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Ultrastrong coupling between a cavity resonator

and the cyclotron transition of a 2D electron gas in the case of integer filling factor

David Hagenmüller1, Simone De Liberato1,2, and Cristiano Ciuti1∗
1 Laboratoire Matériaux et Phénomènes Quantiques, Université Paris Diderot-Paris 7 and CNRS,
Bâtiment Condorcet, 10 rue Alice Domont et Léonie Duquet, 75205 Paris Cedex 13, France and

2 Department of Physics, University of Tokyo, Hongo, Bunkyo-Ku, Tokyo 113-8656, Japan

We investigate theoretically the coupling between a cavity resonator and the cyclotron transition
of a two dimensional electron gas under an applied perpendicular magnetic field. We derive and
diagonalize an effective quantum Hamiltonian describing the magnetopolariton excitations of the
two dimensional electron gas for the case of integer filling factors. The limits of validity of the
present approach are critically discussed. The dimensionless vacuum Rabi frequency Ω0/ω0 (i.e.,
normalized to the cyclotron frequency ω0) is shown to scale as

√
α nQW ν, where α is the fine

structure constant, nQW is the number of quantum wells and ν is the filling factor in each well.
We show that with realistic parameters of a high-mobility semiconductor two dimensional electron
gas, the dimensionless coupling Ω0/ω0 can be much larger than 1 in the case of ν ≫ 1, the latter
condition being typically realized for cyclotron transitions in the microwave range. Implications of
such ultrastrong coupling regime are discussed.

The study of light-matter coupling in confined geome-
tries has been in the last two decades a very interesting
topic in atomic and condensed matter physics. The real-
ization of extremely high quality mirrors and the ability
to manipulate atomic states with extremely long lifetimes
has made possible the observation of the strong light-
matter coupling regime. In this regime, the coupling ex-
ceeds the losses and it is therefore possible to spectro-
scopically resolve the so-called vacuum Rabi splitting1,2.
Strong light-matter coupling has been observed in vari-
ous solid state systems, ranging from microcavity embed-
ded quantum wells3,4 to superconducting circuits cou-
pled to transmission line resonators5. In solid state sys-
tems, thanks to the collective nature of the excitations,
it is possible to go further the standard strong coupling
regime and to enter a new regime, where the vacuum
Rabi frequency is not only larger than the loss rate, but
becomes comparable or larger than the bare frequency
of the uncoupled excitations6–13. The ultrastrong cou-
pling regime is interesting for example for non-adiabatic
cavity QED phenomena reminiscent of the dynamical
Casimir effect14–17. Moreover, it can lead to a dra-
matic modification of the quantum ground state (vac-
uum) properties6,13.
In this paper, we investigate the coupling of the mag-

netic cyclotron transition of a two-dimensional electron
gas (2DEG) to the quantum field of a cavity resonator.
We show that the dimensionless vacuum Rabi frequency
ΩR/ω0 can be largely enhanced with respect to the case
of intersubband transitions in a 2DEG without magnetic
field. In particular, this is the case in the regime of
high filling factors, obtained with relatively weak mag-
netic fields and large electron densities, which can be
obtained in state-of-the-art high mobility 2DEGs. We
derive the second quantized Hamiltonian for such a sys-
tem in the case of integer filling factor ν and derive an
effective Hamiltonian describing the cavity magnetopo-
lariton excitations of the 2DEG. We show that since
ΩR/ω0 ≫ 1, the diamagnetic A2-term of the quantum

light-matter coupling Hamiltonian becomes dominant in
such a system. The present work is relevant not only
for the fundamental quantum electrodynamical proper-
ties of a 2DEG in a unconventional regime. It may have
important implications also in the low-frequency magne-
totransport properties of the 2DEG embedded in a cavity
resonator.
The paper is structured as follows. In Sec. I, we in-

troduce in detail the system and show why the mag-
netic cyclotron transition can be ultrastrongly coupled
to the vacuum field of a cavity. In Sec. II, we present
the second quantized quantum light-matter Hamiltonian
for the system (details about the derivation are given in
the Appendix). In Sec. III, we diagonalize an effective
bosonic Hamiltonian to describe the magnetopolariton
excitations of the 2DEG and show the resulting mode
dispersions. Conclusions and perspectives are drawn in
Sec. IV.

