Discrete-time Approximation of Multidimensional BSDEs with oblique reflections

Romuald Elie, Idris Kharroubi, Jean-François Chassagneux

To cite this version:

Romuald Elie, Idris Kharroubi, Jean-François Chassagneux. Discrete-time Approximation of Multidimensional BSDEs with oblique reflections. Annals of Applied Probability, Institute of Mathematical Statistics (IMS), 2012, 22 (3), pp 971-1007. <hal-00475628>

HAL Id: hal-00475628

https://hal.archives-ouvertes.fr/hal-00475628
Submitted on 22 Apr 2010

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Discrete-time Approximation of Multidimensional BSDEs with oblique reflections

Jean-Francois CHASSAGNEUX
Département de Mathématiques,
Université d'Evry Val d'Essone, and CREST
jean-francois.chassagneux@univ-evry.fr

Romuald ELIE
CEREMADE, CNRS, UMR 7534,
Université Paris-Dauphine, and CREST
elie@ceremade.dauphine.fr

Idris KHARROUBI
LPMA, CNRS, UMR 7599
Université Paris 7, and CREST
kharroubi@ensae.fr

This version: April 2010

Abstract

In this paper, we study the discrete-time approximation of multi-dimensional reflected BSDEs of the type of those presented by Hu and Tang [16] and generalized by Hamadène and Zhang [15]. In comparison to the penalizing approach followed by Hamadène and Jeanblanc [14] or Elie and Kharroubi [12], we study a more natural scheme based on oblique projections. We provide a control on the error of the algorithm by introducing and studying the notion of multidimensional discretely reflected BSDE. In the particular case where the driver does not depend on the variable Z, the error on the grid points is of order $\frac{1}{2}-\epsilon, \epsilon>0$.

Key words: BSDE with oblique reflections, discrete time approximation, Switching problems.

MSC Classification (2000): 93E20, 65C99, 60H30.

1 Introduction

The main motivation of this paper is the discrete-time approximation of the following system of reflected Backward Stochastic Differential Equations (BSDEs)

$$
\left\{\begin{array}{l}
\dot{Y}_{t}^{i}=g^{i}\left(X_{T}\right)+\int_{t}^{T} f^{i}\left(X_{s}, \dot{Y}_{s}^{i}, \dot{Z}_{s}^{i}\right) \mathrm{d} s-\int_{t}^{T} \dot{Z}_{s}^{i} \mathrm{~d} W_{s}+\dot{K}_{T}^{i}-\dot{K}_{t}^{i}, \quad 0 \leq t \leq T \tag{1.1}\\
\dot{Y}_{t}^{i} \geq \max _{j \in \mathcal{I}}\left\{\dot{Y}_{t}^{j}-c^{i j}\left(X_{t}\right)\right\}, \quad 0 \leq t \leq T, \\
\int_{0}^{T}\left[\dot{Y}_{t}^{i}-\max _{j \in \mathcal{I}}\left\{\dot{Y}_{t}^{j}-c^{i j}\left(X_{t}\right)\right\}\right] d \dot{K}_{t}^{i}=0, \quad i \in \mathcal{I}
\end{array}\right.
$$

where $\mathcal{I}:=\{1, \ldots, d\}, f, g$ and $\left(c^{i j}\right)_{i, j \in \mathcal{I}}$ are Lipschitz functions and X is the solution of a forward Stochastic Differential Equation (SDE).

These equations are linked to the solutions of optimal switching problems, arising for example in real option pricing. In the particular case where f does not depend of (\dot{Y}, \dot{Z}), a first study of these equations was made by Hamadène and Jeanblanc [14]. They derive existence and uniqueness of solution to this problem in dimension 2. The extension of this result to optimal switching problems in higher dimension is studied by Djehiche, Hamadène and Popier [9], Carmona and Ludkovski [5], Porchet, Touzi and Warin [24] and by Pham, Ly Vath and Zhou [23] for an infinite time horizon consideration. In this last paper, the resolution of optimal switching problems relies mostly on the link with systems of variational inequalities.

Considering deterministic costs, Hu and Tang [16] derive existence and uniqueness of solution to this type of BSDE and relate it to optimal switching problems between one dimensional BSDEs. Extensions developed in [15] and [8] cover in particular the existence of a unique solution to the BSDE (1.1). Recently two of the authors related in [11] the solution of (1.1) to corresponding constrained BSDEs with jumps. As presented in [12], this type of BSDE can be numerically approximated combining a penalization procedure with the use of the moonwalk scheme for BSDEs with jumps. Unfortunately, no convergence rate is available for this algorithm. We present here a more natural discretization scheme based on a geometric approach. For any $t \leq T$, all the components of the \dot{Y}_{t} process are interconnected, so that the vector \dot{Y}_{t} lies in a random closed convex set $\mathcal{Q}\left(X_{t}\right)$ characterized by the cost functions $\left(c^{i j}\right)_{i, j \in \mathcal{I}}$. The vector process \dot{Y} is thus obliquely reflected on the boundaries of the domain $\mathcal{Q}(X)$ and we plan to approximate these continuous reflections numerically.

As in [19, 1, 6], we first introduce a discretely reflected version of (1.1), where the reflection occurs only on a deterministic grid $\Re=\left\{r_{0}:=0, \ldots, r_{\kappa}:=T\right\}$:

$$
\begin{align*}
& Y_{T}=\tilde{Y}_{T}:=g\left(X_{T}\right) \in \mathcal{Q}_{T}, \text { and, for } j \leq \kappa-1 \text { and } t \in\left[r_{j}, r_{j+1}\right), \\
& \left\{\begin{aligned}
\widetilde{Y}_{t} & =Y_{r_{j+1}}+\int_{t}^{r_{j+1}} f\left(X_{u}, \widetilde{Y}_{u}, Z_{u}\right) \mathrm{d} u-\int_{t}^{r_{j+1}} Z_{u} \mathrm{~d} W_{u}, \\
Y_{t} & =\widetilde{Y}_{t} \mathbf{1}_{\{t \notin \mathcal{R}\}}+\mathcal{P}\left(X_{t}, \widetilde{Y}_{t}\right) \mathbf{1}_{\{t \in \Re\}},
\end{aligned}\right. \tag{1.2}
\end{align*}
$$

where $\mathcal{P}\left(X_{t},.\right)$ is the oblique projection operator on $\mathcal{Q}\left(X_{t}\right)$, for $t \leq T$. Extending the approach of Hu and Tang [16], we observe that the solution to (1.2) interprets as the value process of a one-dimensional optimal BSDE switching problem with switching times belonging to \Re. This allows us to prove a key stability result for this equation. We control the distance between (Y, Z) and (\dot{Y}, \dot{Z}) in terms of the mesh of the reflection grid. Due to the obliqueness of the reflections, the direct argumentation of [1, 6] does not apply. Using the reinterpretation in terms of switching BSDEs, we first prove that Y approaches \dot{Y} on the grid points with a convergence rate of order $1-\varepsilon, \varepsilon>0$ uniformly in \Re, whenever the cost function is Lipschitz and f is bounded in z. Imposing more regularity on the cost function, we control the convergence rate of $\left(Y_{t}, Z_{t}\right)_{0 \leq t \leq T}$ to $\left(\dot{Y}_{t}, \dot{Z}_{t}\right)_{0 \leq t \leq T}$.

