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émanant des établissements d’enseignement et de
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This paper considers the propagation of linear pulses driven by random polarization mode disper-
sion. Analytical expressions are derived for the probability density functions of the pulse width,
timing displacement, and degree of polarization. The study is performed in Stokes space, and the
frequency correlation between modes is shown to play an important role.

I. INTRODUCTION

The study of pulse propagation in a birefringent fiber
with random birefringence has become of great interest
for telecommunication applications. Recent experiments
have shown that Polarization Mode Dispersion (PMD)
is one of the main limitations on fiber transmission links
[1]. PMD occurs because single-mode fibers are not re-
ally single-mode but can exhibit different group veloci-
ties. PMD is thus characterized by a Differential Group
Delay (DGD) between the two modes associated with the
fiber. PMD results in the splitting of a polarized input
pulse into two orthogonal polarizations that arrive at the
ouput at different times.

The effects of PMD are usually treated by means of
the three-dimensional PMD vector. The PMD vector
r̂ gives in Stokes space the relation between the out-
put state and the frequency derivative of the output
state: ŝ′(ω) = r̂(ω) × ŝ(ω). The Principal States of Po-
larization (PSP) are defined as the states that satisfy
r̂(ω) × ŝ(ω) = 0, so that no change in output polariza-
tion can be observed close to these states at first order
in ω. However, for broadband pulses the first-order ap-
proach is not valid anymore, the changes of the PSP and
the length of r̂(ω), i.e. the DGD, with respect to fre-
quency cannot be neglected. As a consequence the fre-
quency dependences of the PMD vectors and DGD are
worth studying.

For a given frequency the properties of the PMD vector
are well known [2–4]. In particular its elements are inde-
pendent Gaussian random variables. Despite its obvious
relevance the frequency dependences of the PMD vectors
and DGD have been treated only in a few papers [5,6].
Furthermore each paper deals with the computation of
one particular expectation: the expectation of the corre-
lation between two PMD vectors [5], the expectation of
the correlation between two square DGD [6]. We shall be
able to extend these results by using an approach based
on the theory on stochastic differential equations. This
theory will give us the means to compute any expectation
of any combination of PMD vectors or DGD at different

frequencies. Furthermore, by applying and extending the
theory of moments [7] we shall deduce from these for-
mulas closed form expression for the means, variances
and probability density functions of relevant quantities
for the characterization of pulse propagation such as the
time displacement, the time rms width, and the degree
of polarization.

II. DESCRIPTION OF THE MODEL

The evolution of polarized fields in randomly birefrin-
gent fibers is governed by the coupled Schrödinger equa-
tions with random PMD between two modes (polariza-
tions) [8]:

iAz + K0A + iK1At − β′′

2
Att = 0 (1)

where A is the row vector (Ax, Ay)T that denotes the en-
velopes of the electric field in the two eigenmodes. The
matrices K0 and K1 describe random fiber birefringence.
The Group Velocity Dispersion (GVD) coefficient is the
second derivative of the propagation constant with re-
spect to frequency β′′, which is positive (resp. negative)
for normal (resp. anomalous) dispersion. One can elimi-
nate the fast random birefringence variations that appear
in Eq. (1) by means of a change of variables, that leads
to the new vector equation:

iUz − β′′

2
Utt = iRUt (2)

where U ≡ M−1A, U = (u, v)T represents the slow evo-
lution of the field envelopes in the reference frame of the
local polarization eigenmodes, and the matrix M obeys
the equation iMz +K0M = 0. R is a z-dependent matrix
that involves high order PMD. It is associated with the
coupling between the modes, as well as an accumulation
of a mismatch between their phases.

The most commonly used model is the so-called
retarded-plate model [9,10]. The birefringence strength
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Δβ and its derivative Δβ′ are constant; the birefringence
angle is constant over elementary intervals with length
Δz; at junctions between the fiber pieces with length
Δz, a random axial rotation is added as well as an ad-
dition of random phase difference between the two field
components, so that the Stokes vector obeys a random
walk over the Poincaré sphere. For our numerical sim-
ulations we shall use this model. If Δz is small enough
we can model this configuration by considering that the
matrix R is [10]:

R(z) = m1(z)Σ1 + m2(z)Σ2 + m3(z)Σ3, (3)

where Σj are Pauli matrices:

Σ1 =
(

0 1
1 0

)
, Σ2 =

(
0 −i
i 0

)
, Σ3 =

(
1 0
0 −1

)
,

and the real-valued processes mj are random white noises
with autocorrelation functions

〈mj(z)mj(z′)〉 = σ2δ(z − z′) with σ2 =
Δβ′2Δz

12
. (4)

In this model the so-called PMD parameter is given by
Dp =

√
8/(3π)Δβ′√Δz [10]. Our parameter σ2 is simply

related to Dp through:

σ2 =
π

32
D2

p.

All models of random birefringence are eventually de-
scribed by the white noise model (3) with some effective
parameter σ (or Dp) as soon as the correlation length
of the random fluctuations of birefringence parameters is
much smaller than the other characteristic lengths of the
problem [4,13,14].