I. PHYSICAL SYSTEM AND SCALING OF

COUPLING

We will consider a system consisting of multiple doped
semiconductor quantum wells (QWs) in presence of a
magnetic field B along the z axis (perpendicular to the
QW plane). The QWs are embedded in a wire-like cav-
ity resonator, as depicted in Fig. 1, that confines the
electromagnetic modes along two directions (z and y).
In presence of a magnetic field, the electrons occupy

highly degenerate bands (see Fig. 2), the well-known
Landau levels (LLs), separated by the cyclotron en-
ergy equal to ~ω0, where ω0 = eB/(m∗c) is the cy-
clotron frequency (m∗ ≈ 0.068m0 is the effective electron
mass of the conduction band in GaAs). The magnetic
length, associated to the fundamental Landau level, is
l0 =

√

~/(m∗ω0), while the degeneracy of each LL (tak-
ing into account for the electron spin) is N = S/(πl20),
where S is the surface of the sample.
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Here, we will consider the case of an integer filling fac-
tor ν, i.e., electrons fill completely the first ν LLs (the
LL index goes from n = 0 to n = ν − 1). Consequently,
ν = ρ2DEGS/N where ρ2DEG is the electron density per
unit of area in each QW. In this section, we wish to show
a back-of-the-envelope calculation of the vacuum Rabi
frequency for such a system and compare it to the bare
cyclotron transition frequency ω0. This simple calcula-
tion will allow the reader to grasp the essential quan-
titative features and key parameters. A complete and
rigorous derivation will be presented in Sec. II and in
the Appendix. As we are interested in the observation of
high filling factor LLs, we have to consider a sample at
cryogenic temperature. In the rest of the manuscript we
will thus perform calculations at T = 0, even if our results
are expected to be robust while the thermal energy does
not exceed the cyclotron transition energy (kBT < ~ω0).
Due to Pauli blocking and harmonic oscillator selec-

tion rules, only electrons populating the level n = ν − 1
will participate to the light-matter coupling. Given that
the typical cyclotron radius for an electron in LL n is
r ∼ l0

√
n, the electric dipole associated to the tran-

sition from level n = ν − 1 to level n = ν will be
d ∼ e l0

√
ν. Hence, larger filling factors produce a larger

dipole (in a way reminiscent to Rydberg atomic states
with large orbital principal quantum number). However,
if N2DEG = ρ2DEGS is the number of electrons in the
2DEG, only the number N2DEG/ν in the level n = ν − 1
is optically active. It is known that in the presence of
a collection of identical dipoles, the collective vacuum
Rabi frequency is proportional to the square root of the
number of dipoles18. Hence, the collective excitation of
the 2DEG enhances the light-matter coupling by a factor
√

N2DEG/ν. If nQW quantum wells are identically cou-
pled to the field, an additional enhancement of

√
nQW

can be obtained (we consider here that the QWs are not
electronically coupled; this is therefore equivalent to sim-
ply increase the density of the 2DEG).
The vacuum Rabi frequency is therefore ~Ωres = d ×

Evac ×
√

N2DEG nQW /ν, where Evac is the electric field
associated to the cavity vacuum fluctuations. We will
call V = LzS the volume of the cavity, with Lz being
the direction orthonormal to the 2DEG and S = LxLy

the surface of the 2DEG plane (cf figure 1). Now, if we
consider a cavity mode resonant with the cyclotron tran-

sition, we have Evac ∼
√

~ω0

ǫLzS
, where ǫ is the dielectric

constant of the cavity spacer ( ǫ ≃ 13 for GaAs struc-
tures). Finally, we find

Ωres

ω0
∼ e l0

√
ν

√

~

ω0ǫLzS

√

N2DEG nQW /ν. (1)

If we consider a half-wavelength cavity, i.e., Lz = λ0/2
and ω0 = 2π

λ0

c√
ǫ
, given that ρ2DEG πl20 = ν, we obtain

Ωres

ω0
∼ √

αnQW ν, (2)

FIG. 1: Sketch of a cavity resonator embedding nQW identi-
cal quantum wells (QWs), each containing a two-dimensional
electron gas (2DEG) in the xy plane. An uniform and static
magnetic field B is applied along the z axis.

where α = e2

~c ≃ 1
137 is the fine structure constant. Hence,

the dimensionless vacuum Rabi coupling depends on the
small fundamental constant α, on the number of QWs
and on the filling factor in each QW. For very large fill-
ing factors and a large number of QWs it is thus possi-
ble to have Ωres

ω0
≫ 1. For a given density of electrons,

since ν ∝ 1/
√
B, we can thus always increase the cou-

pling by lowering the magnetic field intensity, since for
B → 0, ν → +∞. One the other hand, for a given
magnetic field, the filling factor increases with increasing
the electron density, and so does the coupling strength.
Of course, this description makes sense only if the cy-
clotron resonance is well resolved (i.e., not quenched by
the broadening). For example, as shown by the experi-
mental work in Ref. 19, in GaAs 2DEG with a relatively
high mobility (µ = 1.6 106 cm2V−1s−1), it is possible to
have at the same time very high filling factors (ν > 100)
with a well resolved cyclotron resonance for a magnetic
field B = 0.01 T and a transition frequency in the mi-
crowave range (f0 = ω0

2π ≈ 30 GHz).

