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Abstract

In this paper, we study the discrete-time approximation of multi-dimensional

reflected BSDEs of the type of those presented by Hu and Tang [16] and generalized

by Hamadène and Zhang [15]. In comparison to the penalizing approach followed by

Hamadène and Jeanblanc [14] or Elie and Kharroubi [12], we study a more natural

scheme based on oblique projections. We provide a control on the error of the

algorithm by introducing and studying the notion of multidimensional discretely

reflected BSDE. In the particular case where the driver does not depend on the

variable Z, the error on the grid points is of order 1

2
− ǫ, ǫ > 0.

Key words: BSDE with oblique reflections, discrete time approximation, Switching

problems.

MSC Classification (2000): 93E20, 65C99, 60H30.

1



1 Introduction

The main motivation of this paper is the discrete-time approximation of the following

system of reflected Backward Stochastic Differential Equations (BSDEs)





Ẏ i
t = gi(XT ) +

∫ T
t f i(Xs, Ẏ

i
s , Ż

i
s)ds−

∫ T
t ŻisdWs + K̇i

T − K̇i
t , 0 ≤ t ≤ T ,

Ẏ i
t ≥ maxj∈I{Ẏ j

t − cij(Xt)}, 0 ≤ t ≤ T ,∫ T
0 [Ẏ i

t −maxj∈I{Ẏ j
t − cij(Xt)}]dK̇i

t = 0 , i ∈ I ,
(1.1)

where I := {1, . . . , d}, f , g and (cij)i,j∈I are Lipschitz functions and X is the solution

of a forward Stochastic Differential Equation (SDE).

These equations are linked to the solutions of optimal switching problems, arising for

example in real option pricing. In the particular case where f does not depend of (Ẏ , Ż),

a first study of these equations was made by Hamadène and Jeanblanc [14]. They derive

existence and uniqueness of solution to this problem in dimension 2. The extension of

this result to optimal switching problems in higher dimension is studied by Djehiche,

Hamadène and Popier [9], Carmona and Ludkovski [5], Porchet, Touzi and Warin [24]

and by Pham, Ly Vath and Zhou [23] for an infinite time horizon consideration. In this

last paper, the resolution of optimal switching problems relies mostly on the link with

systems of variational inequalities.

Considering deterministic costs, Hu and Tang [16] derive existence and uniqueness of

solution to this type of BSDE and relate it to optimal switching problems between one

dimensional BSDEs. Extensions developed in [15] and [8] cover in particular the exis-

tence of a unique solution to the BSDE (1.1). Recently two of the authors related in

[11] the solution of (1.1) to corresponding constrained BSDEs with jumps. As presented

in [12], this type of BSDE can be numerically approximated combining a penalization

procedure with the use of the moonwalk scheme for BSDEs with jumps. Unfortunately,

no convergence rate is available for this algorithm. We present here a more natural dis-

cretization scheme based on a geometric approach. For any t ≤ T , all the components

of the Ẏt process are interconnected, so that the vector Ẏt lies in a random closed convex

set Q(Xt) characterized by the cost functions (cij)i,j∈I . The vector process Ẏ is thus

obliquely reflected on the boundaries of the domain Q(X) and we plan to approximate

these continuous reflections numerically.

As in [19, 1, 6], we first introduce a discretely reflected version of (1.1), where the

reflection occurs only on a deterministic grid ℜ = {r0 := 0, . . . , rκ := T}:
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YT = ỸT := g(XT ) ∈ QT , and, for j ≤ κ− 1 and t ∈ [rj , rj+1),

{
Ỹt = Yrj+1

+
∫ rj+1

t f(Xu, Ỹu, Zu)du−
∫ rj+1

t ZudWu ,

Yt = Ỹt1{t/∈ℜ} + P(Xt, Ỹt)1{t∈ℜ},
(1.2)

where P(Xt, .) is the oblique projection operator on Q(Xt), for t ≤ T . Extending the

approach of Hu and Tang [16], we observe that the solution to (1.2) interprets as the

value process of a one-dimensional optimal BSDE switching problem with switching

times belonging to ℜ. This allows us to prove a key stability result for this equation.

We control the distance between (Y, Z) and (Ẏ , Ż) in terms of the mesh of the reflection

grid. Due to the obliqueness of the reflections, the direct argumentation of [1, 6] does

not apply. Using the reinterpretation in terms of switching BSDEs, we first prove that

Y approaches Ẏ on the grid points with a convergence rate of order 1 − ε, ε > 0 uni-

formly in ℜ, whenever the cost function is Lipschitz and f is bounded in z. Imposing

more regularity on the cost function, we control the convergence rate of (Yt, Zt)0≤t≤T

to (Ẏt, Żt)0≤t≤T .

We then consider an Euler type approximation scheme associated to the BSDE (1.2)

defined on π = {t0, . . . , tn} by Y π
T := g(Xπ

T ) and, for i ∈ {n− 1, . . . , 0},




Z̄πti := (ti+1 − ti)
−1

E

[
Y π
ti+1

(Wti+1
−Wti)

′ | Fti
]
,

Ỹ π
ti := E

[
Y π
ti+1

| Fti
]
+ (ti+1 − ti)f(X

π
ti , Ỹ

π
ti , Z̄

π
ti) ,

Y π
ti := Ỹ π

ti 1{ti /∈ℜ} + P(Xπ
ti , Ỹ

π
ti )1{ti∈ℜ} ,

(1.3)

where Xπ is the Euler scheme associated to X. It is now well known, see e.g. [2, 25],

that the convergence rate of the scheme (1.3) to the solution of (1.2) is controled by the

regularity of (Y, Z) through the quantities

E

[
∑

i<n

∫ ti+1

ti

|Yt − Yti |2dt
]

and E

[
∑

i<n

∫ ti+1

ti

|Zt − Z̄ti |2dt
]
,

with Z̄ti =
1

ti+1−ti
E

[∫ ti+1

ti
Ztdt | Fti

]
, for i ≤ n.

Using classical Malliavin differentiation tools, we prove a representation for Z, extending

the results of [1, 6] to the system of discretely reflected BSDEs (1.2). We deduce

the expected regularity results on (Y, Z) and, using the technics of [7], Chapter 3, we

obtain in a very general setting the convergence of (1.3) to (1.2). However, due to the

obliqueness of the reflections, the projection operator P(X, .) is only L-lipschitz with

L > 1, leading to a convergence rate of order Lκ|π|1/4, where we recall that κ is the
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number of points in the reflection grid ℜ. The term Lκ can be very large even for small

κ and leads to a poor logarithmic convergence rate when passing to the limit κ → ∞
for the approximation of (1.1). In the particular case where f does not depend on z,

we are able to get rid of the Lκ term.

Our innovative approach relies on on the use of comparison results to get a control of

the involved quantities:

• we interpret the solution of (1.2) as a value process of an optimization problem,

which allows to get a control of the distance between the continuously and dis-

cretely reflected BSDEs,

• we introduce a convenient auxiliary process dominating both solutions (1.2) and

(1.3), to get a control of the distance between these quantities.

Combining the previous estimates, we deduce the convergence of the discrete time

scheme (1.3) to the solution of (1.1) with a convergence rate of order |π| 12−ε on the

grid points, whenever ℜ = π and f is independent of Z. Whenever the cost functions

are constant, all the previous estimates hold true with ε = 0. We want to emphasize

that all these results are obtained without any assumption on the non-degeneracy of the

volatility matrix σ.

The rest of the paper is organized as follows. In Section 2, we introduce the notion of

discretely obliquely reflected BSDEs, connect it with optimal switching problems and

give the fundamental stability result. Section 3 focuses on the regularity of the solution

to this new type of BSDE. This analysis leads to precious estimates allowing to deduce

the convergence of the associated discrete time scheme, see Section 4. Afterwards,

Section 5 focuses on the extension to the continuously reflected case and provides a

convergence rate of the discretely reflected BSDE to the continuously one, whenever the

driver f is bounded in the variable Z. The global error of the scheme is provided at the

end of this section. Some a priori estimates are reported in the Appendix.

Notations. Throughout this paper we are given a finite time horizon T and a prob-

ability space (Ω,F ,P) endowed with a d-dimensional standard Brownian motion W =

(Wt)t≥0. The filtration F = (Ft)t≤T generated by the Brownian motion is supposed to

satisfy the usual conditions. Here, P denotes the σ−algebra on [0, T ]×Ω generated by

F−progressively measurable processes. Any element x ∈ R
ℓ with ℓ ∈ N will be identified

to a column vector with i-th component xi and Euclidian norm |x|. For x, y ∈ R
ℓ, x.y

denotes the scalar product of x and y, and x′ denotes the transpose of x. We denote by
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� the component by component partial ordering relation on vectors. Mm,d denotes the

set of real matrices with m lines and d columns. We denotes by Ckb the set of functions

from R
d to R with continuous and bounded derivatives up to order k. For a function

f ∈ C1, ∇xf denotes the Jacobian matrix of f with respect to x. Finally, for ease of

notation, we will sometimes write Et[·] instead of E[·|Ft], t ∈ [0, T ]. In the following, we

shall use these notations without specifying the dimension nor the dependence in ω ∈ Ω

when it is clearly given by the context. Finally, for any p ≥ 1, we introduce:

• the set Sp of real-valued càdlàg P-measurable processes Y = (Yt)0≤t≤T satisfying

‖Y ‖
Sp := E

[
sup0≤t≤T |Yt|p

] 1
p < ∞.

• the set Hp of Rd-valued P-measurable processes Z = (Zt)0≤t≤T such that ‖Z‖
Hp :=

E

[
(
∫ T
0 |Zt|2dt)

p

2

] 1

p
< ∞.

• the closed subset Ap of Sp consisting of nondecreasing processes K satisfying K0 = 0.

In the sequel we denote by CL a constant whose value may change from line to line but

which depends only on L. We use the notation CpL whenever it depends on some other

parameter p > 0.

2 Discretely obliquely reflected BSDE

In the beginning of this section, we define and study discretely obliquely reflected BSDEs

in a general setting. In particular, we show how their solutions relate to the solutions of

one-dimensional optimal switching problems, where the switching times are restricted to

lie in a discrete time set. This allows to prove a stability result for obliquely RBSDEs,

which will be use several times in the paper.

2.1 Definition

A discretely obliquely reflected BSDE is a reflected BSDE where the reflection is only

allowed on a discrete time set.

We thus consider a grid ℜ := {r0 = 0, . . . , rκ = T} of the time interval [0, T ] satisfying

|ℜ| := max
1≤k≤κ

|rk − rk−1| ≤
L

κ
. (2.1)

We also consider a matrix valued process C = (Cij)1≤i,j≤m such that Cij belongs to S2

for i, j ∈ {1, . . . , d} and satisfies the following structure condition




Ciit = 0 , for 1 ≤ i ≤ d and 0 ≤ t ≤ T ;

inf0≤t≤T C
ij
t > 1

L , for 1 ≤ i, j ≤ d , with i 6= j ;

inf0≤t≤T C
ij
t +Cjlt −Cilt > 0, for 1 ≤ i, j, l ≤ d, with i 6= j, j 6= l.

(2.2)
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We introduce a random closed convex set family associated to C:

Qt :=

{
y ∈ R

d | yi ≥ max
j

(yj − Cijt ) , 1 ≤ i ≤ d

}
, 0 ≤ t ≤ T ,

and the oblique projection operator onto Qt, denoted Pt and defined by

Pt : y ∈ R
d 7→

(
max
j∈I

{
yj − Cijt

})

1≤i≤d

.

which is P⊗ B(Rd)-measurable.

Remark 2.1. (i) It follows from the structure condition (2.2) that P is increasing with

respect to the partial ordering relation �, where y � y′ means yi ≥ (y′)i for all i ∈ I.

(ii) An easy calculation leads to

|Pt(y1)− Pt(y2)| ≤
√
d |y1 − y2| . (2.3)

Thus P is L- Lipschitz continuous with L > 1, recalling that d ≥ 2.