For consistency, note that the usual GVD parameter
is D = −2πcβ′′/λ2 where λ is the carrier wavelength
of the pulse (1.55 μm for standard optical fiber applica-
tions). Typical values of the PMD parameter Dp have
been measured in the range 0.1–1 ps/

√
km [11,12]. Dis-

persion shifted fibers (which are of particular interest for
telecommunication) have been found to have particular
high values [12]. The correlation length Δz of PMD
varies around 0.1–1 km, and the GVD parameter D is
between 1–20 ps/nm/km.

III. PULSE CHARACTERIZATION

Numerical simulations have been carried out for the
determination of the width and degree of polarization of
the pulse versus the propagation distance [9,15]. In these
simulations the effect of GVD was usually neglected to
examine the effect of PMD exclusively. Empirical for-
mulas for the pulse width and degree polarization were
proposed. Furthermore the numbers of samples necessary
to get stable averaged values were found to be very large,

which tends to prove that the variances of the pulse width
and degree of polarization are large as well. We shall con-
firm theoretically these observations. In this section we
shall derive closed-form expressions for the average val-
ues, variances, and Probability Density Functions (PDF)
of the time displacement, pulse width, and degree of po-
larization of a pulse driven by randomly varying birefrin-
gence. We add the time displacement because the fiber
PMD not only induces optical pulse broadening but also
differences in pulse arrival times between different fiber
realizations.

If we neglect GVD then the driving equation for the
field is:

Uz = R(z)Ut (5)

where the z-dependent matrix R is the random combi-
nation (3) of the Pauli matrices. We now define the pa-
rameters of the pulse that we shall study in the following
sections.
Time displacement. We first introduce the time dis-
placement Tc:

Tc =
∫

t(|u|2 + |v|2)dt∫
(|u|2 + |v|2)dt

(6)

Pulse polarization. If the initial pulse is polarized
along the u-axis, then the rotation of the pulse polar-
ization can be characterized by the parameter Pr defined
as the ratio of the energy on the u-axis over the total
energy:

Pr =
∫ |u|2dt∫

(|u|2 + |v|2)dt
(7)

The degree of polarization is defined by [17]:

Pd =

√
s2
1 + s2

2 + s3
3

s0
(8)

in terms of the Stokes parameters:

s0 =
∫ (|u|2 + |v|2) (t)dt,

s1 =
∫ (|u|2 − |v|2) (t)dt,

s2 = 2
∫

Re (u∗v) (t)dt,

s3 = 2
∫

Im (u∗v) (t)dt.

We can also introduce the degree of polarization by the
following way. We construct the new field components
(uθ,ξ, vθ,ξ) as

uθ,ξ(t) = cos(θ)u(t) + sin(θ)eiξv(t)

vθ,ξ(t) = − sin(θ)u(t) + cos(θ)eiξv(t)
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where θ and ξ are determined so that the energy in the
component uθ,ξ is maximized. The angle θ is the so-
called polarization angle while the ratio of the energy of
the component uθ,ξ over the total energy:

Pd1 =
∫ |uθ,ξ|2dt∫

(|u|2 + |v|2)dt
(9)

is related to the degree of polarization through the simple
identity Pd = 2Pd1−1. Note that Pd1 ≥ Pr. Furthermore
the degree of polarization of a monochromatic pulse is
always equal to 1, whatever the rotation of polarization.
However, the spectral components of a short pulse tend
to loose their polarization coherence so that the degree
of polarization Pd of the corresponding pulse decays to
zero.
Pulse width. It is not clear for practical applications
whether the timing displacement should be eliminated
from the computation of the pulse broadening. If the
speed of the timing displacement is so slow that the clock
recovery can follow the change, then the timing displace-
ment has no influence on system performance and should
be eliminated. Accordingly the pulse width should be de-
fined by:

T 2
w1 =

∫
(t − Tc)2(|u|2 + |v|2)dt∫

(|u|2 + |v|2)dt
(10)

If the PMD fluctuates more rapidly than the clock recov-
ery can track, then it is necessary to include the timing
displacement to properly simulate the transmission sys-
tem:

T 2
w2 =

∫
t2(|u|2 + |v|2)dt∫
(|u|2 + |v|2)dt

= T 2
w1 + T 2

c (11)

We shall compute the mean values, variances, and PDF
of these quantities for a general initial pulse u0 polarized
along the u-axis with rms width T0. We shall also give
explicit formulas in the case of a Gaussian pulse with rms
width T0:

u0(t) = exp
(
− t2

4T 2
0

)
(12)

We shall also consider a sech pulse with rms width T0

whose expression is:

u0(t) = sech
(

πt

2
√

3T0

)
(13)

IV. THE STOKES VECTOR

The Fourier components Û := (û, v̂)T of the field:

û(ω) =
∫

u(t) exp(iωt)dt, v̂(ω) =
∫

v(t) exp(iωt)dt,

obey a system of ordinary differential equations:

Ûz = iωR(z)Û

There exist simple and exact analytical identities be-
tween the amount of broadening and Fourier components
[7,16], as well as between the polarization degree, the
time displacement and the Fourier components. These
formulas are in fact nothing more than standard Parseval
formula applied to well chosen quantities. A convenient
representation of the polarization evolutions induced by
the fluctuations mj may be done in terms of the Stokes
vector ŝ associated to the Fourier components of the field
(u, v):