II. QUANTUM HAMILTONIAN

A. General considerations

In condensed matter systems consisting of a collection
of two-level systems, in the low excitation limit, it is gen-
erally possible to describe the collective excitations as
bosons. Starting from the Hamiltonian in terms of the
electronic fermion operators and of the photonic boson
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FIG. 2: Sketch of Landau levels with an integer filling factor ν
(ν ≫ 1 is the regime considered in this paper). The cyclotron
transition between levels ν − 1 and ν is resonantly coupled to
cavity mode quantum field.

operators (see Appendix), we have derived the effective
bosonic Hamiltonian describing the magnetopolariton ex-
citations. In this case, the Hamiltonian is exactly solvable
by mean of an Hopfield-Bogoliubov diagonalization. This
procedure has been already applied to other systems:
for example, exciton polaritons in bulk materials20 and
quantum wells21,22, intersubband polaritons6 and polari-
ton in atomic gases23. Among the different possible ge-
ometries, we chose to treat here the case of a photonic
asymmetric wire (Lx ≫ Lz ≫ Ly). This will permit us
to treat the continuous dispersion along the x axis, while
keeping only few discrete modes along the z axis and ne-
glecting completely all the modes along the y axis except
the lowest one, whose intensity profile is constant over the
sample surface. While this choice is motivated both by
the simplicity of the resulting Hamiltonian and by con-
siderations of experimental feasibility (using transmission
line resonators) the extension to other one dimensional
geometries does not present any particular difficulty. For
sake of simplicity, we will consider the quantum wells to
be placed in the middle of the photonic wire, at z = Lz/2.

The reader familiar with the literature on polaritons
will notice that here, even in the resonant case (one pho-
tonic mode resonant with the cyclotron frequency) we
will not neglect the higher lying photonic modes, as often
done in the literature. We will instead formally consider
all of them, cutting then the resulting infinite matrix
in order to retain enough modes to be at convergence.
While considering only one photonic mode remarkably
simplifies the algebra, it is not a valid approximation in
the system under consideration. The spacing between
photonic branches being constant, in the resonant case,
the condition Ω0/ω0 > 1 implies that also the higher
photonic modes are coupled to the transition.

B. Coulomb interactions

As well known in the context of the fractional quan-
tum Hall effect, the Coulomb interaction can play a
crucial role in two-dimensional systems of electrons un-
der magnetic field. It is now well understood that the
role of interactions is completely different depending on
whether one considers the case of integer or fractional
filling factor. In the case of fractional filling, correla-
tion can become crucial, because a rearrangement of a
many-electron configuration within a partially filled Lan-
dau band does not cost any kinetic energy. As it has been
said in the previous sections, we consider here only the
case of an integer filling factor ν in the peculiar weak
magnetic field regime such that ν ≫ 1. In this weak
magnetic field limit, we have e2/(ǫl0) ≫ ~ω0: hence, one
might a priori expect a significant impact of Coulomb
interactions, which could produce for example a mix-
ing of the Landau levels. However, it has been proved24

that screening leads to a renormalized Coulomb poten-
tial which abruptly drops at the distance around two cy-
clotron radii. Moreover, the effective interaction is much
smaller than ~ω0 and this allows us to treat only the
electrons belonging to level n = ν − 1 (which is the
only one optically active). In addition, Kohn’s theorem25

states that the cyclotron resonance is not affected at all
by electron-electron interactions as far as we consider a
translationally invariant system. This holds in the ab-
sence of disorder and for a photonic wavevector q = 0.
In the geometry we consider (cf sec. II A and IIC), the
photonic wave vector always satisfies the condition that
ql0 ≪ 1 (even far from resonance). Indeed, since for
ν ≫ 1 the vacuum Rabi frequency Ω0 can be even much
larger than the cyclotron frequency ω0, the light-matter
interaction in the cavity system appears to be by far the
most dominant interaction.

C. Cavity quantized electromagnetic field

In the considered geometry, the vector potential can
be written as

A(r) = A0(r) +Aem(r), (3)

where A0(r) is the applied uniform magnetic field di-
rected along the z-direction (A0 = −Byux in the Lan-
dau gauge that we will use in this manuscript) andAem is
the contribution associated to the cavity quantum field.
We introduce the photon wavevector :

q =





qx
qy
qz



 =





qx
πny

Ly
πnz

Lz



 , (4)

where qx can vary continuously, while qy and qz are quan-
tized (ny and nz are integer values).
In the following, we will take the length Lz such that

the mode corresponding to qx = 0, qy = 0 and qz = π
Lz
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is close to resonance with the cyclotron transition. As
explained in Section IIA, the condition Ly << Lz allows
us to neglect all the modes with qy 6= 0. To simplify
the notation, we will thus omit the qy = 0 index. The
electromagnetic vector potential is then written as :