We then consider an Euler type approximation scheme associated to the BSDE 1.2 defined on $\pi=\left\{t_{0}, \ldots, t_{n}\right\}$ by $Y_{T}^{\pi}:=g\left(X_{T}^{\pi}\right)$ and, for $i \in\{n-1, \ldots, 0\}$,

$$
\left\{\begin{align*}
\bar{Z}_{t_{i}}^{\pi} & :=\left(t_{i+1}-t_{i}\right)^{-1} \mathbb{E}\left[Y_{t_{i+1}}^{\pi}\left(W_{t_{i+1}}-W_{t_{i}}\right)^{\prime} \mid \mathcal{F}_{t_{i}}\right] \tag{1.3}\\
\widetilde{Y}_{t_{i}}^{\pi} & :=\mathbb{E}\left[Y_{t_{i+1}}^{\pi} \mid \mathcal{F}_{t_{i}}\right]+\left(t_{i+1}-t_{i}\right) f\left(X_{t_{i}}^{\pi}, \widetilde{Y}_{t_{i}}^{\pi}, \bar{Z}_{t_{i}}^{\pi}\right) \\
Y_{t_{i}}^{\pi} & :=\widetilde{Y}_{t_{i}}^{\pi} \mathbf{1}_{\left\{t_{i} \notin \Re\right\}}+\mathcal{P}\left(X_{t_{i}}^{\pi}, \widetilde{Y}_{t_{i}}^{\pi}\right) \mathbf{1}_{\left\{t_{i} \in \Re\right\}}
\end{align*}\right.
$$

where X^{π} is the Euler scheme associated to X. It is now well known, see e.g. [2, 25], that the convergence rate of the scheme (1.3) to the solution of 1.2 is controled by the regularity of (Y, Z) through the quantities

$$
\mathbb{E}\left[\sum_{i<n} \int_{t_{i}}^{t_{i+1}}\left|Y_{t}-Y_{t_{i}}\right|^{2} \mathrm{~d} t\right] \quad \text { and } \quad \mathbb{E}\left[\sum_{i<n} \int_{t_{i}}^{t_{i+1}}\left|Z_{t}-\bar{Z}_{t_{i}}\right|^{2} \mathrm{~d} t\right]
$$

with $\bar{Z}_{t_{i}}=\frac{1}{t_{i+1}-t_{i}} \mathbb{E}\left[\int_{t_{i}}^{t_{i+1}} Z_{t} \mathrm{~d} t \mid \mathcal{F}_{t_{i}}\right]$, for $i \leq n$.
Using classical Malliavin differentiation tools, we prove a representation for Z, extending the results of [1, 6] to the system of discretely reflected BSDEs (1.2). We deduce the expected regularity results on (Y, Z) and, using the technics of [7], Chapter 3, we obtain in a very general setting the convergence of 1.3 to 1.2 . However, due to the obliqueness of the reflections, the projection operator $\mathcal{P}(X,$.$) is only L$-lipschitz with $L>1$, leading to a convergence rate of order $L^{\kappa}|\pi|^{1 / 4}$, where we recall that κ is the
number of points in the reflection grid \Re. The term L^{κ} can be very large even for small κ and leads to a poor logarithmic convergence rate when passing to the limit $\kappa \rightarrow \infty$ for the approximation of (1.1). In the particular case where f does not depend on z, we are able to get rid of the L^{κ} term.
Our innovative approach relies on on the use of comparison results to get a control of the involved quantities:

- we interpret the solution of (1.2) as a value process of an optimization problem, which allows to get a control of the distance between the continuously and discretely reflected BSDEs,
- we introduce a convenient auxiliary process dominating both solutions (1.2) and (1.3), to get a control of the distance between these quantities.

Combining the previous estimates, we deduce the convergence of the discrete time scheme 1.3 to the solution of 1.1 with a convergence rate of order $|\pi|^{\frac{1}{2}-\varepsilon}$ on the grid points, whenever $\Re=\pi$ and f is independent of Z. Whenever the cost functions are constant, all the previous estimates hold true with $\varepsilon=0$. We want to emphasize that all these results are obtained without any assumption on the non-degeneracy of the volatility matrix σ.

The rest of the paper is organized as follows. In Section 2, we introduce the notion of discretely obliquely reflected BSDEs, connect it with optimal switching problems and give the fundamental stability result. Section 3 focuses on the regularity of the solution to this new type of BSDE. This analysis leads to precious estimates allowing to deduce the convergence of the associated discrete time scheme, see Section 4 Afterwards, Section 5 focuses on the extension to the continuously reflected case and provides a convergence rate of the discretely reflected BSDE to the continuously one, whenever the driver f is bounded in the variable Z. The global error of the scheme is provided at the end of this section. Some a priori estimates are reported in the Appendix.

Notations. Throughout this paper we are given a finite time horizon T and a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ endowed with a d-dimensional standard Brownian motion $W=$ $\left(W_{t}\right)_{t \geq 0}$. The filtration $\mathbb{F}=\left(\mathcal{F}_{t}\right)_{t \leq T}$ generated by the Brownian motion is supposed to satisfy the usual conditions. Here, \mathfrak{P} denotes the σ-algebra on $[0, T] \times \Omega$ generated by \mathbb{F}-progressively measurable processes. Any element $x \in \mathbb{R}^{\ell}$ with $\ell \in \mathbb{N}$ will be identified to a column vector with i-th component x^{i} and Euclidian norm $|x|$. For $x, y \in \mathbb{R}^{\ell}, x . y$ denotes the scalar product of x and y, and x^{\prime} denotes the transpose of x. We denote by
\succeq the component by component partial ordering relation on vectors. $\mathcal{M}^{m, d}$ denotes the set of real matrices with m lines and d columns. We denotes by C_{b}^{k} the set of functions from \mathbb{R}^{d} to \mathbb{R} with continuous and bounded derivatives up to order k. For a function $f \in C^{1}, \nabla_{x} f$ denotes the Jacobian matrix of f with respect to x. Finally, for ease of notation, we will sometimes write $\mathbb{E}_{t}[\cdot]$ instead of $\mathbb{E}\left[\cdot \mid \mathcal{F}_{t}\right], t \in[0, T]$. In the following, we shall use these notations without specifying the dimension nor the dependence in $\omega \in \Omega$ when it is clearly given by the context. Finally, for any $p \geq 1$, we introduce:

- the set \mathcal{S}^{p} of real-valued càdlàg \mathfrak{P}-measurable processes $Y=\left(Y_{t}\right)_{0 \leq t \leq T}$ satisfying $\|Y\|_{\mathcal{S}^{p}}:=\mathbb{E}\left[\sup _{0 \leq t \leq T}\left|Y_{t}\right|^{p}\right]^{\frac{1}{p}}<\infty$.
- the set \mathcal{H}^{p} of \mathbb{R}^{d}-valued \mathfrak{P}-measurable processes $Z=\left(Z_{t}\right)_{0 \leq t \leq T}$ such that $\|Z\|_{\mathcal{H}^{p}}:=$ $\mathbb{E}\left[\left(\int_{0}^{T}\left|Z_{t}\right|^{2} d t\right)^{\frac{p}{2}}\right]^{\frac{1}{p}}<\infty$.
- the closed subset \mathbf{A}^{p} of \mathcal{S}^{p} consisting of nondecreasing processes K satisfying $K_{0}=0$. In the sequel we denote by C_{L} a constant whose value may change from line to line but which depends only on L. We use the notation C_{L}^{p} whenever it depends on some other parameter $p>0$.