ŝ1(ω) =
(|û|2 − |v̂|2) (ω),

ŝ2(ω) = 2Re (û∗v̂) (ω),
ŝ3(ω) = 2Im (û∗v̂) (ω),

whose modulus
√

ŝ2
1 + ŝ2

2 + ŝ2
3 = |û|2 + |v̂|2 = Ê0(ω) is

the spectral intensity:

Ê0(ω) =
∣∣∣∣
∫

u0(t)eiωtdt

∣∣∣∣
2

which is a preserved quantity. In terms of the Stokes
parameters the dynamics induced by PMD is simple:

ŝz = 2σωẆ(z) × ŝ

where σẆ(z) is the row vector (m3, m1, m2)T (z). Thus
the mj appear as elementary infinitesimal generators of
random rotations of the Stokes vector over the Poincaré
sphere. Mathematically speaking the above equation
should be understood as:

dŝ1(ω) = 2σω
(
ŝ2 ◦ dW 3 − ŝ3 ◦ dW 2

)
dŝ2(ω) = 2σω

(
ŝ3 ◦ dW 1 − ŝ1 ◦ dW 3

)
(14)

dŝ3(ω) = 2σω
(
ŝ1 ◦ dW 2 − ŝ2 ◦ dW 1

)
where ◦ stands for the Stratonovich stochastic integral
and W j are three independent Brownian motions. The
correlation degree between the Stokes vectors at two
nearby frequencies ω1 and ω2 is:

C(ω1, ω2) :=
ŝ(ω1).̂s(ω2)

Ê0(ω1)Ê0(ω2)
(15)

It is easy to check from Eq. (14) that C is a diffusion
process with infinitesimal generator:

L = 2σ2Δω2 ∂

∂C
(1 − C2)

∂

∂C

where Δω = ω1 − ω2. This means that any expecta-
tion of a smooth function f(C) of C satisfies the forward
Kolmogorov equation:

∂ 〈f(C)〉
∂z

= 〈Lf(C)〉

3



In particular the mean value of C decays exponentially
as:

〈C(ω1, ω2)〉 = exp
(−4Δω2σ2z

)
This shows that PMD is a strongly frequency-dependent
phenomenon, and that the Stokes vectors at two nearby
frequencies become statistically independent as z in-
creases. More precisely we can derive from the expression
of the infinitesimal generator the Fokker-Planck equation
for the PDF p(z, C) satisfied by the correlation degree
C(ω1, ω2):

∂p

∂z
= 2σ2Δω2

(
(1 − C2)

∂2p

∂C2
− 2C

∂p

∂C

)

starting from the initial condition p(0, C) = δ(C − 1).
This equation can be solved by means of an expansion
over the Legendre polynomials [18]:

p(z, C) =
1
2

∞∑
n=0

Pn(C) exp
(−2n(n + 1)σ2Δω2z

)
1C∈[−1,1]

The PDF p(z, .) is plotted in Figure 1 for different val-
ues of z. We can thus observe the transition from full
correlation p(0, C) = δ(C − 1) at z = 0 to complete un-
correlation p(∞, C) = 1

21C∈[−1,1] for σ2Δω2z > 1.

C

p(
z,

C
)

-1 0 1-0.5 0.5
0

1

2

0.5

1.5

z=0.01
z=0.1 
z=0.2 
z=0.5 
z=1   

FIG. 1. PDF of the correlation degree C(ω1, ω2) for
σ2Δω2 = 1.

V. TIME DISPLACEMENT

In terms of the Fourier components the time displace-
ment reads:

Tc =
∫

t̂(ω)Ê0(ω)dω∫
Ê0(ω)dω

(16)

where

t̂(ω) :=
Im (û∗(ω)û′(ω)) + Im (v̂∗(ω)v̂′(ω))

|û|2(ω) + |v̂|2(ω)
,

and the prime stands for the derivative with respect to
ω. The process t̄(ω, z) obeys a simple equation in terms
of the Stokes parameters:

dt̂ = σ
(
ŝ1 ◦ dW 1 + ŝ2 ◦ dW 2 + ŝ3 ◦ dW 3

)

Computing the infinitesimal generator of t̂:

L =
1
2
σ2 ∂2

∂t̂2

we get that t̂ obeys the distribution of a Brownian mo-
tion with diffusion coefficient σ. Accordingly the PDF of
t̂(ω, z) is Gaussian:

p(z, t̂) =
1√

2πσ
√

z
exp

(
− t̂2

2σ2z

)
1t̂∈R

For the following results the correlation function of t̂ at
two nearby frequencies is necessary. It is found that the
process (C, t̂1, t̂2), where t̂1 = t̂(ω1), t̂2 = t̂(ω2), and
C = C(ω1, ω2), is a diffusion process with infinitesimal
generator:

L =
1
2
σ2 ∂2

∂t̂21
+

1
2
σ2 ∂2

∂t̂22
+ σ2C

∂2

∂t̂1t̂2

+2σ2Δω2 ∂

∂C
(1 − C2)

∂

∂C

We can thus deduce that:

d

dz

〈
t̂(ω1)t̂(ω2)

〉
= σ2 〈C(ω1, ω2)〉

which yields:

〈
t̂(ω1)t̂(ω2)

〉
=

1 − exp(−4(ω1 − ω2)2σ2z)
4(ω1 − ω2)2

This allows one to state that the time displacement has
mean zero and variance:

〈
T 2

c

〉
=

∫ ∫
Ê0(ω1)Ê0(ω2)