Aem(r) =
∑

qx,nz

√

2π~c2

ǫ ωqx,nz

(

aqx,nz
Uqx,nz

+ a†qx,nz
U

∗
qx,nz

)

,

(5)
where the operator aqx,nz

is the bosonic annihilation
operator for a photon belonging to the mode labeled by
the wavevector {qx, qz = πnz

Lz
}. The spatial shape Uqx,nz

of the modes (the derivation is presented in Appendix A)
is given by :

Uqx,nz
=

√

2

V
eiqxx











0

sin(πnz

Lz
z)

0











, (6)

Being our quantum wells positioned in the middle of
the photonic cavity, at z = Lz/2, only the odd photonic
modes will be coupled to the electron gas. Moreover we
introduce the matrix notation :

aqx ≡ (aqx,1 aqx,2 · · · aqx,nz
· · · )T . (7)

aqx is thus a vector containing the photon annihilation
operators for all the modes with different values of qz =
πnz

Lz
.

D. Light-matter coupled system

In the Landau gauge each electron state is indexed by
three quantum numbers n, k and m (see Appendix B for
details). n indexes the different Landau levels, k is the
momentum component along x and labels the different
electrons in each Landau level. m indexes the different
subbands in the quantum well. Actually we show in Ap-
pendix C that given the condition LQW ≪ Lz, we have
the selection rule m = m′, meaning that we can safely
neglect intersubband transitions and thus drop the m in-
dex. Beside, one could argue that all the energies in play
are much smaller than the intersubband gap which rein-
forces this approximation.
In order to write the second quantized Hamiltonian

for the coupled light-matter system, we will thus intro-

duce the fermionic operator c
(j)†
n,k , that creates an elec-

tron with quantum number k in the nth Landau level in
the jth quantum well. We omit the spin quantum num-
ber because the optical transition conserves the electron
spin, hence both spin channels contribute equally to the
light-matter coupling: it will simply appears as an added

degeneracy. We also neglect the Zeeman splitting of the
LLs (the cyclotron transition frequency is the same for
both spin channels).
Analogously to the case of intersubband transitions6,

the bright mode creation operator associated to the cy-
clotron transition is given by

b†qx =

√

ν

nQWρ2DEGS

∑

j,k

c
(j)†
ν,k+qx

c
(j)
ν−1,k. (8)

The prefactor is a normalization constant chosen such
that, in the dilute regime under consideration, these oper-

ators are approximately bosonic, [bqx , b
†
q′x
] ≃ δqx,q′x . The

bright mode is the collective excitation of the two dimen-
sional electron gas which is directly coupled to the cavity
photon mode.
After some calculations that are detailed in Appendix

C, we get the following Hamiltonian

H = HLandau +Hint +Hdia +Hcavity , (9)

where

HLandau =
∑

qx

~ω0 b
†
qxbqx ,

(10)

Hint =
∑

qx

i~ΩT
qx aqx

(

b†qx − b−qx

)

+
∑

qx

i~ΩT
qx a†

qx

(

b†−qx − bqx

)

,

Hdia =
∑

qx

aT
qxDqxa−qx + aT

qxDqxa
†
qx

+ a†T
qx Dqxaqx + a†T

qx Dqxa
†
−qx ,

and

Hcavity =
∑

qx

a†T
qx ~ωqxaqx , (11)

which represents the energy of the cavity quantum elec-
tromagnetic field. Note that we have omitted the zero-
point energy that does not play any role here and we have
defined

ωqx = diag [ωqx,1 ωqx,2 · · · ωqx,nz
· · · ] (12)

as the diagonal matrix containing the photonic mode en-
ergies. HLandau is the energy of the collective excita-
tion electronic excitations. The vector Ωqx and the ma-
trix Dqx contain the coupling constants corresponding to
Hint and Hdia respectively. Ωqx is the collective vacuum
Rabi frequency and comes from the resonant coupling



5

between the cavity photons and the 2DEG. Hdia (dia-
magnetic term by analogy with atomic physics) comes
from the squared vector potential A2

em. In Appendix
C, we present the detailed derivation of these coupling
constants. The final result is

Ωqx =

√

2πe2ω0 nQWρ2DEG

ǫm∗Lz
ω̄

− 1
2

qx ,

(13)

Dqx =
Ωqx Ω

T
qx

ω0
.

with

ω̄
− 1

2
qx = diag

[

ω
− 1

2
qx,1

, 0,−ω
−1

2
qx,3

, 0, ω
− 1

2
qx,5

, 0,−ω
− 1

2
qx,7

, . . .
]T

,

(14)
and the zeros at the even positions in Eq. (14) are

given by the fact that, as apparent in Eq. (6), only odd
photonic modes are coupled to the electron gas.
If we consider only the resonant photonic mode, with

frequency ωq̄x,n̄z
= ω0, then the corresponding normal-

ized vacuum Rabi frequency reads

Ωres

ω0
=

√

2αnQW ν

π
√
ǫ

. (15)