2 Discretely obliquely reflected BSDE

In the beginning of this section, we define and study discretely obliquely reflected BSDEs in a general setting. In particular, we show how their solutions relate to the solutions of one-dimensional optimal switching problems, where the switching times are restricted to lie in a discrete time set. This allows to prove a stability result for obliquely RBSDEs, which will be use several times in the paper.

2.1 Definition

A discretely obliquely reflected BSDE is a reflected BSDE where the reflection is only allowed on a discrete time set.
We thus consider a grid $\Re:=\left\{r_{0}=0, \ldots, r_{\kappa}=T\right\}$ of the time interval $[0, T]$ satisfying

$$
\begin{equation*}
|\Re|:=\max _{1 \leq k \leq \kappa}\left|r_{k}-r_{k-1}\right| \leq \frac{L}{\kappa} . \tag{2.1}
\end{equation*}
$$

We also consider a matrix valued process $C=\left(C^{i j}\right)_{1 \leq i, j \leq m}$ such that $C^{i j}$ belongs to \mathcal{S}^{2} for $i, j \in\{1, \ldots, d\}$ and satisfies the following structure condition

$$
\begin{cases}C_{t}^{i i}=0, & \text { for } 1 \leq i \leq d \text { and } 0 \leq t \leq T \tag{2.2}\\ \inf _{0 \leq t \leq T} C_{t}^{i j}>\frac{1}{L}, & \text { for } 1 \leq i, j \leq d, \text { with } i \neq j \\ \inf _{0 \leq t \leq T} C_{t}^{i j}+C_{t}^{j l}-C_{t}^{i l}>0, & \text { for } 1 \leq i, j, l \leq d, \text { with } i \neq j, j \neq l\end{cases}
$$

We introduce a random closed convex set family associated to C :

$$
\mathcal{Q}_{t}:=\left\{y \in \mathbb{R}^{d} \mid y^{i} \geq \max _{j}\left(y^{j}-C_{t}^{i j}\right), \quad 1 \leq i \leq d\right\}, \quad 0 \leq t \leq T
$$

and the oblique projection operator onto \mathcal{Q}_{t}, denoted \mathcal{P}_{t} and defined by

$$
\mathcal{P}_{t}: y \in \mathbb{R}^{d} \mapsto\left(\max _{j \in \mathcal{I}}\left\{y^{j}-C_{t}^{i j}\right\}\right)_{1 \leq i \leq d}
$$

which is $\mathfrak{P} \otimes \mathcal{B}\left(\mathbb{R}^{d}\right)$-measurable.

Remark 2.1. (i) It follows from the structure condition 2.2 that \mathcal{P} is increasing with respect to the partial ordering relation \succeq, where $y \succeq y^{\prime}$ means $y^{i} \geq\left(y^{\prime}\right)^{i}$ for all $i \in \mathcal{I}$.
(ii) An easy calculation leads to

$$
\begin{equation*}
\left|\mathcal{P}_{t}\left(y_{1}\right)-\mathcal{P}_{t}\left(y_{2}\right)\right| \leq \sqrt{d}\left|y_{1}-y_{2}\right| . \tag{2.3}
\end{equation*}
$$

Thus \mathcal{P} is L - Lipschitz continuous with $L>1$, recalling that $d \geq 2$.

Finally, we are also given a random variable $\xi \in\left[L^{2}\left(\mathcal{F}_{T}\right)\right]^{d}$ valued in \mathcal{Q}_{T}, representing the terminal value of the BSDE and a random function $F: \Omega \times[0, T] \times \mathbb{R}^{d} \times \mathcal{M}^{d, q} \rightarrow \mathbb{R}^{d}$ which is $\mathfrak{P} \otimes \mathcal{B}\left(\mathbb{R}^{d}\right) \otimes \mathcal{B}\left(\mathcal{M}^{d, q}\right)$-measurable and satisfies the Lipschitz property:

$$
\left|F(t, y, z)-F\left(t, y^{\prime}, z^{\prime}\right)\right| \leq L\left(\left|y-y^{\prime}\right|+\left|z-z^{\prime}\right|\right)
$$

for all $\left(t, y, y^{\prime}, z, z^{\prime}\right) \in[0, T] \times\left(\mathbb{R}^{d}\right)^{2} \times\left(\mathcal{M}^{d, q}\right)^{2}, \mathbb{P}-$ a.s.
We shall also assume that
$(\mathbf{H} F) \quad$ The component i of $F(t, y, z)$ depends only on the component i of the vector y and on the row i of the matrix z, \quad i.e. $F^{i}(t, y, z)=F^{i}\left(t, y^{i}, z^{i}\right)$.

Given this set of data (\Re, C, F, ξ), a discretely obliquely reflected BSDE, denoted $\mathcal{D}(\Re, C, F, \xi)$, is a triplet $(\tilde{Y}, Y, Z) \in\left(\mathcal{S}^{2} \times \mathcal{S}^{2} \times \mathcal{H}^{2}\right)^{\mathcal{I}}$ satisfying $Y_{T}=\widetilde{Y}_{T}:=\xi \in \mathcal{Q}(T)$, and defined in a backward manner, for $j \leq \kappa-1$ and $t \in\left[r_{j}, r_{j+1}\right)$, by

$$
\left\{\begin{align*}
\tilde{Y}_{t} & =Y_{r_{j+1}}+\int_{t}^{r_{j+1}} F\left(u, \widetilde{Y}_{u}, Z_{u}\right) \mathrm{d} u-\int_{t}^{r_{j+1}} Z_{u} \mathrm{~d} W_{u} \tag{2.4}\\
Y_{t} & =\widetilde{Y}_{t} \mathbf{1}_{\{t \notin \Re\}}+\mathcal{P}_{t}\left(\tilde{Y}_{t}\right) \mathbf{1}_{\{t \in \Re\}}
\end{align*}\right.
$$

This rewrites equivalently for $t \in[0, T]$ as

$$
\left\{\begin{align*}
\widetilde{Y}_{t} & =\xi+\int_{t}^{T} F\left(u, \widetilde{Y}_{u}, Z_{u}\right) \mathrm{d} u-\int_{t}^{T} Z_{u} \mathrm{~d} W_{u}+\left(\widetilde{K}_{T}-\widetilde{K}_{t}\right) \tag{2.5}\\
\widetilde{K}_{t} & :=\sum_{r \in \Re \backslash\{0\}} \Delta \widetilde{K}_{r} \mathbf{1}_{\{r \leq t\}} \quad \text { with } \quad \Delta \widetilde{K}_{t}:=Y_{t}-\widetilde{Y}_{t}=-\left(\widetilde{Y}_{t}-\widetilde{Y}_{t-}\right),
\end{align*}\right.
$$

Observe that $\widetilde{K} \in\left(\mathbf{A}^{2}\right)^{\mathcal{I}}$, since $C^{i j}$ is positive and valued in \mathcal{S}^{2}, for any $i, j \in \mathcal{I}$. We shall also use the following integrability condition for some $p \geq 2$

$$
\left(\mathbf{C}_{p}\right) \quad|\xi|^{p}+\sup _{t \in[0, T]}\left|C_{t}\right|^{p}+\int_{0}^{T}|F(s, 0,0)|^{p} \mathrm{~d} s \leq \beta
$$

where β is a positive random variable satisfying $\mathbb{E}[\beta] \leq C_{L}$. Importantly, β does not depend on \Re.
The proof of the following a priori estimates is postponed in Section 6.1 of the Appendix.
Proposition 2.1. Assume that $\left(C_{p}\right)$ holds for some given $p \geq 2$, there exists a unique solution (\tilde{Y}, Y, Z) to (2.4) and it satisfies

$$
\|\widetilde{Y}\|_{\mathcal{S}^{p}}+\|Z\|_{\mathcal{H}^{p}}+\left\|\widetilde{K}_{T}\right\|_{\mathbf{L}^{p}} \leq C_{L}^{p}
$$

2.2 Corresponding optimal switching problem

In this subsection, we interpret the solution of the discretely obliquely RBSDE (2.5) as the value process of a corresponding optimal switching problem, where the possible switching times are restricted to belong to the grid \Re. Our approach relies on similar arguments as the one followed by Hu and Tang [16] in a framework with continuous reflections.