Finally, we are also given a random variable ξ ∈ [L2(FT )]d valued in QT , representing

the terminal value of the BSDE and a random function F : Ω× [0, T ]×R
d×Md,q → R

d

which is P⊗ B(Rd)⊗ B(Md,q)−measurable and satisfies the Lipschitz property:

|F (t, y, z)− F (t, y′, z′)| ≤ L(|y − y′|+ |z − z′|),

for all (t, y, y′, z, z′) ∈ [0, T ]× (Rd)2 × (Md,q)2, P−a.s.

We shall also assume that

(HF ) The component i of F (t, y, z) depends only on the component i of the vector

y and on the row i of the matrix z, i.e. F i(t, y, z) = F i(t, yi, zi).

Given this set of data (ℜ, C, F, ξ), a discretely obliquely reflected BSDE, denoted D(ℜ, C, F, ξ),
is a triplet (Ỹ , Y, Z) ∈ (S2 ×S2 ×H2)I satisfying YT = ỸT := ξ ∈ Q(T ), and defined in

a backward manner, for j ≤ κ− 1 and t ∈ [rj , rj+1), by

{
Ỹt = Yrj+1

+
∫ rj+1

t F (u, Ỹu, Zu)du−
∫ rj+1

t ZudWu ,

Yt = Ỹt1{t/∈ℜ} + Pt(Ỹt)1{t∈ℜ}.
(2.4)

This rewrites equivalently for t ∈ [0, T ] as

{
Ỹt = ξ +

∫ T
t F (u, Ỹu, Zu)du−

∫ T
t ZudWu + (K̃T − K̃t) ,

K̃t :=
∑

r∈ℜ\{0}∆K̃r 1{r≤t} with ∆K̃t := Yt − Ỹt = −(Ỹt − Ỹt−) ,
(2.5)
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Observe that K̃ ∈ (A2)I , since Cij is positive and valued in S2, for any i, j ∈ I.

We shall also use the following integrability condition for some p ≥ 2

(Cp) |ξ|p + sup
t∈[0,T ]

|Ct|p +
∫ T

0
|F (s, 0, 0)|pds ≤ β ,

where β is a positive random variable satisfying E[β] ≤ CL. Importantly, β does not

depend on ℜ.

The proof of the following a priori estimates is postponed in Section 6.1 of the Appendix.

Proposition 2.1. Assume that (Cp) holds for some given p ≥ 2, there exists a unique

solution (Ỹ , Y, Z) to (2.4) and it satisfies

‖Ỹ ‖
Sp + ‖Z‖

Hp + ‖K̃T ‖Lp ≤ CpL .

2.2 Corresponding optimal switching problem

In this subsection, we interpret the solution of the discretely obliquely RBSDE (2.5)

as the value process of a corresponding optimal switching problem, where the possible

switching times are restricted to belong to the grid ℜ. Our approach relies on similar

arguments as the one followed by Hu and Tang [16] in a framework with continuous

reflections.

A switching strategy a is a nondecreasing sequence of stopping times (θj)j∈N , combined

with a sequence of random variables (αj)j∈N valued in I, such that αj is Fθj−measurable,

for any j ∈ N. We denote by A the set of such strategies. For a = (θj , αj)j∈N ∈ A, we

introduce Na the (random) number of switches before T :

Na = #{k ∈ N
∗ : θk ≤ T} . (2.6)

To any switching strategy a = (θj , αj)j∈N ∈ A, we associate the current state process

(at)t∈[0,T ] and the compound cost process (Aat )t∈[0,T ] defined respectively by

at := α01{0≤t<θ0} +
Na∑

j=1

αj−11{θj−1≤t<θj} and Aat :=
Na∑

j=1

C
αj−1αj

θj
1{θj≤t≤T} ,

for 0 ≤ t ≤ T . For (t, i) ∈ [0, T ]×I, the set At,i of admissible strategies starting from i

at time t is defined by

At,i = {a = (θj , αj)j ∈ A |θ0 = t, α0 = i, E
[
|AaT |2

]
<∞} ,
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similarly we introduce Aℜ
t,i the restriction to ℜ−admissible strategies

Aℜ
t,i := { a = (θj , αj)j∈N ∈ At,i | θj ∈ ℜ , ∀j ≤ Na } ,

and denote Aℜ :=
⋃
i≤dAℜ

0,i.

For (t, i) ∈ [0, T ]×I, and a ∈ Aℜ
t,i, we consider as in [16] the associated one dimensional

switched BSDE defined by

Uau = ξaT +

∫ T

u
F as(s, Uas , V

a
s )ds−

∫ T

u
V a
s dWs −AaT +Aau , t ≤ u ≤ T . (2.7)

Theorem 3.1 in [16] interprets each component of the solution to the continuously re-

flected BSDE (1.1) as the Snell envelop associated to switched processes of the form

(2.7), where the switching strategies a are not restricted to lie in the reflection grid ℜ.

The next theorem is a new version of this Snell envelop representation adapted to the

consideration of discretely obliquely reflected BSDE (2.5).

Theorem 2.1. Assume that (C2) is in force. For any i ∈ I and t ∈ [0, T ], the following

holds:

(i) The process Ỹ dominates any ℜ-switched BSDE, i.e.

Uat ≤ Ỹ i
t P− a.s. , for any a ∈ Aℜ

i,t . (2.8)

(ii) Define the strategy a∗ = (θ∗j , α
∗
j )j≥0 recursively by (θ∗0, α

∗
0) := (t, i) and, for j ≥ 1,

θ∗j := inf

{
s ∈ [θ∗j−1, T ] ∩ ℜ

∣∣∣ Ỹ
α∗
j−1

s ≤ max
k 6=α∗

j−1

{
Ỹ k
s − C

α∗
j−1

k
s

}}
,

α∗
j := min

{
ℓ 6= α∗

j−1

∣∣∣ Ỹ ℓ
θ∗j

− C
α∗
j−1

ℓ

θ∗j
= max

k 6=α∗
j−1

{
Ỹ k
s − C

α∗
j−1

k

θ∗j

}}
.

Then, we have a∗ ∈ Aℜ
t,i and

Ỹ i
t = Ua

∗

t P− a.s. . (2.9)

(iii) The following “Snell envelop” representation holds:

Ỹ i
t = ess sup

a∈Aℜ
t,i

Uat , P− a.s. . (2.10)
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Proof. Observe first that Assertion (iii) is a direct consequence of (i) and (ii).

Step 1. We first prove (i).

Fix t ∈ [0, T ] and i ∈ I. Set a = (θk, αk)k≥0 ∈ Aℜ
t,i and the process (Ỹ a, Za) defined,

for s ∈ [t, T ], by

Ỹ a
s :=

∑

k≥0

Ỹ αk
s 1{θk≤s<θk+1} + ξaT 1{s=T} and Zas :=

∑

k≥0

Zαk
s 1{θk≤s<θk+1} . (2.11)

Observe that these processes jump between the components of the discretely reflected

BSDE (3.5) according to the strategy a, and, between two jumps, we have

Ỹ a
θk

= Ỹ αk

θk
= Y αk

θk+1
+

∫ θk+1

θk

Fαk(s, Ỹ αk
s , Zαk

s )ds−
∫ θk+1

θk

Zαk
s dWs + K̃αk

θk+1−
− K̃αk

θk

= Ỹ a
θk+1

+

∫ θk+1

θk

F as(s, Ỹ a
s , Z

a
s )ds−

∫ θk+1

θk

Zas dWs + K̃αk

θk+1−
− K̃αk

θk

+(Y αk

θk+1
− Ỹ

αk+1

θk+1
) , k ≥ 0 . (2.12)

Introducing

K̃a
s :=

Na−1∑

k=0

[∫

(θk∧s,θk+1∧s)
dK̃αk

u + 1{θk+1≤s}(Y
αk

θk+1
− Ỹ

αk+1

θk+1
+ C

αkαk+1

θk+1
)

]
,

for s ∈ [t, T ], and summing up (2.12) over k, we get, for t ≤ u ≤ T ,

Ỹ a
u = ξaT +

∫ T

u
F as(s, Ỹ a

s , Z
a
s )ds−

∫ T

u
Zas dWs −AaT +Aau + K̃a

T − K̃a
u .

Using the relation Yθk = Pθk(Ỹθk) for all k ∈ {0, . . . , Na}, we check that K̃a is increas-

ing. Since Ua solves (2.7), we deduce by a comparison argument (see Theorem 1.3 in

[22]) that Uat ≤ Ỹ a
t . Since a is arbitrary in Aℜ

t,i, we deduce (2.8).

Step 2. We now prove (ii). Consider the strategy a∗ given above as well as the

associated process (Ỹ a∗ , Za
∗

) defined as in (2.11). By definition of a∗, we have

Y
α∗
k

θ∗
k+1

=
(
Pθ∗

k+1
(Ỹθ∗

k+1
)
)α∗

k
= Ỹ

α∗
k+1

θ∗
k+1

− C
α∗
k
α∗
k+1

θ∗
k+1

, k ≥ 0 ,

which gives
∫

(θ∗
k
,θ∗

k+1
)
dK̃

α∗
k

s = 0 and Y
α∗
k

θ∗
k+1

− Ỹ
α∗
k

θ∗
k+1

+ C
α∗
k
α∗
k+1

θ∗
k+1

= 0 , (2.13)

for all k ∈ {0, . . . , Na∗ − 1}. We deduce from (2.2) that

Ỹ a∗

u = ξa
∗
T +

∫ T

u
F a

∗
s (s, Ỹ a∗

s , Za
∗

s )ds−
∫ T

u
Za

∗

s dWs −Aa
∗

T +Aa
∗

u , t ≤ u ≤ T .

9



Hence (Ỹ a∗ , Za
∗

) and (Ua
∗

, V a∗) are solutions of the same BSDE and satisfy Ỹ i
t = Ua

∗

t .

To complete the proof, we only need to check that a∗ ∈ Aℜ, i.e. E|Aa∗T |2 < ∞. By

definition of a∗ on [t, T ] and the structure condition on the cost (2.2), we have |Aa∗t | ≤
maxk 6=i |Ci,kt | which gives E[|Aa∗t |2] ≤ CL. Combining

Aa
∗

T = Ỹ a∗

T − Ỹ a∗

t +

∫ T

t
F a

∗
s (s, Ỹ a∗

s , Za
∗

s )ds−
∫ T

t
Za

∗

s dWs +Aa
∗

t ,

with the Lipschitz property of F and the fact that (Ỹ , Z) ∈ (S2×H2)I , recall Proposition

2.1, we get the square integrability of Aa
∗

T and conclude the proof. ✷

Remark 2.2. Although the optimal strategy a∗ depends on the initial parameters t

and i, we omit the script (t, i) for ease of notation.

Combining the previous representation with the a priori estimates of Proposition 2.1

and the structure condition (2.2), we deduce the following estimates, whose proof is

postponed to Section (6.1) in the Appendix.

Proposition 2.2. Assume that (Cp) holds for some given p ≥ 2, then

E

[
sup
s∈[t,T ]

|Ua∗s |p +
(∫ T

t
|V a∗

u |2du
) p

2

+ |Aa∗T |p + |Na∗ |p
]
≤ CpL ,

for the optimal strategy a∗ ∈ Aℜ
t,i, (t, i) ∈ [0, T ]× I.

2.3 Stability of obliquely reflected BSDEs

We now study the dependence on the solution with respect to the parameters of the

BSDE. In the ‘abstract’ setting considered, we obtain precious estimates for the analysis

of the regularity of the solution to the discretely obliquely reflected BSDE as well as the

convergence of the discrete-time scheme.

We consider two discretely reflected BSDEs, with the same reflection grid ℜ but different

parameters. For ℓ ∈ {1, 2}, we consider an FT -measurable random terminal condition ℓξ,

a random L-lipschitz continuous map (y, z) 7→ ℓF (., y, z), satisfying (HF ), and a matrix

of continuous cost processes (ℓCij)1≤i,j≤d satisfying the structural condition (2.2).