Apart from a geometric form factor of the order of 1, we
see that Ωres

ω0
∝ √

αnQW ν as in Eq. (2), obtained with a
back-of-the-envelope scaling calculation.
From Eq.(13) it is clear that, for Ωres

ω0
≫ 1, we have

Dres ≫ Ωres. In the ultrastrong coupling regime, we
conclude that the A2 term becomes thus dominant over
the vacuum Rabi coupling term.
Because this Hamiltonian is quadratic in terms of aqx

and bqx operators, it can be exactly diagonalized using a
generalized Hopfield transformation22. We introduce the

normal modes p
(i)
qx and p

†(i)
qx (magnetopolaritons) defined

as

p(i)qx = W (i)
qx aqx +X(i)

qx bqx + Y (i)
qx a

†
−qx + Z(i)

qx b†−qx ,

Given the bosonicity of aqx and bqx operators, also the
magnetopolariton operators satisfy the Bose commuta-

tion rule
[

p
(i)
qx , p

†(i)
q′x

]

= δi,i′δqx,q′x where the index i runs

over all the polariton branches. The condition for the
total Hamiltonian to be diagonal in terms of magnetopo-
lariton operators is

[

p(i)qx , H
]

= ~ω(i)
qx p(i)qx (16)

and the eigenvalue problem takes the form

Mqxv
(i)
qx = ~ω(i)

qx v
(i)
qx (17)
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FIG. 3: The dimensionless vacuum Rabi coupling Ωres/ω0

versus the filling factor ν for different values of the number
nQW of quantum wells. We consider only the photonic mode
{qx = 0, nz = 1} at resonance with the transition. Precisely,
the resonance is defined such that ωqx=0,nz=1 = ω0. Other
parameters are given in the text.

where ~ω
(i)
qx correspond to the magnetopolariton ener-

gies, v
(i)
qx is the vector

(

W
(i)
qx , X

(i)
qx ,Y

(i)
qx , Z

(i)
qx

)T

and Mqx

is the infinite Hopfield matrix that is given by

Mqx =



















ωqx + 2Dqx iΩqx −2Dqx iΩqx

−iΩT
qx ω0 iΩT

qx 0

2Dqx iΩqx −ωqx − 2Dqx iΩqx

iΩT
qx 0 −iΩT

qx −ω0



















.

(18)

III. RESULTS

By diagonalizing the matrix in Eq. (18), we are now
able to calculate the magnetopolariton energy disper-
sions in the multimode case. For sake of simplicity, we
have taken the lower photonic mode to be resonant with
the cyclotron transition. In Fig. 3, we present results
of the dimensionless vacuum Rabi frequency Ωres/ω0 as
a function of the filling factor ν for different values of
the number nQW of quantum wells. It is important to
point out that the dimensionless coupling depends only
on

√
αnQW ν. Hence, different values of the two dimen-

sional electron gas density ρ2DEG, magnetic field B, and
semiconductor effective mass m∗, can give rise to the
same normalized vacuum Rabi coupling Ωres/ω0, pro-
vided that the filling factor ν stays constant. For exam-
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ple, a filling factor of ν = 100 with a number of QWs
of nQW = 100 gives a dimensionless vacuum Rabi cou-
pling that takes the impressive value Ωres/ω0 ≃ 3.6. This
kind of parameters can be obtained using GaAs high-
mobility samples with cyclotron frequencies in the mi-
crowave range, as already discussed at the end of Sec.
I.
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ρ
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(× 1010 cm−2)

ω
/ω

0

FIG. 4: (Color online). Thick solid colored lines: normal-
ized frequency of the first four magnetopolariton branches as
a function of the 2D electron gas density ρ2DEG in the case
where the energy of the first cavity mode {qx = 0, nz = 1}
is resonant to the cyclotron transition. Thin black solid lines
depict the energies of the photonic branches, which are not
coupled to the cyclotron transition (for the selection rules,
see description in the text, in particular Eqs. (13) and
(14)). The two vertical straight lines indicate the densities
ρ2DEG = 2 1010cm−2 and ρ2DEG = 2 1011cm−2 (giving
a dimensionless vacuum Rabi coupling Ωres/ω0 ≃ 0.8 and
Ωres/ω0 ≃ 2.5 respectively): the corresponding frequency dis-
persions as a function of the wavevector qx are plotted in Figs.
5 and 6. Parameters : m∗ = 0.068m0 (GaAs effective mass);
B = 40mT (giving a cyclotron frequency ω0 = 100GHz/rad);
nQW = 50 and Lz = 0.25 cm which is chosen in such a way
that ωqx=0,nz=1 = ω0. With these parameters, a good numer-
ical convergence is obtained for a cutoff number of photonic
modes Λ > 7.

