°,HNC\11))
N N
2> (N, = AY) /F( JN. — 65) i (123)
i=1 j=1

Using Lemma 4.5, (109), (111) and (120), we infer
I, 0%y, < C(lok, — @2y + NBR, - 80y + %, - 8750t — @0l
FIA%, — A0, ~ 0]z ). (124)

We thus obtain, using (116) and the above estimate, that asymptotically, when
N, goes to infinity,

12, = @°lz2, < O N[y, @ — @03,

N
Reasoning as in (114), we obtain that for each s > 1 such that ®° € (H;é (F))

and each 0 < r < s, there exists a constant C' such that
0%, — a5, < O Ny ||y, 80 — @°)] 1. (125)

To proceed further, we need to make an assumption on the regularity of the
exchange-correlation potential. In the sequel, we assume that

e cither the function p — eXPA(p) is in CI™I([0, 4-00));

XC

e or the function p. + p° is positive everywhere. As it is continuous on R3,
this is equivalent to assuming that there exists a constant 1 > 0 such that
for all x € R3, p.(z) + p°(z) > 7.
It follows by standard elliptic regularity arguments that ®° then is in (H ;;H/ U)WV
for any € > 0, and we deduce from (125) that (78) holds true for all 0 < s <
m+1/2.

Then, following the same lines as in the proof of (38), we obtain the estimates

<Ol = Pl

i,N¢ 7j,Nc

/V%oulo%lb (p?\’( o pO)
r

and

LDA d LDA

dexc 0 €xc 0 0 0
/F (dp(pc +p°) Tp(pc +PNC)) i.N. 95N,
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valid for all 0 < r < m — 3/2. Using these estimates in (115), we are lead to

A, = A1 < C (180 = @R 3 + 6%, = ol ) -

/(P?vc —p)w
o, — ol = sup T

weH (T) ||1UHH;

Now,

Noticing that

N N N
P, = =D 180N P =D 1017 =D (@) n, — #) (G0 n, + 6D,
i=1 i=1 i=1
we deduce
||P(1)VC - POHH;T < CH‘I)(J)VC - q)OHH;” (126)

since <I>9VC converges, therefore is uniformly bounded in HY, (T"). Thus
AR, =A% < C (Jlof, - @Fy +Cl8%, =2l ) . (127)

The derivation of estimates for ||®%, — ®°|| Hy follows exactly the same lines

as the derivation of the L? estimate: starting from the definition

(W, @R, — %)

0%, — @Ol y—r =  sup ,
¢ Hy We(H (T)N ||W||H;,E

and remarking that the solution ¥y to the adjoint problem (117) satisfies
w2 < CIW iy,

we proceed as in (121) to get
(W, %, =)z = (W, SR, 9%z + (W, WR, )z,
= (W S?VC‘I)O)L; + ago(Tw, WR)

(W, SR, ©°) 12, — ago (T, SR, ©°) + ago (P, Oy, — ©°)

(W, SN, ®°) 12, — ago (Y, S}, ©°) + ago (P — iy, Uy, DY, — @)
+ago(Iy, Ty, dY — @), (128)

that yields

|®%, — <I>0||H;,. < C(|¢>?vc — @O‘Ei NS0, — O + (9%, ‘I)O”H;"

Y, — %y,

HIAY, — A%l 0%, — 20l ) (120)
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The proof of (78) follows and then we get easily from (127) that
1A, = A°l|r < CeNg Gm=1me), (130)

Hence (79). Finally, (80) is a straightforward consequence of Lemma 4.6, (73),
(96), and (109).

4.4 Numerical results

In order to evaluate the quality of the error bounds obtained in Theorem 4.1,
we have performed numerical tests using the Abinit software [9] (freely available
online, cf. http://www.abinit.org), whose main program allows one to find the
total energy, charge density and electronic structure of systems (molecules and
periodic solids) within Density Functional Theory (DFT), using pseudopoten-
tials and a planewave basis.

We have run simulation tests with the Hartree functional (i.e. with elPA =

XC
0), for which there is no numerical integration error. In this particular case,
the problems (74) (solved by Abinit) and (76) (analyzed in Theorem 4.1) are

identical.

For Troullier-Martins pseudopotentials, the parameter m in Theorem 4.1 is equal

to 5. Therefore, we expect the following error bounds (as functions of the cut-off

encegy e = (225

10, =@ gy, < Cr ET>P*, (131)
0%, = 2%z < Co ESHTT (132)

&y, — € < Ca B (133)
0<INS —I%8 < Oy E7*5F (134)

The first tests were performed with the Hydrogen molecule (Hs). The nuclei
were clamped at the points with cartesian coordinates 1 = (—0.7;0;0) and ro =
(0.7;0;0) (in Bohrs). The simulation cell was a cube of side length L = 10 Bohrs.
The so-obtained numerical errors are plotted in log-scales in Figures 1 and 2.
The second series of tests were performed with the Nitrogen molecule (Ns).
The nuclei were clamped at positions r; = (—0.55;0;0) and 7o = (0.55;0;0) (in
Angstroms), and the simulation cell was a cube of side length L = 6 Angstroms.
The numerical errors for Ny are plotted in Figures 3, 4 and 5. The reference
values for ®°, e? and I¥S for both Hy and Ny are those obtained for a cut-off
energy equal to 500 Hartrees.

These results are in good agreement with the a priori error estimates (131)-(134)
for both the Hy and Ny molecules
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Relative energy error curve as function of Ec (log/log scale)
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Figure 1: Error on the energy as a function of E. for Hy
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Relative energy error curve as function of Ec (log/log scale)
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