A switching strategy a is a nondecreasing sequence of stopping times $\left(\theta_{j}\right)_{j \in \mathbb{N}}$, combined with a sequence of random variables $\left(\alpha_{j}\right)_{j \in \mathbb{N}}$ valued in \mathcal{I}, such that α_{j} is $\mathcal{F}_{\theta_{j}}$-measurable, for any $j \in \mathbb{N}$. We denote by \mathcal{A} the set of such strategies. For $a=\left(\theta_{j}, \alpha_{j}\right)_{j \in \mathbb{N}} \in \mathcal{A}$, we introduce N^{a} the (random) number of switches before T :

$$
\begin{equation*}
N^{a}=\#\left\{k \in \mathbb{N}^{*}: \theta_{k} \leq T\right\} \tag{2.6}
\end{equation*}
$$

To any switching strategy $a=\left(\theta_{j}, \alpha_{j}\right)_{j \in \mathbb{N}} \in \mathcal{A}$, we associate the current state process $\left(a_{t}\right)_{t \in[0, T]}$ and the compound cost process $\left(A_{t}^{a}\right)_{t \in[0, T]}$ defined respectively by

$$
a_{t}:=\alpha_{0} \mathbf{1}_{\left\{0 \leq t<\theta_{0}\right\}}+\sum_{j=1}^{N^{a}} \alpha_{j-1} \mathbf{1}_{\left\{\theta_{j-1} \leq t<\theta_{j}\right\}} \quad \text { and } \quad A_{t}^{a}:=\sum_{j=1}^{N^{a}} C_{\theta_{j}}^{\alpha_{j-1} \alpha_{j}} \mathbf{1}_{\left\{\theta_{j} \leq t \leq T\right\}}
$$

for $0 \leq t \leq T$. For $(t, i) \in[0, T] \times \mathcal{I}$, the set $\mathcal{A}_{t, i}$ of admissible strategies starting from i at time t is defined by

$$
\mathcal{A}_{t, i}=\left\{a=\left(\theta_{j}, \alpha_{j}\right)_{j} \in \mathcal{A} \mid \theta_{0}=t, \alpha_{0}=i, \mathbb{E}\left[\left|A_{T}^{a}\right|^{2}\right]<\infty\right\}
$$

similarly we introduce $\mathcal{A}_{t, i}^{\Re}$ the restriction to \Re-admissible strategies

$$
\mathcal{A}_{t, i}^{\Re}:=\left\{a=\left(\theta_{j}, \alpha_{j}\right)_{j \in \mathbb{N}} \in \mathcal{A}_{t, i} \quad \mid \quad \theta_{j} \in \Re, \forall j \leq N^{a}\right\},
$$

and denote $\mathcal{A}^{\Re}:=\bigcup_{i \leq d} \mathcal{A}_{0, i}^{\Re}$.
For $(t, i) \in[0, T] \times \mathcal{I}$, and $a \in \mathcal{A}_{t, i}^{\Re}$, we consider as in [16] the associated one dimensional switched BSDE defined by

$$
\begin{equation*}
U_{u}^{a}=\xi^{a_{T}}+\int_{u}^{T} F^{a_{s}}\left(s, U_{s}^{a}, V_{s}^{a}\right) \mathrm{d} s-\int_{u}^{T} V_{s}^{a} \mathrm{~d} W_{s}-A_{T}^{a}+A_{u}^{a}, \quad t \leq u \leq T . \tag{2.7}
\end{equation*}
$$

Theorem 3.1 in [16] interprets each component of the solution to the continuously reflected BSDE (1.1) as the Snell envelop associated to switched processes of the form (2.7), where the switching strategies a are not restricted to lie in the reflection grid \Re. The next theorem is a new version of this Snell envelop representation adapted to the consideration of discretely obliquely reflected BSDE (2.5).

Theorem 2.1. Assume that $\left(C_{2}\right)$ is in force. For any $i \in \mathcal{I}$ and $t \in[0, T]$, the following holds:
(i) The process \widetilde{Y} dominates any \Re-switched BSDE, i.e.

$$
\begin{equation*}
U_{t}^{a} \leq \widetilde{Y}_{t}^{i} \quad \mathbb{P}-\text { a.s. }, \quad \text { for any } a \in \mathcal{A}_{i, t}^{\Re . ~} \tag{2.8}
\end{equation*}
$$

(ii) Define the strategy $a^{*}=\left(\theta_{j}^{*}, \alpha_{j}^{*}\right)_{j \geq 0}$ recursively by $\left(\theta_{0}^{*}, \alpha_{0}^{*}\right):=(t, i)$ and, for $j \geq 1$,

$$
\begin{aligned}
& \theta_{j}^{*}:=\inf \left\{s \in\left[\theta_{j-1}^{*}, T\right] \cap \Re \mid \widetilde{Y}_{s}^{\alpha_{j-1}^{*}} \leq \max _{k \neq \alpha_{j-1}^{*}}\left\{\widetilde{Y}_{s}^{k}-C_{s}^{\alpha_{j-1}^{*} k}\right\}\right\}, \\
& \alpha_{j}^{*}:=\min \left\{\ell \neq \alpha_{j-1}^{*} \mid \widetilde{Y}_{\theta_{j}^{*}}^{\ell}-C_{\theta_{j}^{*}}^{\alpha_{j-1}^{*} \ell}=\max _{k \neq \alpha_{j-1}^{*}}\left\{\widetilde{Y}_{s}^{k}-C_{\theta_{j}^{*}}^{\alpha_{j-1}^{*} k}\right\}\right\} .
\end{aligned}
$$

Then, we have $a^{*} \in \mathcal{A}_{t, i}^{\Re}$ and

$$
\begin{equation*}
\widetilde{Y}_{t}^{i}=U_{t}^{a^{*}} \mathbb{P}-\text { a.s. . } \tag{2.9}
\end{equation*}
$$

(iii) The following "Snell envelop" representation holds:

$$
\begin{equation*}
\widetilde{Y}_{t}^{i}=\underset{a \in \mathcal{A}_{t, i}^{\Re}}{\operatorname{ess} \sup _{t}} U_{t}^{a}, \quad \mathbb{P}-\text { a.s. } \tag{2.10}
\end{equation*}
$$

