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Numerical analysis of the planewave discretization

of some orbital-free and Kohn-Sham models

Eric Cancès∗, Rachida Chakir† and Yvon Maday†‡

April 8, 2010

Abstract

We provide a priori error estimates for the spectral and pseudospectral
Fourier (also called planewave) discretizations of the periodic Thomas-
Fermi-von Weizsäcker (TFW) model and for the spectral discretization
of the Kohn-Sham model, within the local density approximation (LDA).
These models allow to compute approximations of the ground state energy
and density of molecular systems in the condensed phase. The TFW
model is stricly convex with respect to the electronic density, and allows
for a comprehensive analysis. This is not the case for the Kohn-Sham LDA
model, for which the uniqueness of the ground state electronic density
is not guaranteed. Under a coercivity assumption on the second order
optimality condition, we prove that for large enough energy cut-offs, the
discretized Kohn-Sham LDA problem has a minimizer in the vicinity of
any Kohn-Sham ground state, and that this minimizer is unique up to
unitary transform. We then derive optimal a priori error estimates for
the spectral discretization method.

1 Introduction

Density Functional Theory (DFT) is a powerful method for computing ground
state electronic energies and densities in quantum chemistry, materials science,
molecular biology and nanosciences. The models originating from DFT can
be classified into two categories: the orbital-free models and the Kohn-Sham
models. The Thomas-Fermi-von Weizsäcker (TFW) model falls into the first
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category. It is not very much used in practice, but is interesting from a math-
ematical viewpoint [1, 7, 12]. It indeed serves as a toy model for the analysis
of the more complex electronic structure models routinely used by Physicists
and Chemists. At the other extremity of the spectrum, the Kohn-Sham models
[8, 11] are among the most widely used models in Physics and Chemistry, but
are much more difficult to deal with. We focus here on the numerical analysis
of the TFW model on the one hand, and of the Kohn-Sham model, within the
local density approximation (LDA), on the other hand. More precisely, we are
interested in the spectral and pseudospectral Fourier, more commonly called
planewave, discretizations of the periodic versions of these two models. In this
context, the simulation domain, sometimes referred to as the supercell, is the
unit cell of some periodic lattice of R3. In the TFW model, periodic boundary
conditions (PBC) are imposed to the density; in the Kohn-Sham framework,
they are imposed to the Kohn-Sham orbitals (Born-von Karman PBC). Impos-
ing PBC at the boundary of the simulation cell is a standard method to compute
condensed phase properties with a limited number of atoms in the simulation
cell, hence at a moderate computational cost.

This article is organized as follows. In Section 2, we briefly introduce the func-
tional setting used in the formulation and the analysis of the planewave dis-
cretization of orbital-free and Kohn-Sham models. In Section 3, we provide a
priori error estimates for the planewave discretization of the TFW model, in-
cluding numerical integration. In Section 4, we deal with the Kohn-Sham LDA
model.

2 Basic Fourier analysis for planewave discretiza-

tion methods

Throughout this article, we denote by Γ the simulation cell, by R the periodic
lattice, and by R∗ the dual lattice. For simplicity, we assume that Γ = [0, L)3

(L > 0), in which case R is the cubic lattice LZ3, and R∗ = 2π
L Z3. Our

arguments can be easily extended to the general case. For k ∈ R∗, we denote
by ek(x) = |Γ|−1/2 eik·x the planewave with wavevector k. The family (ek)k∈R∗

forms an orthonormal basis of

L2
#(Γ,C) :=

{
u ∈ L2

loc(R
3,C) | u R-periodic

}
,

and for all u ∈ L2
#(Γ,C),

u(x) =
∑

k∈R∗

ûk ek(x) with ûk = (ek, u)L2
#

= |Γ|−1/2

∫

Γ

u(x)e−ik·x dx.
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In our analysis, we will mainly consider real valued functions. We therefore
introduce the Sobolev spaces of real valued R-periodic functions

Hs
#(Γ) :=

{
u(x) =

∑

k∈R∗

ûk ek(x) |
∑

k∈R∗

(1 + |k|2)s|ûk|2 <∞ and ∀k, û−k = û∗k

}
,

s ∈ R (here and in the sequel a∗ denotes the complex conjugate of the complex
number a), endowed with the inner products

(u, v)Hs
#

=
∑

k∈R∗

(1 + |k|2)s û∗k v̂k.

For Nc ∈ N, we denote by

VNc
=





∑

k∈R∗ | |k|≤ 2π
L
Nc

ckek | ∀k, c−k = c∗k



 (1)

(the constraints c−k = c∗k imply that the functions of VNc
are real valued). For

all s ∈ R, and each v ∈ Hs
#(Γ), the best approximation of v in VNc

for any
Hr

#-norm, r ≤ s, is

ΠNc
v =

∑

k∈R∗ | |k|≤ 2π
L
Nc

v̂kek.

The more regular v (the regularity being measured in terms of the Sobolev
norms Hr), the faster the convergence of this truncated series to v: for all real
numbers r and s with r ≤ s, we have for each v ∈ Hs

#(Γ),

‖v − ΠNc
v‖Hr

#
= min
vNc∈VNc

‖v − vNc
‖Hr

#
≤

(
L

2π

)s−r
N−(s−r)
c ‖v − ΠNc

v‖Hs
#

≤
(
L

2π

)s−r
N−(s−r)
c ‖v‖Hs

#
. (2)

For Ng ∈ N \ {0}, we denote by φ̂FFT,Ng the discrete Fourier transform on the
carterisan grid GNg

:= L
Ng

Z3 of the function φ ∈ C0
#(Γ,C), where

C0
#(Γ,C) :=

{
u ∈ C0(R3,C) | u R-periodic

}
.

Recall that if φ =
∑
k∈R∗ φ̂k ek ∈ C0

#(Γ,C), the discrete Fourier transform of φ

is the NgR∗-periodic sequence φ̂FFT,Ng = (φ̂
FFT,Ng

k )k∈R∗ where

φ̂
FFT,Ng

k =
1

N3
g

∑

x∈GNg∩Γ

φ(x)e−ik·x = |Γ|−1/2
∑

K∈R∗

φ̂k+NgK .

We now introduce the subspaces

W 1D
Ng

=

∣∣∣∣∣∣∣∣

Span

{
eily | l ∈ 2π

L
Z, |l| ≤ 2π

L

(
Ng − 1

2

)}
(Ng odd),

Span

{
eily | l ∈ 2π

L
Z, |l| ≤ 2π

L

(
Ng
2

)}
⊕ C(eiπNgy/L + e−iπNgy/L) (Ng even),
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(W 1D
Ng

∈ C∞
# ([0, L),C) and dim(W 1D

Ng
) = Ng), and W 3D

Ng
= W 1D

Ng
⊗W 1D

Ng
⊗W 1D

Ng
.

Note that W 3D
Ng

is a subspace of Hs
#(Γ,C) of dimension N3

g , for all s ∈ R, and
that if Ng is odd,

W 3D
Ng

= Span

{
ek | k ∈ R∗ =

2π

L
Z

3, |k|∞ ≤ 2π

L

(
Ng − 1

2

)}
(Ng odd).

It is then possible to define the interpolation projector INg
from C0

#(Γ,C) onto

W 3D
Ng

by [INg
(φ)](x) = φ(x) for all x ∈ GNg

. It holds

∀φ ∈ C0
#(Γ,C),

∫

Γ

INg
(φ) =

∑

x∈GNg∩Γ

(
L

Ng

)3

φ(x). (3)

The coefficients of the expansion of INg
(φ) in the canonical basis of W 3D

Ng
is

given by the discrete Fourier transform of φ. In particular, when Ng is odd, we
have the simple relation

INg
(φ) = |Γ|1/2

∑

k∈R∗ | |k|∞≤ 2π
L

“
Ng−1

2

”
φ̂

FFT,Ng

k ek (Ng odd).

It is easy to check that if φ is real-valued, then so is INg
(φ).

We will assume in the sequel that Ng ≥ 4Nc + 1. We will then have for all
v4Nc

∈ V4Nc
,
∫

Γ

v4Nc
=

∑

x∈GNg∩Γ

(
L

Ng

)3

v4Nc
(x) =

∫

Γ

INg
(v4Nc

). (4)

The following lemma gathers some technical results which will be useful for
the numerical analysis of the planewave discretization of orbital-free and Kohn-
Sham models.

Lemma 2.1 Let Nc ∈ N∗ and Ng ∈ N∗ such that Ng ≥ 4Nc + 1.

1. Let V be a function of C0
#(Γ,C) and vNc

and wNc
be two functions of VNc

.
Then ∫

Γ

INg
(V vNc

wNc
) =

∫

Γ

INg
(V )vNc

wNc
; (5)

∣∣∣∣
∫

Γ

INg
(V |vNc

|2)
∣∣∣∣ ≤ ‖V ‖L∞‖vNc

‖2
L2

#
. (6)

2. Let s > 3/2, 0 ≤ r ≤ s, and V a function of Hs
#(Γ). Then,

∥∥(1 − INg
)(V )

∥∥
Hr

#

≤ Cr,sN
−(s−r)
g ‖V ‖Hs

#
; (7)

∥∥Π2Nc
(INg

(V ))
∥∥
L2

#

≤
(∫

Γ

INg
(|V |2)

)1/2

; (8)

∥∥Π2Nc
(INg

(V ))
∥∥
Hs

#

≤ (1 + Cs,s)‖V ‖Hs
#
, (9)
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for constants Cr,s independent of V . Besides if there exists m > 3 and C ∈
R+ such that |V̂k| ≤ C|k|−m, then there exists a constant CV independent
of Nc and Ng such that

∥∥Π2Nc
(1 − INg

)(V )
∥∥
Hr

#

≤ CVN
r+3/2
c N−m

g . (10)

3. Let φ be a Borel function from R+ to R such that there exists Cφ ∈ R+

for which |φ(t)| ≤ Cφ(1 + t2) for all t ∈ R+. Then, for all vNc
∈ VNc

,
∣∣∣∣
∫

Γ

INg
(φ(|vNc

|2))
∣∣∣∣ ≤ Cφ

(
|Γ| + ‖vNc

‖4
L4

#

)
. (11)

Proof For z2Nc
∈ V2Nc

, it holds
∫

Γ

INg
(V z2Nc

) =
∑

x∈GNg∩Γ

(
L

Ng

)3

V (x)z2Nc
(x)

=
∑

x∈GNg∩Γ

(
L

Ng

)3

(INg
(V ))(x)z2Nc

(x)

=

∫

Γ

INg
(V ) z2Nc

(12)

since INg
(V )z2Nc

∈ VNg+2Nc
⊂ V2Ng

is exactly integrated. The function vNc
wNc

being in V2Nc
, (5) is proved. Moreover, as |vNc

|2 ∈ V4Nc
, it follows from (4) that

∣∣∣∣
∫

Γ

INg
(V |vNc

|2)
∣∣∣∣ =

∣∣∣∣∣∣
∑

x∈GNg∩Γ

(
L

Ng

)3

V (x)|vNc
(x)|2

∣∣∣∣∣∣

≤ ‖V ‖L∞

∣∣∣∣∣∣
∑

x∈GNg∩Γ

(
L

Ng

)3

|vNc
(x)|2

∣∣∣∣∣∣

= ‖V ‖L∞

∫

Γ

|vNc
|2.

Hence (6). The estimate (7) is proved in [6]. To prove (8), we notice that

‖Π2Nc
(INg

(V ))‖2
L2

#
≤ ‖INg

(V )‖2
L2

#

=

∫

Γ

(INg
(V ))∗(INg

(V ))

=
∑

x∈GNg∩Γ

(
L

Ng

)3

(INg
(V ))(x)∗(INg

(V ))(x)

=
∑

x∈GNg∩Γ

(
L

Ng

)3

|V (x)|2

=

∫

Γ

INg
(|V |2).
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The bound (9) is a straightforward consequence of (7):

‖Π2Nc
(INg

(V ))‖Hs
#

≤ ‖INg
(V )‖Hs

#
≤ ‖V ‖Hs

#
+ ‖(1 − INg

)(V )‖Hs
#
≤ (1 + Cs,s)‖V ‖Hs

#
.

Now, we notice that

Π2Nc
(INg

(V )) = |Γ|1/2
∑

k∈R∗ | |k|≤ 4π
L
Nc

V̂
FFT,Ng

k ek

=
∑

k∈R∗ | |k|≤ 4π
L
Nc

( ∑

K∈R∗

V̂k+NgK

)
ek. (13)

From (13), we obtain

∥∥Π2Nc
(1 − INg

)(V )
∥∥2

Hs
#

=
∑

k∈R∗ | |k|≤ 4π
L
Nc

(1 + |k|2)s
∣∣∣∣∣∣

∑

K∈R∗\{0}

V̂k+NgK

∣∣∣∣∣∣

2

≤


 ∑

k∈R∗ | |k|≤ 4π
L
Nc

(1 + |k|2)s

 max
k∈R∗ | |k|≤ 4π

L
Nc

∣∣∣∣∣∣
∑

K∈R∗\{0}

V̂k+NgK

∣∣∣∣∣∣

2

.

On the one hand,

∑

k∈R∗ | |k|≤ 4π
L
Nc

(1 + |k|2)s ∼
Nc→∞

32π

2s+ 3

(
4π

L

)2s

N2s+3
c ,

and on the other hand, we have for each k ∈ R∗ such that |k| ≤ 4π
L Nc,∣∣∣∣∣∣

∑

K∈R∗\{0}

V̂k+NgK

∣∣∣∣∣∣
≤ C

∑

K∈R∗\{0}

1

|k +NgK|m

≤ C C0

(
L

2π

)m
N−m
g

where

C0 = max
y∈R3 | |y|≤1/2

∑

K∈Z3\{0}

1

|y −K|m .

The estimate (10) then easily follows. Let us finally prove (11). Using (3) and
(4), we have

∣∣∣∣
∫

Γ

INg
(φ(|vNc

|2))
∣∣∣∣ =

∣∣∣∣∣∣
∑

x∈GNg∩Γ

(
L

Ng

)3

φ(|vNc
(x)|2)

∣∣∣∣∣∣

≤ Cφ

∣∣∣∣∣∣
∑

x∈GNg∩Γ

(
L

Ng

)3

(1 + |vNc
(x)|4)

∣∣∣∣∣∣

= Cφ

∫

Γ

(1 + |vNc
|4) = Cφ

(
|Γ| + ‖vNc

‖4
L4

#

)
.
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This completes the proof of Lemma 2.1. �

3 Planewave approximation of the TFW model

In the TFW model, as well as in any orbital-free model, the ground state elec-
tronic density of the system is obtained by minimizing an explicit functional of
the density. Denoting by N the number of electrons in the simulation cell and
by

RN =

{
ρ ≥ 0 | √ρ ∈ H1

#(Γ),

∫

Γ

ρ = N
}

the set of admissible densities, the TFW problem reads

ITFW = inf
{
ETFW(ρ), ρ ∈ RN

}
, (14)

where

ETFW(ρ) =
CW

2

∫

Γ

|∇√
ρ|2 + CTF

∫

Γ

ρ5/3 +

∫

Γ

ρV ion +
1

2
DΓ(ρ, ρ).

CW is a positive real number (CW = 1, 1/5 or 1/9 depending on the context [8]),
and CTF is the Thomas-Fermi constant: CTF = 10

3 (3π2)2/3. The last term of

the TFW energy models the periodic Coulomb energy: for ρ and ρ′ in H−1
# (Γ),

DΓ(ρ, ρ′) := 4π
∑

k∈R∗\{0}

|k|−2ρ̂∗k ρ̂
′
k.