〈
t̂(ω1)t̂(ω2)

〉
dω1ω2(∫

Ê0(ω)dω
)2 (17)

If the input pulse has Gaussian shape with rms width
T0, then the variance of the time displacement can be
written explicitly:

〈
T 2

c

〉
=

T 2
0

2

(√
1 +

4σ2z

T 2
0

− 1

)
(18)

This exact expression depends on the input shape, but
the long-term growth rate of the variance is independent
of the pulse shape. We can state in great generality that
the mean square time displacement first grows linearly
for z 	 T 2

0 /σ2, while the long-range growth is slower
(
√

z):

〈
T 2

c

〉 σ2z�T 2
0
 σ2z − 4(c2 − c2

4)
σ4z2

T 2
0

σ2z�T 2
0
 √

πc1

√
σ2z

where
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c1 =
∫

Ê0(ω)2dω(∫
Ê0(ω)dω

)2 =
1
2π

∫ |u0 � u0|2(t)dt(∫ |u0|2(t)dt
)2

c2 =
∫

ω2Ê0(ω)dω∫
Ê0(ω)dω

=
∫ |u0t|2dt∫ |u0|2dt

c4 =
∫

ωÊ0(ω)dω∫
Ê0(ω)dω

=
i
∫

u0tu
∗
0dt∫ |u0|2dt

and the star � stands for the convolution. An interesting
question concerns the statistical distribution of Tc. We
can show on the one hand that the statistical distribu-
tion of Tc is Gaussian when σ2z 	 T 2

0 since Tc is then
equal to σW 1

z up to terms of order σ2z/T 2
0 . On the other

hand, when σ2z � T 2
0 the random variable Tc has also

Gaussian statistics because Eq. (16) shows that it is the
sum of a large number of uncorrelated components. The
central limit theorem can then be invoked to show that
Tc has Gaussian statistics with zero-mean and variance
(17). Accordingly we may think that Tc has a Gaus-
sian PDF in the general case. However a thorough study
shows that the forth moment of Tc can be expanded as
powers of σ2z/T 2

0 , and the expansion of
〈
T 4

c

〉
is differ-

ent from the corresponding expansion of 3
〈
T 2

c

〉2
. This

establishes that Tc has not strictly Gaussian statistics,
although numerical simulations show that the distribu-
tion is very close to be Gaussian. This resemblance is
not surprising, since the expansion of the high order mo-
ments show that the moments of Tc obey the standard
rules of Gaussian random variables up to order 3 with
respect to σ2z/T 2

0 :

〈
T 2n

c

〉
= αn

〈
T 2

c

〉n(
1 + O(

σ6z3

T 6
0

)
)

where αn = (2n + 1)(2n − 1)...3. In cases of practical
applications for which σ2z ≤ T 2

0 , we may thus think at
Tc as a Gaussian random variable up to a very good ap-
proximation.

A second noticeable problem is about the tail of the
PDF of Tc. Although we have just noticed Tc has not
pure Gaussian statistics, it is the linear combination of
Gaussian random variables t̂, so that the tail of the dis-
tribution of Tc will be imposed by the tail of some t̂(ω).
Accordingly:

P

(
|Tc| ≥ α

〈
T 2

c

〉1/2
)

α�1∼ 1√
2πα

exp
(
−α2

2

)

Note that, if σ2z ≤ T 2
0 or else if σ2z � T 2

0 the PDF of
Tc is exactly:

p(t) =
1√

2π 〈T 2
c 〉1/2

exp
(
− t2

2 〈T 2
c 〉
)

where
〈
T 2

c

〉
is given by (17) in the general case and by

(18) in case of a Gaussian pulse.

VI. PULSE WIDTH

In terms of the Fourier components the pulse width
Tw2 reads:

T 2
w2 =

∫
R̂(ω)Ê0(ω)dω∫

Ê0(ω)dω

where

R̂(ω) :=
|û′|2(ω) + |v̂′|2(ω)
|û|2(ω) + |v̂|2(ω)

.

The process R̂(ω, z) obeys a stochastic differential equa-
tion that reads:

dR̂ = σ
(
r̂1 ◦ dW 1 + r̂2 ◦ dW 2 + r̂3 ◦ dW 3

)
where the vector r̂(ω):

r̂1(ω) = 2Im(û′û∗ − v̂′v̂∗)
r̂2(ω) = 2Im(û′v̂∗ + v̂′û∗)
r̂3(ω) = 2Re (û′v̂∗ − v̂′û∗)

is solution of:

r̂z = 2σωẆ(z) × r̂ + 2σẆ(z)

The vector r̂ is the so-called PMD vector. Let us denote
τ(ω, z) = 4(R̂(ω, z)−R̂(ω, 0)). We have |̂r(ω)|2 = τ(ω, z)
and τ is the so-called square Differential Group Delay
(DGD). Furthermore τ is a diffusion process with in-
finitesimal generator:

L = 8σ2τ
∂2

∂τ2
+ 12σ2 ∂

∂τ

which implies that τ(ω, z) obeys a χ2 distribution with
three degrees of freedom. In other words the PDF of
τ(ω, z) is:

p(τ) =
τ1/2

√
2π(4σ2z)3/2

exp
(
− τ

8σ2z

)
1τ≥0

Note that the pulse width Tw2(z) is thus always larger
than Tw2(0) whatever z and whatever the realization of
the fiber since τ(z, ω) ≥ 0. Besides the statistical distri-
bution of τ is independent of ω. In particular its mean
grows linearly with length:

〈τ〉 = 12σ2z

The correlation function of τ at two nearby frequencies is
required for the forthcoming statements. It is found that
the process (τ1, τ2, Cp) where τ1 = τ(ω1), τ2 = τ(ω2), and
Cp = r̂(ω1).̂r(ω2) is a diffusion process with infinitesimal
generator:
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L = 8σ2τ1
∂2

∂τ2
1

+ 12σ2 ∂

∂τ1
+ 8σ2τ2

∂2

∂τ2
2

+ 12σ2 ∂

∂τ2

+16σ2Cp
∂2

∂τ1∂τ2
+ σ2(12 − 4Δω2Cp)

∂

∂Cp

+2σ2
(
Δω2(τ1τ2 − C2

p) + τ1 + τ2 + 2Cp

) ∂2

∂C2
p

+8σ2(Cp + τ1)
∂2

∂Cp∂τ1
+ 8σ2(Cp + τ2)

∂2

∂Cp∂τ2

where Δω = ω2 − ω1. The complete expression of the
generator represents a straightforward generalization of
previously known results. For instance, it allows one to
recover the expression of the expectation of the corre-
lation degree between the PMD vectors at two nearby
frequencies:

〈Cp〉 =
3

Δω2

(
1 − e−4σ2Δω2z

)
which was first derived in [5]. We can also compute the
covariance of the square DGD at two nearby frequencies
ω1 and ω2:

Cov(τ(ω1), τ(ω2)) =
12

Δω4

(
4Δω2σ2z − 1 + e−4Δω2σ2z

)
(19)

which is consistent with the formula derived in [6]. Fur-
ther we can compute the expected value of any combina-
tion of Cp, τ1, and τ2. For instance, the second moment
of the correlation degree of Cp is found to be:

〈
C2

p

〉
=

1
24Δω2

(
4 − 9e−4Δω2σ2z + 5e−12Δω2σ2z

+24Δω2σ2z + 72Δω4σ4z2
)

Once the statistical distribution of τ is known it is easy
to compute the mean and variance of T 2

w2:〈
T 2

w2

〉
= T 2

0 + 3σ2z (20)

where T0 is the initial pulse width. Note that the lin-
ear growth of the square pulse width is a universal fea-
ture that does not depend on the shape of the initial
pulse. This remarkable property is involved by the inde-
pendence of the expected value of τ with respect to ω.
However the variance of T 2

w2 depends on the shape of the
initial pulse:

var(T 2
w2) =

∫ ∫
Ê0(ω1)Ê0(ω2)Cov(τ(ω1), τ(ω2))dω1dω2

16
(∫

Ê0(ω)dω
)2

In case of a Gaussian pulse:

var(T 2
w2) = T0

(
T 2

0 + 4σ2z
)3/2 − 6T 2

0 σ2z − T 4
0 (21)

More generally the following identity is valid whatever
the input pulse:

dvar(T 2
w2)

dz
= 12σ2

〈
T 2

c

〉
(22)

We can then deduce some properties of the variance:

var(T 2
w2)

σ2z�T 2
0
 6σ4z2

σ2z�T 2
0
 8

√
πc1(σ2z)3/2

Let us now compute the PDF of T 2
w2:∫ ∞

t2
p(u)du = P(T 2

w2 ≥ t2)

It can be readily estimated in the asymptotic configura-
tions σ2z 	 T0 or � T 2

0 . If σ2z 	 T 2
0 then the processes

τ(ω) are completely correlated for ω in the spectrum of
the pulse so that the distribution of T 2

w2 is:

p(t2)
σ2z�T 2

0=

√
t2 − T 2

0√
2π(σ2z)3/2

exp
(
− t2 − T 2

0

2σ2z

)
.

If σ2z � T 2
0 then the processes τ are uncorrelated with

respect to ω by Eq. (19), so that T 2
w2 is the sum of large

number of uncorrelated components. The central limit
theorem can then be invoked to establish that the statis-
tics of T 2

w2 is Gaussian. Since the mean value and vari-
ance of T 2

w2 are known, this implies that the PDF of T 2
w2

is:

p(t2)
σ2z�T 2

0=
1√

2πvar(T 2
w2)

exp

(
− (t2 − 〈T 2

w2

〉
)2

2var(T 2
w2)

)
.

Note that the decorrelation rate between τ(ω1) and τ(ω2)
is very slow (as 1/Δω2), so that the second regime can be
observed only when σ2z is much larger than T 2

0 . Besides
the same argument shows that the first expression of the
PDF should be valid even for σ2z ∼ T 2

0 , especially for
the probability tail p(t2), t2 � T 2

0 , if we take care to
take into account the exact expression of the variance of
T 2

w2:

p(t2)
σ2z≤T 2

0

√

t2 − T 2
2√

2πγ
3/2
2

exp
(
− t2 − T 2

2

2γ2

)

where

γ2 =
(
var(T 2

w2)/6
)1/2

T 2
2 =

〈
T 2

w2

〉− (3var(T 2
w2)/2

)1/2

If we consider Tw1 the results read as follows. The
mean value of T 2

w1 is simply the difference between the
mean values of T 2

w2 and T 2
c . The variance of T 2

w1 is:

var(T 2
w1) = var(T 2

w2) + var(T 2
c ) − 2Cov(T 2

w2, T
2
c )