We suppose that the coefficients satisfy the integrablity condition (C4). For ℓ ∈ {1, 2},
we denote by (ℓY, ℓỸ , ℓZ) ∈ (S2 × S2 × H2)I the solution of the obliquely discretely

reflected BSDE D(ℜ, ℓC, ℓF, ℓξ).
Defining δY = 1Y − 2Y , δỸ = 1Ỹ − 2Ỹ , δZ = 1Z − 2Z, δξ := 1ξ − 2ξ together with

|δCs|∞ := max
i,j∈I

|1Cij − 2Cij |(s) , |δFs|∞ := max
i∈I

sup
y,z∈Rd×Md,q

|1F i − 2F i|(s, y, z),

for s ∈ [0, T ], we prove the following stability result.
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Proposition 2.3. Assume that (C4) holds. Then, we have, for any t ∈ [0, T ],

E
[
|δYt|2

]
+E

[
|δỸt|2

]
+
1

κ
E

[∫ T

t
|δZs|2ds

]
≤ CL

(
E

[∫ T

t
|δFs|2∞ds+|δξ|2

]
+E

[
sup
r∈ℜ

|δCr|4∞
] 1

2
)
,

Proof. The proof divides in three steps and relies heavilly on the reinterpretation in

terms of switching problems. We first introduce a convenient dominating process, and

then provide successively the controls on the δY and δZ terms.

Step 1. Introduction of an auxiliary BSDE.

Let us define F := 1F ∨ 2F , ξ := 1ξ ∨ 2ξ and C by Cij := 1Cij ∧ 2Cij . Observe that

F satisfies (HF ), C satisfies the structure condition (2.2) and that (C4) holds for the

data (C,F, ξ). We denote by (Y, Ỹ , Z) the solution of the discretely obliquely reflected

BSDE D(ℜ, C, F, ξ), recalling (2.4).

Using (HF ), the definition of F and the monotonicity property of P, see Remark 2.1 (i),

we easily obtain by a comparison argument on each interval [rk, rk+1), k ∈ {0, . . . , κ−1},
that

Ỹ � 1Ỹ ∨ 2Ỹ . (2.14)

Recalling Theorem 2.1, we introduce the switched BSDEs associated to 1Y , 2Y and Y

and denote by ǎ = (θ̌j , ǎj)j≥0 the optimal strategy related to Y starting from a fixed

(i, t) ∈ I × [0, T ]. Therefore, we have

Ỹ i
t = U ǎt = ξǎT +

∫ T

t
F ǎs(s, U ǎs , V

ǎ
s )ds−

∫ T

t
V ǎ
s dWs −AǎT +Aǎt . (2.15)

Step 2. Stability of the Y component.

Since ǎ ∈ Aℜ
t,i, we deduce from Theorem 2.1 (iii) that

ℓỸ i
t ≥ ℓU ǎst = ℓξǎT +

∫ T

t

ℓF ǎs(s, ℓU ǎs ,
ℓV ǎ
s )ds−

∫ T

t

ℓV ǎ
s dWs − ℓAǎT + ℓAǎt , ℓ ∈ {1, 2} ,

where ℓAǎ is the process of cumulated costs (ℓCij)i,j∈I associated to the strategy ǎ.

Combining this estimate with (2.14) and (2.15), we derive

|1Ỹ i
t − 2Ỹ i

t | ≤ |U ǎt − 1U ǎt |+ |U ǎt − 2U ǎt | . (2.16)

Since both terms on the right hand side of (2.16) are treated similarly, we focus on the

first one and introduce the continuous processes Γǎ := U ǎ +Aǎ and 1Γǎ := 1U ǎ + 1Aǎ.

Applying Ito’s formula, we compute, for all t ≤ u ≤ T ,

Et

[
|Γǎu − 1Γǎu|2 +

∫ T

u
|V ǎ
s − 1V ǎ

s |2ds
]
≤ (2.17)

Et

[
|ΓǎT − 1ΓǎT |2 + 2

∫ T

u
(Γǎs − 1Γǎs)[F

ǎs(s, U ǎs ,
1V ǎ

s )− 1F ǎs(s, 1U ǎs ,
1V ǎ

s )]ds

]
.
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Since F = 1F ∨ 2F and 1F is Lipschitz continuous, we also get

|F ǎs(s, U ǎs , 1V ǎ
s )− 1F ǎs(s, 1U ǎs ,

1V ǎ
s )| ≤

|δFs|∞ + L(|Γǎs − 1Γǎs |+|Aǎs − 1Aǎs |+ |V ǎ
s − 1V ǎ

s |) , 0 ≤ s ≤ T .

Using classical arguments, we then deduce from the last inequality and (2.17) that

|Γǎt − 1Γǎt |2 ≤ CL

(
Et

[
|δξǎT |2

∫ T

t
|δFs|2∞ds

]
+ sup
t≤s≤T

Et

[
|Aǎs − 1Aǎs |2

]
)

(2.18)

Moreover, using the inequality |x ∨ y − y| ≤ |x − y| for x, y ∈ R and the convexity of

the function x 7→ x2, we compute

Et

[
|Aǎs − 1Aǎs |2

]
= Et




∣∣∣∣∣∣

N ǎ∑

k=1

[
2Cα̌k−1α̌k ∧1 Cα̌k−1α̌k −1 Cα̌k−1α̌k

]
(θ̌k)1{θ̌k≤s}

∣∣∣∣∣∣

2


≤ Et

[
|N ǎ| sup

r∈ℜ
|δCr|2∞

]
, t ≤ s ≤ T . (2.19)

Plugging in (2.18) and recalling the definition of Γǎ and 1Γǎ, we get

|U ǎt − 1U ǎt |2 ≤ CLEt

[
|N ǎ| sup

r∈ℜ
|δCr|2∞ +

∫ T

t
|δFs|2∞ds+ |δξ|2

]
.

The exact same reasoning leads to the same estimate for |U ǎt − 2U ǎt |2. Therefore, we

deduce from (2.16) and Cauchy Schwartz inequality that

E

[
|2Ỹ i

t − 1Ỹ i
t |2
]

≤ CL

(
E
[
|N ǎ|2

] 1
2 E

[
sup
r∈ℜ

|δCr|4∞
] 1

2

+ E

[∫ T

t
|δFs|2∞ds+ |δξ|2

])
.

(2.20)

Using Proposition 2.2, we compute, since i is arbitrary,

E

[
|2Ỹt − 1Ỹt|2

]
≤ CL

(
E

[∫ T

t
|δFs|2∞ds+ |δξ|2

]
+ E

[
sup
r∈ℜ

|δCr|4∞
] 1

2
)
. (2.21)

Step 3. Stability of the Z component.

Applying Ito’s formula to the càdlàg process |δỸ |2, we obtain

E


|δỸ 2

t |+
∫ T

t
|δZs|2ds+

∑

t<r≤T

|∆δK̃r|2

 = E

[
|δỸT |2 + 2

∫ T

t
δYsδFsds+ 2

∫ T

t
δYrdδK̃r

]
,
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where we used the fact that |δỸ |2 − |δY |2 − 2δY (δỸ − δY ) = |∆δK̃|2. Since δK̃ is a

pure jump process, we compute

E

[∫ T

t
δYrdδK̃r

]
≤ E


α

∑

t<r≤T,r∈ℜ

|δYr|2 +
1

α

∑

t<r≤T

|∆δK̃r|2

 , α > 0 ,

which, for α large enough and using standard arguments, leads to

E



∫ T

t
|δZs|2ds+

∑

t<r≤T

|∆δK̃r|2

 ≤ CL


E
[
|δξ|2

]
+E



∫ T

t
|δFs|2∞ds+

∑

t<r≤T,r∈ℜ

|δYr|2



 .

Since (2.21) holds true for any t ∈ [0, T ], we deduce

E



∫ T

t
|δZs|2ds+

∑

t<r≤T

|∆δK̃r|2

 ≤ CLκ

(
E
[
|δξ|2

]
+E

[∫ T

t
|δFs|2∞ds

]
+E

[
sup
r∈ℜ

|δCr|4∞
] 1

2

)
,

which concludes the proof of the proposition. ✷

3 Regularity of discretely obliquely reflected BSDEs

This section is dedicated to the derivation of regularity properties for the solution of

discretely reflected BSDEs. These results will be obtained in a Markovian diffusion

setting. This means that the randomness of the parameter (C,F, ξ), is due to a state

process X, which is the solution of a Stochastic Differential Equation (SDE). In this

framework, we focus on the H2-regularity of the Z component of the solution of the

BSDEs. The main results are retrieved by means of kernel regularization and Malliavin

differentiation arguments. Finally, we extend this result to the case where the diffusion

X is replaced by its Euler scheme.

3.1 A diffusion setting for discretely RBSDEs

Let X be the solution on [0, T ] to the following SDE:

Xt = X0 +

∫ t

0
b(Xs)ds+

∫ t

0
σ(Xs)dWs , 0 ≤ t ≤ T , (3.1)

where X0 ∈ R
m and (b, σ) : Rm → R

m ×Mm,q(R) are L-Lipschitz functions.

Under the above assumption, the following estimates are well known (see e.g. [18])

E

[
sup
t∈[0,T ]

|Xt|p
]
≤ CpL and sup

s∈[0,T ]

(
E

[
sup

u∈[0,T ],|u−s|≤h
|Xs −Xu|p

]) 1

p

≤ CpL
√
h , (3.2)
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for any p > 0. In the sequel, we shall denote by βX a positive random variable, which

may change from line to line, but which depends only on supt∈[0,T ] |Xt| and which

satisfies E
[
|βX |p

]
≤ CpL for all p > 0. Importantly, βX does not depend on ℜ.

Remark 3.1. Observe that, as in [1, 7] and contrary to [19], we make no uniform

ellipticity condition on σ. This allows us to treat the case of non homogenous diffusion

by setting e.g. X1
t = t, t ∈ [0, T ].

In this context, we are given a matrix valued maps c := (cij) where cij : Rm → R
+, are

L-Lipschitz continuous and satisfy:





cii(.) = 0 , for 1 ≤ i ≤ d ;

infx∈Rm cij(x) > 0 , for 1 ≤ i, j ≤ d , with i 6= j ;

infx∈Rm{cij(x)+cjl(x)−cil(x)} > 0, for 1 ≤ i, j, l ≤ d, with i 6= j, j 6= l.

(3.3)

We then introduce a family (Q(x))x∈Rm of closed convex domains:

Q(x) :=

{
y ∈ R

d | yi ≥ max
j∈I

(yj − cij(x)) , ∀i ∈ I
}
, where I := {1, . . . , d} . (3.4)

We introduce the oblique projection operator P(x, .) onto Q(x) defined by

P : (x, y) ∈ R
m × R

d 7→
(
max
j∈I

{
yj − cij(x)

})

1≤i≤d

.

Finally, we are given

- an L-Lipschitz function g : Rm → R
d such that g(x) ∈ Q(x) for all x ∈ R

m,

- a generator function, i.e. an L-lipschitz map f : Rm × R
d ×Md,q → R

d.

From now on, we shall appeal to the following assumption:

(Hf) the component i of f(t, y, z) depends only on the component i of the vector y

and on the column i of the matrix z i.e. f i(t, y, z) = f i(t, yi, zi).

