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Bit-complexité des protocoles de “gossip” †

Pierre Fraigniaud1 et George Giakkoupis1

1 CNRS et Université Paris Diderot. Email : firstname.lastname@liafa.jussieu.fr

Nous étudions le problème du gossip (i.e., diffusion de rumeurs) dans le modèle des appels aléatoires. Considérons n noeuds

communiquant en parallèle par étape. A chaque étape, un ensemble (potentiellement vide) de rumeurs est généré à chaque

noeud, la même rumeur pouvant être générée simultanément par plusieurs noeuds. L’objectif est de diffuser ces rumeurs

à tous les noeuds. Pour ce faire, à chaque étape, chaque noeud appelle un autre noeud choisi uniformément aléatoirement

parmi l’ensemble de tous les noeuds, et un noeud ne peut alors communiquer qu’avec le noeud qu’il a appelé, et les noeuds

qui l’ont potentiellement appelé. Dans ce modèle, Karp et ses co-auteurs [10] ont montré qu’aucun algorithme de gossip

ne peut être à la fois optimal en temps (i.e., s’exécuter en O(logn) étapes) et en volume de communication (i.e., s’exécuter

en transmettant au plus O(n) messages). En particulier, ils ont montré que tout algorithme de gossip n’utilisant pas les

IDs des noeuds et diffusant toute rumeur en O(logn) étapes doit échanger Ω(n log logn) messages par rumeur. Karp et ses

co-auteurs ont également montré que ce compromis peut être atteint.

Dans cet article, nous étudions le volume de communication estimé en nombre de bits échangés plutôt qu’en nombre de

messages. Nous montrons tout d’abord que tout algorithme de gossip n’utilisant pas les IDs des noeuds et diffusant toute

rumeur en O(logn) étapes doit échanger Ω(n(b+ log logn)) bits pour diffuser une rumeur de b bits. Nous proposons alors

un algorithme de gossip n’utilisant pas les IDs des noeuds qui diffuse toute rumeur en O(logn) étapes, en échangeant

O(n(b+ log logn logb)) bits pour une rumeur de b bits. Ces résultats démontrent que contrairement à ce qu’il peut sembler

lorsque l’on mesure le volume de communication en nombre de messages, il est possible d’être optimal en temps (i.e.,

s’exécuter en O(logn) étapes) tout en limitant le volume des communication à O(nb) bits par rumeur, sauf pour des rumeurs

extrêmement petites, de taille b ≪ log logn log loglogn bits.

1 Introduction

We study the problem of information spreading in a distributed environment where information is exchanged

using randomized communication. Suppose n players communicate in parallel rounds, where in each round

every player calls a randomly selected communication partner. Each player u is allowed to exchange messages

during a round only with the player that u called, and with all the (zero or more) players that called u, in that

round. This communication model is often referred to as the random phone-call model [10]. In every round,

zero or more pieces of information, called rumors, are generated, and each rumor is placed to one or more

players, the sources of the rumor. The goal is that each rumor be distributed among all players within a small

number of rounds from the round that the rumor was generated, and by using a small amount of communication

between players.

A motivating example for this problem is the maintenance of replicated databases, for instance, on name

servers in a large corporate network [2]. In such a system, updates are injected at various nodes and at various

times, and these updates must be propagated to all nodes in the network. It is desirable that all databases

converge to the same content quickly, and with little communication overhead. The motivation for using a

randomized communication model is that such a scheme is simple, scalable, and naturally fault tolerant [2, 8].

A simple rumor-spreading algorithm for the random phone-call model is the so-called push algorithm. A

rumor r is spread as follows : In each round, starting from the round in which r is generated, every informed

player u (i.e., every player who knows r) forwards r to the player v that u calls in that round ; we say that u
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pushes r to v. The distribution of r is terminated after Θ(logn) rounds, at which time all players know r with

high probability [9, 11]. The runtime of the push algorithm is asymptotically optimal for the random phone-call

model. However, the algorithm suffers from high communication overhead, requiring Θ(n logn) transmissions

of the rumor. Intuitively, the number of informed players roughly doubles in each round, until a constant fraction

of the players is informed ; and in each subsequent round, the number of non-informed players halves. Thus, in

the last Θ(logn) rounds Θ(n) players push the rumor in each round.