We finally make the assumption that V ion is a R-periodic potential such that

∃m > 3, C ≥ 0 s.t. ∀k ∈ R∗, |V̂ ion
k | ≤ C|k|−m. (15)

Note that this implies that V ion is in Hm−3/2−ǫ(Γ) for all ǫ > 0, hence in C0
#(Γ)

since m− 3/2 − ǫ > 3/2 for ǫ small enough. It is convenient to reformulate the
TFW model in terms of v =

√
ρ. It can be easily seen that

ITFW = inf

{
ETFW(v), v ∈ H1

#(Γ),

∫

Γ

|v|2 = N
}
, (16)

where

ETFW(v) =
CW

2

∫

Γ

|∇v|2 + CTF

∫

Γ

|v|10/3 +

∫

Γ

V ion|v|2 +
1

2
DΓ(|v|2, |v|2).

Let F (t) = CTFt
5/3 and f(t) = F ′(t) = 5

3CTFt
2/3. The function F is in

C1([0,+∞))∩C∞((0,+∞)), is strictly convex on [0,+∞), and for all (t1, t2) ∈
R+ × R+,

|f(t22)t2 − f(t21)t2 − 2f ′(t21)t
2
1(t2 − t1)| ≤

70

27
CTF max(t

1/3
1 , t

1/3
2 ) |t2 − t1|2. (17)

7



The first and second derivatives of ETFW are respectively given by

〈ETFW′
(v), w〉H−1

# ,H1
#

= 2〈HTFW
|v|2 v, w〉;

〈ETFW′′
(v)w1, w2〉H−1

# ,H1
#

= 2〈HTFW
|v|2 w1, w2〉 + 4DΓ(vw1, vw2) + 4

∫

Γ

f ′(|v|2)|v|2w1w2,

where we have denoted by HTFW
ρ the TFW Hamiltonian associated with the

density ρ

HTFW
ρ = −CW

2
∆ + f(ρ) + V ion + V Coulomb

ρ ,

where
V Coulomb
ρ (x) = 4π

∑

k∈R∗\{0}

|k|−2ρ̂kek(x)

is the R-periodic Coulomb potential generated by the R-periodic charge distri-
bution ρ. Recall that V Coulomb

ρ can also be defined as the unique solution in
H1

#(Γ) to 



−∆V Coulomb
ρ = 4π

(
ρ− |Γ|−1

∫

Γ

ρ

)

∫

Γ

V Coulomb
ρ = 0.

Let us recall (see [12] and the proof of Lemma 2 in [3]) that

• (14) has a unique minimizer ρ0, and that the minimizers of (16) are u and

−u, where u =
√
ρ0;

• u is in H
m+1/2−ǫ
# (Γ) for each ǫ > 0 (hence in C2

#(Γ) since m+1/2−ǫ > 7/2
for ǫ small enough);

• u > 0 on R3;

• u satisfies the Euler equation

HTFW
|u|2 (u) = −CW

2
∆u+

(
5

3
CTFu

4/3 + V ion + V Coulomb
u2

)
u = λu

for some λ ∈ R, (the ground state eigenvalue of HTFW
ρ0 , that is non-

degenerate).

The planewave discretization of the TFW model is obtained by choosing

1. an energy cut-off Ec > 0 or, equivalently, a finite dimensional Fourier
space VNc

, the integer Nc being related to Ec through the relation Nc :=
[
√

2Ec L/2π];

2. a cartesian grid GNg
with step size L/Ng where Ng ∈ N∗ is such that

Ng ≥ 4Nc + 1,

8



and by considering the finite dimensional minimization problem

ITFW
Nc,Ng

= inf

{
ETFW
Ng

(vNc
), vNc

∈ VNc
,

∫

Γ

|vNc
|2 = N

}
, (18)

where

ETFW
Ng

(vNc
) =

CW

2

∫

Γ

|∇vNc
|2 + CTF

∫

Γ

INg
(|vNc

|10/3) +

∫

Γ

INg
(V ion)|vNc

|2

+
1

2
DΓ(|vNc

|2, |vNc
|2),

INg
denoting the interpolation operator introduced in the previous section. The

Euler equation associated with (18) can be written as a nonlinear eigenvalue
problem

∀vNc
∈ VNc

, 〈(H̃TFW,Ng

|uNc,Ng |
2 − λNc,Ng

)uNc,Ng
, vNc

〉H−1
# ,H1

#
= 0,

where we have denoted by

H̃TFW,Ng

ρ = −CW

2
∆ + INg

(
5

3
CTFρ

2/3 + V ion

)
+ V Coulomb

ρ

the pseudospectral TFW Hamiltonian associated with the density ρ, and by
λNc,Ng

the Lagrange multiplier of the constraint
∫
Γ
|vNc

|2 = N . We therefore
have

−CW

2
∆uNc,Ng

+ΠNc

[(
INg

(
5

3
CTF|uNc,Ng

|4/3 + V ion

)
+ V Coulomb

|uNc,Ng |
2

)
uNc,Ng

]
= λNc,Ng

uNc,Ng
.

Under the condition that Ng ≥ 4Nc + 1, we have for all φ ∈ C0
#(Γ),

∀(k, l) ∈ R∗ ×R∗ s.t. |k|, |l| ≤ 2π

L
Nc,

∫

Γ

INg
(φ) e∗k el = φ̂FFT

k−l ,

so that, H̃TFW
uNc,Ng

is defined on VNc
by the Fourier matrix

[ĤTFW,Ng

|uNc,Ng |
2 ]kl =

CW

2
|k|2δkl +

5

3
CTF

̂(|uNc,Ng
|4/3)

FFT,Ng

k−l
+ (̂V ion)

FFT,Ng

k−l

+4π
̂(|uNc,Ng

|2)
FFT,Ng

k−l

|k − l|2 (1 − δkl) ,

where, by convention, the last term of the right hand side is equal to zero for
k = l.

We also introduce the variational approximation of (16)

ITFW
Nc

= inf

{
ETFW(vNc

), vNc
∈ VNc

,

∫

Γ

|vNc
|2 = N

}
. (19)

9



Any minimizer uNc
to (19) satisfies the elliptic equation

−CW

2
∆uNc

+ ΠNc

[
5

3
CTF|uNc

|4/3uNc
+ V ionuNc

+ V Coulomb
|uNc |

2 uNc

]
= λNc

uNc
,

(20)
for some λNc

∈ R.

The main result of this section is an extension of results previously obtained by
A. Zhou [16].

Theorem 3.1 For each Nc ∈ N, we denote by uNc
a minimizer to (19) such

that (uNc
, u)L2

#
≥ 0 and, for each Nc ∈ N and Ng ≥ 4Nc + 1, we denote by

uNc,Ng
a minimizer to (18) such that (uNc,Ng

, u)L2
#

≥ 0. Then for Nc large

enough, uNc
and uNc,Ng

are unique, and the following estimates hold true

‖uNc
− u‖Hs

#
≤ Cs,ǫN

−(m−s+1/2−ǫ)
c ; (21)

|λNc
− λ| ≤ CǫN

−(2m−1−ǫ)
c ; (22)

γ‖uNc
− u‖2

H1
#
≤ ITFW

Nc
− ITFW ≤ C‖uNc

− u‖2
H1

#
; (23)

‖uNc,Ng
− uNc

‖Hs
#

≤ CsN
3/2+(s−1)+
c N−m

g ; (24)

|λNc,Ng
− λNc

| ≤ CN3/2
c N−m

g ; (25)

|ITFW
Nc,Ng

− ITFW
Nc

| ≤ CN3/2
c N−m

g , (26)

for all −m + 3/2 < s < m + 1/2 and ǫ > 0, and for some constants γ > 0,
Cs,ǫ ≥ 0, Cǫ ≥ 0, C ≥ 0 and Cs ≥ 0 independent of Nc and Ng.

Remark 1 More complex orbital-free models have been proposed in the recent
years [15], which are used to perform multimillion atom DFT calculations. Some
of these models however are not well posed (the energy functional is not bounded
from below [2]), and the others are not well understood from a mathematical
point of view. For these reasons, we will not deal with those models in this
article.

3.1 A priori estimates for the variational approximation.

In this section, we prove the first part of Theorem 3.1, related to the variational
approximation (19). The estimates (21), (22) and (23) originate from arguments
already introduced in [3]. For brevity, we only recall the main steps of the proof
and leave the details to the reader.
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The difference between (16) and the problem dealt with in [3] is the presence of
the Coulomb term DΓ(|v|2, |v|2), for which the following estimates are available:

0 ≤ DΓ(ρ, ρ) ≤ C‖ρ‖2
L2

#
, for all ρ ∈ L2

#(Γ), (27)

|DΓ(uv, uw)| ≤ C‖v‖L2
#
‖w‖L2

#
, for all (v, w) ∈ (L2

#(Γ))2, (28)

|DΓ(ρ, vw)| ≤ C‖ρ‖L2
#
‖v‖L2

#
‖w‖L2

#
, for all (ρ, v, w) ∈ (L2

#(Γ))3, (29)

‖V Coulomb
ρ ‖L∞ ≤ C‖ρ‖L2

#
, for all ρ ∈ L2

#(Γ), (30)

‖V Coulomb
ρ ‖Hs+2

#
≤ C‖ρ‖Hs

#
, for all ρ ∈ Hs

#(Γ). (31)

Here and in the sequel, C denotes a non-negative constant which may depend
on Γ, V ion and N , but not on the discretization parameters.

Using (27), (28) and the fact that f ′ > 0 on (0,+∞), we can then show (see the
proof of Lemma 1 in [3]) that there exist β > 0, γ > 0 and M ≥ 0 such that for
all v ∈ H1

#(Γ),

0 ≤ 〈(HTFW
ρ0 − λ)v, v〉H−1

# ,H1
#
≤M‖v‖2

H1
#
, (32)

β‖v‖2
H1

#
≤ 〈(ETFW′′

(u) − 2λ)v, v〉H−1
# ,H1

#
≤M‖v‖2

H1
#
, (33)

and for all v ∈ H1
#(Γ) such that ‖v‖L2

#
= N 1/2 and (v, u)L2

#
≥ 0,

γ‖v − u‖2
H1

#
≤ 〈(HTFW

ρ0 − λ)(v − u), (v − u)〉H−1
# ,H1

#
. (34)

Remarking that

ETFW(uNc
) − ETFW(u) = 〈(HTFW

ρ0 − λ)(uNc
− u), (uNc

− u)〉H−1
# ,H1

#

+
1

2
DΓ(|uNc

|2 − |u|2, |uNc
|2 − |u|2)

+

∫

Γ

F (|uNc
|2) − F (|u|2) − f(|u|2)(|uNc

|2 − |u|2) (35)

and using (34), the positivity of the bilinear form DΓ, and the convexity of the
function F , we obtain that

ITFW
Nc

− ITFW = ETFW(uNc
) − ETFW(u) ≥ γ‖uNc

− u‖2
H1

#
.

For each Nc ∈ N, ũNc
= N 1/2ΠNc

u/‖ΠNc
u‖L2

#
satisfies (ũNc

, u)L2
#

≥ 0 and

‖ũNc
‖L2

#
= N 1/2, and the sequence (ũNc

)Nc∈N converges to u in H
m+1/2−ǫ
# (Γ)

for each ǫ > 0. As the functional ETFW is continuous on H1
#(Γ), we have

‖uNc
− u‖2

H1
#
≤ γ−1

(
ITFW
Nc

− ITFW
)
≤ γ−1

(
ETFW(ũNc

) − ETFW(u)
)

−→
Nc→∞

0.

11



Hence, (uNc
)Nc∈N converges to u in H1

#(Γ), and we also have

λNc
= N−1

[
CW

2

∫

Γ

|∇uNc
|2 +

∫

Γ

f(|uNc
|2)|uNc

|2 +

∫

Γ

V ion|uNc
|2 +DΓ(|uNc

|2, |uNc
|2)
]

−→
Nc→∞

N−1

[
CW

2

∫

Γ

|∇u|2 +

∫

Γ

f(|u|2)|u|2 +

∫

Γ

V ion|u|2 +DΓ(|u|2, |u|2)
]

= λ.

As f(|uNc
|2)uNc

+ V ionuNc
+ V Coulomb

|uNc |
2 uNc

is bounded in L2
#(Γ), uniformly in

Nc, we deduce from (20) that the sequence (uNc
)Nc∈N is bounded in H2

#(Γ),
hence in L∞(Γ). Now

∆(uNc
− u) = 2C−1

W

[
ΠNc

(
f(|uNc

|2)uNc
− f(|u|2)u+ V ion(uNc

− u) +

V Coulomb
|uNc |

2 uNc
− V Coulomb

|u|2 u

)

+ (1 − ΠNc
)
(
f(|u|2)u+ V ionu+ V Coulomb

|u|2 u
)

−λNc
(uNc

− u) − (λNc
− λ)u

]
.

Observing that the right-hand side goes to zero in L2
#(Γ) when Nc goes to

infinity, we obtain that (uNc
)Nc∈N converges to u in H2

#(Γ), and therefore in

C
0,1/2
# (Γ). In addition, we know from Harnack inequality [10] that u > 0 in R3.

Consequently, for Nc large enough, the function uNc
(which is continuous and

R-periodic) is bounded away from 0, uniformly in Nc. As f ∈ C∞(0,+∞), one
can see by a simple bootstrap argument that the convergence of (uNc

)Nc∈N to u

also holds in H
m+1/2−ǫ
# (Γ) for each ǫ > 0. The upper bound in (23) is obtained

from (35), remarking that

0 ≤
∫

Γ

F (|uNc
|2) − F (|u|2) − f(|u|2)(|uNc

|2 − |u|2)

≤ 35

9
CTF

∫

Γ

max(|uNc
|4/3, |u|4/3)|uNc

− u|2

≤ 35

9
CTF

(
max
Nc∈N

‖uNc
‖L∞

)4/3

‖uNc
− u‖2

L2
#
,

and that

0 ≤ DΓ(|uNc
|2 − |u|2, |uNc

|2 − |u|2) ≤ C‖|uNc
|2 − |u|2‖2

L2
#

≤ 4C

(
max
Nc∈N

‖uNc
‖L∞

)2

‖uNc
− u‖2

L2
#
.

The uniqueness of uNc
for Nc large enough can then be checked as follows. First,

12



(uNc
, λNc

) satisfies the variational equation

∀vNc
∈ VNc

, 〈(HTFW
|uNc |

2 − λNc
)uNc

, vNc
〉H−1

# ,H1
#

= 0.

Therefore λNc
is the variational approximation in VNc

of some eigenvalue of
HTFW

|uNc |
2 . As (uNc

)Nc∈N converges to u in L∞(Γ), HTFW
|uNc |

2 − HTFW
ρ0 converges

to 0 in operator norm. Consequently, the nth eigenvalue of HTFW
|uNc |

2 converges

to the nth eigenvalue of HTFW
ρ0 when Nc goes to infinity, the convergence being

uniform in n. Together with the fact that the sequence (λNc
)Nc∈N converges to

λ, the non-degenerate ground state eigenvalue of HTFW
ρ0 , this implies that for

Nc large enough, λNc
is the ground state eigenvalue of HTFW

|uNc |
2 in VNc

and for

all vNc
∈ VNc

such that ‖vNc
‖L2

#
= N 1/2 and (vNc

, uNc
)L2

#
≥ 0,

ETFW(vNc
) − ETFW(uNc

) = 〈(HTFW
|uNc |

2 − λNc
)(vNc

− uNc
), (vNc

− uNc
)〉H−1

# ,H1
#

+
1

2
DΓ(|vNc

|2 − |uNc
|2, |vNc

|2 − |uNc
|2)

+

∫

Γ

F (|vNc
|2) − F (|uNc

|2) − f(|uNc
|2)(|vNc

|2 − |uNc
|2)

≥ 〈(HTFW
|uNc |

2 − λNc
)(vNc

− uNc
), (vNc

− uNc
)〉H−1

# ,H1
#

≥ γ

2
‖vNc

− uNc
‖2
H1

#
. (36)

It easily follows that for Nc large enough, (19) has a unique minimizer uNc
such

that (uNc
, u)L2

#
≥ 0.

Let us now establish the rates of convergence of |λNc
− λ| and ‖uNc

− u‖Hs
#
.