We denote by (Y, Ỹ , Z) the solution of the discretely reflected BSDE D(ℜ, c(X), f(X, ., .), g(X))

which reads on each interval [rj , rj+1), for j < κ :

{
Ỹt = Yrj+1

+
∫ rj+1

t f(Xu, Ỹu, Zu)du−
∫ rj+1

t ZudWu ,

Yt = Ỹt1{t/∈ℜ} + P(Xt, Ỹt)1{t∈ℜ}.
(3.5)

Or equivalently on [0, T ] as
{

Ỹt = g(XT ) +
∫ T
t f(Xu, Ỹu, Zu)du−

∫ T
t ZudWu + (K̃T − K̃t) , 0 ≤ t ≤ T ,

K̃t :=
∑

r∈ℜ\{0}∆K̃r 1{r≤t} and ∆K̃t = Yt − Ỹt = −(Ỹt − Ỹt−) , 0 ≤ t ≤ T.
(3.6)
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From (3.2), it follows that the data (c(X), f(X, ., .), g(X)) satisfies the integrability con-

dition (Cp) for all p ≥ 2. We thus deduce from the proof of Proposition 2.1 and Propo-

sition 2.2, the following estimate on (Y, Ỹ , Z) and their associated optimal switched

BSDEs, recalling Theorem 2.1.

Proposition 3.1. There exists a unique solution (Ỹ , Y, Z) to (3.5) and it satisfies

Et

[
sup
s∈[t,T ]

|Ỹs|p + (

∫ T

t
|Zs|2ds)

p

2 + |KT −Kt|p
]
≤ βX , ∀t ≤ T . (3.7)

Moreover, for all (t, i) ∈ [0, T ]× I, the optimal strategy a∗ ∈ Aℜ
t,i satisfies

Et

[
sup
s∈[t,T ]

|Ua∗s |p + (

∫ T

t
|V a∗

s |2ds)
p

2 + |Aa∗T |p + |Na∗ |p
]
≤ βX . (3.8)

3.2 Malliavin differentiability of (X, Y, Ỹ , Z)

We shall sometimes use the following regularity assumption on the coefficients:

(Hr) The coefficients b, σ, g f , and (cij)i,j are C1,b in all their variables, with the

Lipschitz constants dominated by L.

We denote by ID1,2 the set of random variablesG which are differentiable in the Malliavin

sense and such that ‖G‖2
ID1,2 := ‖G‖2

L2 +
∫ T
0 ‖DtG‖2L2dt < ∞, where DtG denotes the

Malliavin derivative of G at time t ≤ T . After possibly passing to a suitable version, an

adapted process belongs to the subspace L1,2
a of H2 whenever Vs ∈ ID1,2 for all s ≤ T

and ‖V ‖2
L1,2
a

:= ‖V ‖2H2 +
∫ T
0 ‖DtV ‖2H2dt < ∞. For a general presentation on Malliavin

calculus for stochastic differential equations, the reader may refer to [20].

Remark 3.2. Under (Hr), the solution of (3.1) is Malliavin differentiable and its deriva-

tive satisfies

‖ sup
s≤T

|DsX|‖
Sp <∞ , (3.9)

and we have

sup
s≤u

‖DsXt −DsXu‖Lp + ‖ sup
t≤s≤T

|DtXs −DuXs| ‖Lp ≤ CpL|t− u|1/2 , (3.10)

for any 0 ≤ u ≤ t ≤ T . Let G ∈ ID1,2(Rd). Since X belongs to L1,2
a under (Hr), and

P is L-lipschitz continuous, we deduce that P(Xt, G) ∈ ID1,2(Rd). Using Lemma 5.1 in
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[1], we compute

Ds(P(Xt, G))
i = (3.11)

d∑

j=1

(DsG
j−Dscij(Xt))1{Gj−cij(Xt)>maxℓ<j(Gℓ−ciℓ(Xt))}1{Gj−cij(Xt)≥maxℓ>j(Gℓ−ciℓ(Xt))}.

Combining (3.11), Proposition 5.3 in [10] and an induction argument, we obtain that

(Y, Ỹ , Z) is Malliavin differentiable and that a version of (DuỸ , DuZ) is given by

Du(Ỹt)
i =Du(Yrj+1

)i +

∫ rj+1

t
∇xf

i(Xs, Ỹ
i
s , Z

i.
s )DuXsds+

∫ rj+1

t
∇yif

i(Xs, Ỹ
i
s , Z

i.
s )Du(Ỹs)

ids

+

∫ rj+1

t
∇zf

i(Xs, Ỹ
i
s , Z

i.
s )Du(Zs)

i.ds−
d∑

k=1

∫ rj+1

t
Du(Zs)

ikdW k
s , (3.12)

for 0 ≤ u ≤ t ≤ rj+1 and j < κ. Here, ∇zf
i denotes

∑d
ℓ=1∇zℓ.f

i, recalling (Hf).

3.3 Representation of Z

For a ∈ Aℜ, we introduce the process Λa defined by

Λat,s := exp

{ ∫ s

t
∇zf

ar(Xr, Ỹr, Zr)dWr−
∫ s

t

(
1

2
|∇zf

ar(Xr, Ỹr, Zr)|2−∇yf
ar(Xr, Ỹr, Zr)

)
dr

}
,

(3.13)

for 0 ≤ t ≤ s ≤ T .

For later use, we remark

sup
a∈Aℜ

‖ sup
t≤s≤T

Λat,s‖Lp ≤ CpL , 0 ≤ t ≤ T, p ≥ 2 , (3.14)

and deduce from the dynamics of Λ that

sup
a∈Aℜ

(
‖Λat,t − Λat,u‖Lp + ‖ sup

t≤s≤T
|Λau,s − Λat,s| ‖Lp

)
≤ CpL

√
t− u , u ≤ t ≤ T , p ≥ 2 .

(3.15)

Proposition 3.2. Under (Hr), there is a version of Z such that,

(Z)it = Et

[
∇xg

a∗T (XT )Λ
a∗

t,TDtXT +

∫ T

t
∇xf

a∗s (Xs, Ỹs, Zs)Λ
a∗

t,sDtXsds

−
Na∗∑

j=1

∇xc
α∗
j−1

α∗
j (Xθ∗j

)Λa
∗

t,θ∗j
(DtX)θ∗j


 , (3.16)

for (t, i) ∈ [0, T ], with a∗ = (θ∗j , α
∗
j )j≥0 ∈ Aℜ

t,i the optimal strategy given in Theorem 2.1

and recalling (2.6).
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Proof. We fix j < κ and, observing that the process a∗ is constant on the interval

[θ∗j , θ
∗
j+1), we deduce from (3.12) and Ito’s formula that

Λa
∗

t,tDu(Ỹt)
α∗
j = Et

[
Λa

∗

t,θ∗j+1
(DuY

α∗
j )θ∗j+1

+

∫ θ∗j+1

t
∇xf

α∗
j (Xs, Ỹs, Zs)Λ

a∗

t,sDuXsds

]
,

for θ∗j ≤ u ≤ t < θ∗j+1. Combining (3.11) and the definition of a∗ given in Theorem 2.1

(ii), we compute

Λa
∗

t,θ∗j+1
(DuY

α∗
j )θ∗j+1

= Λa
∗

t,θ∗j+1
(DuỸ

α∗
j+1)θ∗j+1

−∇xc
α∗
jα

∗
j+1(Xθ∗j+1

)Λa
∗

t,θ∗j+1
(DtX)θ∗j+1

, j < κ .

Plugging the second equality into the first one and summing up over j concludes the

proof. ✷

We conclude this section by providing a ’weak’ regularity property of Z in the general

Lipschitz setting. In order to get rid of the previous Assumption (Hr), we make use of

kernel regularization arguments. Since this procedure is very classical, we do not detail

it here precisely, see e.g. the proofs of Proposition 4.2 in [7] or Proposition 3.3 in [1].

Proposition 3.3. There is a version of Z satisfying

E

[∫ t

s
|Zu|2du

]
≤ CL|t− s| , s ≤ t ≤ T . (3.17)

Proof. Combining (3.9), with (3.14), (3.16) and Doob’s inequality, we observe that

sup
t∈[0,T ]

‖Zt‖Lp ≤ CpL , p ≥ 2 ,

holds under (Hr). Therefore (3.17) is satisfied under (Hr). As in the proof of Propo-

sition 4.2 in [7], the stability results of Proposition 2.3 allow us to use classical Kernel

regularization arguments. Since the previous estimate holds uniformly for the sequence

of approximating regularized BSDE, the proof is complete. ✷

3.4 Regularity results

We consider a grid π := {t0 = 0, . . . , tn = T} on the time interval [0, T ], with modulus

|π| := max0≤i≤n−1 |ti+1 − ti|, such that ℜ ⊂ π.

We want to control the following quantities, representing the H2-regularity of (Ỹ , Z):

E

[∫ T

0
|Ỹt − Ỹπ(t)|2dt

]
and E

[∫ T

0
|Zt − Z̄π(t)|2dt

]
, (3.18)
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where π(t) := sup{ti ∈ π ; ti ≤ t} is defined on [0, T ] as the projection to the closest

previous grid point of π and

Z̄ti :=
1

ti+1 − ti
E

[∫ ti+1

ti

Zsds | Fti
]
, i ∈ {0, . . . , n− 1}. (3.19)

Remark 3.3. Observe that (Z̄s)s≤T := (Z̄π(s))s≤T interprets as the best H2-approximation

of the process Z by adapted processes which are constant on each interval [ti, ti+1), i < n.

Proposition 3.4. The following holds

1

T
E

[∫ T

0
|Ỹt − Ỹπ(t)|2dt

]
≤ sup

t∈[0,T ]
E

[
|Ỹt − Ỹπ(t)|2

]
≤ CL|π|.

Proof. Observe first that

E

[
|Ỹt − Ỹπ(t)|2

]
≤ E



∣∣∣∣∣

∫ t

π(t)
f(Xs, Ỹs, Zs)ds+

∫ t

π(t)
ZsdWs

∣∣∣∣∣

2

 , 0 ≤ t ≤ T .

The proof is concluded combining this estimate with (3.2), Proposition 3.1 and Propo-

sition 3.3. ✷

We now turn to the study of the regularity of the process Z.

Theorem 3.1. The process Z satisfies

E

[∫ T

0
|Zs − Z̄s|2ds

]
≤ CL(|π|

1

2 + κ|π|) . (3.20)

Proof. A regularization argument as in proof of Proposition 3.3 allows us to work

under (Hr). From Remark 3.3, it is clear that

E

[∫ T

0
|Zs − Z̄s|2ds

]
≤ E

[∫ T

0
|Zs − Zπ(s)|2ds

]
. (3.21)

For s ≤ T and a = (αk, θk)k≥0 ∈ Aℜ
s,ℓ, ℓ ∈ I, we define (V a

s,t)s≤t≤T by

V a
s,t := Et

[
∇xg

aT (XT )Λ
a
s,TDsXT +

∫ T

s
∇xf

au(Xu, Ỹu, Zu)Λ
a
s,uDsXudu

−
Na∑

k=1

∇xcαj−1,αj
(Xθk)Λ

a
s,θk

(DsX)θk

]
.

We now fix ℓ ∈ I and denote, for u ≤ T , by au ∈ Aℜ
u,ℓ the optimal strategy associated

to the representation of (Ỹu)
ℓ, recalling (ii) in Theorem 2.1.
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Observe that, by definition, we have

Na
t

= Na
u

and at =au , rj ≤ t ≤ u < rj+1 , j < κ . (3.22)

Fix i < n, and deduce from Proposition 3.2 and (3.22) that

E

[
|Zℓt − Zℓti |

2
]
= E

[
|Vatt,t − Va

ti

ti,ti |
2
]

≤ 2
(
E

[
|Vatit,t − Va

ti

ti,t|
2
]
+ E

[
|Vatiti,t − Va

ti

ti,ti |
2
])

,

(3.23)

for t ∈ [ti, ti+1). Combining (Hr), (3.9), (3.10), (3.14), (3.15) and Cauchy-Schwartz

inequality with the definition of V a, we deduce

E

[
|Vatit,t − Va

ti

ti,t|
2
]
≤ CL|π|

1

2 , ti ≤ t ≤ ti+1 , i ≤ n . (3.24)

Since Va
ti

ti,. is a martingale on [ti, ti+1], we obtain

E

[
|Vatiti,t − Va

ti

ti,ti |
2
]
≤ E

[
|Vatiti,ti+1

− Va
ti

ti,ti |
2
]

≤ E

[
|Vatiti+1,ti+1

|2 − |Vatiti,ti |
2
]
+ E

[
|Vatiti,ti+1

|2 − |Vatiti+1,ti+1
|2
]

≤ E

[
|Vatiti+1,ti+1

|2 − |Vatiti,ti |
2
]
+ CL|π|

1

2 , ti ≤ t ≤ ti+1 , (3.25)

where the last inequality follows from (3.24). Combining (3.23), (3.24), (3.25) and

summing up over i, we obtain

E

[∫ T

0
|Zℓt − Zℓπ(t)|2dt

]
≤ CL|π|

1

2 + |π|
(
E

[
|Varκ−1

T,T |2 − |Va00,0|2
]
+
κ−1∑

j=1

(|Va
rj−1

rj ,rj |2 − |Va
rj

rj ,rj |
2)
)
.

