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La puissance de désaccord d’un adversaire

Carole Delporte-Gallet1 †and Hugues Fauconnier1 and Rachid Guerraoui2

and Andreas Tielmann1

1LIAFA, Université Paris Diderot Paris, France
2School of Computer and Communication Sciences, EPFL Lausanne, Switzerland

Un des résultats fondamentaux de l’algorithmique distribuée est que le niveau d’accord qui peut être obtenu en présence

de t pannes est exactement t + 1. Autrement dit un adversaire qui peut mettre en panne n’importe quel sous ensemble

d’au plus t processus peut empêcher les autres processus de se mettre d’accord sur t valeurs. Mais quelle est la puissance

des (22n

−n) autres adversaires qui ne peuvent mettre en panne que certaines combinaisons des processus ?

Cet article présente une caractérisation précise d’un adversaire. On y introduit la notion de ”puissance de désaccord”.

La puissance de désaccord d’un adversaire est le plus grand entier k tel que l’accord des processus sur k valeurs soit

possible avec cet adversaire. Puis on montre comment calculer automatiquement cet entier pour un adversaire donné.

Keywords: Mémoire partagée, tolérance aux pannes

1 Introduction

The theory of distributed computing is largely related to determining what can be computed against a

specific adversary. Most results so far have been devoted to one specific form of adversaries : those that

can control any subset of size t of the processes, i.e., the t-failures adversary. In particular, a seminal result

in distributed computing says that the level of agreement that can be obtained in a shared memory model

where t processes can crash is exactly t + 1 [2, 11, 13]. In other words, an adversary that can crash any

subset of size at most t can prevent the processes from agreeing on t values. In the case of consensus for

instance (t = 1), this translates into FLP [8].

In a sense, these results are very incomplete. Indeed, the t-failures assumption covers only the n “uniform”

adversaries in a system of size n. What about the other (22n
− (n + 1)) adversaries that can crash certain

subsets of processes of a certain size but not others of the same size ? In particular, given any adversary

A , for what k does A prevent k-set agreement [6] ? Beyond intellectual curiosity, the study of adversaries

that are “non-uniform” might even be practically motivated by modern multicore architectures where the

failures of processes in the same core might all be correlated [1, 9, 12].

This paper characterizes the power of an adversary A , denoted dis(A ), by the biggest k for which k-set

agreement cannot be solved with A , which we call here the disagreement power of A . We show how to

automatically compute the disagreement power of an adversary and group adversaries into n equivalence

classes in a system of size n. Adversaries within the same class solve the same set of (colorless ‡) tasks.

As established in [2, 11, 13], it is possible to implement (k + 1)-set agreement in Bk( the classical k-

failure adversary is the adversary for which at most k processes may crash) but it is impossible to implement

k-set agreement in Bk. Hence, the disagreement power of Bkis k.

Determining the disagreement power of certain adversaries is trivial. For others, it is not. Consider, in a

system of 3 processes, {1,2,3}, an adversary A that can fail either no process, both processes 2 and 3, or

process 1 i.e. A = { /0,23 §
,1}. It is easy to show that A can prevent consensus but not 2-set agreement. In

this sense, adversary A has the same disagreement power as the 1-failure adversary, namely, B1.

†Les résultats présentés dans cet article sont issus de [7]. Carole Delporte-Gallet, Hugues Fauconnier et Andreas Tiellmann sont

financés par ANR VERSO-SHAMAN et le projet INRIA GANG.

‡. Intuitively, in a colorless task, any process can adopt any other process’ input or output value.

§. When appropriate, we will use e.g. 23 as shorthand for the set {2,3}.
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Consider now a more involved scenario : a system of 4 processes and an adversary A ′ that can fail any

element of { /0, 4, 23, 14, 12, 134, 124, 123}. What is the disagreement power of A ′ ? We prove in this paper

that it is also 1.

2 Domination property

We give a general characterization of adversaries that enables to automatically compute their disagree-

ment power. Namely, we introduce a structural predicate on adversaries, parameterized by an integer k, and

which, intuitively, checks that for any set of faulty processes of size less or equal k, there is some adequate

matching set of the adversary. More formally :

Definition 1 Let A and B be any two adversaries. We say that a ∈ A dominates b ∈ B, if

(a ⊇ b) and

(∀b′ ∈ B,b′ ) b,∃a′ ∈ A ,a′ ⊇ a : D(a′,A ,b′,B)).

Definition 2 We say that an adversary A dominates an adversary B (denoted D(A ,B)) if and only if the

following property is satisfied :

∀b ∈ B,∃a ∈ A : D(a,A ,b,B).