In Figure 4, the thick solid lines represent the normal-
ized energies of the first four magnetopolariton branches
as a function of the two dimensional electron gas density
ρ2DEG in the case where the energy of the first cavity
mode {qx = 0, nz = 1} is equal to the cyclotron transition
energy. Note that the thin solid lines depict the energies
of the photonic modes that, due to the considered geom-
etry, are not coupled to the cyclotron transition. Fig. 5
and 6 depict a typical dispersion of the normalized fre-
quencies of the first four polariton branches as a function
of the wavevector qx for densities ρ2DEG = 2 1010cm−2

and ρ2DEG = 2 1011cm−2 respectively.
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FIG. 5: (Color online). Thick solid colored lines: normal-
ized frequencies of the first four normal mode branches as a
function of the wavevector qx for ρ2DEG = 2 1010cm−2 and
B = 40mT which correspond to a filling factor ν ≃ 10. The
dashed color lines represent the dispersions of the photonic
modes with odd values of nz that are coupled to the cyclotron
transition. The red dashed-dotted line depicts the bare cy-
clotron frequency; the thin black solid lines represent the pho-
tonic modes with even values of nz, which are not coupled to
the electronic system. Other parameters are the same as in
Fig. 4.
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FIG. 6: Same as Fig. 5, but with an electron density ρ2DEG =
2 1011cm−2 (corresponding to a filling factor ν ≃ 100).

It is worth pointing out that for very large couplings
the frequency of the lower branch asymptotically tends to
0. This suggests that this kind of cavity excitations could
affect significantly the magnetotransport properties of a
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cavity embedded two dimensional electron gas in the low
frequency regime.

IV. CONCLUSIONS AND PERSPECTIVES

In conclusion, we have presented a quantum model de-
scribing the ultrastrong coupling between a cavity res-
onator and the cyclotron transition of a two dimensional
electron gas. The present approach holds for the case of
integer filling factors. We have determined the second
quantization light-matter Hamiltonian in terms of the
electronic fermionic operators and of the cavity photon
operators. We have derived and diagonalized an effective
bosonic Hopfield-like Hamiltonian describing the magne-
topolariton excitations. The ultrastrong coupling regime
characterized by a vacuum Rabi frequency much larger
than the cyclotron transition frequency can be achieved
with high filling factors, which are compatible with state-
of-the-art GaAs high mobility two dimensional electron
gas and cyclotron transitions in the microwave range. In
our present approach, we have not considered the case
of non-integer filling factors: the nature of the magne-
topolariton excitations may be qualitatively and quan-
titatively affected by a partially filled Landau band, an
issue that needs to be explored in the future.

The role of Coulomb interaction between carriers and
basic approximations have been critically discussed in
Sec. (II B).

In the future, it will be interesting to explore the im-
pact of the ultrastrong coupling on the magnetotrans-
port of properties of a cavity embedded two dimensional
electron gas. In fact, the energy of the lower magne-
topolariton branch can become much smaller than ~ω0

for Ωres/ω0 ≫ 1, meaning that even the low-frequency
transport can be affected by the coupling to the cavity
vacuum field. In particular, the Shubnikov de Haas os-
cillations, the nonlinear response to applied microwave
field26–28, could be strongly influenced by the presence of
the cavity.

We would like to thank S. Barbieri, Y. Gallais, C. Sir-
tori and Y. Todorov for discussions.

Appendix A: Spatial shape of the cavity modes

The general form for the electromagnetic vector poten-
tial is

Aem(r) =
∑

q,η

√

2π~c2

ǫ ωq

(

aq,ηuq,η + a†
q,ηu

∗
q,η

)

, (A1)

where the operator aq,η is the bosonic annihilation oper-
ator for a photon with polarization η ∈ {1, 2} belonging

to the mode labeled by the wavevector :

q =





qx
qy
qz



 =





qx
πny

Ly
πnz

Lz



 = q





sin θ cosφ
sin θ sinφ

cos θ



 , (A2)

where qx can vary continuously, while qy and qz are quan-
tized (ny and nz are integer values). The spatial shape
uq,η of the modes is given by29

uq,1 = Neiqxx











i sin(qzz) sin(qyy) cos θ cosφ

sin(qzz) cos(qyy) cos θ sinφ

− cos(qzz) sin(qyy) sin θ











,

(A3)

uq,2 = Neiqxx











−i sin(qzz) sin(qyy) sinφ

sin(qzz) cos(qyy) cosφ

0











.

The normalization constant N reads

N =















√

2
V if qy = 0 or qz = 0

2√
V

otherwise.