Combined with (3.9) and (3.14), this concludes the proof since ℓ is arbitrary. ✷

3.5 Extension

We shall approximate the process X by its Euler scheme Xπ, whose dynamics are given

by

Xπ
t = X0 +

∫ t

0
b(Xπ

π(s))ds+

∫ t

0
σ(Xπ

π(s))dWs , 0 ≤ t ≤ T . (3.26)

Classically, we have the following upper-bound, uniformly in π:

E

[
sup

0≤t≤T
|Xπ

t |p
]1/p

≤ CpL , p ≥ 2 . (3.27)
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The control of the error between X and its Euler scheme Xπ is well understood, see e.g.

[17], and we have

E

[
sup

0≤t≤T
|Xt −Xπ

t |p
]1/p

≤ CpL |π|
1

2 , p ≥ 2 . (3.28)

In this context, we denote by (Y eu, Ỹ eu, Zeu) the unique solution of the reflected BSDE

D(ℜ, c(Xπ), f(Xπ, .), g(Xπ)). Our main result here is the counterpart of Proposition

3.4 and Theorem 3.1 when X is replaced by Xπ.

Proposition 3.5. The following holds

E

[∫ T

0
|Ỹ eu
t − Ỹ eu

π(t)|2dt
]
≤ CL|π| and E

[∫ T

0
|Zeus − Z̄eus |2ds

]
≤ CL(|π|

1

2 + κ|π|) .

Proof. We only sketch the main step of the proof since it follows formally exactly the

same arguments as the one used to obtain Proposition 3.4 and Theorem 3.1.

Step 1. We use a kernel regularization argument which allows us to work under (Hr).

In this case, we observe that Xπ belongs to L1,2
a and satisfies

DsX
π
t = σ(Xπ

π(s)) +

∫ t

s
∇xb(X

π
π(r))DsX

π
π(r)dr +

∫ t

s

q∑

j=1

∇xσ
j(Xπ

π(r))DsX
π
π(r)dW

j
r ,

for s ≤ t. One then checks, see Remark 5.2 in [1] for details, that

‖ sup
s≤T

|DsX
π|‖

Sp <∞ , (3.29)

sup
s≤u

‖DsX
π
t −DsX

π
u‖Lp + ‖ sup

t≤s≤T
|DtX

π
s −DuX

π
s | ‖Lp ≤ CpL|t− u|1/2 , 0 ≤ u ≤ t ≤ T .

It is also straightforward that (Y eu, Ỹ eu, Zeu) is Malliavin differentiable and satisfies

(3.12) with Xπ instead of X.

Step 2. In order to retrieve the results of the Proposition, one then follows exactly the

same steps and arguments as the one used in the previous Section 3.3 and Section 3.4.

✷

4 A Discrete-time Approximation for discretely reflected

We present here a discrete time scheme for the approximation of the solution of the

discretely obliquely reflected BSDE (3.5).
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Recall that π := {t0 = 0, . . . , tn = T} is a grid on the time interval [0, T ], such that

ℜ ⊂ π and |π|n ≤ L. In the sequel, the process X is approximated by its Euler scheme

Xπ, see Section 3.5 for details.

4.1 An Euler scheme for discretely obliquely reflected BSDEs

We introduce an Euler-type approximation scheme for the discretely reflected BSDEs.

Starting from the terminal condition

Y π
T = Ỹ π

T := g(Xπ
T ) ∈ C(Xπ

T ) ,

we compute recursively, for i ≤ n− 1,




Z̄πti = (ti+1 − ti)
−1

E

[
Y π
ti+1

(Wti+1
−Wti)

′ | Fti
]
,

Ỹ π
ti = E

[
Y π
ti+1

| Fti
]
+ (ti+1 − ti)f(X

π
ti , Ỹ

π
ti , Z̄

π
ti) ,

Y π
ti = Ỹ π

ti 1{ti /∈ℜ} + P(Xπ
ti , Ỹ

π
ti )1{ti∈ℜ}.

(4.1)

This kind of backward scheme has been already considered when no reflection occurs,

see e.g. [2], and in the reflected case, see e.g. [1, 19, 7]. See also [4] for a recent survey

on the subject.

Combining an induction argument with the Lispchitz-continuity of f , g and the projec-

tion operator, one easily checks that the above processes are square integrable and that

the conditional expectations are well defined at each step of the algorithm.

Remark 4.1. (i) This so-called ”moonwalk“ algorithm is given by an implicit formula-

tion, and one should use a fixed point argument to compute explicitly Ỹ π at each grid

point.

(ii) In the two dimensional case, Hamadene and Jeanblanc [14] interpret Y 1 − Y 2 as

the solution of a doubly reflected BSDE. It is worth noticing that the solution of the

corresponding discrete time scheme developed by [7] for the approximation of doubly

reflected BSDE exactly coincides with Y π,1 − Y π,2 derived here.

For later use, we introduce the piecewise continuous time scheme associated to (Y π, Ỹ π, Z̄π).

By the martingale representation theorem, there exists Zπ ∈ H2 such that

Y π
ti+1

= Eti

[
Y π
ti+1

]
+

∫ ti+1

ti

ZπudWu , i ≤ n− 1 ,

and by the Itô isometry, for i ≤ n− 1,

Z̄πti =
1

ti+1 − ti
E

[∫ ti+1

ti

Zπs ds | Fti
]
. (4.2)
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We set Z̄πt := Z̄ππ(t) for t ∈ [0, T ], define Ỹ π by

Ỹ π
t = Y π

ti+1
+ (ti+1 − t)f(Xπ

ti , Ỹ
π
ti , Z̄

π
ti)−

∫ ti+1

t
ZπudWu , ti ≤ t ≤ ti+1, i ∈ I, (4.3)

and introduce Y π on [0, T ] by Y π
t := Ỹ π

t 1{t/∈ℜ} + P(Xπ
t , Ỹ

π
t )1{t∈ℜ} .

This can be rewritten as




Ỹ π
t = g(Xπ

T ) +
∫ T
t f(Xπ

π(u), Ỹ
π
π(u), Z̄

π
u )du−

∫ T
t ZπudWu + (K̃π

T − K̃π
t ) ,

K̃π
t =

∑
r∈ℜ\{0}∆K̃

π
r 1{r≤t} and ∆K̃π

t = Y π
t − Ỹ π

t = −(Ỹ π
t − Ỹ π

t−) ,

Y π
t = Ỹ π

t 1{t/∈ℜ} + P(Xπ
t , Ỹ

π
t )1{t∈ℜ} , 0 ≤ t ≤ T.

(4.4)

We finally provide a useful a priori estimate for the solution of the discrete time scheme

whenever f does not depend on Z, whose proof is postponed Section 6.2 of the Appendix.

Proposition 4.1. If f does not depend on Z and |π|L < 1, the following bound holds

E

[
sup

0≤i≤n
|Ỹ π
ti |

p

]
≤ CpL, p ≥ 2, (4.5)

recall that CpL neither depends on ℜ nor on π.

4.2 Convergence Results

The next proposition provides a control on the error between the discrete-time scheme

(4.1) and the solution of the discretely reflected BSDE (3.5).

Proposition 4.2. The following holds

sup
t∈[0,T ]

E

[
|Ỹt − Ỹ π

t |2 + |Yt − Y π
t |2
]
+ E

[∫ T

0
|Zs − Z̄πs |2ds

]
≤ CLL

2κ(|π| 12 + κ|π|) . (4.6)

Proof. As in Section 3.5, we consider (Y eu, Ỹ eu, Zeu) the unique solution of the reflected

BSDE D(ℜ, c(Xπ), f(Xπ, .), g(Xπ)). Using Proposition 2.3, the Lipschitz property of

f , g, c and (3.28), we obtain

sup
t∈[0,T ]

E

[
|Ỹt − Ỹ eu

t |2 + |Yt − Y eu
t |2

]
+

1

κ
E

[∫ T

0
|Zs − Zeus |2ds

]
≤ CL|π| . (4.7)

Using the same arguments as in the proof of Proposition 3.4.1 Step 1.a in [6] e.g., we

get the following inequality:

sup
t∈[ti,ti+1)

E

[
|Ỹ eu
t − Ỹ π

t |2 + |Y eu
t − Y π

t |2
]
+ E

[∫ ti+1

ti

|Zeus − Z̄πs |2ds
]

≤

CL

(
E

[
|Y eu
ti+1

− Y π
ti+1

|2 +
∫ ti+1

ti

(|Ỹ eu
s − Ỹπ(s)|2 + |Zeus − Z̄π(s)|2)ds

])
(4.8)
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There are two differences with the proof of Proposition 3.4.1 in [6]. First, P here depends

both on x and y: but this is not a problem since (Y eu, Ỹ eu, Zeu) and (Y π, Ỹ π, Zπ) are

parametrized by the same forward process Xπ.

Second, P is not 1-Lipschitz but only L-Lipschitz, with L > 1, in its y component. This

explain the term L2κ in (4.6). Indeed, we have, for i < n,

|Y eu
ti+1

− Y π
ti+1

|2 = |P(Xπ
ti+1

, Ỹ eu
ti+1

)− P(Xπ
ti+1

, Ỹ π
ti+1

)|2 ≤ L2|Ỹ eu
ti+1

− Ỹ π
ti+1

|2.

This leads, using an induction argument (see e.g. Step 1.b in the proof of Proposition

3.4.1 in [6]), to

sup
t∈[0,T ]

E

[
|Ỹ eu
t − Ỹ π

t |2 + |Y eu
t − Y π

t |2
]
+ E

[∫ T

0
|Zeus − Z̄πs |2ds

]
≤

CLL
2κ

(
|π|+

∫ T

0
(|Ỹ eu

s − Ỹπ(s)|2+|Zeus − Z̄π(s)|2)ds
)
.

Combining the last inequality with Proposition 3.5 and (4.7) completes the proof. ✷

The term L2κ, even when κ is small can be very large. Moreover, we shall see in the next

section that it yields to a poor convergence rate for continuously reflected BSDEs. This

term is due to the “geometric” approach, used in the proof of Proposition 4.2, and the

fact that P is only L-Lipschitz with L > 1. We obtain below a better control, using the

stability results proved at the end of Section 2 but unfortunately under the assumption

that f does not depend on Z.

Theorem 4.1. If f does not depend on Z, the following holds

sup
t∈[0,T ]

E

[
|Ỹt − Ỹ π

t |2 + |Yt − Y π
t |2
]

≤ CL|π| ,

E

[∫ T

0
|Zt − Z̄πt |2dt

]
≤ CL(κ|π|+ |π| 12 ) ,

for |π| small enough.