Calculations show that

var(T 2
w1) = var(T 2

w2) − 2
〈
T 2

c

〉2
6



In case of a Gaussian pulse we get:

〈
T 2

w1

〉
= T 2

0 + 3σ2z − T 2
0

2

(√
1 +

4σ2z

T 2
0

− 1

)
(23)

Note that this expression was also derived in Ref. [5].
The variance of T 2

w1 is:

var(T 2
w1) = T 4

0

√
1 +

4σ2z

T 2
0

(√
1 +

4σ2z

T 2
0

− 1

)2

(24)

For a general pulse shape, the mean value of T 2
w1 grows

linearly:

〈
T 2

w1

〉 σ2z�T 2
0
 T 2

0 + 2σ2z (25)
σ2z�T 2

0
 3σ2z (26)

while the variance satisfies:

var(T 2
w1)

σ2z�T 2
0
 4σ4z2

σ2z�T 2
0
 8

√
πc1(σ2z)3/2

Let us now estimate the PDF of T 2
w1. If σ2z 	 T 2

0 then
we know that T 2

w1 = T 2
0 +σ2W 2

z
2 +σ2W 3

z
2 +O(σ4z2/T 4

0 )
so that it obeys a χ2 distribution with two degrees of
freedom:

p(t2)
σ2z�T 2

0=
1

σ2z
exp

(
− t2 − T 2

0

2σ2z

)
, t2 > T 2

0 . (27)

If σ2z � T 2
0 then T 2

w2 is the prevailing term in the expres-
sion of T 2

w1 so that their PDF are common. In the general
configuration, T 2

w2 obeys a χ2 distribution with three de-
grees of freedom, while T 2

c is the square of a Gaussian
random variable, so that we can guess that the PDF of
T 2

w1 corresponds to a χ2 distribution with a number d1

of degrees of freedom which is between 2 and 3. Since we
know the mean and variance of T 2

w1 we can fix the free
parameters:

d1 =
(〈

T 2
w1

〉− T 2
0

)
/
(
σ2z
)

so that:

p(t2) =
(t2 − T 2

1 )d1/2−1

2d1/2Γ(d1/2)γd1/2
1

exp
(
− t2 − T 2

1

2γ1

)
(28)

where Γ(s) =
∫∞
0 ts−1e−tdt and

γ1 =
(
var(T 2

w1)/(2d1)
)1/2

T 2
1 =

〈
T 2

w1

〉− (d1var(T 2
w1)/2

)1/2

VII. ROTATION OF POLARIZATION

The rotation of the pulse polarization can be charac-
terized by the ratio Pr of the energy on the input polar-
ization state over the total energy. In terms of the first
Stokes parameter the parameter Pr reads as:

Pr =
1
2

+
1
2

∫
ŝ1(ω)dω∫
Ê0(ω)dω

The computation of the mean and covariance of ŝ1 is
straightforward:

〈ŝ1(ω)〉 = Ê0(ω) exp(−4ω2σ2z)

Cov(ŝ1(ω1), ŝ1(ω2)) = Ê0(ω1)Ê0(ω2)
(

1
3
e−4(ω1−ω2)

2σ2z

+
2
3
e−4(ω2

1+ω2
2+ω1ω2)σ2z − e−4(ω2

1+ω2
2)σ2z

)

We can then state that the mean of Pr is:

〈Pr〉 =
1
2

+
1
2

∫
exp(−4ω2σ2z)Ê0(ω)dω∫

Ê0(ω)dω

which is equal for a Gaussian pulse to:

〈Pr〉 =
1
2

+
1
2

(
1 +

2σ2z

T 2
0

)−1/2

(29)

For a general pulse, we have:

〈Pr〉
σ2z�T 2

0
 1 − 2σ2zc2

σ2z�T 2
0
 1

2
+

c3
√

π

4
√

σ2z

where c3 =
Ê0(0)∫
Ê0(ω)dω

=
1
2π

∣∣∫ u0dt
∣∣2∫ |u0|2dt

.

The fluctuations around the mean value can be esti-
mated by the computation of the variance of Pr:

var(Pr) =
1
4

∫ ∫
Cov(ŝ1(ω1), ŝ1(ω2))dω1dω2(∫

Ê0(ω)dω
)2

For a Gaussian pulse:

var(Pr) =
1
12

(
1 +

4σ2z

T 2
0

)−1/2

− 1
4

(
1 +

2σ2z

T 2
0

)−1

+
1
6

(
1 +

3σ2z

T 2
0

)−1/2(
1 +

σ2z

T 2
0

)−1/2

(30)

For a general pulse, we have:

var(Pr)
σ2z�T 2

0
 16σ4z2c2
2

σ2z�T 2
0


√
πc1

6
√

σ2z
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VIII. DEGREE OF POLARIZATION

The degree of polarization Pd can be expressed in terms
of the frequency correlation degree of the Stokes vectors
as:

Pd =

√∫ ∫
C(ω1, ω2)Ê0(ω1)Ê0(ω2)dω1dω2∫

Ê0(ω)dω

It is then easy to compute the mean of P 2
d . One then gets

that the degree of polarization and the time displacement
satisfy the equation:

d
〈
T 2

c

〉
dz

= σ2
〈
P 2

d

〉
For a Gaussian pulse we have:

〈
P 2

d

〉
=
(

1 +
4σ2z

T 2
0

)−1/2

For a general pulse the degree of polarization first decays
linearly:

〈
P 2

d

〉 σ2z�T 2
0
 1 − 8σ2z(c2 − c2

4)

while it slowly decays to 0 for long propagation distances:

〈
P 2

d

〉 σ2z�T 2
0

√

πc1

2σ
√

z

More exactly, if σ2z 	 T 2
0 , then the PDF of the random

variable 1 − Pd is:

p(x) =
1

4σ2(c2 − c2
4)z

exp
(
− x

4σ2(c2 − c2
4)z

)
.

If σ2z � T 2
0 , then the PDF of Pd is:

p(x) =
√

2√
πα3/2

x2 exp
(
− x2

2α

)

where α(z) = (
√

πc1)/(6σ
√

z).

IX. INFLUENCE OF GVD

If we take into account both GVD and PMD, then the
field U = (u, v)T satisfies Eq. (2). In terms of the Fourier
components Û = (û, v̂)T this partial differential equation
reads as a collection of ordinary differential equations:

Ûz = iωR(z)Û + i
β′′

2
ω2Û

Setting Ǔ = Û exp
(−iβ′′ω2z/2

)
the system of differ-

ential equations for Ǔ is the same as in the absence of

GVD. The relevant quantities Ê0(ω), R̂(ω), and t̂(ω) can
be expressed as:

Ê0(ω) = Ě0(ω)

R̂(ω) = Ř(ω) + β′′2ω2z2Ě0(ω) + 2β′′ωzǏ(ω)
t̂(ω) = ť(ω) + β′′ωzĚ0(ω)

where Ě0, Ř, and ť are defined in terms of ǔ and v̌ simi-
larly as Ê0, R̂, and t̂. We know from the previous sections
the statistical distributions of Ě0, Ř, and ť, so that it is
easy to get the statistical distributions of Ê0, R̂, and t̂.

Let us first address the timing displacement. Only the
mean value of the time displacement is modified by the
presence of GVD:

〈Tc〉 = β′′c4z

var(Tc) = var(Tc)|β′′=0

For the Gaussian pulse (12) we have c4 = 0, which shows
that GVD has no influence on the timing displacement.
Let us now consider the pulse broadening. Both the mean
value and variance of the pulse width are enhanced by the
GVD:〈

T 2
w2

〉
= T 2

0 + 3σ2z + c2β
′′2z2

var(T 2
w2) = var(T 2

w2)
∣∣
β′′=0

+4β′′2z2

∫ ∫
ω1ω2

〈
ť(ω1)ť(ω2)

〉
Ě0(ω1)Ě0(ω2)dω1dω2(∫

Ě0(ω)dω
)2

〈
T 2

w1

〉
= T 2

0 + 3σ2z + (c2 + c2
4)β

′′2z2 + var(Tc)|β′′=0

var(T 2
w1) = var(T 2

w2) − 2var(Tc)2

For the Gaussian pulse we have:

〈
T 2

w2

〉
= T 2

0 + 3σ2z +
β′′2z2

4T 2
0

var(T 2
w2) = T 4

0

((
1 +

4σ2z

T 2
0

)3/2

− 6
σ2z

T 2
0

− 1

)

+
β′′2z2

4

(√
1 + 4σ2z

T 2
0

− 1
)2

√
1 + 4σ2z

T 2
0

〈
T 2

w1

〉
= T 2

0 + 3σ2z +
β′′2z2

4T 2
0

− T 2
0

2

(√
1 +

4σ2z

T 2
0

− 1

)

var(T 2
w1) = T 4

0

√
1 +

4σ2z

T 2
0

(√
1 +

4σ2z

T 2
0

− 1

)2

×
⎛
⎝1 +

β′′2z2

4T 4
0

(
1 + 4σ2z

T 2
0

)
⎞
⎠

The degree of polarization is not affected by the presence
of GVD.
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X. NUMERICAL SIMULATIONS

Here we solve numerically the propagation equation in
absence of GVD. We consider a Gaussian pulse or a sech
pulse as an initial condition with an initial rms width
T0 = 4 ps. We assume that the magnitude of linear bire-
fringence is constant. In order to simulate the random
fluctuations of birefringence we incorporate at fictitious
junctions between adjacent fiber pieces with length Δz
random axial rotation and addition of random phase dif-
ference between the field components. We take Δβ′ = 2
ps/km, and Δz = 25 m so that σ2 = 8.3 10−3 ps2/km.
Note that this corresponds to a configuration where the
usual parameter Dp = 0.29 ps/

√
km. The number of

samples used to evaluate averaged values and variances
are 104. Comparison of the numerical results and theo-
retical formulas show excellent agreement (Figures 2-3).

(a) z (km)

<T
w

1^
2>

0 400 800200 600

20

30

15

25

theo, gaus
theo, sech
num, gaus 
num, sech 

(b) z (km)

va
r(

T
w

1^
2)

0 400 800200 600

0

100

50

150
theo, gaus
theo, sech
num, gaus 
num, sech 

FIG. 2. Square rms widths of pulses with gauss or sech
shapes. The lines correspond to the theoretical values while
the crosses and circles represent the results averaged over 104

numerical simulations. The mean values are plotted in picture
a, the variances are plotted in picture b.