First,

λNc
− λ = N−1

[
〈(HTFW

|u|2 − λ)(uNc
− u), (uNc

− u)〉H−1
# ,H1

#

+

∫

Γ

wNc
(uNc

− u)

]
(37)

with

wNc
=
f(|uNc

|2) − f(|u|2)
uNc

− u
|uNc

|2 + V Coulomb
|uNc |

2 (uNc
+ u).

As uNc
is bounded away from 0 and f ∈ C∞((0,+∞)), the function wNc

is

uniformly bounded in H
m−3/2−ǫ
# (Γ) (at least for Nc large enough). We therefore

obtain that for all 0 ≤ r < m− 3/2, there exists a constant Cr ∈ R+ such that
for all Nc large enough,

|λNc
− λ| ≤ Cr

(
‖uNc

− u‖2
H1

#
+ ‖uNc

− u‖H−r

#

)
. (38)

In order to evaluate the H1
#-norm of the error (uNc

− u), we first notice that

∀vNc
∈ VNc

, ‖uNc
− u‖H1

#
≤ ‖uNc

− vNc
‖H1

#
+ ‖vNc

− u‖H1
#
, (39)
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and that

‖uNc
− vNc

‖2
H1

#
≤ β−1 〈(ETFW′′

(u) − 2λ)(uNc
− vNc

), (uNc
− vNc

)〉H−1
# ,H1

#

= β−1

(
〈(ETFW′′

(u) − 2λ)(uNc
− u), (uNc

− vNc
)〉H−1

# ,H1
#

+〈(ETFW′′
(u) − 2λ)(u− vNc

), (uNc
− vNc

)〉H−1
# ,H1

#

)
. (40)

For all zNc
∈ VNc

,

〈(ETFW′′
(u) − 2λ)(uNc

− u), zNc
〉H−1

# ,H1
#

= −2

∫

Γ

[f(|uNc
|2)uNc

− f(|u|2)uNc
− 2f ′(|u|2)|u|2(uNc

− u)]zNc

−2DΓ((uNc
− u)(uNc

+ u), (uNc
− u)zNc

) − 2DΓ((uNc
− u)2, uzNc

)

+2(λNc
− λ)

∫

Γ

uNc
zNc

. (41)

On the other hand, we have for all vNc
∈ VNc

such that ‖vNc
‖L2

#
= N 1/2,

∫

Γ

uNc
(uNc

− vNc
) = N −

∫

Γ

uNc
vNc

=
1

2
‖uNc

− vNc
‖2
L2

#
.

Using (17), (29), (38) with r = 0 and the above equality, we therefore obtain
for all vNc

∈ VNc
such that ‖vNc

‖L2
#

= N 1/2,

∣∣∣〈(ETFW′′
(u) − 2λ)(uNc

− u), (uNc
− vNc

)〉H−1
# ,H1

#

∣∣∣

≤ C

(
‖uNc

− u‖2
H1

#
‖uNc

− vNc
‖H1

#

+
(
‖uNc

− u‖2
H1

#
+ ‖uNc

− u‖L2
#

)
‖uNc

− vNc
‖2
L2

#

)
. (42)

Therefore, for Nc large enough, we have for all vNc
∈ VNc

such that ‖vNc
‖L2

#
=

N 1/2,

‖uNc
− vNc

‖H1
#
≤ C

(
‖uNc

− u‖2
H1

#
+ ‖vNc

− u‖H1
#

)
.

Together with (39), this shows that there exists N ∈ N and C ∈ R+ such that
for all Nc ≥ N ,

∀vNc
∈ VNc

s.t. ‖vNc
‖L2

#
= N 1/2, ‖uNc

− u‖H1
#
≤ C‖vNc

− u‖H1
#
.

By a classical argument (see e.g. the proof of Theorem 1 in [3]), we deduce
from (2) and the above inequality that

‖uNc
− u‖H1

#
≤ C min

vNc∈VNc

‖vNc
− u‖H1

#
≤ C1,ǫN

−(m−1/2−ǫ)
c , (43)
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for some constant C1,ǫ independent of Nc. This completes the proof of the
estimate in the H1

#–norm. We proceed with the analysis of the L2
#–norm.

For w ∈ L2
#(Γ), we denote by ψw the unique solution to the adjoint problem

{
find ψw ∈ u⊥ such that

∀v ∈ u⊥, 〈(ETFW′′
(u) − 2λ)ψw, v〉H−1

# ,H1
#

= 〈w, v〉H−1
# ,H1

#
,

(44)

where

u⊥ =

{
v ∈ H1

#(Γ) |
∫

Γ

uv = 0

}
.

The function ψw is solution to the elliptic equation

−CW

2
∆ψw +

(
V ion + V Coulomb

u2 + f(u2) + 2f ′(u2)u2 − λ
)
ψw + 2V Coulomb

uψw
u

= 2

(∫

Γ

f ′(u2)u3ψw +DΓ(u2, uψw)

)
u+

1

2

(
w − (w, u)L2

#
u
)
,

from which we deduce that if w ∈ Hr
#(Γ) for some 0 ≤ r < m − 3/2, then

ψw ∈ Hr+2
# (Γ) and

‖ψw‖Hr+2
#

≤ Cr‖w‖Hr
#
, (45)

for some constant Cr independent of w. Let u∗Nc
be the orthogonal projection,

for the L2
# inner product, of uNc

on the affine space
{
v ∈ L2

#(Γ) |
∫
Γ
uv = N

}
.

One has

u∗Nc
∈ H1

#(Γ), u∗Nc
− u ∈ u⊥, u∗Nc

− uNc
=

1

2N ‖uNc
− u‖2

L2
#
u,
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from which we infer that

‖uNc
− u‖2

L2
#

=

∫

Γ

(uNc
− u)(u∗Nc

− u) +

∫

Γ

(uNc
− u)(uNc

− u∗Nc
)

=

∫

Γ

(uNc
− u)(u∗Nc

− u) − 1

2N ‖uNc
− u‖2

L2
#

∫

Γ

(uNc
− u)u

=

∫

Γ

(uNc
− u)(u∗Nc

− u) +
1

2N ‖uNc
− u‖2

L2
#

(
N −

∫

Γ

uNc
u

)

=

∫

Γ

(uNc
− u)(u∗Nc

− u) +
1

4N ‖uNc
− u‖4

L2
#

= 〈uNc
− u, u∗Nc

− u〉H−1
# ,H1

#
+

1

4N ‖uNc
− u‖4

L2
#

= 〈(ETFW′′
(u) − 2λ)ψuNc−u, u

∗
Nc

− u〉H−1
# ,H1

#
+

1

4N ‖uNc
− u‖4

L2
#

= 〈(ETFW′′
(u) − 2λ)(uNc

− u), ψuNc−u〉H−1
# ,H1

#
+

1

4N ‖uNc
− u‖4

L2
#

+
1

2N ‖uNc
− u‖2

L2
#
〈(ETFW′′

(u) − 2λ)u, ψuNc−u〉H−1
# ,H1

#

= 〈(ETFW′′
(u) − 2λ)(uNc

− u), ψuNc−u〉H−1
# ,H1

#
+

1

4N ‖uNc
− u‖4

L2
#

+
2

N ‖uNc
− u‖2

L2
#

[∫

Γ

f ′(u2)u3ψuNc−u +DΓ(u2, uψuNc−u)

]
.

For all ψNc
∈ VNc

, it therefore holds

‖uNc
− u‖2

L2 = 〈(ETFW′′
(u) − 2λ)(uNc

− u), ψuNc−u − ψNc
〉H−1

# ,H1
#

+〈(ETFW′′
(u) − 2λ)(uNc

− u), ψNc
〉H−1

# ,H1
#

+
1

4N ‖uNc
− u‖4

L2
#

+
2

N ‖uNc
− u‖2

L2
#

[∫

Γ

f ′(u2)u3ψuNc−u +DΓ(u2, uψuNc−u)

]
. (46)

Using (17), (29), (38) with r = 0 and (41), we obtain that for all ψNc
∈ VNc

∩u⊥,

∣∣∣〈(ETFW(u) − 2λ)(uNc
− u), ψNc

〉H−1
# ,H1

#

∣∣∣ ≤ C

(
‖uNc

− u‖2
H1

#

+‖uNc
− u‖L2

#

(
‖uNc

− u‖2
H1

#
+ ‖uNc

− u‖L2
#

))
‖ψNc

‖H1
#
. (47)

Let us denote by Π1
VNc∩u

⊥ the orthogonal projector on VNc
∩ u⊥ for the H1

#

inner product and by ψ0
Nc

= Π1
VNc∩u

⊥ψuNc−u. Noticing that

‖ψ0
Nc

‖H1
#
≤ ‖ψuNc−u‖H1

#
≤ β−1M‖uNc

− u‖L2
#
,

we obtain from (33), (46) and (47) that there exists N ∈ N and C ∈ R+ such
that for all Nc ≥ N ,

‖uNc
−u‖2

L2
#
≤ C

(
‖uNc

−u‖L2
#
‖uNc

−u‖2
H1

#
+‖uNc

−u‖H1
#
‖ψuNc−u−ψ0

Nc
‖H1

#

)
.
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Lastly, for all v ∈ u⊥ and all Nc ∈ N∗

‖v − Π1
VNc∩u

⊥v‖H1
#
≤
(

1 +
N 1/2L5/2

2πNc
∫
Γ
u

)
‖v − ΠNc

v‖H1
#
, (48)

so that, in view of (2) and (45)

‖ψuNc−u − ψ0
Nc

‖H1
#

≤ C‖ψuNc−u − ΠNc
ψuNc−u‖H1

#

≤ CN−1
c ‖ψuNc−u‖H2

#

≤ CN−1
c ‖uNc

− u‖L2
#
.

Therefore,

‖uNc
− u‖L2

#
≤ C

(
‖uNc

− u‖2
H1

#
+N−1

c ‖uNc
− u‖H1

#

)

≤ C0,ǫN
−(m+1/2−ǫ)
c .

By means of the inverse inequality

∀vNc
∈ VNc

, ‖vNc
‖Hr

#
≤
(

2π

L

)(r−s)

Nc
r−s‖vNc

‖Hs
#
, (49)

which holds true for all s ≤ r and all Nc ≥ 1, we obtain that

‖uNc
− u‖Hs

#
≤ Cs,ǫN

−(m−s+1/2−ǫ)
c for all 0 ≤ s < m+ 1/2. (50)

To complete the first part of the proof of Theorem 3.1, we still have to compute
the H−r

# -norm of the error (uNc
− u) for 0 < r < m − 3/2. Let w ∈ Hr

#(Γ).
Proceeding as above we obtain

∫

Γ

w(uNc
− u) = 〈(ETFW′′

(u) − 2λ)(uNc
− u),Π1

VNc∩u
⊥ψw〉H−1

# ,H1
#

+〈(ETFW′′
(u) − 2λ)(uNc

− u), ψw − Π1
VNc∩u

⊥ψw〉H−1
# ,H1

#

+
2

N ‖uNc
− u‖2

L2
#

[∫

Γ

f ′(u2)u3ψw +DΓ(u2, uψw)

]

− 1

2N ‖uNc
− u‖2

L2
#

∫

Γ

uw. (51)

Combining (33), (45), (47), (48), (50) and (51), we obtain that there exists a
constant C ∈ R+ such that for all Nc large enough and all w ∈ Hr

#(Γ),

∫

Γ

w(uNc
− u) ≤ C ′

(
‖uNc

− u‖2
H1

#
+Nc

−(r+1)‖uNc
− u‖H1

#

)
‖w‖Hr

#

≤ C−r,ǫN
−(m+r+1/2−ǫ)
c ‖w‖Hr

#
.
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Therefore

‖uNc
− u‖H−r

#
= sup
w∈Hr

#(Γ)\{0}

∫

Γ

w(uNc
− u)

‖w‖Hr
#

≤ C−r,ǫN
−(m+r+1/2−ǫ)
c , (52)

for some constant C−r,ǫ ∈ R+ independent of Nc. Using (38), (43) and (52), we
end up with

|λNc
− λ| ≤ CǫN

−(2m−1−ǫ)
c .

3.2 A priori estimates for the full discretization.

Let us now turn to the pseudospectral approximation (18) of (16). First, we
notice that

CW

2
‖∇uNc,Ng

‖2
L2

#
− ‖V ion‖L∞N ≤ ETFW

Ng
(uNc,Ng

)

≤ ETFW
Ng

(N 1/2|Γ|−1/2)

≤ CTFN 5/3|Γ|−2/3 + ‖V ion‖L∞N ,

from which we infer that uN,Ng
is uniformly bounded in H1

#(Γ). We then see
that

λNc,Ng
= N−1

[
CW

2

∫

Γ

|∇uNc,Ng
|2 +

∫

Γ

INg
(V ion|uNc,Ng

|2 + f(|uNc,Ng
|2)|uNc,Ng

|2)

+DΓ(|uNc,Ng
|2, |uNc,Ng

|2)
]
.

Using (6), (11) and (27), we obtain that λNc,Ng
also is uniformly bounded. Now,

∆uNc,Ng
= 2C−1

W ΠNc

(
INg

(
f(|uNc,Ng

|2)uNc,Ng

))
+ 2C−1

W ΠNc

(
INg

(
V ionuNc,Ng

))

+2C−1
W ΠNc

(
V Coulomb
|uNc,Ng |

2uNc,Ng

)
− 2C−1

W λNc,Ng
uNc,Ng

, (53)

and we deduce from (4), (6) and (8) that

∥∥ΠNc

(
INg

(
f(|uNc,Ng

|2)uNc,Ng

))∥∥
L2

#

≤
(∫

Γ

(
INg

(f(|uNc,Ng
|2))
)2 |uNc,Ng

|2
)1/2

=


 ∑

x∈GNg∩Γ

(
L

Ng

)3

f(|uNc,Ng
(x)|2)2|uNc,Ng

(x)|2



1/2

≤ 5

3
CTF‖uNc,Ng

‖1/3
L∞


 ∑

x∈GNg∩Γ

(
L

Ng

)3

|uNc,Ng
(x)|4




1/2

=
5

3
CTF‖uNc,Ng

‖1/3
L∞‖uNc,Ng

‖2
L4

#
,

18



and that

‖ΠNc

(
INg

(
V ionuNc,Ng

))
‖L2

#
≤ ‖Π2Nc

(
INg

(
V ionuNc,Ng

))
‖L2

#

≤
(∫

Γ

INg
(|V ion|2|uNc,Ng

|2)
)1/2

≤ ‖V ion‖L∞N 1/2.

Besides, using (30),

‖ΠNc

(
V Coulomb
|uNc,Ng |

2uNc,Ng

)
‖L2

#
≤ ‖V Coulomb

|uNc,Ng |
2uNc,Ng

‖L2
#

≤ N 1/2‖V Coulomb
|uNc,Ng |

2‖L∞

≤ N 1/2‖uNc,Ng
‖2
L4

#
.

As uNc,Ng
is uniformly bounded in H1

#(Γ), and therefore in L4
#(Γ), we get

‖uNc,Ng
‖H2

#
=

(
‖uNc,Ng

‖2
L2

#
+ ‖∆uNc,Ng

‖2
L2

#

)1/2

≤ C
(
1 + ‖uNc,Ng

‖1/3
L∞

)

≤ C
(
1 + ‖uNc,Ng

‖1/3

H2
#

)
.

Therefore uNc,Ng
is uniformly bounded in H2

#(Γ), hence in L∞(R3).