The push-pull rumor-spreading algorithm, proposed in [10], achieves the same time complexity as the push

algorithm, with a smaller communication overhead. A rumor r is distributed as follows : In each round from

the round when r is generated, every informed player u pushes r to the player that u called in this round, as in

the push algorithm, and, in addition, u forwards r to every player v that called u in this round ; we say that r is

pulled from u to v. In the basic version of this algorithm, where a rumor is assumed to have a single source, the

distribution of r is terminated after log3 n+Θ(log logn) rounds. By that time, with high probability, all players

know r, and r has been transmitted Θ(n log logn) times. The intuition is that the push and pull transmissions

roughly triple the number of informed player in each round until a constant fraction of the players is informed,

and, from this point on, the pull transmissions shrink the fraction of non-informed players from st−1 to st = s2
t−1,

in each round t. Thus, only Θ(log logn) additional rounds are required after a constant fraction of players is

informed. Note that when more than one sources per rumor are possible, the message complexity may be as bad

as Θ(n logn)—e.g., when there are Θ(n) sources. Another version of the push-pull algorithm, also proposed

in [10], uses a more robust termination criterion which detects when a large fraction of the players is informed,

and requires O(logn) rounds and Θ(n log logn) messages, regardless of the number of sources per rumor.

On the lower-bound side, it is known that no decentralized rumor-spreading algorithm for the random phone-

call model requiring O(logn) rounds and O(n) messages can guarantee that a rumor is spread to all players with

constant probability [10]. In other words, it is not possible to achieve simultaneously optimality both in terms

of the running time and the message complexity in the random phone-call model. Moreover, for the case of

address-oblivious algorithm, such as the push and push-pull algorithms above, Ω(n log logn) messages are

required, regardless of the number of rounds [10]. So, the push-pull protocol is asymptotically optimal among

the address-oblivious algorithm in terms of time and message complexity.

In this paper, we investigate the communication complexity of rumor spreading in the random phone-call

model, measured in terms of the number of bits exchanged between players. The standard approach to measu-

ring the communication complexity has been in terms of messages, counting one message for every quadruplet

(r, t,u,v) such that information for rumor r is exchanged in round t between players u and v. In the rumor-

spreading algorithms that have been proposed each such exchange of information typically involves the actual

rumor r, plus the values of some small counters, such as the age of the rumor. Arguably, for some applications

the volume of information exchanged is at least as relevant as the number of messages, and trying to minimize

the number of bits exchanged, in addition to the number of messages, is desirable. This is especially true when

a large number of rumors are spread simultaneously, or when rumors are large.

Related work. The problem of randomized rumor spreading was introduced in [9], where the runtime of

the push algorithm in the random phone-call model was analyzed. (It was later refined in [11]). Randomized

rumor spreading in the setting where players correspond to nodes in a graph (other than the complete graph),

and in each round a player chooses its communication partner at random among its graph neighbors, was first

studied in [8]. There, bounds on the runtime of the push algorithm in arbitrary graphs were derived, and the

runtime of the same algorithm in the hypercube and in random graphs was analyzed. The runtime and message

complexity of randomized rumor spreading in random graphs were also studied in [6, 7], where a push-pull

algorithm was analyzed, as well as two variations of it where players can remember their recent connections, or

they initiate multiple calls per round. Push-pull algorithms have also been proposed and analyzed for random

d-regular graphs [1], and for scale-free graphs [5]. In [3], a quasirandom analogue to the random phone-call

model was introduced, where each player has a cyclic list of all the players (or of all its neighbors, in case of

rumor spreading in a graph). A player initially calls a player at a random position in her list, but from then

on she calls her neighbors in the order of the list. The push algorithm in the quasirandom model performs

asymptotically at least as well as in the random model, for all the cases of graphs studied in [8], even when the

lists are given by an adversary. Rumor spreading in the quasirandom model was further explored in [4].
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2 Precise description of the problem

As said before, we use the communication model known as the random phone-call model [10]. In each

round, an adversary generates a (possibly empty) set of rumors, and places each rumor r to a non-empty subset

of players, the sources of r. A rumor is just a binary string, and any binary string of any size represents a possible

rumor ; so, there are exactly 2b distinct rumors of size b. No limit is imposed on the number of rumors generated

in a round. However, we assume that rumors generated in two different rounds t1, t2 with |t1 − t2| = O(logn)
are distinct (this assumption is made to simplify the exposition of our algorithm, and can be relaxed). If player

u calls a player v and a rumor r is transmitted from u to v we say that r is pushed, while if r is transmitted from

v to u we say that r is pulled.

We measure the bit communication complexity of rumor spreading, that is the total number of bits exchanged

between players. Specifically, in our rumor-spreading algorithm, each message exchanged is either related to a

single rumor, or to a set of rumors of the same size. In the latter case, to count the bits communicated per rumor

we divide the size of the message by the size of the set of rumors. For the lower bound, we assume that a set of

b-bit rumors are started by a single source at a round t, and that no other rumors are generated. We also assume

that the rumors’ size b, their source, and round t are known to all players. To count the bits communicated

per rumor, we count the total number of bits exchanged between players, from round t until the distribution of

rumors finishes, and then divide by the number of rumors.