Proof. Observe first that Assertion (iii) is a direct consequence of (i) and $(i i)$.
Step 1. We first prove (i).
Fix $t \in[0, T]$ and $i \in \mathcal{I}$. Set $a=\left(\theta_{k}, \alpha_{k}\right)_{k \geq 0} \in \mathcal{A}_{t, i}^{\Re}$ and the process $\left(\tilde{Y}^{a}, Z^{a}\right)$ defined, for $s \in[t, T]$, by

$$
\begin{equation*}
\widetilde{Y}_{s}^{a}:=\sum_{k \geq 0} \widetilde{Y}_{s}^{\alpha_{k}} \mathbf{1}_{\left\{\theta_{k} \leq s<\theta_{k+1}\right\}}+\xi^{a_{T}} \mathbf{1}_{\{s=T\}} \text { and } Z_{s}^{a}:=\sum_{k \geq 0} Z_{s}^{\alpha_{k}} \mathbf{1}_{\left\{\theta_{k} \leq s<\theta_{k+1}\right\}} \tag{2.11}
\end{equation*}
$$

Observe that these processes jump between the components of the discretely reflected BSDE (3.5) according to the strategy a, and, between two jumps, we have

$$
\begin{align*}
\widetilde{Y}_{\theta_{k}}^{a}=\widetilde{Y}_{\theta_{k}}^{\alpha_{k}}= & Y_{\theta_{k+1}}^{\alpha_{k}}+\int_{\theta_{k}}^{\theta_{k+1}} F^{\alpha_{k}}\left(s, \widetilde{Y}_{s}^{\alpha_{k}}, Z_{s}^{\alpha_{k}}\right) \mathrm{d} s-\int_{\theta_{k}}^{\theta_{k+1}} Z_{s}^{\alpha_{k}} \mathrm{~d} W_{s}+\widetilde{K}_{\theta_{k+1}-}^{\alpha_{k}}-\widetilde{K}_{\theta_{k}}^{\alpha_{k}} \\
= & \widetilde{Y}_{\theta_{k+1}}^{a}+\int_{\theta_{k}}^{\theta_{k+1}} F^{a_{s}}\left(s, \widetilde{Y}_{s}^{a}, Z_{s}^{a}\right) \mathrm{d} s-\int_{\theta_{k}}^{\theta_{k+1}} Z_{s}^{a} \mathrm{~d} W_{s}+\widetilde{K}_{\theta_{k+1}-}^{\alpha_{k}}-\widetilde{K}_{\theta_{k}}^{\alpha_{k}} \\
& +\left(Y_{\theta_{k+1}}^{\alpha_{k}}-\widetilde{Y}_{\theta_{k+1}}^{\alpha_{k+1}}\right), \quad k \geq 0 . \tag{2.12}
\end{align*}
$$

Introducing

$$
\widetilde{K}_{s}^{a}:=\sum_{k=0}^{N^{a}-1}\left[\int_{\left(\theta_{k} \wedge s, \theta_{k+1} \wedge s\right)} d \widetilde{K}_{u}^{\alpha_{k}}+\mathbf{1}_{\left\{\theta_{k+1} \leq s\right\}}\left(Y_{\theta_{k+1}}^{\alpha_{k}}-\widetilde{Y}_{\theta_{k+1}}^{\alpha_{k+1}}+C_{\theta_{k+1}}^{\alpha_{k} \alpha_{k+1}}\right)\right]
$$

for $s \in[t, T]$, and summing up 2.12 over k, we get, for $t \leq u \leq T$,

$$
\widetilde{Y}_{u}^{a}=\xi^{a_{T}}+\int_{u}^{T} F^{a_{s}}\left(s, \widetilde{Y}_{s}^{a}, Z_{s}^{a}\right) \mathrm{d} s-\int_{u}^{T} Z_{s}^{a} \mathrm{~d} W_{s}-A_{T}^{a}+A_{u}^{a}+\widetilde{K}_{T}^{a}-\widetilde{K}_{u}^{a}
$$

Using the relation $Y_{\theta_{k}}=\mathcal{P}_{\theta_{k}}\left(\widetilde{Y}_{\theta_{k}}\right)$ for all $k \in\left\{0, \ldots, N^{a}\right\}$, we check that \widetilde{K}^{a} is increasing. Since U^{a} solves (2.7), we deduce by a comparison argument (see Theorem 1.3 in [22]) that $U_{t}^{a} \leq \widetilde{Y}_{t}^{a}$. Since a is arbitrary in $\mathcal{A}_{t, i}^{\Re}$, we deduce 2.8.

Step 2. We now prove (ii). Consider the strategy a^{*} given above as well as the associated process $\left(\widetilde{Y}^{a^{*}}, Z^{a^{*}}\right)$ defined as in (2.11). By definition of a^{*}, we have

$$
Y_{\theta_{k+1}^{*}}^{\alpha_{k}^{*}}=\left(\mathcal{P}_{\theta_{k+1}^{*}}\left(\widetilde{Y}_{\theta_{k+1}^{*}}\right)\right)^{\alpha_{k}^{*}}=\widetilde{Y}_{\theta_{k+1}^{*}}^{\alpha_{k+1}^{*}}-C_{\theta_{k+1}^{*}}^{\alpha_{k}^{*} \alpha_{k+1}^{*}}, \quad k \geq 0
$$

which gives

$$
\begin{equation*}
\int_{\left(\theta_{k}^{*}, \theta_{k+1}^{*}\right)} d \widetilde{K}_{s}^{\alpha_{k}^{*}}=0 \text { and } Y_{\theta_{k+1}^{*}}^{\alpha_{k}^{*}}-\widetilde{Y}_{\theta_{k+1}^{*}}^{\alpha_{k}^{*}}+C_{\theta_{k+1}^{*}}^{\alpha_{k}^{*} \alpha_{k+1}^{*}}=0 \tag{2.13}
\end{equation*}
$$

for all $k \in\left\{0, \ldots, N^{a^{*}}-1\right\}$. We deduce from 2.2 that

$$
\tilde{Y}_{u}^{a^{*}}=\xi^{a_{T}^{*}}+\int_{u}^{T} F^{a_{s}^{*}}\left(s, \tilde{Y}_{s}^{a^{*}}, Z_{s}^{a^{*}}\right) d s-\int_{u}^{T} Z_{s}^{a^{*}} \mathrm{~d} W_{s}-A_{T}^{a^{*}}+A_{u}^{a^{*}}, \quad t \leq u \leq T
$$

Hence $\left(\widetilde{Y}^{a^{*}}, Z^{a^{*}}\right)$ and $\left(U^{a^{*}}, V^{a^{*}}\right)$ are solutions of the same BSDE and satisfy $\widetilde{Y}_{t}^{i}=U_{t}^{a^{*}}$. To complete the proof, we only need to check that $a^{*} \in \mathcal{A}^{\Re}$, i.e. $\mathbb{E}\left|A_{T}^{a^{*}}\right|^{2}<\infty$. By definition of a^{*} on $[t, T]$ and the structure condition on the cost 2.2 , we have $\left|A_{t}^{a^{*}}\right| \leq$ $\max _{k \neq i}\left|C_{t}^{i, k}\right|$ which gives $\mathbb{E}\left[\left|A_{t}^{a^{*}}\right|^{2}\right] \leq C_{L}$. Combining

$$
A_{T}^{a^{*}}=\tilde{Y}_{T}^{a^{*}}-\widetilde{Y}_{t}^{a^{*}}+\int_{t}^{T} F^{a_{s}^{*}}\left(s, \widetilde{Y}_{s}^{a^{*}}, Z_{s}^{a^{*}}\right) \mathrm{d} s-\int_{t}^{T} Z_{s}^{a^{*}} \mathrm{~d} W_{s}+A_{t}^{a^{*}}
$$

with the Lipschitz property of F and the fact that $(\tilde{Y}, Z) \in\left(\mathcal{S}^{2} \times \mathcal{H}^{2}\right)^{\mathcal{I}}$, recall Proposition 2.1. we get the square integrability of $A_{T}^{a^{*}}$ and conclude the proof.