We give an example in which the domination property holds for two adversaries. Assume n = 4 and

consider the following adversaries (we use i j . . . as a shorthand for the set {pi, p j, . . .}) :

A = { /0,12,34,123,124,134,234}

B2 = { /0,1,2,3,4,12,13,14,23,24,34}

In this example, D(A ,B2), i.e. for every b ∈ B2 there exists an a ∈ A such that D(a,b) (e.g. D( /0, /0),
D(12,2) and D(123,13)).

This property is intricate. One may think that if for all b0 ( b1 . . . ( bx in B there exist a0 ⊆ a1 . . . ⊆ ax

in A such that bi ⊆ ai for all i then D(A ,B). But this is not the case :

Consider now a slightly different example with n = 3 :

A = { /0,2,12,13,23}

B2 = { /0,1,2,3,12,13,23}

In this example, for all b0 ( b1 ( b2 there exist a0 ⊆ a1 ⊆ a2 and bi ⊆ ai. But ¬D(A ,B2), because for all

a ∈ A , ¬D(a,3).

3 Results

The existence of such a matching set means that the structure of the adversary is in some sense similar

to the structure of the uniform t-failures adversary. We prove that any adversary that satisfies the predicate

D(A ,Bk) and not D(A ,Bk+1) has disagreement power k.

We show (sufficient condition) that if k-set agreement can be solved with some adversary that satisfies

the predicate D(A ,Bk) for some k, then k-set agreement can be solved with the k-failures adversary which,

in turn, is known to be impossible [2, 11, 13]. Hence, an adversary that satisfies the predicate D(A ,Bk)
has disagreement power at least k. For this, we use a new simulation between adversaries, which we call the

conservative back-off simulation, and which we believe is interesting in its own right. The idea underlying

our simulation is the following : a process backs-off and skips its simulation step if the process thinks that

it is faulty in some set where the simulated algorithm is known to work.

Conversely (necessary condition), we show how to solve k-set agreement with any adversary A that does

not satisfy the predicate D(A ,Bk) for some k. We do this by showing how to implement failure detector

k-anti-Ω [14], known to implement k-set agreement. (Each query to k-anti-Ω returns n− k process ids ; the

specification ensures that there is a correct process whose id is eventually never output.)
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We then use our characterization to split the set of all adversaries into n disjoint equivalence classes, one

for every level of disagreement : we show that for any two adversaries with the same disagreement power,

exactly the same set of (colorless) tasks can be solved. Intuitively, in a colorless task [3, 10] any process can

adopt any input or output value of any other process without violating the task specification. The key to our

proof of the equivalence is that, for every adversary with disagreement power k, it is possible to simulate

a wait-free system of k +1 processes. This can simulate every other k-failure adversary [3, 4]. Technically,

this is achieved by implementing (k + 1)-anti-Ω for the adversary and translating it into a vector of k + 1

Ω failure detectors [5] of which at least one is a “real” Ω (i.e. it outputs eventually everywhere the same

correct process). Then, each of the k + 1 simulated processes can be associated with one of the Ω’s and a

consensus-object can be built to agree on the simulated steps of such a process.

Since we can compute automatically the disagreement power of an adversary (using our structural predi-

cate), we can thus automatically derive results for an “exotic” adversary using known results about a more

orthodox (“uniform”) adversary with the same disagreement power.

Indirectly, our partitioning contributes to the idea that a very small subset of results and ad-hoc proofs

in distributed computing should suffice to derive all others. In particular, if indeed needed to reason about

set agreement for the “wait-free” adversary (n− 1-set agreement), topology is not needed for all the other

ones. Results concerning other k-failures (“uniform”) adversaries can be deduced by [3, 4], whereas results

for all other (“non-uniform”) (22n
− (n+1)) adversaries can be deduced from our characterization.

4 Concluding Remarks

This paper presents a novel way to precisely characterize adversaries : the notion of disagreement power,

i.e., the biggest integer k for which an adversary can prevent processes from agreeing on k values. This

notion partitions the set of all adversaries into n distinct equivalence classes, one for every disagreement

power. Any two adversaries with the same disagreement power solve exactly the same set of (colorless)

tasks. We believe that our result could be extended to colored tasks but this is subject to future work.

At the heart of our partitioning lies our simulation between adversaries. Interestingly, the simulation

works also if we assume the existence of stronger objects than registers or even non-deterministic object

types. Furthermore, the simulation (as well as our implementation of k-set agreement with a given adver-

sary) remains correct even if the adversary is known only eventually, i.e., not necessarily from the beginning.
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