Proof. We use here the stability results of Proposition 2.3 setting (Y 1, Ỹ 1, Z1) =

(Y, Ỹ , Z) with F 1 : (s, y, z) 7→ f(Xs, Ỹs) and (Y 2, Ỹ 2, Z2) = (Y π, Ỹ π, Zπ), with F 2 :

(s, y, z) 7→ f(Xπ
π(s), Ỹ

π
π(s)). Combining (4.5) and Proposition 3.1 with the Lipschitz

property of f , it is clear that (C4) holds. Applying Proposition 2.3 and (3.28), we

derive, for t ∈ [0, T ],

E|Ỹt − Ỹ π
t |2+

1

κ

∫ T

t
E|Zs − Zπs |2ds ≤ CL

(
|π|+

∫ T

t
E|Ỹs − Ỹπ(s)|2ds+

∫ T

t
E|Ỹ π

π(s) − Ỹπ(s)|2ds
)
,

(4.9)
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Applying the discrete version of Gronwall’s lemma to estimate (4.9) rewritten at time

t = tj ∈ π, we deduce

E|Ỹtj − Ỹ π
tj |

2 ≤ CL

(
|π|+

∫ T

t
E|Ỹs − Ỹπ(s)|2ds

)
, 0 ≤ t ≤ tj ≤ T, tj ∈ π. (4.10)

Plugging this estimate into (4.9), we compute

E|Ỹt − Ỹ π
t |2 +

1

κ

∫ T

t
E|Zs − Zπs |2ds ≤ CL

(
|π|+

∫ T

t
E|Ỹs − Ỹπ(s)|2ds

)
, 0 ≤ t ≤ T ,

which combined with Proposition 3.4 leads to the first claim of the Theorem.

Observe from the representations (3.19) and (4.2) that

E

[∫ T

0
|Zt − Z̄πt |2dt

]
≤ CL

(
E

[∫ T

0
|Zt − Z̄t|2dt

]
+ E

[∫ T

0
|Zt − Zπt |2dt

])
.

Plugging (3.20), estimate (4.9) written at time t = 0 and the first claim of this Theorem

into this expression concludes the proof. ✷

5 Extension to the continuously reflected case

In this section, we extend the convergence results of the scheme (4.1) to the case of

continuously reflected BSDEs. To this end, we show that the error between discretely

and continuously obliquely reflected BSDEs is controled in a convenient way.

5.1 Continuously obliquely reflected BSDEs

In the sequel, we shall use the following assumption on f :

- (Hz) The function f is bounded in its last variable : supz∈Md,q |f(0, 0, z)| ≤ CL.

and the following assumption on the cost c:

- (Hc) For i, j ∈ I, the function cij is equal to 1cij−2 cij , with 1cij is C2 with bounded

first and second derivatives and 2cij is a convex function with bounded first derivative.

This last assumption is needed to retrieve some regularity on the reflecting process K

(see Lemma 5.1 below).

We denote by (Ẏ , Ż, K̇) ∈ (S2 ×H2 ×A
2)I the solution of the continuously obliquely

reflected BSDE C([0, T ], c(X), f(X, .), g(XT )) defined by





Ẏ i
t = gi(XT ) +

∫ T
t f i(Xs, Ẏ

i
s , Ż

i
s)ds−

∫ T
t ŻisdWs + K̇i

T − K̇i
t ,

Ẏ i
t ≥ maxj∈I{Ẏ j

t − cij(Xt)} , 0 ≤ t ≤ T ,
∫ T
0 [Ẏ i

t −maxj∈I{Ẏ j
t − cij(Xt)}]dK̇i

t = 0 , i ∈ I .

(5.1)
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Under the assumption on f , g and c, the existence and uniqueness of such a solution is

given in [15, 16].

The solution of (5.1) has also a representation property in term of switched BSDEs,

recalling (2.7). Here of course the switching times of the strategy are not restricted to

take their values in ℜ. We refer to [8] for more details.

Theorem 5.1. There exists, for any fixed initial condition (t, i) ∈ [0, T ]×I, an optimal

switching strategy ȧ := (θ̇k, α̇k)k≥0 ∈ At,i, such that

Ẏ i
t = U ȧt = ess sup

a∈At,i

Uat , P− a.s. . (5.2)

We deduce from (5.2), Theorem 2.1 (iii), the monotonicity property of P and (5.1):

Ẏ � Y � Ỹ . (5.3)

Moreover, most of the estimates presented in Section 2 for discretely reflected BSDEs

hold true for continuously reflected BSDEs. For the convenience of the reader, we collect

them in the following proposition. The proof itself is postponed to Section 6.3 of the

Appendix.

Proposition 5.1. The following a priori estimates holds. For any p ≥ 2,

|Ẏt|p + Et

[
(

∫ T

t
|Żs|2ds)

p

2

]
+ Et

[
|K̇T − K̇t|p

]
≤ Et

[
βX
]
, 0 ≤ t ≤ T , (5.4)

and, for all (t, i) ∈ [0, T ]× I, the optimal strategy ȧ ∈ At,i satisfies

Et

[
sup
s∈[t,T ]

|U ȧs |p
]
+ Et

[
|N ȧ|p

]
≤ Et

[
βX
]
. (5.5)

5.2 Error between discretely and continuously reflected BSDEs

We first provide a control of the error on the grid points of ℜ between the solutions of

the obliquely discretely and continuously reflected BSDEs (3.6) and (5.1).

Theorem 5.2. Under (Hz), the following holds

E

[
sup
r∈ℜ

{
|Ẏr − Ỹr|2 + |Ẏr − Yr|2

}]
≤ CεL|ℜ|1−ε , ε > 0 . (5.6)

Moreover, if the cost functions are constant, the last inequality holds true with ǫ = 0.
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Proof. The proof of this result relies mainly on the interpretation in terms of switched

BSDEs provided in Section 2.2. For a fixed (t, i) ∈ [0, T ]× I, we associate to the optimal

strategy ȧ = (θ̇k, α̇k)k ∈ At,i not restricted to lie in the grid ℜ, the corresponding

’discretized’ strategy a := (θk, αk)k≥0 ∈ Aℜ
t,i defined by

θk := inf
{
r ≥ θ̇k ; r ∈ ℜ

}
and αk := α̇k , k ≥ 0 . (5.7)

Step 1. We first derive two key controls on the distance between Aȧ and Aa.

We fix p ≥ 2 and, since θ̇k ≤ θk, k ≥ 1, we compute

(∫ T

t
|Aȧs −Aas |2ds

) p

2

=



∫ T

t

∣∣∣∣∣∣

N ȧ∑

k=1

cα̇k−1α̇k(Xθ̇k
)1θ̇k≤s − cα̇k−1α̇k(Xθk)1θk≤s

∣∣∣∣∣∣

2

ds




p

2

≤ CpL

∫ T

t

∣∣∣∣∣∣

N ȧ∑

k=1

[
cα̇k−1α̇k(Xθk)− cα̇k−1α̇k(Xθ̇k

)
]
1θk≤s

∣∣∣∣∣∣

p

ds .

+CpL



∫ T

t

∣∣∣∣∣∣

N ȧ∑

k=1

cα̇k−1α̇k(Xθ̇k
)1θ̇k≤s<θk

∣∣∣∣∣∣

2

ds




p

2

(5.8)

Using the convexity inequality (
∑n

k=1 |xk|)p ≤ np−1
∑n

k=1 |xk|p, we obtain



∫ T

t

∣∣∣∣∣∣

N ȧ∑

k=1

cα̇k−1α̇k(Xθ̇k
)1θ̇k≤s<θk

∣∣∣∣∣∣

2

ds




p

2

≤ CpL(1 + sup
t∈[0,T ]

|Xt|p)|N ȧ|p|ℜ|
p

2 . (5.9)

Using once again the same convexity inequality with p = 2, the Lipschitz property of

the maps (cij)i,j∈I and the definition of θ̇k and θk, we get

∫ T

t

∣∣∣∣∣∣

N ȧ∑

k=1

[
cα̇k−1α̇k(Xθk)− cα̇k−1α̇k(Xθ̇k

)
]
1θk≤s

∣∣∣∣∣∣

p

ds ≤ CpL|N ȧ|p−1
N ȧ∑

k=1

|Xθk −Xθ̇k
|p

≤ CpL|N ȧ|pχ|ℜ|,p ,

where χ|ℜ|,p :=
∑κ

k=1 supr∈[rk−1,rk]
|Xr −Xrk |p.

Plugging this estimate and (5.9) in (5.8), we deduce

(∫ T

t

∣∣Aȧs −Aas
∣∣2 ds

) p

2

≤ CpL|N ȧ|p
(
(1 + sup

s∈[0,T ]
|Xs|p)|ℜ|

p

2 + χ|ℜ|,p

)
. (5.10)

Observe also that, for r ∈ ℜ, we have 1θ̇k≤r
= 1θk≤r which gives

|Aȧr −Aar |p ≤




N ȧ∑

k=1

∣∣∣cα̇k−1α̇k(Xθ̇k
)− cα̇k−1α̇k(Xθk)

∣∣∣1θk≤r



p

≤ CL|N ȧ|pχ|ℜ|,p . (5.11)
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Step 2. We now prove the main result of the theorem.

We introduce the processes Γ := Ua −A and Γ̇ := U ȧ −Aȧ, so that

|Ua − U ȧ| ≤ |Γ− Γ̇|+ |Aa −Aȧ| . (5.12)

Applying Ito’s formula to the continuous process |Γ̇ − Γ|2 on [t, T ], using Gronwall

Lemma and the Lipschitz property of f , we obtain

|Γ̇t − Γt|2 ≤ CL Et

[ ∫ T

t

∣∣∣[f ȧs − fas ](Xs, U
ȧ
s , V

ȧ
s )
∣∣∣
2
ds+

∫ T

t

∣∣∣Aȧs −Aas

∣∣∣
2
ds
]
. (5.13)

Elevating this expression to the power p
2 , we deduce

|Γ̇t − Γt|p ≤ CpL Et

[(∫ T

t

∣∣∣[f ȧs − fas ](Xs, U
ȧ
s , V

ȧ
s )
∣∣∣
2
ds

) p

2

+

(∫ T

t

∣∣∣Aȧs −Aas

∣∣∣
2
ds

) p

2 ]
.

(5.14)

Combining the definition of θ with the Lipschitz property of f and (Hz), we compute

∫ T

t

∣∣[f ȧs−fas ](Xs, U
ȧ
s , V

ȧ
s )
∣∣2 ds =

∫ T

t

∣∣∣∣∣∣

N ȧ∑

k=1

fαk−1(Xs, U
ȧ
s , V

ȧ
s )(1θ̇k−1≤s<θ̇k

−1θk−1≤s<θk)

∣∣∣∣∣∣

2

ds

≤ CL|N ȧ|2 sup
s∈[0,T ]

(1 + |Xs|2 + |U ȧs |2)|ℜ| .

Plugging the last inequality and (5.10) in (5.14), we deduce

|Γ̇t − Γt|p ≤ CpLEt

[
|N ȧ|p

(
sup
s∈[0,T ]

(1 + |Xs|p + |U ȧs |p)|ℜ|
p

2 + χ|ℜ|,p

)]
.

Restricting to the case where t ∈ ℜ, we deduce from (5.11) and (5.12) that

|Ẏ i
t − Ỹ i

t |2 ≤ CpL


Et

[
|N ȧ|p sup

s∈[0,T ]
(1 + |Xs|p + |Ẏs|p)

] 2

p

|ℜ|+ Et

[
|N ȧ|p|χ|ℜ|,p

] 2

p


 .

Using Cauchy-Schwartz inequality and Proposition 5.1 with the last inequality, we obtain

|Ẏ i
t − Ỹ i

t |2 ≤ CpL

(
βX |ℜ|+ βXEt

[
|χ|ℜ|,p|2

] 1

p

)
.

Using again Cauchy Schwartz inequality and defining Mt := Et

[
|χ|ℜ|,p|2

]
, we get

E

[
sup
t∈ℜ

|Ẏ i
t − Ỹ i

t |2
]
≤ CpL(|ℜ|+ E

[
sup
t∈[0,T ]

|Mt|
2

p

] 1

2

) . (5.15)
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Combining Burkholder-Davis-Gundy and convexity inequalities with (3.2), we compute

E

[
sup
t∈[0,T ]

|Mt|
2

p

]
≤ CpL

(
|M0|

2

p + E
[
|MT |2

] 1
p

)
≤ CpLE

[
|χ|ℜ|,p|4

] 1

p ≤ CpL|κ|
4

p |ℜ|2 .