Remark 2.2. Although the optimal strategy a^{*} depends on the initial parameters t and i, we omit the script (t, i) for ease of notation.

Combining the previous representation with the a priori estimates of Proposition 2.1 and the structure condition 2.2 , we deduce the following estimates, whose proof is postponed to Section (6.1) in the Appendix.

Proposition 2.2. Assume that $\left(\boldsymbol{C}_{p}\right)$ holds for some given $p \geq 2$, then

$$
\mathbb{E}\left[\sup _{s \in[t, T]}\left|U_{s}^{a^{*}}\right|^{p}+\left(\int_{t}^{T}\left|V_{u}^{a^{*}}\right|^{2} \mathrm{~d} u\right)^{\frac{p}{2}}+\left|A_{T}^{a^{*}}\right|^{p}+\left|N^{a^{*}}\right|^{p}\right] \leq C_{L}^{p}
$$

for the optimal strategy $a^{*} \in \mathcal{A}_{t, i}^{\Re},(t, i) \in[0, T] \times \mathcal{I}$.

2.3 Stability of obliquely reflected BSDEs

We now study the dependence on the solution with respect to the parameters of the BSDE. In the 'abstract' setting considered, we obtain precious estimates for the analysis of the regularity of the solution to the discretely obliquely reflected BSDE as well as the convergence of the discrete-time scheme.

We consider two discretely reflected BSDEs, with the same reflection grid \Re but different parameters. For $\ell \in\{1,2\}$, we consider an \mathcal{F}_{T}-measurable random terminal condition ${ }^{\ell} \xi$, a random L-lipschitz continuous map $(y, z) \mapsto{ }^{\ell} F(., y, z)$, satisfying $(\mathbf{H} F)$, and a matrix of continuous cost processes $\left({ }^{\ell} C^{i j}\right)_{1 \leq i, j \leq d}$ satisfying the structural condition 2.2 .
We suppose that the coefficients satisfy the integrablity condition $\left(\mathbf{C}_{4}\right)$. For $\ell \in\{1,2\}$, we denote by $\left({ }^{\ell} Y,{ }^{\ell} \widetilde{Y},{ }^{\ell} Z\right) \in\left(\mathcal{S}^{2} \times \mathcal{S}^{2} \times \mathcal{H}^{2}\right)^{\mathcal{I}}$ the solution of the obliquely discretely reflected BSDE $\mathcal{D}\left(\Re,{ }^{\ell} C,{ }^{\ell} F,{ }^{\ell} \xi\right)$.
Defining $\delta Y={ }^{1} Y-{ }^{2} Y, \delta \tilde{Y}={ }^{1} \tilde{Y}-{ }^{2} \tilde{Y}, \delta Z={ }^{1} Z-{ }^{2} Z, \delta \xi:={ }^{1} \xi-{ }^{2} \xi$ together with

$$
\left|\delta C_{s}\right|_{\infty}:=\left.\max _{i, j \in \mathcal{I}}\right|^{1} C^{i j}-\left.{ }^{2} C^{i j}|(s), \quad| \delta F_{s}\right|_{\infty}:=\max _{i \in \mathcal{I}} \sup _{y, z \in \mathbb{R}^{d} \times \mathcal{M}^{d, q}}\left|{ }^{1} F^{i}-{ }^{2} F^{i}\right|(s, y, z)
$$

for $s \in[0, T]$, we prove the following stability result.

Proposition 2.3. Assume that (C_{4}) holds. Then, we have, for any $t \in[0, T]$, $\mathbb{E}\left[\left|\delta Y_{t}\right|^{2}\right]+\mathbb{E}\left[\left|\delta \tilde{Y}_{t}\right|^{2}\right]+\frac{1}{\kappa} \mathbb{E}\left[\int_{t}^{T}\left|\delta Z_{s}\right|^{2} \mathrm{~d} s\right] \leq C_{L}\left(\mathbb{E}\left[\int_{t}^{T}\left|\delta F_{s}\right|_{\infty}^{2} \mathrm{~d} s+|\delta \xi|^{2}\right]+\mathbb{E}\left[\sup _{r \in \Re}\left|\delta C_{r}\right|_{\infty}^{4}\right]^{\frac{1}{2}}\right)$,
Proof. The proof divides in three steps and relies heavilly on the reinterpretation in terms of switching problems. We first introduce a convenient dominating process, and then provide successively the controls on the δY and δZ terms.
Step 1. Introduction of an auxiliary BSDE.
Let us define $F:={ }^{1} F \vee{ }^{2} F, \xi:={ }^{1} \xi \vee{ }^{2} \xi$ and C by $C^{i j}:={ }^{1} C^{i j} \wedge{ }^{2} C^{i j}$. Observe that F satisfies $(\mathbf{H} F), C$ satisfies the structure condition 2.2 and that $\left(\mathbf{C}_{4}\right)$ holds for the data (C, F, ξ). We denote by (Y, \widetilde{Y}, Z) the solution of the discretely obliquely reflected $\operatorname{BSDE} \mathcal{D}(\Re, C, F, \xi)$, recalling (2.4).
Using $(\mathbf{H} F)$, the definition of F and the monotonicity property of \mathcal{P}, see Remark 2.1 (i), we easily obtain by a comparison argument on each interval $\left[r_{k}, r_{k+1}\right), k \in\{0, \ldots, \kappa-1\}$, that

$$
\begin{equation*}
\tilde{Y} \succeq{ }^{1} \tilde{Y} \vee{ }^{2} \tilde{Y} \tag{2.14}
\end{equation*}
$$

Recalling Theorem 2.1, we introduce the switched BSDEs associated to ${ }^{1} Y,{ }^{2} Y$ and Y and denote by $\check{a}=\left(\check{\theta}_{j}, \check{a}_{j}\right)_{j \geq 0}$ the optimal strategy related to Y starting from a fixed $(i, t) \in \mathcal{I} \times[0, T]$. Therefore, we have

$$
\begin{equation*}
\tilde{Y}_{t}^{i}=U_{t}^{\check{a}}=\xi^{\check{a} T}+\int_{t}^{T} F^{\check{a}_{s}}\left(s, U_{s}^{\check{a}}, V_{s}^{\check{a}}\right) \mathrm{d} s-\int_{t}^{T} V_{s}^{\check{a}} \mathrm{~d} W_{s}-A_{T}^{\check{a}}+A_{t}^{\check{a}} . \tag{2.15}
\end{equation*}
$$