Returning to (53) and using (9), (15), and a bootstrap argument, we conclude

that uNc,Ng
is in fact uniformly bounded in H

7/2+ǫ
# (Γ).

Next, using (36),

γ

2
‖uNc,Ng

− uNc
‖2
H1

#
≤ ETFW(uNc,Ng

) − ETFW(uNc
)

= ETFW
Ng

(uNc,Ng
) − ETFW

Ng
(uNc

)

+

∫

Γ

((1 − INg
)(V ))(|uNc,Ng

|2 − |uNc
|2)

+

∫

Γ

(1 − INg
)(F (|uNc,Ng

|2) − F (|uNc
|2))

≤
∫

Γ

((1 − INg
)(V ))(|uNc,Ng

|2 − |uNc
|2)

+

∫

Γ

(1 − INg
)(F (|uNc,Ng

|2) − F (|uNc
|2)).

Let g(t, t′) = F (t′2)−F (t2)
t′−t . For Nc large enough, uNc

is uniformly bounded away

from zero; besides, both uNc
and uNc,Ng

are uniformly bounded in H
7/2+ǫ
# (Γ).

Therefore, g(uNc
, uNc,Ng

) is uniformly bounded in H
7/2+ǫ
# (Γ). This implies that
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the Fourier coefficients of g(uNc
, uNc,Ng

) go to zero faster that |k|−7/2, which in
turn implies, using (5) and (10), that

∣∣∣∣
∫

Γ

(1 − INg
)(F (|uNc,Ng

|2) − F (|uNc
|2))
∣∣∣∣

=

∣∣∣∣
∫

Γ

(1 − INg
)
(
g(uNc

, uNc,Ng
)
)

(uNc,Ng
− uNc

)

∣∣∣∣
≤
∥∥ΠNc

(
(1 − INg

)
(
g(uNc

, uNc,Ng
)
))∥∥

L2
#

‖uNc,Ng
− uNc

‖L2
#

≤ CN3/2
c N−7/2

g ‖uNc,Ng
− uNc

‖L2
#
. (54)

On the other hand,
∣∣∣∣
∫

Γ

((1 − INg
)(V ))(|uNc,Ng

|2 − |uNc
|2)
∣∣∣∣

≤ ‖Π2Nc
((1 − INg

)(V ))‖L2
#
‖uNc,Ng

+ uNc
‖L∞‖uNc,Ng

− uNc
‖L2

#

≤ CN3/2
c N−m

g ‖uNc,Ng
− uNc

‖L2
#
.

Therefore,

‖uNc,Ng
− uNc

‖H1
#

≤ CN3/2
c N−7/2

g . (55)

We then deduce from (55) and the inverse inequality (49) that (uNc,Ng
)Nc,Ng≥4Nc+1

converges to u in H2
#(Γ), and therefore in L∞(R3). It follows that for Nc large

enough, uNc,Ng
is bounded away from zero, which, together with (53), implies

that (uNc,Ng
)Nc,Ng≥4Nc+1 is bounded in H

m+1/2−ǫ
# (Γ). The estimates (54) and

(55) can therefore be improved, yielding
∣∣∣∣
∫

Γ

(1 − INg
)(F (|uNc,Ng

|2) − F (|uNc
|2))
∣∣∣∣ ≤ CN3/2

c N−(m+1/2−ǫ)
g ‖uNc,Ng

−uNc
‖L2

#
.

and
‖uNc,Ng

− uNc
‖H1

#
≤ CN3/2

c N−m
g .

We deduce (24) from the inverse inequality (49). For Nc large enough, uNc,Ng
is

bounded away from zero, so that f(|uNc,Ng
|2) is uniformly bounded inH

m+1/2−ǫ
# (Γ).

Therefore, the kth Fourier coefficient of (V ion + f(|uNc,Ng
|2)) is bounded by

C|k|−m where the constant C does not depend on Nc and Ng. Using the equal-
ity

λNc,Ng
− λNc

= N−1

[
〈(HTFW

|uNc |
2 − λNc

)(uNc,Ng
− uNc

), (uNc,Ng
− uNc

)〉H−1
# ,H1

#

−
∫

Γ

(1 − INg
)(V ion + f(|uNc,Ng

|2))|uNc,Ng
|2

+DΓ(|uNc,Ng
|2, |uNc,Ng

|2 − |uNc
|2)

+

∫

Γ

(f(|uNc,Ng
|2) − f(|uNc

|2))|uNc,Ng
|2
]
,
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(24) and (29), we obtain (25). A similar calculation leads to (26).

Lastly, we have for all vNc
∈ VNc

,

ETFW
Ng

(vNc
) − ETFW

Ng
(uNc,Ng

) (56)

= 〈(H̃TFW
uNc,Ng

− λNc,Ng
)(vNc

− uNc,Ng
), (vNc

− uNc,Ng
)〉H−1

# ,H1
#

+
1

2
DΓ(|vNc

|2 − |uNc,Ng
|2, |vNc

|2 − |uNc,Ng
|2)

+
∑

x∈GNg∩Γ

(
L

Ng

)3 (
F (|vNc

(x)|2) − F (|uNc
(x)|2) − f(|uNc

(x)|2)(|vNc
(x)|2 − |uNc

(x)|2)
)

≥ 〈(H̃TFW
uNc,Ng

− λNc,Ng
)(vNc

− uNc,Ng
), (vNc

− uNc,Ng
)〉H−1

# ,H1
#
. (57)

As uNc,Ng
converges to u in H2

#(Γ), the operator H̃TFW,Ng

|uNc,Ng |
2 −HTFW

ρ0 converges

to zero in operator norm. Reasoning as in the proof of the uniqueness of uNc
,

we obtain that for Nc large enough and Ng ≥ 4Nc+1, we have for all vNc
∈ VNc

such that ‖vNc
‖L2

#
= N 1/2 and (vNc

, uNc
)L2

#
≥ 0,

〈(H̃TFW
uNc,Ng

−λNc,Ng
)(vNc

−uNc,Ng
), (vNc

−uNc,Ng
)〉H−1

# ,H1
#
≥ γ

2
‖vNc

−uNc,Ng
‖2
H1

#
.

Thus the uniqueness of uNc,Ng
for Nc large enough.

4 Planewave approximation of the Kohn-Sham

LDA model

The periodic Kohn-Sham LDA model with norm-conserving pseudopotentials [14]
leads to the constrained optimization problem

IKS = inf
{
EKS(Φ), Φ ∈ M

}
(58)

where

M =

{
Φ = (φ1, · · · , φN )T ∈ (H1

#(Γ))N |
∫

Γ

φiφj = δij

}
,

N being the number of valence electron pairs in the simulation cell, and where

EKS(Φ) =

N∑

i=1

∫

Γ

|∇φi|2 +

∫

Γ

ρΦVlocal + 2

N∑

i=1

〈φi|Vnl|φi〉 + J(ρΦ) + ELDA
xc (ρΦ).

(59)
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The density ρΦ associated with Φ, the Coulomb energy J(ρΦ) and the LDA
exchange-correlation energy ELDA

xc (ρΦ) are respectively defined as

ρΦ(x) = 2

N∑

i=1

|φi(x)|2,

J(ρΦ) =
1

2
DΓ(ρΦ, ρΦ) = 2π

∑

k∈R∗\{0}

|k|−2|(̂ρΦ)k|2,

ELDA
xc (ρΦ) =

∫

Γ

eLDA
xc (ρc(x) + ρΦ(x)) dx,

where ρc ≥ 0 is the nonlinear core correction and where eLDA
xc (ρ) is an approxi-

mation of the exchange-correlation energy per unit volume in a uniform electron
gas with charge density ρ [8].

The local and nonlocal contributions to the pseudopotential model the inter-
actions between valence electrons on the one hand, and nuclei and core elec-
trons on the other hand. The local contribution is represented by a function
Vlocal ∈ C0

#(Γ) (and therefore defines a bounded self-adjoint operator on L2
#(Γ));

the nonlocal contribution is represented by the bounded self-adjoint operator Vnl

defined on L2
#(Γ) by

Vnlφ =

M∑

j=1

(χj , φ)L2
#
χj ,

where the functions χj are regular enough functions of L2
#(Γ). In all what

follows, we will assume that

∃m > 3, C ≥ 0 s.t. ∀k ∈ R∗, | ̂(Vlocal)k| ≤ C|k|−m (60)

and that

∀1 ≤ j ≤M, ∀ǫ > 0, χj ∈ H
m−3/2−ǫ
# (Γ). (61)

Troullier-Martins pseudopotentials [14] constitute a popular class of pseudopo-

tentials for which the Fourier coefficients ̂(Vlocal)k decay as |k|−m with m = 5.

The function ρ 7→ eLDA
xc (ρ) does not have a simple analytical expression. Al-

though this function is of class C∞ on the open set (0,+∞), DFT simulation
softwares make use of approximate functions which are C∞ on (0, ρ∗)∪(ρ∗,+∞)
but only C1,1 in the neighborhood of the density ρ∗ := 3/(4π) (atomic units) [8].
In order not to deteriorate the convergence rate of the pseudospectral approx-
imation, it is better to ressort to more regular approximations of the function
eLDA (see [5]). We will assume here that

the function ρ 7→ eLDA
xc (ρ) is in C1([0,+∞)) ∩ C [m]((0,+∞)), (62)

eLDA
xc (0) = 0,

deLDA
xc

dρ
(0) = 0, (63)
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(where [m] denotes the integer part of [m]) and that there exists 0 < α ≤ 1 and
C ∈ R+ such that

∀ρ ∈ R+ \ {0} ,
∣∣∣∣
d2eLDA

xc

dρ2
(ρ)

∣∣∣∣+
∣∣∣∣ρ
d3eLDA

xc

dρ3
(ρ)

∣∣∣∣ ≤ C(1 + ρα−1). (64)

Note that the Xα exchange-correlation functional (eXαxc (ρ) = −CXρ
4/3, where

CX > 0 is a given constant) satisfies the assumptions (62)-(64) with α = 1/3.
Let us also remark that (62) and (64) imply that

eLDA
xc ∈ C1,α([0, L]) for each L > 0, (65)

a property we will make use of below. Lastly, we assume for simplicity that

ρc ∈ C∞
# (Γ). (66)

It is easy to prove that under assumptions (60)-(66), (58) has a minimizer Φ0 =
(φ0

1, · · · , φ0
N )T with density ρ0 = ρΦ0 . The regularity assumptions on Vlocal,

on eLDA
xc and on the functions χj allow to state that the minimizer Φ0 is in

[H3
#(Γ)]N , and even in [H

m+1/2−ǫ
# (Γ)]N for any ǫ > 0, if at least one of the

following conditions is satisfied: eLDA
xc ∈ C [m]([0,+∞)) or ρc+ρ

0 > 0 in R3. The
former condition is not satisfied for usual LDA exchange-correlation functionals.
On the other hand, it is satisfied for the Hartree (also called reduced Hartree-
Fock) model, for which eLDA

xc = 0. The latter condition seems to be satisfied in
practice, but we were not able to establish it rigourously.

Let us introduce the Kohn-Sham Hamiltonian

HKS
ρ0 = −1

2
∆ +

(
Vlocal + V Coulomb

ρ0 +
deLDA

xc

dρ
(ρc + ρ0)

)
+ Vnl.

= h+ Vρ0

where

h = −1

2
∆ + Vlocal + Vnl, (67)

and

Vρ0 = V Coulomb
ρ0 +

deLDA
xc

dρ
(ρc + ρ0). (68)

We notice that EKS′(Φ0) = 4HKS
ρ0 Φ0 in (H−1

# (Γ))N and thus the Euler equations
associated with the minimization problem (58) read

∀1 ≤ i ≤ N , HKS
ρ0 φ

0
i =

N∑

j=1

λ0
ijφ

0
j ,
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where the N × N matrix Λ0
N = (λ0

ij), which is the Lagrange multiplier of the

matrix constraint
∫
Γ
φiφj = δij , is symmetric.

In fact, (58) has an infinity of minimizers since any unitary transform of the
Kohn-Sham orbitals Φ0 is also a minimizer of the Kohn-Sham energy. This is a
consequence of the following invariance property:

∀Φ ∈ M, ∀U ∈ U(N ), UΦ ∈ M and EKS(UΦ) = EKS(Φ), (69)

where U(N ) is the group of the real unitary matrices:

U(N ) =
{
U ∈ R

N×N | UTU = 1N
}
,

1N denoting the identity matrix of rank N . This invariance can be exploited
to diagonalize the matrix of the Lagrange multipliers of the orthonormality
constraints (see e.g. [8]), yielding the existence of a minimizer (still denoted
by Φ0) with same density ρ0, such that

HKS
ρ0 φ

0
i = ǫ0iφ

0
i , (70)

for some ǫ01 ≤ ǫ02 ≤ · · · ≤ ǫ0N .

Remark 2 The Kohn-Sham Hamiltonian HKS
ρ0 is an unbounded self-adjoint op-

erator on L2
#(Γ), bounded below, with compact resolvent. Its spectrum therefore

is purely discrete. More precisely, it is composed of an increasing sequence of
eigenvalues going to infinity, each of these eigenvalues being of finite multiplic-
ity. It is not known whether ǫ01, ..., ǫ0N are the lowest eigenvalues (counted with
their multiplicities) of HKS

ρ0 (Aufbau principle). However, it seems to be most
often (though not always) the case in practice. On the other hand, the Aufbau
principle is always satisfied for the extended Kohn-Sham model, for which the
first order optimality conditions read





HKS
ρ0 φ

0
i = ǫ0iφ

0
i

ρ0(x) = 2

+∞∑

i=1

ni|φ0
i (x)|2

∫

Γ

φ0
iφ

0
j = δij , 1 ≤ i, j < +∞

ni = 1 if ǫ0i < ǫF, ni = 0 if ǫ0i > ǫF, 0 ≤ ni ≤ 1 if ǫ0i = ǫF,

+∞∑

i=1

ni = N ,

where ǫF is the Fermi level (see [4] for details). In this article, we focus on the
standard Kohn-Sham model with integer occupation numbers. We do not need
to assume that the Aufbau principle is satisfied, but our analysis requires some
coercivity assumption on the second order condition at Φ0 (see (73)).
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For each Φ = (φ1, · · · , φN )T ∈ M, we denote by

TΦM =

{
(ψ1, · · · , ψN )T ∈ (H1

#(Γ))N |
∫

Γ

φiψj + ψiφj = 0

}

the tangent space to M at Φ, and by

Φ⊥⊥ =

{
Ψ = (ψ1, · · · , ψN )T ∈ (H1

#(Γ))N |
∫

Γ

φiψj = 0

}
.

Let us recall (see e.g. Lemma 4 in [13]) that

TΦM = AΦ ⊕ Φ⊥⊥,

where A =
{
A ∈ RN×N | AT = −A

}
is the space of the N ×N antisymmetric

real matrices.

Since the problem we are considering is a minimization problem, the second
order condition further states

∀W ∈ TΦ0M, aΦ0(W,W ) ≥ 0,

where

aΦ0(Ψ,Υ) =
1

4
EKS′′(Φ0)(Ψ,Υ) −

N∑

i=1

ǫ0i

∫

Γ

ψiυi (71)

=
N∑

i=1

〈(HKS
ρ0 − ǫ0i )ψi, υi〉H−1

# ,H1
#

+ 4

N∑

i,j=1

DΓ(φ0
iψi, φ

0
jυj)

+4

N∑

i,j=1

∫

Γ

d2eLDA
xc

dρ2
(ρc + ρ0)φ0

iψiφ
0
jυj . (72)

It follows from the invariance property (69) that

aΦ0(Ψ,Ψ) = 0 for all Ψ ∈ AΦ0.