We focus on the class of address-oblivious algorithms. That is, when player u calls player v, u and v do know

the id of each other. Of course, they can communicate their ids, but this exchange of information is also counted

in the bit communication complexity.

3 Our results

As we saw above, no rumor-spreading algorithm in the random phone-call model can be both time-optimal,

requiring O(logn) rounds, and message-optimal, requiring O(n) messages per rumor. We show that the situation

is different when bit communication complexity is considered in place of message complexity. Specifically,

we describe an address-oblivious algorithm that requires O(logn) rounds and O(n(b + log logn logb)) bits of

communication, in order to distribute a b-bit rumor among all players with high probability. Also, O(n log logn)
messages per rumor are used. These guarantees hold even when the rumors are generated by an adversary. On

the lower-bound side, we establish that any address-oblivious algorithm performing in O(logn) rounds requires

Ω(n(b+ log logn)) communication bits to spread a b-bits rumor to all players with constant probability. These

two results imply that it is possible to get optimal running time O(logn) rounds, with O(nb) bit communication

complexity per rumor, except for very small rumor sizes b ≪ log logn log loglogn.

Theorem 1 There is an address-oblivious algorithm guaranteeing that, with high probability, any rumor is

distributed to all players within O(logn) rounds and with O(nb+n log logn logb) bits of communication, where

b is the rumor’s size.

Theorem 2 For any b ≥ 1, no address-oblivious algorithm can guarantee that for any rumor of size b, this

rumor is distributed to all players within O(logn) rounds, with constant probability, and o(nb+n log logn) bits

of communication are used, in expectation.

4 Sketch of proofs

Our rumor-spreading algorithm can be described as a push-pull algorithm with “concise” feedback. Note

that the original push-pull algorithms of [10] require O(nb log logn) communication bits per b-bit rumor. (More

precisely, for the basic version this complexity holds for one source per rumor, and for the other version the

exact complexity is O(n(b + log loglogn) log logn) bits.) Thus, our algorithm saves a loglogn factor for large

b, and a b/ log logb factor for small b. Informally, it works as follows. When a player learns a new rumor r,

she pushes r in all subsequent rounds, until the 3rd time she pushes the rumor to some player who already

knows it (when a rumor is pushed, the recipient informs the sender whether she knew the rumor). These push

transmissions guarantee that a constant fraction of the players is informed within roughly logn rounds, and that

r is pushed no more than 4n times. Pull transmissions take place only every logn/ log logn rounds—there are
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Θ(log logn) pull rounds during the lifetime of r. Say u calls v in such a round. Ideally, we would like the set

of rumors pulled from u to v to consist of exactly those rumors that u knows and v does not know ; and this

should be achieved without communicating more than roughly nb/ log logn additional bits per b-bit rumor, per

pull round. This is a non trivial task, since players do not know the number or size of the rumors currently

circulating ; an unbounded number of rumors can be generated in each round, and any b-bit string can be a

valid rumor, for any b. Also, the fact that a rumor may have more than one sources precludes “grouping” into

a big rumor all the rumors started at the same time by the same player, which would effectively bound by n

the number of rumors generated per round. For these reasons simple solutions such as the use of fingerprints

to uniquely describe a rumor with fewer bits do not work. To the core of our rumor-spreading algorithm is

a simple and efficient scheme with which a player encodes the set of rumors that she knows using roughly

logb bits per b-bit rumor. This scheme is deterministic and allows for some false positives, which however do

not hurt our algorithm. Using this scheme, v informs u about the rumors that v already knows, and so u only

transmits new rumors to v.

For the lower bound, note that an Ω(n log logn) bound on the number of bits communicated per rumor is

immediate from the same bound of [10] on the number of messages. So, we just have to show an Ω(nb)
bound, which seems like a trivial information-theory result. However, a more careful look reveals that this is

not the case : Information may be conveyed not just by the content of the messages exchanged, but also by the

round in which they are exchanged. Even sending no messages through an established connection also conveys

information. In fact, the Ω(nb) bound no longer holds if we can have more than O(logn) rounds. The following

(impractical) protocol spreads a b-bit rumor using only O(n logn logb) bits, within O(2b logn) rounds. The

push protocol is modified such that, for each rumor r, the size b of r is pushed instead of r, and these push

transmissions take place only in rounds t that are equal to r modulo 2b (where r is viewed as a binary number).

We prove the Ω(nb) bound in two steps. We first establish the bound for large rumors, using essentially a

counting argument. Then we reduce the case of smaller rumors into the previous case, by showing that given

an algorithm that spreads small rumors using O(nb) bits, we can devise an algorithm that also spreads large

rumors using O(nb) bits. Error-correcting codes are used in this construction. We note that the Ω(nb) bound

holds also for non address-oblivious algorithms.
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