(A4)

As it has been written in Sec. II A and IIC, the con-
dition Ly << Lz allows us to neglect all the modes with
qy 6= 0. From Eq. (A2), we see that qy = 0 implies φ = 0
and consequently only the polarization η = 2 is present.
Omiting the qy = 0 and η = 2 indexes, we can see from
Eqs. (A1), (A2) and (A3) that the electromagnetic vec-
tor potential and the spatial shape of the cavity modes
are given by Eq. (5) and (6) respectively.

Appendix B: Landau Levels in the Landau gauge

The one electron wavefunctions in the Landau gauge
(A0 = −Byux), reads

ϕn,k,m(r) = χk(x) φn(y − y0) ξm(z), (B1)

where

χk(x) =
1√
Lx

eikx,

φn(y − y0) =
1

√

2nn!l0
√
π
Hn

(

y − y0
l0

)

e
− (y−y0)2

2l2
0 ,

y0 = kl20 is the so-called guiding center position de-
pending on k, ξm(z) is the confinement wavefunction of
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the m-th conduction subband of the quantum well and
Hn is the Hermite polynomial of degree n. With the
chosen gauge the wavefunction is thus factorized along
the three axis in a plane wave, an harmonic oscillator
wavefunction and a confinement-dependent function. For
an infinitely deep quantum well with width LQW , we
can find an analytic form for the confinement-dependent
function

ξm(z) =























√

2
LQW

cos

[

mπ(z−Lz
2 )

LQW

]

m odd

√

2
LQW

sin

[

mπ(z−Lz
2 )

LQW

]

m even.

(B2)

As explained in section IID, we omit both the spin
quantum number, the Zeeman splitting of the LLs and
the m index that do not play any role here.
Knowing that k = 2πnx/Lx with nx ∈ N, the many

body electronic ground state reads

|F 〉 =
nQW
∏

j=1

ν−1
∏

n=0

N
∏

nk=1

c
(j)†
n,k |0〉, (B3)

where |0〉 is the empty conduction band state and c
(j)†
n,k

is the fermionic operator creating an electron in the nth

Landau level with wavevector k along x in the jth quan-
tum well.

Appendix C: Second quantization hamiltonian

The minimal coupling Hamiltonian describing the elec-
trons coupled to the electromagnetic field reads:

H =
∑

i

1

2m∗

(

pi −
e

c
A(ri)

)2

+Hcavity, (C1)

where the sum runs over all the electrons (in all the
quantum wells) and Hcavity describes the free electro-
magnetic field. Developing the square in Eq. (C1) and

writing A(r) = A0(r) +Aem(r) (as in Eq. (3)), we can
identify four different terms in the Hamiltonian, namely

H = HLandau +Hint +Hdia +Hcavity . (C2)

HLandau =
∑

j H
(j)
Landau and Hint =

∑

j H
(j)
int. Hcavity

describes the free quantum cavity electromagnetic field
and has been expressed in terms of second quantized
photon operators in Eq. (11). Hdia comes from the A2

term. H
(j)
Landau is the Hamiltonian describing the elec-

trons in the jth quantum well, interacting with the static
magnetic field, giving rise to the Landau levels. Finally

H
(j)
int describes the interaction of the electrons in the jth

quantum well with the cavity electromagnetic field. In

the following we will express H
(j)
Landau, H

(j)
int and Hdia in

terms of the aqx and c
(j)
n,k operators introduced in section

II C, IID and Appendix B.

H
(j)
Landau is by construction a diagonal operator, be-

cause its eigenmodes are chosen as a basis for the transi-
tion in second quantization formalism, namely:

H
(j)
Landau =

∑

n,k

n~ω0 c
(j)†
n,k c

(j)
n,k, (C3)

As already mentioned in Sec. II D, because the elec-
tronic excitations are collective, we have to express

H
(j)
Landau in the subspace of the collective excitations. By

calculating the energy of such collective excitations (i.e.

the matrix element 〈F |bqxHLandau b
†
q′x
|F 〉, where |F 〉 is

the electronic Fermi ground state defined in Appendix
B), it is straightforward to find in such subspace HLandau

can be replaced by
∑

qx
~ω0 b

†
qxbqx , where we have omit-

ted a constant energy term.

In order to express Hint in terms of second quantized
operators, we have to calculate the matrix elements of
the form

〈n, k,m|p ·Aem(r)|n′, k′,m′〉 ∝
∑

qx,nz

〈m| sin(πnzz/Lz)|m′〉 〈n|py|n′〉
(

aqx,nz
〈k|eiqxx|k′〉+ a†qx,nz

〈k|e−iqxx|k′〉
)

, (C4)

where |n, k,m〉 is the state of an electron in the mth

subband and nth Landau level with momentum k (see
appendix B). As already mentioned if we assume that
LQW ≪ Lz, it comes from the first term in the right

hand side of Eq. (C4) that m = m′.