This leads us, as in [13], to make the assumption that aΦ0 is positive definite
on Φ0,⊥⊥ , so that, as in Proposition 1 in [13], aΦ0 is coercive on Φ0,⊥⊥ (for the
H1

# norm). Thus, in all what follows, we assume that there exists a positive
constant cΦ0 such that

∀Ψ ∈ Φ0,⊥⊥, aΦ0(Ψ,Ψ) ≥ cΦ0‖Ψ‖2
H1

#
. (73)

In the linear framework (J = 0 and ELDA
xc = 0 in (59)), this condition amounts

to assuming that there is a gap between the lowest N th and (N+1)st eigenvalues
of the linear self-adjoint operator h = − 1

2∆ + Vlocal + Vnl.
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The planewave approximation of (58) reads

IKS
Nc,Ng

= inf
{
EKS
Ng

(ΦNc
), ΦNc

∈ V N
Nc

∩M
}
, (74)

where

EKS
Ng

(Φ) =

N∑

i=1

∫

Γ

|∇φi|2 +

∫

Γ

ρΦVlocal + 2

N∑

i=1

〈φi|Vnl|φi〉

+J(ρΦ) +

∫

Γ

INg
(eLDA

xc (ρc + Π2Nc
ρΦ)). (75)

Here Nc is a given positive integer, equal to [
√

2Ec L/2π], Ec denoting the so-
called cut-off energy, and Ng ≥ 4Nc + 1 is the number of integration points per
direction used to evaluate the exchange-correlation contribution. The energy
EKS
Ng

(Φ) is defined for each Φ ∈ M. For Φ ∈ V N
Nc

∩M, Π2Nc
ρΦ = ρΦ, so that on

this set, EKS
Ng

differs from EKS only by the presence of the Fourier interpolation
operator INg

in the exchange-correlation functional. Let us mention that in
practice, the terms involving the local and nonlocal components of the pseu-
dopotential are also computed by some interpolation procedure. However, these
terms are calculated using spherical harmonics and a very fine one dimensional
radial grid, so that the resulting integration error is usually much smaller than
the interpolation error on the exchange-correlation term. Note that, in addi-
tion, the pseudopotential gives rise to linear contributions that can be computed
very accurately once and for all (and not at each iteration of the self-consistent
algorithm). We postpone the analysis of (74) to a forthcoming article [5], and
focus here on the variational approximation

IKS
Nc

= inf
{
EKS(ΦNc

), ΦNc
∈ V N

Nc
∩M

}
(76)

of (58). The unitary invariance of the Kohn-Sham model must be taken into
account in the derivation of optimal a priori error estimates. One way to take
this invariance into account is to work with density matrices (see e.g. [4]). An
alternative is to define for each Φ ∈ M the set

MΦ :=

{
Ψ ∈ M | ‖Ψ − Φ‖L2

#
= min
U∈U(N )

‖UΨ − Φ‖L2
#

}
,

and to use the fact that all the local minimizers of (76) are obtained by unitary
transforms from the local minimizers of

IKS
Nc

= inf
{
EKS(ΦNc

), ΦNc
∈ V N

Nc
∩MΦ0

}
. (77)

The main result of this section is the following.
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Theorem 4.1 Assume that (60)-(66) hold. Let Φ0 be a local minimizer of (58)
satisfying (73). Then there exists r0 > 0 and N0

c such that for Nc ≥ N0
c , (77)

has a unique local minimizer Φ0
Nc

in the set

{
ΦNc

∈ V N
Nc

∩MΦ0 | ‖ΦNc
− Φ0‖H1

#
≤ r0

}
.

If we assume either that eLDA
xc ∈ C [m]([0,+∞)) or that ρc + ρ0 > 0 on Γ, then

we have the following estimates:

‖Φ0
Nc

− Φ0‖Hs
#

≤ Cs,ǫN
−(m−s+1/2−ǫ)
c , (78)

|ǫ0i,Nc
− ǫ0i | ≤ CǫN

−(2m−1−ǫ)
c , (79)

γ‖Φ0
Nc

− Φ0‖2
H1

#
≤ IKS

Nc
− IKS ≤ C‖Φ0

Nc
− Φ0‖2

H1
#
, (80)

for all −m+3/2 < s < m+1/2 and ǫ > 0, and for some constants γ > 0, Cs,ǫ ≥
0, Cǫ ≥ 0 and C ≥ 0, where the ǫ0i,Nc

’s are the eigenvalues of the symmetric

matrix Λ0
Nc

, the Lagrange multiplier of the matrix constraint
∫
Γ
φi,Nc

φj,Nc
= δij.

4.1 Some technical lemmas

For Φ = (φ1, · · · , φN )T ∈ (H1
#(Γ))N and Ψ = (ψ1, · · · , ψN )T ∈ (H1

#(Γ))N , we
denote by MΦ,Ψ the N ×N matrix with entries

[MΨ,Φ]ij =

∫

Γ

ψiφj .

The following lemma is useful for the analysis of (77). We recall that if A
and B are symmetric N × N real matrices, the notation A ≤ B means that
xTAx ≤ xTBx for all x ∈ RN .

Lemma 4.2

1. Let Φ ∈ M and Ψ ∈ M. If MΨ,Φ is invertible, then UΨ,Φ = MT
Ψ,Φ(MΨ,ΦM

T
Ψ,Φ)−1/2

is the unique minimizer to the problem minU∈U(N ) ‖UΨ − Φ‖L2
#
.

2. Let Φ ∈ M. Then

MΦ =
{

(1N −MW,W )1/2Φ +W |W ∈ Φ⊥⊥, 0 ≤MW,W ≤ 1N

}

where 1N denotes the identity matrix of rank N .

3. Let Φ = (φ1, · · · , φN )T ∈ M. If Nc ∈ N is such that

dim(span(ΠNc
φ1, · · · ,ΠNc

φN )) = N ,
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then the unique minimizer of the problem minΦNc∈V
N

Nc
∩M ‖ΦNc

−Φ‖L2
#

is

πM
Nc

Φ =
(
MΠNcΦ,ΠNcΦ

)−1/2
ΠNc

Φ. (81)

In addition, πM
Nc

Φ ∈ V N
Nc

∩MΦ,

‖πM
Nc

Φ − Φ‖L2
#
≤

√
2‖ΠNc

Φ − Φ‖L2
#
, (82)

and for all Nc large enough,

‖πM
Nc

Φ − Φ‖H1
#
≤ ‖Φ‖H1

#
‖ΠNc

Φ − Φ‖2
L2

#
+ ‖ΠNc

Φ − Φ‖H1
#
. (83)

4. Let Nc such that dim(VNc
) ≥ N and ΦNc

∈ V N
Nc

∩M. Then

V N
Nc

∩MΦNc =
{

(1N −MWNc ,WNc
)1/2ΦNc

+WNc
|WNc

∈ V N
Nc

∩ Φ⊥⊥
Nc
, 0 ≤MWNc ,WNc

≤ 1N

}
.

Proof In order to simplify the notation, we set M = MΨ,Φ. For each U ∈
U(N ),

‖UΨ − Φ‖2
L2

#
= 2N − 2Tr (MU).

Any critical point U of the problem

max
U∈RN×N |UTU=1N

Tr (MU) (84)

satisfies an Euler equation of the form ΛUT = M for some symmetric matrix Λ.
Besides, Tr (MU) = Tr (Λ) and Λ2 = MMT . Any maximizer U of (84) therefore
satisfies M = (MMT )1/2UT . Consequently, if M is invertible, the maximizer
of (84) is unique and reads UΨ,Φ = MT (MMT )−1/2. It also follows from the
definition of the matrix M that Ψ = MΦ +W with W ∈ Φ⊥⊥. Thus,

UΨ,ΦΨ = MT (MMT )−1/2MΦ + W̃ ,

with W̃ = UΨ,ΦW ∈ Φ⊥⊥.

Let us now prove the second statement. Each Ψ ∈ (H1
#(Γ))N can be written

as Ψ = MΦ + W for some matrix M ∈ RN×N and some W ∈ Φ⊥⊥. A simple
calculation leads to

∫

Γ

ψiψj = [MMT ]ij + [MW,W ]ij .

Hence Ψ = MΦ + W ∈ M if and only if MMT + MW,W = 1N . In addition,
Ψ ∈ MΦ if and only if Ψ ∈ M and UΨ,Φ = MT (MMT )−1/2 = 1N , that is to
say if and only if M is symmetric, 0 ≤MW,W ≤ 1N and M = (1N −MW,W )1/2.
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Let (χµ)1≤µ≤dim(VNc ) be an orthonormal basis of VNc
(for the L2

# inner product)

and let C̃ ∈ Rdim(VNc )×N be the matrix with entries

C̃µ,i =

∫

Γ

φiχµ.

Note that

ΠNc
φi =

dim(VNc )∑

µ=1

C̃µ,iχµ, (85)

For all ΦNc
= (φNc,1, · · · , φNc,N )T ∈ V N

Nc
∩M, each φNc,i can be expanded as

φNc,i =

dim(VNc )∑

µ=1

Cµiχµ, (86)

where the matrix C = [Cµi] ∈ Rdim(VNc )×N satisfies the constraint CTC = 1N .
The expansions (85) and (86) can be recast into the more compact forms

ΠNc
Φ = C̃TX and ΦNc

= CTX ,

where we have denoted by X = (χ1, · · · , χdim(VNc ))
T . A simple calculation

then leads to

‖ΦNc
− Φ‖2

L2
#

= 2N − 2Tr (C̃TC). (87)

Reasoning as above, we obtain that the unique solution to the problem

max
C∈R

dim(VNc
)×N |CTC=1N

Tr (C̃TC)

is C = C̃(C̃T C̃)−1/2. Note that the rank of the matrix C̃ is N provided that

dim(VNc
) is large enough so that the matrix C̃T C̃ is invertible provided that

dim(VNc
) is large enough. As a consequence, the unique solution to the problem

minΦNc∈V
N

Nc
∩M ‖ΦNc

− Φ‖L2
#

is πM
Nc

Φ = (C̃T C̃)−1/2C̃TX = (C̃T C̃)−1/2ΠNc
Φ.

It is then easy to check that C̃T C̃ = MΠNcΦ,ΠNcΦ. Hence (81). Then, for all
U ∈ RN×N such that UTU = 1N ,

‖UπM
Nc

Φ − Φ‖2
L2

#
= 2(N − Tr (UM

1/2
ΠNcΦ,ΠNcΦ)),

and the same argument as above leads to the result that this quantity is min-

imized for U = M
1/2
ΠNcΦ,ΠNcΦ(M

1/2
ΠNcΦ,ΠNcΦM

1/2
ΠNcΦ,ΠNcΦ)−1/2 = 1N . Therefore,

πM
Nc

Φ ∈ MΦ.

We also infer from (87) that

‖πM
Nc

Φ − Φ‖2
L2

#
= 2N − 2Tr

(
(C̃T C̃)1/2

)
= 2Tr

(
1N − (C̃T C̃)1/2

)
.
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Besides, an easy calculation leads to

‖ΠNc
Φ − Φ‖2

L2
#

= Tr
(
1N − C̃T C̃

)
.

Using the fact that

0 ≤
(
1N − (C̃T C̃)1/2

)
≤
(
1N − (C̃T C̃)1/2

)(
1N + (C̃T C̃)1/2

)
= 1N − C̃T C̃,

we obtain

‖πM
Nc

Φ−Φ‖2
L2

#
= 2Tr

(
1N − (C̃T C̃)1/2

)
≤ 2Tr

(
1N − C̃T C̃

)
= 2‖ΠNc

Φ−Φ‖2
L2

#
.

Hence (82). We also have

‖πM
Nc

Φ − Φ‖H1
#

≤ ‖πM
Nc

Φ − ΠNc
Φ‖H1

#
+ ‖ΠNc

Φ − Φ‖H1
#

= ‖((MΠNcΦ,ΠNcΦ)−1/2 − 1N )ΠNc
Φ‖H1

#
+ ‖ΠNc

Φ − Φ‖H1
#

≤ ‖(MΠNcΦ,ΠNcΦ)−1/2 − 1N ‖F‖ΠNc
Φ‖H1

#
+ ‖ΠNc

Φ − Φ‖H1
#

≤ ‖(MΠNcΦ,ΠNcΦ)−1/2 − 1N ‖F‖Φ‖H1
#

+ ‖ΠNc
Φ − Φ‖H1

#
,

where ‖ · ‖F denotes the Frobenius norm. We then notice that

MΠNcΦ,ΠNcΦ = 1N −MΠNcΦ−Φ,ΠNcΦ−Φ.

Consequently, for Nc large enough,

‖(MΠNcΦ,ΠNcΦ)−1/2 − 1N ‖F ≤ ‖MΠNcΦ−Φ,ΠNcΦ−Φ‖F ≤ ‖ΠNc
Φ − Φ‖2

L2
#
.

Therefore (83) is proved.

Lastly, the fourth assertion easily follows from the second one. �

Lemma 4.3 Let

K =
{
W ∈ (L2

#(Γ)N | 0 ≤MW,W ≤ 1N
}
,

and S : K → R
N×N
S (the space of the symmetric N ×N real matrices) defined

by

S(W ) = (1N −MW,W )1/2 − 1N .

The function S is continuous on K and differentiable on the interior
◦
K of K.

In addition,

∀W ∈ K, ‖S(W )‖F ≤ ‖W‖2
L2

#
, (88)
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and for all (W1,W2, Z) ∈ K × K × (L2
#(Γ))N such that ‖W1‖L2

#
≤ 1

2 and

‖W2‖L2
#
≤ 1

2 ,

‖S(W1) − S(W2)‖F ≤ 2(‖W1‖L2
#

+ ‖W2‖L2
#
)‖W1 −W2‖L2

#
, (89)

‖(S ′(W1) − S ′(W2)) · Z‖F ≤ 4‖W1 −W2‖L2
#
‖Z‖L2

#
, (90)

‖(S ′′(W1)(Z,Z)‖F ≤ 4‖Z‖2
L2

#
. (91)

Proof Diagonalizing MW,W and using the properties of the function t 7→ (1−
t)1/2 − 1, we see that S is continuous on K and differentiable on

◦
K, and that

‖S(W )‖F ≤ ‖MW,W ‖F ≤ ‖W‖2
L2

#
.

Hence (88). As

S(W ) +
1

2
S(W )2 = −1

2
MW,W ,

we have for all W ∈
◦
K,

S ′(W ) · Z +
1

2
[S(W )(S ′(W ) · Z) + (S ′(W ) · Z)S(W )]

= −1

2
[MW,Z +MZ,W ] .

Denoting by A = S ′(W ) · Z, we deduce from the above equality that

‖A‖2
F + Tr (A2S(W )) ≤ ‖A‖F‖MW,Z‖F ≤ ‖A‖F‖W‖L2

#
‖Z‖L2

#
.

As |Tr (A2S(W ))| ≤ ‖A‖2
F‖S(W )‖2 ≤ ‖A‖2

F‖S(W )‖F ≤ ‖A‖2
F‖W‖2

L2
#
, we fi-

nally obtain the inequality

‖A‖F(1 − ‖W‖2
L2

#
) ≤ ‖W‖L2

#
‖Z‖L2

#
, (92)

which straightforwardly leads to (89) under the conditions ‖W1‖L2
#

≤ 1
2 and

‖W2‖L2
#
≤ 1

2 . Lastly,

(S ′(W2) − S ′(W1)) · Z +
1

2
[S(W2)((S ′(W2) − S ′(W1)) · Z) + ((S ′(W2) − S ′(W1)) · Z)S(W2)]

+
1

2
[(S ′(W1) · Z)(S(W2) − S(W1)) + (S(W2) − S(W1))(S ′(W1) · Z)] = −1

2
[MW2−W1,Z +MZ,W2−W1 ] ,

so that still under the conditions ‖W1‖L2
#
≤ 1

2 and ‖W2‖L2
#
≤ 1

2 ,

‖(S ′(W2) − S ′(W1)) · Z‖F ≤ 28

9
‖W2 −W1‖L2

#
‖Z‖L2

#
.

Hence (90). Lastly, taking W2 = W1 + tZ in (90) and letting t go to zero, we
obtain (91). �
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Lemma 4.4 Let Φ0 be a local minimizer of (58) satisfying (73). Then aΦ0

defines a continuous bilinear form on (H1
#(Γ))N × (H1

#(Γ))N , and there exists
N∗
c such that for all Nc ≥ N∗

c ,

‖πM
Nc

Φ0 − Φ0‖H1
#
≤ 1, (93)

aΦ0(πM
Nc

Φ0 − Φ0, πM
Nc

Φ0 − Φ0) ≥ cΦ0

2
‖πM

Nc
Φ0 − Φ0‖2

H1
#
, (94)

∀W ∈ [πM
Nc

Φ0]⊥⊥, aΦ0(W,W ) ≥ cΦ0

2
‖W‖2

H1
#
. (95)

In the sequel, we denote by CΦ0 the continuity constant of aΦ0 , i.e.