Step 2. Stability of the Y component.
Since $\check{a} \in \mathcal{A}_{t, i}^{\Re}$, we deduce from Theorem 2.1 (iii) that
${ }^{\ell} \widetilde{Y}_{t}^{i} \geq{ }^{\ell} U_{t}^{\check{a}_{s}}={ }^{\ell} \xi^{\check{a}}+\int_{t}^{T}{ }^{\ell} F^{\check{a}_{s}}\left(s,{ }^{\ell} U_{s}^{\check{a}}{ }^{\ell} V_{s}^{\check{a}}\right) \mathrm{d} s-\int_{t}^{T}{ }^{\ell} V_{s}^{\check{a}} \mathrm{~d} W_{s}-{ }^{\ell} A_{T}^{\check{a}}+{ }^{\ell} A_{t}^{\check{a}}, \ell \in\{1,2\}$,
where ${ }^{\ell} A^{\check{a}}$ is the process of cumulated $\operatorname{costs}\left({ }^{\ell} C^{i j}\right)_{i, j \in \mathcal{I}}$ associated to the strategy \check{a}. Combining this estimate with 2.14 and 2.15 , we derive

$$
\begin{equation*}
\left|{ }^{1} \widetilde{Y}_{t}^{i}-{ }^{2} \widetilde{Y}_{t}^{i}\right| \leq\left|U_{t}^{\check{a}}-{ }^{1} U_{t}^{\check{a}}\right|+\left|U_{t}^{\check{a}}-{ }^{2} U_{t}^{\check{a}}\right| \tag{2.16}
\end{equation*}
$$

Since both terms on the right hand side of 2.16 are treated similarly, we focus on the first one and introduce the continuous processes $\Gamma^{\check{a}}:=U^{\check{a}}+A^{\check{a}}$ and ${ }^{1} \Gamma^{\check{a}}:={ }^{1} U^{\check{a}}+{ }^{1} A^{\check{a}}$. Applying Ito's formula, we compute, for all $t \leq u \leq T$,

$$
\begin{align*}
& \mathbb{E}_{t}\left[\left|\Gamma_{u}^{\check{a}}-{ }^{1} \Gamma_{u}^{\check{a}}\right|^{2}+\int_{u}^{T}\left|V_{s}^{\check{a}}-{ }^{1} V_{s}^{\check{a}}\right|^{2} \mathrm{~d} s\right] \leq \tag{2.17}\\
& \quad \mathbb{E}_{t}\left[\left|\Gamma_{T}^{\check{a}}-{ }^{1} \Gamma_{T}^{\check{a}}\right|^{2}+2 \int_{u}^{T}\left(\Gamma_{s}^{\check{a}}-{ }^{1} \Gamma_{s}^{\check{a}}\right)\left[F^{\check{a}}\left(s, U_{s}^{\check{a}},{ }^{1} V_{s}^{\check{a}}\right)-{ }^{1} F^{\check{a}}\left(s,{ }^{{ }^{1}} U_{s}^{\check{a}},{ }^{1} V_{s}^{\check{a}}\right)\right] \mathrm{d} s\right]
\end{align*}
$$

Since $F={ }^{1} F \vee{ }^{2} F$ and ${ }^{1} F$ is Lipschitz continuous, we also get

$$
\begin{aligned}
& \left|F^{\check{a} s}\left(s, U_{s}^{\check{a}},{ }^{1} V_{s}^{\check{a}}\right)-{ }^{1} F^{\check{a}}\left(s,{ }^{1} U_{s}^{\check{a}}, V_{s}^{1} V_{s}^{\check{a}}\right)\right| \leq \\
& \quad\left|\delta F_{s}\right|_{\infty}+L\left(\left|\Gamma_{s}^{\check{a}}-{ }^{1} \Gamma_{s}^{\check{a}}\right|+\left|A_{s}^{\check{a}}-{ }^{1} A_{s}^{\check{a}}\right|+\left|V_{s}^{\check{a}}-{ }^{1} V_{s}^{\check{a}}\right|\right), \quad 0 \leq s \leq T .
\end{aligned}
$$

Using classical arguments, we then deduce from the last inequality and (2.17) that

$$
\begin{equation*}
\left|\Gamma_{t}^{\check{a}}-{ }^{1} \Gamma_{t}^{\check{a}}\right|^{2} \leq C_{L}\left(\mathbb{E}_{t}\left[\left|\delta \xi^{\check{a}}\right|^{2} \int_{t}^{T}\left|\delta F_{s}\right|_{\infty}^{2} \mathrm{~d} s\right]+\sup _{t \leq s \leq T} \mathbb{E}_{t}\left[\left|A_{s}^{\check{a}}-{ }^{1} A_{s}^{\check{a}}\right|^{2}\right]\right) \tag{2.18}
\end{equation*}
$$

Moreover, using the inequality $|x \vee y-y| \leq|x-y|$ for $x, y \in \mathbb{R}$ and the convexity of the function $x \mapsto x^{2}$, we compute

$$
\begin{align*}
\mathbb{E}_{t}\left[\left|A_{s}^{\check{a}}-{ }^{1} A_{s}^{\check{a}}\right|^{2}\right] & =\mathbb{E}_{t}\left[\left|\sum_{k=1}^{N^{\check{a}}}\left[{ }^{2} C^{\check{\alpha}_{k-1} \check{\alpha}_{k}} \wedge{ }^{1} C^{\check{\alpha}_{k-1} \check{\alpha}_{k}}-{ }^{1} C^{\check{\alpha}_{k-1} \check{\alpha}_{k}}\right]\left(\check{\theta}_{k}\right) 1_{\left\{\check{\theta}_{k} \leq s\right\}}\right|^{2}\right] \\
& \leq \mathbb{E}_{t}\left[\left|N^{\check{a}}\right| \sup _{r \in \Re}\left|\delta C_{r}\right|_{\infty}^{2}\right], \quad t \leq s \leq T . \tag{2.19}
\end{align*}
$$

Plugging in (2.18) and recalling the definition of $\Gamma^{\check{a}}$ and ${ }^{1} \Gamma^{\check{a}}$, we get

$$
\left|U_{t}^{\check{a}}-{ }^{1} U_{t}^{\check{a}}\right|^{2} \leq C_{L} \mathbb{E}_{t}\left[\left|N^{\check{a}}\right| \sup _{r \in \Re}\left|\delta C_{r}\right|_{\infty}^{2}+\int_{t}^{T}\left|\delta F_{s}\right|_{\infty}^{2} \mathrm{~d} s+|\delta \xi|^{2}\right]
$$

The exact same reasoning leads to the same estimate for $\left|U_{t}^{\check{a}}-{ }^{2} U_{t}^{\check{a}}\right|^{2}$. Therefore, we deduce from 2.16) and Cauchy Schwartz inequality that

$$
\begin{equation*}
\mathbb{E}\left[\left.\right|^{2} \widetilde{Y}_{t}^{i}-\left.{ }^{1} \widetilde{Y}_{t}^{i}\right|^{2}\right] \leq C_{L}\left(\mathbb{E}\left[\left|N^{\check{a}}\right|^{2}\right]^{\frac{1}{2}} \mathbb{E}\left[\sup _{r \in \Re}\left|\delta C_{r}\right|_{\infty}^{4}\right]^{\frac{1}{2}}+\mathbb{E}\left[\int_{t}^{T}\left|\delta F_{s}\right|_{\infty}^{2} \mathrm{~d} s+|\delta \xi|^{2}\right]\right) . \tag{2.20}
\end{equation*}
$$