The matrix elements for the transition between Landau
levels read



9

〈n|py|n′〉 = im∗ω0 l0√
2 (n− n′)

(√
n′ + 1 δn,n′+1 +

√
n′ δn,n′−1

)

.

Therefore, we get the harmonic oscillator selection rule
n′ = n± 1; transitions such that |n′ − n| ≥ 2 are strictly
forbidden.
The integration over the x direction gives rise to the

momentum conservation and we obtain the result

H
(j)
int =

∑

qx,k

i~ χT
qxaqx

(

c
(j)†
ν,k+qx

c
(j)
ν−1,k − c

(j)†
ν−1,kc

(j)
ν,k−qx

)

+
∑

qx,k

i~ χT
qxa

†
qx

(

c
(j)†
ν,k−qx

c
(j)
ν−1,k − c

(j)†
ν−1,kc

(j)
ν,k+qx

)

.

The coupling constant (we are using the same notation
as in section IID) is given by

χqx =

√

2πe2ω0 ν

ǫm∗SLz
ω̄

− 1
2

qx , (C5)

Introducing the bosonic bright mode creation operator
as described in section IID

b†qx =

√

ν

nQW ρ2DEGS

∑

j,k

c
(j)†
ν,k+qx

c
(j)
ν−1,k, (C6)

we can check that the interaction Hamiltonian Hint

can be exactly rewritten as it is given in Eq. (10) by
taking

Ωqx = χqx

√

nQWρ2DEGS

ν
.

Analogously in order to calculate Hdia we need the
matrix elements :

〈n, k,m|A2
em|n′, k′,m′〉 ∝ ∑

qx,q′x,nz,n′

z
〈m| sin(πnzz/Lz) sin(πn

′
zz/Lz)|m′〉

×
{

a†qx,nz
aq′x,n′

z
〈n, k|ei(q′x−qx)x|n′, k′〉+ aqx,nz

a†q′x,n′

z
〈n, k|e−i(q′x−qx)x|n′, k′〉

+a†qx,lz a
†
q′x,l

′

z
〈n, k|e−i(q′x+qx)x|n′, k′〉+ aqx,lz aq′x,l′z〈n, k|e

i(q′x+qx)x|n′, k′〉
}

.

(C7)

Given that the quantum well size LQW ≪ Lz, the
integral along z gives the same selection rule as for
Hint : m = m′ so 〈m| sin(πlzz/Lz) sin(πl

′
zz/Lz)|m′〉 ≈

sin(πnz/2) sin(πn
′
z/2)δm,m′ .

On the other hand, the matrix elements along the other
directions x and y can be factorized. For example the

term 〈n, k|ei(q′x−qx)x|n′, k′〉 can be factorized as

〈k|ei(q′x−qx)x|k′〉〈n, k|n′, k′〉. (C8)

The second term of the previous equation is then given
by the overlap integral In,n′ (k, k′)

In,n′ (k, k′) =
∫ Ly

0

dy φn (y − y0(k))φn′ (y − y0(k
′)) .

(C9)
Assuming Ly >> l0 (which is realistic being l0 ≈

0.1µm for ω0 = 52GHz rad−1) we get :

In,n′ (k, k′) ≈
∫ +∞

−∞
dy φn (y)φn′ (y −∆y0) . (C10)

with ∆y0 = y0(k
′)− y0(k). We can then use the useful

expansion of the harmonic oscillator wavefunctions30

φn (y −∆y0) =
∑

m=0

n!

m!

(

β
1
2

)m−n

e−β/2 Lm−n
n (β)φm (y) .

(C11)

where β =
∆y2

0

2l20
and Lm−n

n is the Laguerre polynomial

of degree n and index m − n. Substituting Eq. (C11)
into Eq. (C10), we obtain

In,n′ (k, k′) ≈ n′!
n!

(

β
1
2

)n−n′

e−β/2 Ln−n′

n′ (β) . (C12)

Because of the gaussian dependence ∝ e
−∆y20

4l2
0 ,

In,n′ (k, k′) exhibits a peak centered at ∆y0 = 0 as sharp
as l0. Thanks to the definition y0(k) = l20 k and the
condition that l0 << Ly, we can consider approxima-
tively that In,n′ (k, k′) ∝ δk,k′ . In addition, due to the
orthonormality of the function φn, setting k = k′ (or
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equivalently ∆y0 = 0) into the integral (C10) implies
that In,n′ (k, k′) ≈ δn,n′ .
Hence, setting k = k′ into the integral given by the first

term of eq. (C8), we obtain the corresponding selection

rules on qx and q′x. Note that in the case of the previous
example, we get that q′x = qx. Finally, we find that Hdia

is given by Eq. (10) with the corresponding coupling
constants.
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