Plugging this expression in (5.15), we deduce (5.6) from the condition κ|ℜ| ≤ L and the

arbitrariness of i.

Step 3. We finally consider the particular case where the cost functions are constant.

Following the same arguments as in Step 1., we observe that (5.10) turns into

(∫ T

t

∣∣Aȧs −Aas
∣∣2 ds

) p

2

≤ CpL|N ȧ|p(1 + sup
s∈[0,T ]

|Xs|p)|ℜ|
p

2 ,

and that Aȧr −Aar = 0 for r ∈ ℜ. The same reasoning as in Step 2. then leads to

|Ẏ i
t − Ỹ i

t |2 ≤ C2
LEt

[
|N ȧ|p sup

s∈[0,T ]
(1 + |Xs|p + |Ẏs|p)

] 2

p

|ℜ| .

Using Cauchy Schwartz and Proposition 5.1 concludes the proof. ✷

We now present the main result of this section, which allows to control the error between

the solutions of the continuously and the discretely obliquely reflected BSDE at any time

between 0 and T .

Theorem 5.3. Under (Hz)-(Hc), the following holds

sup
t∈[0,T ]

E

[
|Ẏt − Ỹt|2 + |Ẏt − Yt|2

]
+ E

[∫ T

0
|Żs − Zs|2ds

]
≤ CǫL|ℜ|

1

2
−ǫ , ǫ > 0 .

If furthermore the cost functions are constant, the previous estimate holds true for ǫ = 0.

In order to prove this theorem, we first state the following lemma discussing the regu-

larity of K̇.

Lemma 5.1. Under (Hz)-(Hc), there exists some positive process η satisfying ||η||H2 ≤
CL and such that, for all i ∈ I, dK̇i

s ≤ ηsds in the sense of random measure.

Proof. We follow here the main idea of the proof of Proposition 4.2 in [10] and divide

the proof in three steps.

Step 1. Fix i, j ∈ I. We first observe using Itô-Tanaka Formula, that, under (Hc),

cij(Xt) = cij(X0) +

∫ t

0
bijs ds+

∫ t

0
νijs dWs −

∫ t

0
d∆ij

s , 0 ≤ t ≤ T ,
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where ∆ij is an increasing process and

||bij ||H2 + ||νij ||H2 ≤ CL. (5.16)

We then introduce Γij := Ẏ i − Ẏ j + cij(X) ≥ 0. Using once again Itô-Tanaka Formula,

we compute

[Γijt ]
+ = [Γij0 ]

+ +

∫ t

0
(−f i(Xs, Ẏ

i
s , Ż

i
s) + f j(Xs, Ẏ

j
s , Ż

j
s) + bijs )1{Γij

s >0}
ds

+

∫ t

0
(νijs + Żis − Żjs)1{Γij

s >0}
dWs +

∫ t

0
1
{Γij

s >0}
(−dK̇i

s + dK̇j
s − d∆ij

s ) +
1

2

∫ t

0
dLijs ,

for 0 ≤ t ≤ T , where Lij is the local time at 0 of the continuous semi-martingale Γij .

Since Γij ≥ 0 and ∆ij , Lij are increasing processes, we compute

1
{Γij

s =0}
dK̇i

s ≤ (−f i(Xs, Ẏ
i
s , Ż

i
s) + f j(Xs, Ẏ

j
s , Ż

j
s) + bijs )1{Γij

s =0}
ds+ 1

{Γij
s =0}

dK̇j
s

≤ CL(1 + |Xs|+ sup
ℓ∈I

|Ẏ ℓ
s |+ sup

ℓ,k∈I
|bℓks |)ds+ 1

{Γij
s =0}

dK̇j
s , (5.17)

for 0 ≤ s ≤ T , where we used (Hz) in order to obtain the last inequality.

Step 2. We now prove that

1
{Γij

s =0}
dK̇j

s = 0 , (5.18)

in the sense of random measure. We first observe that 1
{Γij

s =0}
dK̇j

s = γijs dK̇
j
s with

γijs := 1
{Γij

s =0}
1
{Y j

s −Pj(Xs,Ẏs)=0}
. Indeed, if 1

{Y j
s −Pj(Xs,Ẏs)>0}

dK̇j
s were a positive ran-

dom measure on [0, T ], this would contradict the minimality condition (5.1) for K̇.

Suppose the existence of a stopping time τ smaller than T , such that

Γijτ = 0 and Ẏ j
τ − Pj(Xτ , Ẏτ ) = 0. (5.19)

By definition of the projection P, we have

Ẏ j
τ − Pj(Xτ , Ẏτ ) = Ẏ j

τ − Ẏ kτ
τ + cjkτ (Xτ ) , (5.20)

where kτ takes value in I. Moreover Y i
τ − Y kτ

τ + cikτ (Xτ ) ≥ 0, which leads, combined

with (5.19) and (5.20), to cij(Xτ )+ cjkτ (Xτ )− cikτ (Xτ ) ≤ 0 and contradicts then (3.3).

Thus γijτ = 0 for any stopping time τ smaller than T and we deduce that γij is undis-

tinguishable from 0, which proves (5.18).
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Step 3. To conclude, using once again the minimality condition for K in (5.1), observe

that dK̇i
s =

∑
j 1{Γij

s =0}
dK̇i

s ≤ ηsds , with η := CL(1+ |X|+supℓ∈I |Ẏ ℓ|+supℓ,k∈I |bℓk|)
which satisfies ||η||H2 ≤ CL, recalling (3.2), (5.4) and (5.16). ✷

Proof of Theorem 5.3.

Fix t ∈ [0, T ] and introduce δ̇Ỹ := Ẏ−Ỹ , δ̇Y := Ẏ−Y , δ̇Z := Ż−Z and δ̇f := f(X, Ẏ , Ż)−
f(X, Ỹ , Z). Applying Ito’s formula to the càdlàg process |δ̇Ỹ |2, we get

|δ̇Ỹt|2 +
∫ T

t
|δ̇Zs|2ds = |δ̇ỸT |2 − 2

∫

(t,T ]
δ̇Ỹs−dδ̇Ỹs −

∑

t<s≤T

|δ̇Ỹs − δ̇Ys|2 . (5.21)

Recalling that δ̇Ỹs− = δ̇Ys,
∫
(t,T ] δ̇YsdK̃s ≥ 0 and the Lipschitz property of f , standard

arguments lead to

E

[
|δ̇Ỹt|2 +

∫ T

t
|δ̇Zs|2ds

]
≤ CLE

[∫ T

t
δ̇YsdK̇s

]
≤ CL

∑

j<κ

E

[∫ rj+1

rj

δ̇YsdK̇s

]
. (5.22)

Using the expression of δ̇Y and Lemma 5.1, we obtain

δ̇Ys ≤ δ̇Yrj+1
+

∫ rj+1

s
(δ̇fu + ηu)du−

∫ rj+1

s
δ̇ZudWu , rj ≤ s < rj+1 , j < κ .

Combining (Hz), (3.2), (3.7), (5.4) and the fact that ||η||H2 ≤ CL, we deduce

∑

j<κ

E

[∫ rj+1

rj

δ̇YsdK̇s

]
≤ E



∑

j<κ

∫ rj+1

rj

∫ rj+1

s
(δ̇fu + ηu)dudK̇s


+ E



∑

j<κ

∫ rj+1

rj

δ̇Yrj+1
dK̇s




≤ CL|ℜ|+ E

[
K̇T sup

r∈ℜ
|δ̇Yr|

]
.

Plugging this expression in (5.22) and using Cauchy Schwartz inequality together with

(5.6) and Proposition 2.1 concludes the proof. ✷

5.3 Convergence of the discrete-time scheme

Combining the previous results with the control of the error between the discrete-time

scheme and the discretely obliquely reflected BSDE derived in Section 4, we obtain the

convergence of the discrete time scheme to the solution of the continuously obliquely

reflected BSDE. In the next theorem, we detail the corresponding approximation error

for different choices of reflection time step |ℜ| with respect to the discrete time step |π|.

Theorem 5.4. The following holds.
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(i) If (Hf)-(Hc) holds, taking |ℜ| ∼ logL
−ε log |π| for ε > 0, we have

sup
t∈[0,T ]

E

[
|Ẏt − Ỹ π

t |2 + |Ẏt − Y π
t |2
]
+ E

[∫ T

0
|Żs − Z̄πs |2ds

]
≤ CεL

[− log(|π|)] 12−ε
.

(ii) If f does not depend on z and |π|L < 1, taking similar grids ℜ = π, we have

sup
i≤n

E

[
|Ẏti − Y π

ti |
2 + |Ẏti − Ỹ π

ti |
2
]

≤ CεL|π|1−ε , ε > 0 ,

Moreover under (Hc),

sup
t∈[0,T ]

E

[
|Ẏt − Y π

t |2 + |Ẏt − Ỹ π
t |2
]

≤ CǫL|π|
1

2
−ε , ε > 0 .

(iii) Under (Hc), if f does not depend on z and |π|L < 1, taking |ℜ| ∼ |π|2/3, we get

E

[∫ T

0
|Żs − Z̄πs |2ds

]
≤ CεL|π|

1

3
−ε , ε > 0 .

(iv) Furthermore, for constant cost functions, the statements (ii) and (iii) hold true with

ε = 0.

Proof. For ε > 0, setting ℜ such that |ℜ| ∼ logL
−ε log |π| , we obtain combining Proposition

4.2 and Theorem 5.3 that

sup
t∈[0,T ]

E

[
|Ẏt − Ỹ π

t |2 + |Ẏt − Y π
t |2
]
+E

[∫ T

|Żs − Z̄πs |2ds
]
≤ CεL

[( −1

log(|π|)
) 1

2
−ε
∨ |π| 12−ε

]
.

Therefore (i) is proved. Furthermore (ii), (iii) and (iv) are direct consequences of The-

orem 4.1 and Theorem 5.2 or Theorem 5.3. ✷

6 Appendix

6.1 A priori estimates for discretely RBSDEs

We collect here the proofs for a priori estimates given in Proposition 2.1 and Proposition

2.2.

Proof of Proposition 2.1

Observing that on each interval [rj , rj+1), (Y, Ỹ , Z) solves a standard BSDE, existence

and uniqueness follow from a concatenation procedure and [21]. The rest of the proof

divides in two steps controlling separately Ỹ and (Z,K).
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Step 1. Control of Ỹ

As in proof of Theorem 2.4 in [15], we consider two non-reflected BSDEs bounding Ỹ .

Define the R
d-valued random variable ξ̆ and the random map F̆ by (ξ̆)j :=

∑d
i=1 |ξ|i

and (F̆ )j :=
∑d

i=1 |(F )i| for 1 ≤ j ≤ d.

We then denote by (Y̆ , Z̆) ∈ (S2×H2)I the solution to the following non-reflected BSDE

Y̆t = ξ̆ +

∫ T

t
F̆ (s, Y̆s, Z̆s)ds−

∫ T

t
Z̆sdWs , 0 ≤ t ≤ T. (6.1)

Since all the components of Y̆ are similar, Y̆ ∈ C.

We also introduce (0Y, 0Z) the solution to the BSDE

0Yt = ξ +

∫ T

t
F (s, 0Ys,

0Zs)ds−
∫ T

t

0ZsdWs , 0 ≤ t ≤ T .

Using a comparison argument on each interval [rj , rj+1) and the monotony property of

P, we straightforwardly deduce 0Y � Y � Y̆ .

Since (0Y, Y̆ ) are solutions to standard non-reflected BSDEs, usual arguments lead to

sup
0≤s≤T

|Ỹs|p ≤ sup
0≤s≤T

|0Ys|p + sup
0≤s≤T

|Y̆s|p =: β̄ , (6.2)

where the positive random variable β̄ satisfies classically E
[
β̄
]
≤ CL, under condition

(Cp) for a given p ≥ 2.