∀(Ψ,Ψ′) ∈ ((H1
#(Γ))N )2, |aΦ0(Ψ,Ψ′)| ≤ CΦ0‖Ψ‖H1

#
‖Ψ′‖H1

#
. (96)

Proof Estimate (93) immediately results from the closeness of πM
Nc

Φ0 to Φ0.

Using the fact that πM
Nc

Φ0 ∈ MΦ0

(see Lemma 4.2, point 3), we get

πM
Nc

Φ0 − Φ0 = S(W )Φ0 +W (97)

with W ∈ [Φ0]⊥⊥, from which we derive, using (88), that

aΦ0(πM
Nc

Φ0 − Φ0, πM
Nc

Φ0 − Φ0) = aΦ0(W,W ) + 2aΦ0(W,S(W )Φ0) + aΦ0(S(W )Φ0,S(W )Φ0)

≥ cΦ0‖W‖2
H1

#
− 2CΦ0‖W‖H1

#
‖Φ0‖H1

#
‖W‖2

L2
#
− CΦ0‖W‖4

L2
#
‖Φ0‖2

H1
#

≥
(
cΦ0 − 2CΦ0‖W‖L2

#
‖Φ0‖H1

#
− CΦ0‖W‖2

L2
#
‖Φ0‖2

H1
#

)
‖W‖2

H1
#
.

As by (82), ‖πM
Nc

Φ0 − Φ0‖L2
#

goes to zero when Nc goes to infinity, so does

‖W‖L2
#
. Using again (88), we deduce from (97) that ‖W‖H1

#
∼

Nc→∞
‖πM

Nc
Φ0 −

Φ0‖H1
#
. Hence (94).

Finally, for each W ∈ [πM
Nc

Φ0]⊥⊥, W ∗ = W −MW,Φ0Φ0 belongs to [Φ0]⊥⊥. Re-
marking that MW,Φ0 = MW,Φ0−πM

Nc
Φ0 , we derive

‖MW,Φ0‖F ≤ ‖MW,Φ0−πM
Nc

Φ0‖F ≤ ε(Nc)‖W‖L2
#

where ε(Nc) = ‖Φ0 − πM
Nc

Φ0‖L2
#
→ 0 when Nc goes to infinity. Therefore,

‖W −W ∗‖H1
#
≤ ε(Nc)‖Φ0‖H1

#
‖W‖H1

#
.

As

aΦ0(W,W ) = aΦ0(W ∗,W ∗) + 2aΦ0(W ∗,W −W ∗) + aΦ0(W −W ∗,W −W ∗),
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we obtain

aΦ0(W,W ) ≥ cΦ0‖W ∗‖2
H1

#
− 2CΦ0‖W ∗‖H1

#
‖W −W ∗‖H1

#
− CΦ0‖W −W ∗‖2

H1
#

≥ cΦ0

2
‖W‖2

H1
#

for Nc large enough. �

Lemma 4.5 There exists C ≥ 0 such that

1. for all (Υ1,Υ2,Υ3) ∈
(
(H1

#(Γ))N
)3

,

∣∣∣
(
EKS′′(Φ0 + Υ1) − EKS′′(Φ0)

)
(Υ2,Υ3)

∣∣∣ ≤ C
(
‖Υ1‖αH1

#
+ ‖Υ1‖2

H1
#

)
‖Υ2‖H1

#
‖Υ3‖H1

#
.

2. for all Υ1 ∈ (H1
#(Γ) ∩ L∞

# (Γ))N and (Υ2,Υ3) ∈
(
(H1

#(Γ))N
)2

,

∣∣∣
(
EKS′′(Φ0 + Υ1) − EKS′′(Φ0)

)
(Υ2,Υ3)

∣∣∣ ≤ C
(
1 + ‖Υ1‖2−α

L∞

)
‖Υ1‖αL2

#
‖Υ2‖H1

#
‖Υ3‖H1

#
.

Proof Let us denote by

rΦ0(Υ1,Υ2,Υ3) =
(
EKS′′(Φ0 + Υ1) − EKS′′(Φ0)

)
(Υ2,Υ3)

Splitting rΦ0(Υ1,Υ2,Υ3) in its Coulomb and exchange-correlation contribu-
tions, we obtain

rΦ0(Υ1,Υ2,Υ3) = rCoulomb
Φ0 (Υ1,Υ2,Υ3) + rxc

Φ0(Υ1,Υ2,Υ3),

with

rCoulomb
Φ0 (Υ1,Υ2,Υ3) = 16

N∑

i,j=1

(
DΓ(φ0

i υ1,i, υ2,jυ3,j) +DΓ(φ0
i υ2,i, υ1,jυ3,j) +DΓ(φ0

i υ3,i, υ1,jυ2,j)
)

+16

N∑

i,j=1

DΓ(υ1,iυ2,i, υ1,jυ3,j) + 8

N∑

i,j=1

DΓ(υ2
1,i, υ2,jυ3,j),

and

rxc
Φ0(Υ1,Υ2,Υ3) = rxc,1

Φ0 (Υ1,Υ2,Υ3) + rxc,2
Φ0 (Υ1,Υ2,Υ3),
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where

rxc,1
Φ0 (Υ1,Υ2,Υ3) = 4

∫

Γ

(
deLDA

xc

dρ
(ρc + ρΦ0+Υ1

) − deLDA
xc

dρ
(ρc + ρΦ0)

)( N∑

i=1

υ2,iυ3,i

)
,

rxc,2
Φ0 (Υ1,Υ2,Υ3) = 16

∫

Γ

[
d2eLDA

xc

dρ2
(ρc + ρΦ0+Υ1

)

(
N∑

i=1

(φ0
i + υ1,i)υ2,i

)(
N∑

i=1

(φ0
i + υ1,i)υ3,i

)

−d
2eLDA

xc

dρ2
(ρc + ρΦ0)

(
N∑

i=1

φ0
i υ2,i

)(
N∑

i=1

φ0
i υ3,i

)]
.

Using (29), we obtain that there exists a constant C ≥ 0, such that for all

(Υ1,Υ2,Υ3) ∈
(
(H1

#(Γ))N
)3

,

|rCoulomb
Φ0 (Υ1,Υ2,Υ3)| ≤ C

(
‖Υ1‖L2

#
+ ‖Υ1‖2

L2
#

)
‖Υ2‖H1

#
‖Υ3‖H1

#
. (98)

Using (64), we get

∣∣∣∣
deLDA

xc

dρ
(ρc + ρΦ0+Υ1

) − deLDA
xc

dρ
(ρc + ρΦ0)

∣∣∣∣ ≤ C
(
|ρΦ0+Υ1

− ρΦ0 | + α−1|ρΦ0+Υ1
− ρΦ0 |α

)

≤ C

[
ρ
α/2
Υ1

+ ρΥ1

]
,

from which we infer

|rxc,1
Φ0 (Υ1,Υ2,Υ3)| ≤ C

∫

Γ

(
ρ
α/2
Υ1

+ ρΥ1

)
ρ
1/2
Υ2

ρ
1/2
Υ3
. (99)

Introducing the function
Φ(t) = Φ0 + tΥ1,

we can rewrite rxc,2
Φ0 (Υ1,Υ2,Υ3) as

rxc,2
Φ0 (Υ1,Υ2,Υ3) = 16

∫

Γ

[
d2eLDA

xc

dρ2
(ρc + ρΦ(1))

(
N∑

i=1

φi(1)υ2,i

)(
N∑

i=1

φi(1)υ3,i

)

−d
2eLDA

xc

dρ2
(ρc + ρΦ(0))

(
N∑

i=1

φi(0)υ2,i

)(
N∑

i=1

φi(0)υ3,i

)]

= 16

∫

Γ

∫ 1

0

[
d2eLDA

xc

dρ2
(ρc + ρΦ(t))

(
N∑

i=1

φi(t)υ2,i

)(
N∑

i=1

υ1,iυ3,i

)

+
d2eLDA

xc

dρ2
(ρc + ρΦ(t))

(
N∑

i=1

υ1,iυ2,i

)(
N∑

i=1

φi(t)υ3,i

)

+2
d3eLDA

xc

dρ3
(ρc + ρΦ(t))

(
N∑

i=1

φi(t)υ1,i

)(
N∑

i=1

φi(t)υ2,i

)(
N∑

i=1

φi(t)υ3,i

)]
dt.
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Thus, using again (64), we obtain

|rxc,2
Φ0 (Υ1,Υ2,Υ3)| ≤ C

∫

Γ

∫ 1

0

(1 + (ρc + ρΦ(t))
α−1)ρ

1/2
Φ(t)ρ

1/2
Υ1
ρ
1/2
Υ2
ρ
1/2
Υ3

dt

≤ C

∫

Γ

∫ 1

0

(1 + ρα−1
Φ(t))ρ

1/2
Φ(t)ρ

1/2
Υ1
ρ
1/2
Υ2
ρ
1/2
Υ3

dt.

Now,

∫ 1

0

ρ
α−1/2
Φ(t) dt = 2α−1/2

∫ 1

0

(
N∑

i=1

φ0
i
2

+ 2t

N∑

i=1

φ0
i υ1,i + t2

N∑

i=1

υ2
1,i

)α−1/2

dt

= 2α−1/2

∫ 1

0




N∑

i=1

φ0
i
2 −

(∑N
i=1 φ

0
i υ1,i

)2

∑N
i=1 υ

2
1,i

+

(
t+

∑N
i=1 φ

0
i υ1,i∑N

i=1 υ
2
1,i

)2( N∑

i=1

υ2
1,i

)


α−1/2

dt

≤ 2α−1/2

∫ 1

0

∣∣∣∣∣t+

∑N
i=1 φ

0
i υ1,i∑N

i=1 υ
2
1,i

∣∣∣∣∣

2α−1( N∑

i=1

υ2
1,i

)α−1/2

dt ≤ 1

α2α+1/2
ρ
α−1/2
Υ1

.

Therefore,

|rxc,2
Φ0 (Υ1,Υ2,Υ3)| ≤ C

∫

Γ

(
ρ
min(α,1/2)
Υ1

+ ρΥ1

)
ρ
1/2
Υ2

ρ
1/2
Υ3
. (100)

Gathering (98), (99) and (100), we obtain the desired estimates. �

Lemma 4.6 Let Φ0 be a local minimizer of (58) satisfying (73). Then there
exists C ≥ 0 such that for all Ψ ∈ M,

EKS(Ψ) = EKS(Φ0) + 2aΦ0(Ψ − Φ0,Ψ − Φ0) +R(Ψ − Φ0), (101)

with

|R(Ψ − Φ0)| ≤ C
(
‖Ψ − Φ0‖2+α

H1
#

+ ‖Ψ − Φ0‖4
H1

#

)
. (102)

Proof Using the fact that the first order optimality condition (70) also reads
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[EKS′(Φ0)]i = 4HKS
ρ0 φ

0
i = 4ǫ0iφ

0
i in H−1

# (Γ), we have for all Ψ ∈ M,

EKS(Ψ) = EKS(Φ0) + 〈EKS′(Φ0),Ψ − Φ0〉H−1
# ,H1

#
+

1

2
EKS′′(Φ0)(Ψ − Φ0,Ψ − Φ0)

+

∫ 1

0

(EKS′′(Φ0 + s(Ψ − Φ0)) − EKS′′(Φ0))(Ψ − Φ0,Ψ − Φ0) (1 − s) ds

= EKS(Φ0) + 4

N∑

i=1

ǫ0i

∫

Γ

φ0
i (ψi − φ0

i ) +
1

2
EKS′′(Φ0)(Ψ − Φ0,Ψ − Φ0)

+

∫ 1

0

(EKS′′(Φ0 + s(Ψ − Φ0)) − EKS′′(Φ0))(Ψ − Φ0,Ψ − Φ0) (1 − s) ds

= EKS(Φ0) − 2

N∑

i=1

ǫ0i

∫

Γ

(ψi − φ0
i )

2 +
1

2
EKS′′(Φ0)(Ψ − Φ0,Ψ − Φ0)

+

∫ 1

0

(EKS′′(Φ0 + s(Ψ − Φ0)) − EKS′′(Φ0))(Ψ − Φ0,Ψ − Φ0) (1 − s) ds

= EKS(Φ0) + 2aΦ0(Ψ − Φ0,Ψ − Φ0) +R(Ψ − Φ0),

where

R(Υ) =

∫ 1

0

(EKS′′(Φ0 + sΥ) − EKS′′(Φ0))(Υ,Υ) (1 − s) ds.

The estimate (102) then straightforwardly follows from Lemma 4.5. �

4.2 Existence of a discrete solution

In this subsection, we derive, for Nc large enough, the existence of a unique
local minimum of the discretized problem (77) in the neighborhood of πM

Nc
Φ0.

Let
BNc

=
{
WNc ∈ V N

Nc
∩ [πM

Nc
Φ0]⊥⊥ | 0 ≤MWNc ,WNc ≤ 1

}
,

and ENc
be the energy functional defined on BNc

by

ENc
(WNc) = EKS

(
πM
Nc

Φ0 + S(WNc)πM
Nc

Φ0 +WNc
)
. (103)

According to the fourth assertion of Lemma 4.2, the application

C : BNc
→ V N

Nc
∩MπM

Nc
Φ0

WNc 7→ πM
Nc

Φ0 + S(WNc)πM
Nc

Φ0 +WNc

defines a global map of V N
Nc

∩MπM
Nc

Φ0

such that C(0) = πM
Nc

Φ0. Therefore the
minimizers of

inf
{
EKS(ΦNc), ΦNc ∈ V N

Nc
∩MπM

Nc
Φ0
}

(104)

36



are in one-to-one correspondence with those of the minimization problem

inf
{
ENc

(WNc), WNc ∈ BNc

}
. (105)

In a first stage, we prove that for Nc large enough, (105) has a unique solution
in some neighborhood of 0. As a consequence (104) has a unique solution in
the vicinity of πM

Nc
Φ0 (for Nc large enough). In a second stage, we make use of

the unitary invariance (69) to prove that for Nc large enough, (77) has a unique
solution in the vicinity of Φ0.