(a) z (km)

<P
>

0 400 800200 600

0.9

1

0.95

theo, gaus
theo, sech
num, gaus 
num, sech 

(b) z (km)

va
r(

P
)

0 400 800200 600

0.001

0.003

0.005

0.007

0.009

theo, gaus
theo, sech
num, gaus 
num, sech 

FIG. 3. Rotations of the polarization of pulses with gauss
or sech shapes. The lines correspond to the theoretical values
while the crosses and circles represent the results averaged
over 104 numerical simulations. The mean values are plotted
in picture a, the variances are plotted in picture b.

Another series of runs have been carried out where
the local birefringence strength and angle vary with dis-
tance. We present in Figures 4-5 the results correspond-
ing to two configurations where σ2z/T 2

0 = 0.12 (	 1)
and σ2z/T 2

0 = 2.2 respectively. The agreements with the
theoretical formulas are still excellent. In particular the
numerical histograms of the pulse widths are found very
close to the theoretical PDF.

(a)

(b)
FIG. 4. Mean square width (picture a) and PDF of the

pulse width (picture b) of pulses with gauss shapes. The nu-
merical values have been computed from 3000 runs. The PDF
is plotted at z = 2000 km. Here T 2

0 = 16.4 ps2 and Dp = 0.1
ps/

√
km The PDF is plotted at z = 2000 km which corre-

sponds to σ2z/T 2
0 = 0.12. The theoretical PDF is formula

(27).
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(a)

(b)
FIG. 5. Degree of polarization (picture a) and PDF of the

pulse width (picture b) of pulses with gauss shapes. The nu-
merical values have been computed from 3000 runs. Here
T 2

0 = 3.6 ps2 and Dp = 0.2 ps/
√

km. The PDF is plotted
at z = 2000 km which corresponds to σ2z/T 2

0 = 2.2. The
theoretical PDF is formula (28).

XI. CONCLUSION

In this paper we have studied behaviors of short pulses
in fibers with randomly varying birefringence. We have
derived closed form expressions for the statistical val-
ues of relevant quantities. The mean values, variances
and PDF of the time displacement, time rms width and
degree of polarization have been computed. This gives
further insight in the PMD dynamic, as well as practical
help for engineers in that not only the mean values aver-
aged over an ensemble of fibers are given. As remarked
in [6], the statistical properties of PMD in long fibers are
uniquely determined by the mean DGD. It could be also
interesting to take into account polarization-dependent
losses. This could certainly be done, as the statistical
distribution of the DGD was carried out in [19].

∗ The present address of J. Fatome is: Laboratoire
de Physique de l’Université de Bourgogne, Avenue Alain
Savary, 21000 Dijon, France

REFERENCES

[1] E. Kollveit, P. A. Andrekson, J. Brentel, B. E. Olsson,
B. Bahkshi, J. Handryd, P. O. Hedekvist, M. Karlsson,
H. Sunnerud, and J. Li, Electron. Lett. 35 (1999) 75.

[2] G. J. Foschini and C. D. Poole, J. Lightwave Technol. 9
(1991) 1439.

[3] C. R. Menyuk and P. K. A. Wai, J. Opt. Soc. Am. B 11,
1288 (1994).

[4] P. K. A. Wai and C. R. Menyuk, J. Lightwave Technol.
14, 148 (1996).

[5] M. Karlsson and J. Brentel, Opt. Lett. 24, 939 (1999).
[6] M. Shtaif and A. Mecozzi, Opt. Lett. 25 (2000) 707.
[7] F. Bruyere, Opt. Fiber Technol. 2 (1996) 269.
[8] C. R. Menyuk, IEEE J. Quantum Electron. 25, 2674

(1989).
[9] M. Matsumoto, Y. Akagi, and A. Hasegawa, J. Lightwave

Technol. 15, 584 (1997).
[10] C. D. Poole and R. E. Wagner, Electron. Lett. 22, 1029

(1986); C. D. Poole and D. L. Favin, J. Lightwave Tech-
nol. 12, 917 (1994).

[11] M. C. de Lignie, H. G. J. Nagel, and M. O. van Deventer,
J. Lightwave Technol. 12, 1325 (1994).

[12] A. Galtarossa, G. Gianello, C. G. Someda, and M. Schi-
ano, J. Lightwave Technol. 14, 42 (1996).

[13] N. Gisin and J. P. Pellaux, Opt. Commun. 89 (1992)
(1992).

[14] T .I. Lakoba and D. J. Kaup, Phys. Rev. E 56, 6147
(1997).

[15] C. Xie, M. Karlsson, and P. A. Andrekson, IEEE Photon.
Technol. Lett. 12, 801 (2000).

[16] M. Karlsson, Opt. Lett. 23 (1998) 688.
[17] M. Born and E. Wolf, Principles of optics (Pergamon,

Oxford, 1980).
[18] M. Abramowitz and I. Stegun, Handbook of mathematical

functions (Dover Publications, New-York, 1965).
[19] Y. Li and A. Yariv, J. Opt. Soc. Am. B 17 (2000) 1821.

10