Step 2. Control of (Z,K)

We fix t ≤ T and applying Ito’s formula to the càdlàg process |Ỹ |2 on [0, t] to derive

|Ỹt|2 = |Ỹ0|2 + 2
∫
(0,t] Ỹs−dỸs +

∫
(0,t] |Zs|2ds+

∑
s≤t(|Ỹs|2 − |Ỹs−|2 − 2Ỹs−∆Y

g
s ) .

Since the last term on the right-hand side is non negative we deduce that

|Ỹt|2 +
∫ T

t
|Zs|2ds ≤ |ỸT |2 + 2

∫ T

t
Ỹs−F (s, Ỹs, Zs)ds+ 2

∫

(t,T ]
Ỹs−dK̃s + 2

∫ T

t
(ZsỸs)dWs.

Using standard arguments, together with (6.2) and (Cp) for a fixed p ≥ 2, we compute

∫ T

t
|Zs|2ds ≤ CL

(
β̄

2

p + β̄
1

p (K̃T − K̃t) +

∫ T

t
(ZsỸs)dWs

)
. (6.3)

Moreover, we get from (2.5) and (Cp) that

|K̃T − K̃t|2 ≤ CL

[
β̄

2

p +

∫ T

t
|Zs|2ds+

(∫ T

t
ZsdWs

)2
]
. (6.4)
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Combining (6.3) and (6.4) we obtain

∫ T

t
|Zs|2ds ≤ CL

ε
β̄

2

p + ε

∫ T

t
|Zs|2ds+ ε

(∫ T

t
ZsdWs

)2

+ CL

∫ T

t
(ZsỸs)dWs, (6.5)

for any ε > 0. Elevating the previous estimate to the power p/2, it follows from

Burkholder-Davis-Gundy inequality that

Et

[(∫ T

t
|Zs|2ds

) p

2

]
≤ CpL

(
ε−

p

2Et

[
β̄
]
+ ε

p

2Et

[
(
∫ T
t |Zs|2ds)

p

2

]
+ Et

[
(
∫ T
t |ZsỸs|2ds)

p

4

])
,

≤ CpL

(
ε−

p

2Et

[
β̄
]
+ ε−

p

2Et

[
sups∈[t,T ] |Ỹs|p

]
+ ε

p

2Et

[
(
∫ T
t |Zs|2ds)

p

2

])

Using (6.2) and (Cp), we deduce, for ε small enough,

Et

[
(

∫ T

t
|Zs|2ds)

p

2

]
≤ CpLEt

[
β̄
]
. (6.6)

Taking (6.4) up to the power p
2 , and combining Burkholder-Davis-Gundy inequality with

(6.6) yields Et

[
|K̃T − K̃t|p

]
≤ CpLEt

[
β̄
]
, which concludes the proof of the Proposition,

recalling (Cp). ✷

Proof of Proposition 2.2

Fix (t, i) ∈ [0, T ] × I and p ≥ 2. According to the identification of (Ua
∗

, V a∗) with

(Ỹ a∗ , Za
∗

), obtained in the proof of Theorem 2.1, we deduce from Proposition 2.1 the

expected controls on Ua
∗

and V a∗ . Writing the equation satisfied by (Ua
∗

, V a∗) and

using standard arguments for BSDEs, we observe that

Et

[
|Aa∗T |p

]
≤ CpL

(
Et

[
sup
s∈[t,T ]

|Ua∗s |p +
(∫ T

t
|V a∗

s |2ds
) p

2

]
+ |Aa∗t |p

)
.

By definition of a∗ and (2.2), we have |Aa∗t | ≤ maxk 6=i |Ci,kt |, which plugged in the

previous inequality leads to Et

[
|Aa∗T |p

]
≤ CpLEt

[
β̄
]
, recalling (Cp).

We finally complete the proof, noticing from (2.2) that Et

[
|Na∗ |p

]
≤ CpLEt

[
|Aa∗T |p

]
. ✷

6.2 A priori estimates for the Euler scheme

This paragraph provides the proof of Proposition 4.1, concerning a-priori estimates for

the Euler scheme associated to RBSDEs.

Proof of Proposition 4.1

The proof follows exactly the same arguments as in Step 1 of the proof of Proposition

2.1 above. The only difficulty is the use of a comparison argument for Euler Scheme

that we provide right below in Lemma 6.1. ✷
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We detail here a comparison theorem for discrete-time schemes of BSDEs in the case

where the driver does not depend on the variable Z.

For k = 1, 2, let ξk be a square integrable random variable and ψk : Rm × R
d → R

d a

L−Lipschitz generator function. We suppose that ξ1 ≥ ξ2 and ψ1 ≥ ψ2 on R
m×R

d. For

a time grid π, we denote by Y π,k the discrete-time scheme starting from the terminal

condition Y π,k
T := ξk and computing recursively, for i = n− 1, . . . , 0,

Y π,k
ti

= E

[
Y π,k
ti+1

| Fti
]
+ (ti+1 − ti)ψk(X

π
ti , Y

π,k
ti

) . (6.7)

Lemma 6.1. For any π such that |π|L < 1, we have Y π,1
ti

≥ Y π,2
ti

, i ≤ n.

Proof. Since the results holds true on the grid point tn = T and follows from a backward

induction on π, we just prove Y π,1
tn−1

≥ Y π,2
tn−1

. Using (6.7), we compute

Y π,1
tn−1

− Y π,2
tn−1

= Etn−1

[
ξ1 − ξ2

∣∣∣Ftn−1

]
+ (T − tn−1)Λn−1

(
Y π,1
tn−1

− Y π,2
tn−1

)
+∆n−1 , (6.8)

where ∆n−1 := ψ1(X
π
tn−1

Y π,2
tn−1

)− ψ2(X
π
tn−1

Y π,2
tn−1

) ≥ 0 and

Λn−1 :=





ψ1(Xπ
tn−1

Y π,1
tn−1

)−ψ1(Xπ
tn−1

Y π,2
tn−1

)

Y π,1
tn−1

−Y π,2
tn−1

if Y π,1
tn−1

− Y π,2
tn−1

6= 0,

0 else .

(6.9)

Since ψ1 is L−Lipschitz, the condition |π|L < 1, implies (T − tn−1)Λn−1 < 1. Plugging

this estimate, ∆n−1 ≥ 0 and ξ1 ≥ ξ2 and ψ1 in (6.8), we complete the proof. ✷

6.3 A priori estimates for continuously RBSDEs

This last paragraph is dedicated to the proof of Proposition 5.1.

Proof of Proposition 5.1

The proof of (5.4) is a direct adaptation of the proof of Proposition 2.1. The only

difference is in Step 1: we approximate (Ẏ , Ż, K̇) by a sequence of penalized BSDEs

(see proof of Theorem 2.4 in [15] or Step 3 in the proof of Theorem 5.3) which are

bounded by 0Y and Y̆ . Estimate (5.5) follows from the exact same arguments as the

one used in the proof of Proposition 2.2. ✷

References

[1] Bouchard B. and J.-F. Chassagneux (2008), Discrete time approximation

for continuously and discretely reflected BSDE’s. Stochastic Processes and their

Applications, 118 (12), 612-632.

34



[2] Bouchard B. and N. Touzi (2004), Discrete-Time Approximation and

Monte-Carlo Simulation of Backward Stochastic Differential Equations. Stochas-

tic Processes and their Applications, 111 (2), 175-206.

[3] Bouchard B. and R. Elie (2008), Discrete-time approximation of decoupled

forward-backward SDE with jumps, Stoch. Proc. and their Appl., 118, 53-75.

[4] Bouchard B., R. Elie and N. Touzi (2009), Discrete-time Approximation

of BSDEs and Probabilistic schemes for Fully Nonlinear PDEs, Radon Series on

Computational and Applied Mathematics.

[5] Carmona R. and M. Ludkovski (2005), Optimal switching with applications

to energy tolling agreements, Preprint.

[6] Chassagneux J.F. (2008), Processus réfléchis en finance et probabilité

numérique. PhD Thesis, Université Paris 7.

[7] Chassagneux J.F. (2009), A discrete time approximation for doubly reflected

BSDEs. Advances in Applied Probability, 4, 101-130.

[8] Chassagneux J.F., R. Elie and I. Kharroubi (2010), A note on the ex-

istence and unqueness of solutions of reflected BSDEs associated to switching

problems. Preprint.

[9] Djehiche B., Hamadène S. and A. Popier (2009), The finite horizon optimal

multiple switching problem. SIAM Journal fo Control and Optimization, 48(4),

2751-2770.

[10] El Karoui N., C. Kapoudjian, E. Pardoux, S. Peng, M.C. Quenez

(1997), Reflected solutions of Backward SDE’s and related obstacle problems for

PDE’s Annals of Probability, 25(2), 702-737.

[11] Elie R. and I. Kharroubi (2009), Constrained Backward SDEs with Jumps:

Application to Optimal Switching, Preprint.

[12] Elie R. and I. Kharroubi (2009), Probabilistic representation and approxi-

mation for coupled systems of variational inequalities, Preprint.

[13] Gobet E., J.-P. Lemor and X. Warin (2005), A regression-based Monte

Carlo method to solve backward stochastic differential equations. Annals of Ap-

plied Probability, 15 (3), pp. 2172-2202.

35



[14] Hamadene, S. and M. Jeanblanc (2007), On the starting and stopping prob-

lem: application in reversible investments. Math. of Operations Research, 32 (1).

[15] Hamadène S. and J. Zhang (2007), The Starting and Stopping Problem under

Knightian Uncertainty and Related Systems of Reflected BSDEs. Preprint.

[16] Hu Y. and S. Tang (2007), Multi-dimensional BSDE with oblique Reflection

and optimal switching, To appear in Prob. Theory and Related Fields.

[17] Kloeden P. E. and E. Platen (1992), Numerical solutions of Stochastic Dif-

ferential Equations, Applied Math. 23, Springer, Berlin.

[18] Kunita H. (1990), Stochastic flows and stochastic differential equations, Cam-

bridge Stud. Adv. Math. 24, Cambridge University Press, Cambridge.

[19] Ma J. and J. Zhang (2005), Representations and regularities for solutions to

BSDEs with reflections. Stoch. Process. Appl., 115, 539-569.

[20] Nualart D. (1995), The Malliavin Calculus and Related Topics, Springer Ver-

lag, Berlin.

[21] Pardoux E. and S. Peng (1990), Adapted solution of a backward stochastic

differential equation, Systems and Control Letters, 14, 55-61.

[22] Peng S. (1999), Monotonic limit theory of BSDE and nonlinear decomposition

theorem of Doob-Meyer’s type, Prob. Theory and Related Fields, 113, 473-499.

[23] Pham H., V. Ly Vath and X. Zhou (2009), Optimal switching over multiple

regimes, SIAM J. Control Optim, 48-4, 2217-2253.

[24] Porchet A., N. Touzi and X. Warin (2009), Valuation of a powerplant under

production constraints and markets incompleteness, Mathematical Methods of

Operations research, 70-1.

[25] Zhang J. (2004), A numerical scheme for BSDEs. Annals of Applied Probability,

14 (1), 459-488.

36


	Introduction
	Discretely obliquely reflected BSDE
	Definition
	Corresponding optimal switching problem
	Stability of obliquely reflected BSDEs

	Regularity of discretely obliquely reflected BSDEs
	A diffusion setting for discretely RBSDEs
	Malliavin differentiability of (X,Y,Y"0365Y ,Z)
	Representation of Z
	Regularity results
	Extension

	A Discrete-time Approximation for discretely reflected
	An Euler scheme for discretely obliquely reflected BSDEs
	Convergence Results

	Extension to the continuously reflected case
	Continuously obliquely reflected BSDEs
	Error between discretely and continuously reflected BSDEs
	Convergence of the discrete-time scheme

	Appendix
	A priori estimates for discretely RBSDEs
	A priori estimates for the Euler scheme
	A priori estimates for continuously RBSDEs