Lemma 4.7 There exists r > 0 and N0
c such that for all Nc ≥ N0

c , the func-
tional ENc

has a unique critical point WNc

0 in the ball
{
WNc ∈ V N

Nc
∩ [πM

Nc
Φ0]⊥⊥ | ‖WNc‖H1

#
≤ r
}
.

Besides, WNc

0 is a local minimizer of (105) and we have the estimate

‖WNc

0 ‖H1
#
≤ 32C3

Φ0

c3Φ0

‖πM
Nc

Φ0 − Φ0‖H1
#
. (106)

Proof We infer from Lemma 4.6 that

ENc
(WNc) = EKS

(
Φ0 + (πM

Nc
Φ0 − Φ0) + S(WNc)πM

Nc
Φ0 +WNc

)

= EKS
(
Φ0
)

+2aΦ0

(
(πM
Nc

Φ0 − Φ0) + S(WNc)πM
Nc

Φ0 +WNc , (πM
Nc

Φ0 − Φ0) + S(WNc)πM
Nc

Φ0 +WNc
)

+R
(
(πM
Nc

Φ0 − Φ0) + S(WNc)πM
Nc

Φ0 +WNc
)

= EKS
(
Φ0
)

+ 2aΦ0(WNc ,WNc) + 4aΦ0

(
WNc , (πM

Nc
Φ0 − Φ0)

)

+2aΦ0(πM
Nc

Φ0 − Φ0, πM
Nc

Φ0 − Φ0) + RNc
(WNc)

where

RNc
(WNc

) = 2aΦ0(S(WNc)πM
Nc

Φ0,S(WNc)πM
Nc

Φ0)

+4aΦ0(S(WNc)πM
Nc

Φ0, (πM
Nc

Φ0 − Φ0) +WNc)

+R
(
(πM
Nc

Φ0 − Φ0) + S(WNc)πM
Nc

Φ0 +WNc
)
.

Thus,

∀WNc ∈ BNc
, ENc

(WNc) = ENc
(0) + 2aΦ0(WNc ,WNc) + 4aΦ0

(
WNc , (πM

Nc
Φ0 − Φ0)

)

+RNc
(WNc) −RNc

(0). (107)

It follows from Lemma 4.6, (88) and the continuity of aΦ0 on (H1
#(Γ))N that

∀WNc ∈ BNc
, |RNc

(WNc)| ≤ CR

(
‖WNc‖2+α

H1
#

+ ‖WNc‖8
H1

#
+ ‖πM

Nc
Φ0 − Φ0‖2+α

H1
#

+‖πM
Nc

Φ0 − Φ0‖4
H1

#
+ ‖πM

Nc
Φ0 − Φ0‖H1

#
‖WNc‖2

H1
#

)
,
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for a constant CR ≥ 0 independent of Nc. Let us introduce for Nc ≥ 0 and
r > 0 the ball

BNc
(r) =

{
WNc ∈ V N

Nc
∩ [πM

Nc
Φ0]⊥⊥ | aΦ0(WNc ,WNc) < r2aΦ0(πM

Nc
Φ0 − Φ0, πM

Nc
Φ0 − Φ0)

}
.

We deduce from Lemma 4.4, that for all r > 0 and all Nc ≥ N∗
c , we have

∀WNc ∈ ∂BNc
(r),

√
cΦ0

2CΦ0

r‖πM
Nc

Φ0−Φ0‖H1
#
≤ ‖WNc‖H1

#
≤
√

2CΦ0

cΦ0

r‖πM
Nc

Φ0−Φ0‖H1
#
.

Let r0 = 2(2CΦ0/cΦ0)
5/2. For all r > r0, there exists Nc,r ≥ N∗

c such that

∀Nc ≥ Nc,r, ∂BNc
(r) ⊂ BNc

and ∀WNc ∈ ∂BNc
(r), ‖WNc‖H1

#
≤ 1.

Therefore, for all r > r0 and all Nc ≥ Nc,r we have ∂BNc
(r) ⊂ BNc

and

∀WNc ∈ ∂BNc
(r),

ENc
(WNc) ≥ ENc

(0) + cΦ0‖WNc‖2
H1

#
− 4CΦ0‖WNc‖H1

#
‖πM

Nc
Φ0 − Φ0‖H1

#

−CR

(
‖WNc‖2+α

H1
#

+ ‖WNc‖8
H1

#
+ 2‖πM

Nc
Φ0 − Φ0‖2+α

H1
#

+2‖πM
Nc

Φ0 − Φ0‖4
H1

#
+ ‖πM

Nc
Φ0 − Φ0‖H1

#
‖WNc‖2

H1
#

)

≥ ENc
(0) + cΦ0‖WNc‖2

H1
#
− 4CΦ0‖WNc‖H1

#
‖πM

Nc
Φ0 − Φ0‖H1

#

−5CR

(
‖WNc‖2+α

H1
#

+ ‖πM
Nc

Φ0 − Φ0‖2+α
H1

#

)

≥ ENc
(0) +

c2Φ0

2CΦ0

r(r − r0)‖πM
Nc

Φ0 − Φ0‖2
H1

#

−5CR

(
1 +

(
2CΦ0

cΦ0

)1+α/2

r2+α
)
‖πM

Nc
Φ0 − Φ0‖2+α

H1
#
.

As ‖πM
Nc

Φ0−Φ0‖H1
#

goes to zero when Nc goes to infinity, we finally obtain that

for all r > r0, there exists some N ′
c,r ≥ N∗

c such that for all Nc ≥ N ′
c,r,

∂BNc
(r) ⊂ BNc

and ∀WNc ∈ ∂BNc
(r), ENc

(WNc) > ENc
(0).

This proves that for each Nc ≥ N ′
c,2r0 , ENc

has a minimizer WNc

0 in the ball
BNc

(2r0). In particular,

‖WNc

0 ‖H1
#
≤ 32C3

Φ0

c3Φ0

‖πM
Nc

Φ0 − Φ0‖H1
#
. (108)

Let WNc

1 be a critical point of ENc
such that ‖WNc

1 ‖L2
#

≤ 1
2 . We denote by

δWNc = WNc

1 −WNc

0 ,

Φ̃0
Nc

= πM
Nc

Φ0 + S(WNc

0 )πM
Nc

Φ0 +WNc

0 ,

Φ̃1
Nc

= πM
Nc

Φ0 + S(WNc

1 )πM
Nc

Φ0 +WNc

1 .
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As both WNc

0 and WNc

1 are critical points of ENc
, we have

E ′
Nc

(WNc

0 ) · (WNc

1 −WNc

0 ) = 0,

E ′
Nc

(WNc

1 ) · (WNc

0 −WNc

1 ) = 0,

so that (
E ′
Nc

(WNc

1 ) − E ′
Nc

(WNc

0 )
)
· (WNc

1 −WNc

0 ) = 0.

Using the expression (107) for ENc
, we can rewrite this equality as

aΦ0(δWNc , δWNc) = bNc

Φ0 (WNc

0 ,WNc

1 , δWNc) + dΦ0(Φ̃0
Nc
, Φ̃1

Nc
,WNc

0 ,WNc

1 , δWNc),

where

bNc

Φ0 (WNc

0 ,WNc

1 , δWNc) = −aΦ0((S(WNc

1 ) − S(WNc

0 ))πM
Nc

Φ0, (S ′(WNc

1 ) · δWNc)πM
Nc

Φ0 + δWNc)

−aΦ0(((S ′(WNc

1 ) − S ′(WNc

0 )) · δWNc)πM
Nc

Φ0, (πM
Nc

Φ0 − Φ0) + S(WNc

0 )πM
Nc

Φ0 +WNc

0 )

−aΦ0((S ′(WNc

1 ) · δWNc)πM
Nc

Φ0, δWNc)

and

dΦ0(Φ̃0
Nc
, Φ̃1

Nc
,WNc

0 ,WNc

1 , δWNc) =
1

4

[
R′(Φ̃0

Nc
− Φ0) · ((S ′(WNc

0 ) · δWNc)πM
Nc

Φ0 + δWNc)

−R′(Φ̃1
Nc

− Φ0) · ((S ′(WNc

1 ) · δWNc)πM
Nc

Φ0 + δWNc)

]
.

Using Lemma 4.3 and (108), we obtain that there exists C̃Φ0 (depending only

on Φ0) and Ñc such that for all Nc ≥ Ñc,

|bNc

Φ0 (WNc

0 ,WNc

1 , δWNc)| ≤ C̃Φ0

(
‖πM

Nc
Φ0 − Φ0‖H1

#
+ ‖WNc

1 ‖L2
#

)
‖δWNc‖2

H1
#
.

On the other hand, remarking that for all Ψ ∈ M and all δΨ ∈ TΨM,

R′(Ψ − Φ0) · δΨ = EKS′(Ψ) · δΨ − 4aΦ0(Ψ − Φ0, δΨ),

and introducing the path (Ψ(t))t∈[0,1], drawn on the manifold M and connecting

Φ̃0
Nc

and Φ̃1
Nc

, defined as

Ψ(t) = Φ0 + S(tWNc

1 + (1 − t)WNc

0 )πM
Nc

Φ0 + tWNc

1 + (1 − t)WNc

0 ,

we obtain

dΦ0(Φ̃0
Nc
, Φ̃1

Nc
,WNc

0 ,WNc

1 , δWNc) =
1

4

[
EKS′(Ψ(0)) · Ψ′(0) − EKS′(Ψ(1)) · Ψ′(1)

]

−aΦ0(Ψ(0) − Φ0,Ψ′(0)) + aΦ0(Ψ(1) − Φ0,Ψ′(1))

= −
∫ 1

0

[
1

4
EKS′′(Ψ(t))(Ψ′(t),Ψ′(t)) +

1

4
EKS′(Ψ(t)) · Ψ′′(t)

−aΦ0(Ψ′(t),Ψ′(t)) − aΦ0(Ψ(t) − Φ0,Ψ′′(t))

]
dt.
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As Ψ(t) = (ψ1(t), · · · , ψN (t)) ∈ M for all t ∈ [0, 1], we have for all 1 ≤ i ≤ N
and all t ∈ [0, 1],

∫

Γ

ψ′
i(t, x)

2 dx = −
∫

Γ

ψi(t, x)ψ
′′
i (t, x) dx,

so that

1

4
EKS′(Φ0) · Ψ′′(t) − aΦ0(Ψ′(t),Ψ′(t)) =

N∑

i=1

ǫ0i

∫

Γ

φ0
iψ

′′
i (t)

−1

4
EKS′′(Φ0)(Ψ′(t),Ψ′(t)) +

N∑

i=1

ǫ0i

∫

Γ

ψ′
i(t)

2

= −
N∑

i=1

ǫ0i

∫

Γ

(ψi(t) − φ0
i )ψ

′′
i (t) −

1

4
EKS′′(Φ0)(Ψ′(t),Ψ′(t)).

Consequently,

dΦ0(Φ̃0
Nc
, Φ̃1

Nc
,WNc

0 ,WNc

1 , δWNc) = −
∫ 1

0

[
1

4

(
EKS′′(Ψ(t)) − EKS′′(Φ0)

)
(Ψ′(t),Ψ′(t))

+
1

4

(
EKS′(Ψ(t)) − EKS′(Φ0)

)
· Ψ′′(t) −

N∑

i=1

ǫ0i

∫

Γ

(ψi(t) − φ0
i )ψ

′′
i (t) − aΦ0(Ψ(t) − Φ0,Ψ′′(t))

]
dt.

Using Lemma 4.5, we obtain

|dΦ0(Φ̃0
Nc
, Φ̃1

Nc
,WNc

0 ,WNc

1 , δWNc)| ≤ C

∫ 1

0

[(
‖Ψ(t) − Φ0‖αH1

#
+ ‖Ψ(t) − Φ0‖2

H1
#

)
‖Ψ′(t)‖2

H1
#

‖Ψ(t) − Φ0‖H1
#
‖Ψ′′(t)‖H1

#

]
dt.

As

Ψ′(t) = (S ′(tWNc

1 + (1 − t)WNc

0 ) · δWNc)πM
Nc

Φ0 + δWNc ,

Ψ′′(t) = (S ′′(tWNc

1 + (1 − t)WNc

0 )(δWNc , δWNc))πM
Nc

Φ0,

we obtain that there exists some constant C ∈ R+ such that for Nc large enough,

|dΦ0(Φ̃0
Nc
, Φ̃1

Nc
,WNc

0 ,WNc

1 , δWNc)| ≤ C
(
‖πM

Nc
Φ0 − Φ0‖αH1

#
+ ‖WNc

1 ‖αH1
#

)
‖δWNc‖2

H1
#
.

Thus,

cΦ0

2
‖δWNc‖H1

#
≤ |aΦ0(δWNc , δWNc)|

= |bNc

Φ0 (WNc

0 ,WNc

1 , δWNc) + dΦ0(Φ̃0
Nc
, Φ̃1

Nc
,WNc

0 ,WNc

1 , δWNc)|
≤ C

(
‖πM

Nc
Φ0 − Φ0‖αH1

#
+ ‖WNc

1 ‖αH1
#

)
‖δWNc‖2

H1
#
.

This proves that there exists a constant r > 0 such that for all Nc large enough,
‖WNc

1 ‖H1
#
≤ r implies δWNc = 0. Hence the result. �
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As the mapping BNc
(2r0) ∋ WNc 7→ πM

Nc
Φ0 + S(WN

c )πM
Nc

Φ0 + WNc defines

a local map of V N
Nc

∩ MπM
Nc

Φ0

in the neighborhood of πM
Nc

Φ0, we obtain that

Φ̃0
Nc

= πM
Nc

Φ0 + S(WNc

0 )πM
Nc

Φ0 +WNc

0 is the unique local minimizer of

inf
{
EKS(ΦNc

), ΦNc
∈ V N

Nc
∩MπM

Nc
Φ0
}
,

in the vicinity of πM
Nc

Φ0. Besides,

‖Φ̃0
Nc

− Φ0‖H1
#

≤ ‖Φ̃0
Nc

− πM
Nc

Φ0‖H1
#

+ ‖πM
Nc

Φ0 − Φ0‖H1
#

≤ ‖S(WNc

0 )πM
Nc

Φ0 +WNc

0 ‖H1
#

+ ‖πM
Nc

Φ0 − Φ0‖H1
#

≤ C‖ΠNc
Φ0 − Φ0‖H1

#
,

for a constant C independent of Nc. We then have

‖MeΦ0
Nc
,Φ0 − 1N ‖F ≤ ‖Φ̃0

Nc
− Φ0‖L2

#
≤ C‖ΠNc

Φ0 − Φ0‖H1
#
.

Let Φ0
Nc

= UeΦ0
Nc
,Φ0Φ̃

0
Nc

, where UeΦ0
Nc
,Φ0 = MT

eΦ0
Nc
,Φ0

(MeΦ0
Nc
,Φ0M

T
eΦ0

Nc
,Φ0

)−1/2.

Then for each Nc ≥ N ′
c,2r0 , Φ0

Nc
is the unique local minimizer of (77) in the

set {
ΦNc

∈ V N
Nc

∩MΦ0 | ‖ΦNc
− Φ0‖H1

#
≤ r0

}
,

for some constant r0 > 0 independent of Nc, and it satisfies

‖Φ0
Nc

− Φ0‖H1
#
≤ C‖ΠNc

Φ0 − Φ0‖H1
#
, (109)

for some C ∈ R+ independent of Nc.

As Φ0
Nc

∈ MΦ0

, we can decompose Φ0
Nc

as

Φ0
Nc

= Φ0 + S0
Nc

Φ0 +W 0
Nc

(110)

where S0
Nc

= S(W 0
Nc

) and W 0
Nc

∈ Φ0,⊥⊥ (note that W 0
Nc

/∈ V N
Nc

in general). As

‖S0
Nc

‖F ≤ ‖W 0
Nc

‖2
L2

#
(111)

and ‖Φ0
Nc

−Φ0‖H1
#

goes to zero when Nc goes to infinity, we have, for Nc large

enough,

1

2
‖W 0

Nc
‖L2

#
≤ ‖Φ0

Nc
− Φ0‖L2

#
≤ 2‖W 0

Nc
‖L2

#
, (112)

1

2
‖W 0

Nc
‖H1

#
≤ ‖Φ0

Nc
− Φ0‖H1

#
≤ 2‖W 0

Nc
‖H1

#
. (113)

The discrete solution Φ0
Nc

satisfies the Euler equations

∀ΨNc
∈ V N

Nc
, 〈HKS

ρ0
Nc

φ0
i,Nc

, ψi〉H−1
# ,H1

#
=

N∑

j=1

[λ0
Nc

]ij(φ
0
j,Nc

, ψj)L2
#
,
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where ρ0
Nc

= ρΦ0
Nc

and where the N×N matrix Λ0
Nc

is symmetric (but generally

not diagonal). Of course, it follows from the invariance property (69) that (77)
has a local minimizer of the form UΦ0

Nc
with U ∈ U(N ) for which the Lagrange

multiplier of the orthonormality constraints is a diagonal matrix.

4.3 A priori error estimates

We are now in position to derive a priori estimates for ‖Φ0
Nc

− Φ0‖Hs
#

and

(Λ0
Nc

− Λ0), where we recall that Λ0 = diag(ǫ01, · · · , ǫ0N ).

Using (2), (109) and the inverse inequality (49), we obtain for each s ≥ 1 such

that Φ0 ∈
(
Hs

#(Γ)
)N

and each 1 ≤ r ≤ s,

‖Φ0
Nc

− Φ0‖Hr
#

≤ ‖Φ0
Nc

− ΠNc
Φ0‖Hr

#
+ ‖ΠNc

Φ0 − Φ0‖Hr
#

≤ CNr−1
c ‖Φ0

Nc
− ΠNc

Φ0‖H1
#

+ ‖ΠNc
Φ0 − Φ0‖Hr

#

≤ CNr−1
c

(
‖Φ0

Nc
− Φ0‖H1

#
+ ‖Φ0 − ΠNc

Φ0‖H1
#

)
+ ‖ΠNc

Φ0 − Φ0‖Hr
#

≤ CNr−1
c ‖ΠNc

Φ0 − Φ0‖H1
#

+ ‖ΠNc
Φ0 − Φ0‖Hr

#

≤ CN−(s−r)
c ‖ΠNc

Φ0 − Φ0‖Hs
#
. (114)

In particular, for s = 3 and r = 2, we obtain that Φ0
Nc

converges to Φ0 in

(H2
#(Γ))N , hence in (L∞

# (Γ))N .

We then proceed as in (37) and remark that

λ0
ij,Nc

− λ0
ij = 〈HKS

ρ0
Nc

φ0
i,Nc

, φ0
j,Nc

〉H−1
# ,H1

#
− 〈HKS

ρ0 φ
0
i , φ

0
j 〉H−1

# ,H1
#

= 〈HKS
ρ0 (φ0

i,Nc
− φ0

i ), (φ
0
j,Nc

− φ0
j )〉H−1

# ,H1
#

+ǫ0i

∫

Γ

φ0
i (φ

0
j,Nc

− φ0
j ) + ǫ0j

∫

Γ

φ0
j (φ

0
i,Nc

− φ0
i )

+

∫

Γ

V Coulomb
φ0

i,Nc
φ0

j,Nc

(ρ0
Nc

− ρ0)

+

∫

Γ

(
deLDA

xc

dρ
(ρc + ρ0

Nc
) − deLDA

xc

dρ
(ρc + ρ0)

)
φ0
i,Nc

φ0
j,Nc

. (115)

As, from (110),

ǫ0i

∫

Γ

φ0
i (φ

0
j,Nc

− φ0
j ) + ǫ0j

∫

Γ

φ0
j (φ

0
i,Nc

− φ0
i ) = (ǫ0i + ǫ0j )[S

0
Nc

]ij ,

we easily obtain, using the convergence of Φ0
Nc

to Φ0 in (H1
#(Γ) ∩ L∞

# (Γ))N ,

‖Λ0
Nc

− Λ0‖F −→
Nc→∞

0. (116)
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For W ∈ (L2
#(Γ))N , we introduce the adjoint problem

{
find ΨW ∈ Φ0,⊥⊥ such that
∀Z ∈ Φ0,⊥⊥, aΦ0(ΨW , Z) = (W,Z)L2

#
, (117)

the solution of whom exists and is unique by the coercivity assumption (73).
Clearly,

‖ΨW ‖H1
#
≤ C‖W‖L2

#
. (118)

In addition, it follows from standard elliptic regularity arguments that

‖ΨW ‖H2
#
≤ C‖W‖L2

#
,

yielding

‖ΨW − ΠNc
ΨW ‖L2

#
≤ CN−2

c ‖W‖L2
#

(119)

‖ΨW − ΠNc
ΨW ‖H1

#
≤ CN−1

c ‖W‖L2
#
. (120)

Denoting by Ψ = ΨΦ0
Nc

−Φ0 and using (110), we get

‖Φ0
Nc

− Φ0‖2
L2

#
= (Φ0

Nc
− Φ0,Φ0

Nc
− Φ0)L2

#

= (Φ0
Nc

− Φ0, S0
Nc

Φ0)L2
#

+ (Φ0
Nc

− Φ0,W 0
Nc

)L2
#

= (Φ0
Nc

− Φ0, S0
Nc

Φ0)L2
#

+ aΦ0(Ψ,W 0
Nc

)

= (Φ0
Nc

− Φ0, S0
Nc

Φ0)L2
#
− aΦ0(Ψ, S0

Nc
Φ0) + aΦ0(Ψ,Φ0

Nc
− Φ0)

= (Φ0
Nc

− Φ0, S0
Nc

Φ0)L2
#
− aΦ0(Ψ, S0

Nc
Φ0) + aΦ0(Ψ − ΠNc

Ψ,Φ0
Nc

− Φ0)

+aΦ0(ΠNc
Ψ,Φ0

Nc
− Φ0). (121)

From the definition (71), the last term in the above expression reads

aΦ0(ΠNc
Ψ,Φ0

Nc
−Φ0) =

1

4
EKS′′(Φ0)(ΠNc

Ψ,Φ0
Nc

−Φ0)−
N∑

i=1

N∑

j=1

λ0
ij

∫

Γ

(φ0
j,Nc

−φ0
j )ΠNc

ψi,

so that from the definition of the continuous and discrete eigenvalue problems

4aΦ0(ΠNc
Ψ,Φ0

Nc
− Φ0) = EKS′′(Φ0)(ΠNc

Ψ,Φ0
Nc

− Φ0) − EKS′(Φ0
Nc

)(ΠNc
Ψ) + EKS′(Φ0)(ΠNc

Ψ)

+4
N∑

i=1

N∑

j=1

(λ0
ij,Nc

− λ0
ij)

∫

Γ

φ0
j,Nc

ΠNc
ψi. (122)

The definition of ΠNc
and the fact that Ψ ∈ Φ0,⊥⊥ yields

∫

Γ

φ0
j,Nc

ΠNc
ψi =

∫

Γ

(φ0
j,Nc

− φ0
j )ψi,
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which finally provides the estimate

‖Φ0
Nc

− Φ0‖2
L2

#
= (Φ0

Nc
− Φ0, S0

Nc
Φ0)L2

#
− aΦ0(Ψ, S0

Nc
Φ0) + aΦ0(Ψ − ΠNc

Ψ,Φ0
Nc

− Φ0)

−1

4

(
EKS′(Φ0

Nc
)(ΠNc

Ψ) − EKS′(Φ0)(ΠNc
Ψ) − EKS′′(Φ0)(Φ0

Nc
− Φ0,ΠNc

Ψ)
)

+

N∑

i=1

N∑

j=1

(λ0
ij,Nc

− λ0
ij)

∫

Γ

(φ0
j,Nc

− φ0
j )ψi. (123)

Using Lemma 4.5, (109), (111) and (120), we infer

‖Φ0
Nc

− Φ0‖L2
#

≤ C

(
‖Φ0

Nc
− Φ0‖2

L2
#

+N−1
c ‖Φ0

Nc
− Φ0‖H1

#
+ ‖Φ0

Nc
− Φ0‖1+α

L2
#

‖Φ0
Nc

− Φ0‖H1
#

+‖Λ0
Nc

− Λ0‖F‖Φ0
Nc

− Φ0‖L2
#

)
. (124)

We thus obtain, using (116) and the above estimate, that asymptotically, when
Nc goes to infinity,

‖Φ0
Nc

− Φ0‖L2
#
≤ C N−1

c ‖ΠNc
Φ0 − Φ0‖H1

#
.

Reasoning as in (114), we obtain that for each s ≥ 1 such that Φ0 ∈
(
Hs

#(Γ)
)N

and each 0 ≤ r ≤ s, there exists a constant C such that

‖Φ0
Nc

− Φ0‖Hr
#
≤ C N−(s−r)

c ‖ΠNc
Φ0 − Φ0‖Hs

#
. (125)

To proceed further, we need to make an assumption on the regularity of the
exchange-correlation potential. In the sequel, we assume that

• either the function ρ 7→ eLDA
xc (ρ) is in C [m]([0,+∞));

• or the function ρc + ρ0 is positive everywhere. As it is continuous on R3,
this is equivalent to assuming that there exists a constant η > 0 such that
for all x ∈ R3, ρc(x) + ρ0(x) ≥ η.

It follows by standard elliptic regularity arguments that Φ0 then is in (H
m+1/2−ǫ
# (Γ))N

for any ǫ > 0, and we deduce from (125) that (78) holds true for all 0 ≤ s <
m+ 1/2.

Then, following the same lines as in the proof of (38), we obtain the estimates

∣∣∣∣
∫

Γ

V Coulomb
φ0

i,Nc
φ0

j,Nc

(ρ0
Nc

− ρ0)

∣∣∣∣ ≤ C‖ρ0
Nc

− ρ0‖H−r

#
,

and
∣∣∣∣
∫

Γ

(
deLDA

xc

dρ
(ρc + ρ0) − deLDA

xc

dρ
(ρc + ρ0

Nc
)

)
φ0
i,Nc

φ0
j,Nc

∣∣∣∣ ≤ c‖ρ0
Nc

− ρ0‖H−r

#
,
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valid for all 0 ≤ r < m− 3/2. Using these estimates in (115), we are lead to

|λ0
ij,Nc

− λ0
ij | ≤ C

(
‖Φ0 − Φ0

Nc
‖2
H1

#
+ ‖ρ0

Nc
− ρ0‖H−r

#

)
.

Now,

‖ρ0
Nc

− ρ0‖H−r

#
= sup
w∈Hr

#(Γ)

∫

Γ

(ρ0
Nc

− ρ0)w

‖w‖Hr
#

.

Noticing that

ρ0
Nc

− ρ0 =

N∑

i=1

|φ0
i,Nc

|2 −
N∑

i=1

|φ0
i |2 =

N∑

i=1

(φ0
i,Nc

− φ0
i )(φ

0
i,Nc

+ φ0
i ),

we deduce
‖ρ0
Nc

− ρ0‖H−r

#
≤ C‖Φ0

Nc
− Φ0‖H−r

#
, (126)

since Φ0
Nc

converges, therefore is uniformly bounded in Hr
#(Γ). Thus

|Λ0
Nc

− Λ0| ≤ C
(
‖Φ0

Nc
− Φ0‖2

H1
#

+ C‖Φ0
Nc

− Φ0‖H−r

#

)
. (127)

The derivation of estimates for ‖Φ0
Nc

− Φ0‖H−r

#
follows exactly the same lines

as the derivation of the L2 estimate: starting from the definition

‖Φ0
Nc

− Φ0‖H−r

#
= sup
W∈(Hr

#(Γ))N

(W,Φ0
Nc

− Φ0)L2
#

‖W‖Hr
#

,

and remarking that the solution ΨW to the adjoint problem (117) satisfies

‖ΨW ‖Hr+2
#

≤ C‖W‖Hr
#
,

we proceed as in (121) to get

(W,Φ0
Nc

− Φ0)L2
#

= (W,S0
Nc

Φ0)L2
#

+ (W,W 0
Nc

)L2
#

= (W,S0
Nc

Φ0)L2
#

+ aΦ0(ΨW ,W
0
Nc

)

= (W,S0
Nc

Φ0)L2
#
− aΦ0(ΨW , S

0
Nc

Φ0) + aΦ0(ΨW ,Φ
0
Nc

− Φ0)

= (W,S0
Nc

Φ0)L2
#
− aΦ0(ΨW , S

0
Nc

Φ0) + aΦ0(ΨW − ΠNc
ΨW ,Φ

0
Nc

− Φ0)

+aΦ0(ΠNc
ΨW ,Φ

0
Nc

− Φ0), (128)

that yields

‖Φ0
Nc

− Φ0‖H−r

#
≤ C

(
‖Φ0

Nc
− Φ0‖2

L2
#

+N−1−r
c ‖Φ0

Nc
− Φ0‖H1

#
+ ‖Φ0

Nc
− Φ0‖H−r

#
‖Φ0

Nc
− Φ0‖H1

#

+‖Λ0
Nc

− Λ0‖F‖Φ0
Nc

− Φ0‖H−r

#

)
. (129)
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The proof of (78) follows and then we get easily from (127) that

‖Λ0
Nc

− Λ0‖F ≤ CǫN
−(2m−1−ǫ)
c . (130)

Hence (79). Finally, (80) is a straightforward consequence of Lemma 4.6, (73),
(96), and (109).

4.4 Numerical results

In order to evaluate the quality of the error bounds obtained in Theorem 4.1,
we have performed numerical tests using the Abinit software [9] (freely available
online, cf. http://www.abinit.org), whose main program allows one to find the
total energy, charge density and electronic structure of systems (molecules and
periodic solids) within Density Functional Theory (DFT), using pseudopoten-
tials and a planewave basis.

We have run simulation tests with the Hartree functional (i.e. with eLDA
xc =

0), for which there is no numerical integration error. In this particular case,
the problems (74) (solved by Abinit) and (76) (analyzed in Theorem 4.1) are
identical.

For Troullier-Martins pseudopotentials, the parameterm in Theorem 4.1 is equal
to 5. Therefore, we expect the following error bounds (as functions of the cut-off

energy Ec = 1
2

(
2πNc

L

)2
)

‖Φ0
Nc

− Φ0‖H1
#

≤ C1,ǫE
−2.25+ǫ
c , (131)

‖Φ0
Nc

− Φ0‖L2
#

≤ C2,ǫE
−2.75+ǫ
c , (132)

|ǫ0i,Nc
− ǫ0i | ≤ C3,ǫE

−4.5+ǫ
c , (133)

0 ≤ IKS
Nc

− IKS ≤ C4,ǫE
−4.5+ǫ
c . (134)

The first tests were performed with the Hydrogen molecule (H2). The nuclei
were clamped at the points with cartesian coordinates r1 = (−0.7; 0; 0) and r2 =
(0.7; 0; 0) (in Bohrs). The simulation cell was a cube of side length L = 10 Bohrs.
The so-obtained numerical errors are plotted in log-scales in Figures 1 and 2.
The second series of tests were performed with the Nitrogen molecule (N2).
The nuclei were clamped at positions r1 = (−0.55; 0; 0) and r2 = (0.55; 0; 0) (in
Angstroms), and the simulation cell was a cube of side length L = 6 Angstroms.
The numerical errors for N2 are plotted in Figures 3, 4 and 5. The reference
values for Φ0, ǫ0i and IKS for both H2 and N2 are those obtained for a cut-off
energy equal to 500 Hartrees.

These results are in good agreement with the a priori error estimates (131)-(134)
for both the H2 and N2 molecules

46



10-13

10-12

10-11

10-10

10-9

10-8

10-7

10-6

10-5

 10  20  30  40  50  60 70 80 90 100  200  300

|I(
φ)

  -
 I(

φ N
c)

|  
 

Ec

Relative energy error curve as function of Ec (log/log scale)

   |I(φ)  - I(φNc)| 
 y = - 4.77 x - 0.79

Figure 1: Error on the energy as a function of Ec for H2
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Figure 4: Errors on |ǫ0i,Nc
− ǫ0i | as functions of Ec for N2
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Figure 5: Error on the energy as a function of Ec for N2
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