Using Proposition 2.2, we compute, since i is arbitrary,

$$
\begin{equation*}
\mathbb{E}\left[\left.\right|^{2} \widetilde{Y}_{t}-\left.{ }^{1} \widetilde{Y}_{t}\right|^{2}\right] \leq C_{L}\left(\mathbb{E}\left[\int_{t}^{T}\left|\delta F_{s}\right|_{\infty}^{2} \mathrm{~d} s+|\delta \xi|^{2}\right]+\mathbb{E}\left[\sup _{r \in \Re}\left|\delta C_{r}\right|_{\infty}^{4}\right]^{\frac{1}{2}}\right) \tag{2.21}
\end{equation*}
$$

Step 3. Stability of the Z component.
Applying Ito's formula to the càdlàg process $|\delta \widetilde{Y}|^{2}$, we obtain
$\mathbb{E}\left[\left|\delta \widetilde{Y}_{t}^{2}\right|+\int_{t}^{T}\left|\delta Z_{s}\right|^{2} \mathrm{~d} s+\sum_{t<r \leq T}\left|\Delta \delta \tilde{K}_{r}\right|^{2}\right]=\mathbb{E}\left[\left|\delta \widetilde{Y}_{T}\right|^{2}+2 \int_{t}^{T} \delta Y_{s} \delta F_{s} \mathrm{~d} s+2 \int_{t}^{T} \delta Y_{r} \mathrm{~d} \delta \tilde{K}_{r}\right]$,
where we used the fact that $|\delta \tilde{Y}|^{2}-|\delta Y|^{2}-2 \delta Y(\delta \tilde{Y}-\delta Y)=|\Delta \delta \tilde{K}|^{2}$. Since $\delta \widetilde{K}$ is a pure jump process, we compute

$$
\mathbb{E}\left[\int_{t}^{T} \delta Y_{r} \mathrm{~d} \delta \tilde{K}_{r}\right] \leq \mathbb{E}\left[\alpha \sum_{t<r \leq T, r \in \Re}\left|\delta Y_{r}\right|^{2}+\frac{1}{\alpha} \sum_{t<r \leq T}\left|\Delta \delta \tilde{K}_{r}\right|^{2}\right], \quad \alpha>0,
$$

which, for α large enough and using standard arguments, leads to
$\mathbb{E}\left[\int_{t}^{T}\left|\delta Z_{s}\right|^{2} \mathrm{~d} s+\sum_{t<r \leq T}\left|\Delta \delta \tilde{K}_{r}\right|^{2}\right] \leq C_{L}\left(\mathbb{E}\left[|\delta \xi|^{2}\right]+\mathbb{E}\left[\int_{t}^{T}\left|\delta F_{s}\right|_{\infty}^{2} \mathrm{~d} s+\sum_{t<r \leq T, r \in \Re}\left|\delta Y_{r}\right|^{2}\right]\right)$.
Since (2.21) holds true for any $t \in[0, T]$, we deduce
$\mathbb{E}\left[\int_{t}^{T}\left|\delta Z_{s}\right|^{2} \mathrm{~d} s+\sum_{t<r \leq T}\left|\Delta \delta \tilde{K}_{r}\right|^{2}\right] \leq C_{L} \kappa\left(\mathbb{E}\left[|\delta \xi|^{2}\right]+\mathbb{E}\left[\int_{t}^{T}\left|\delta F_{s}\right|_{\infty}^{2} \mathrm{~d} s\right]+\mathbb{E}\left[\sup _{r \in \Re}\left|\delta C_{r}\right|_{\infty}^{4}\right]^{\frac{1}{2}}\right)$,
which concludes the proof of the proposition.

3 Regularity of discretely obliquely reflected BSDEs

This section is dedicated to the derivation of regularity properties for the solution of discretely reflected BSDEs. These results will be obtained in a Markovian diffusion setting. This means that the randomness of the parameter (C, F, ξ), is due to a state process X, which is the solution of a Stochastic Differential Equation (SDE). In this framework, we focus on the \mathcal{H}^{2}-regularity of the Z component of the solution of the BSDEs. The main results are retrieved by means of kernel regularization and Malliavin differentiation arguments. Finally, we extend this result to the case where the diffusion X is replaced by its Euler scheme.

3.1 A diffusion setting for discretely RBSDEs

Let X be the solution on $[0, T]$ to the following SDE:

$$
\begin{equation*}
X_{t}=X_{0}+\int_{0}^{t} b\left(X_{s}\right) \mathrm{d} s+\int_{0}^{t} \sigma\left(X_{s}\right) \mathrm{d} W_{s}, \quad 0 \leq t \leq T \tag{3.1}
\end{equation*}
$$

where $X_{0} \in \mathbb{R}^{m}$ and $(b, \sigma): \mathbb{R}^{m} \rightarrow \mathbb{R}^{m} \times \mathcal{M}^{m, q}(\mathbb{R})$ are L-Lipschitz functions.
Under the above assumption, the following estimates are well known (see e.g. [18])

$$
\begin{equation*}
\mathbb{E}\left[\sup _{t \in[0, T]}\left|X_{t}\right|^{p}\right] \leq C_{L}^{p} \text { and } \sup _{s \in[0, T]}\left(\mathbb{E}\left[\sup _{u \in[0, T],|u-s| \leq h}\left|X_{s}-X_{u}\right|^{p}\right]\right)^{\frac{1}{p}} \leq C_{L}^{p} \sqrt{h}, \tag{3.2}
\end{equation*}
$$

for any $p>0$. In the sequel, we shall denote by β^{X} a positive random variable, which may change from line to line, but which depends only on $\sup _{t \in[0, T]}\left|X_{t}\right|$ and which satisfies $\mathbb{E}\left[\left|\beta^{X}\right|^{p}\right] \leq C_{L}^{p}$ for all $p>0$. Importantly, β^{X} does not depend on \Re.

Remark 3.1. Observe that, as in [1, 7] and contrary to [19], we make no uniform ellipticity condition on σ. This allows us to treat the case of non homogenous diffusion by setting e.g. $X_{t}^{1}=t, t \in[0, T]$.

In this context, we are given a matrix valued maps $c:=\left(c^{i j}\right)$ where $c^{i j}: \mathbb{R}^{m} \rightarrow \mathbb{R}^{+}$, are L-Lipschitz continuous and satisfy:

$$
\begin{cases}c^{i i}(.)=0, & \text { for } 1 \leq i \leq d \tag{3.3}\\ \inf _{x \in \mathbb{R}^{m}} c^{i j}(x)>0, & \text { for } 1 \leq i, j \leq d, \text { with } i \neq j \\ \inf _{x \in \mathbb{R}^{m}}\left\{c^{i j}(x)+c^{j l}(x)-c^{i l}(x)\right\}>0, & \text { for } 1 \leq i, j, l \leq d, \text { with } i \neq j, j \neq l\end{cases}
$$

We then introduce a family $(\mathcal{Q}(x))_{x \in \mathbb{R}^{m}}$ of closed convex domains:

$$
\begin{equation*}
\mathcal{Q}(x):=\left\{y \in \mathbb{R}^{d} \mid y^{i} \geq \max _{j \in \mathcal{I}}\left(y^{j}-c^{i j}(x)\right), \quad \forall i \in \mathcal{I}\right\}, \quad \text { where } \quad \mathcal{I}:=\{1, \ldots, d\} \tag{3.4}
\end{equation*}
$$

We introduce the oblique projection operator $\mathcal{P}(x,$.$) onto \mathcal{Q}(x)$ defined by

$$
\mathcal{P}:(x, y) \in \mathbb{R}^{m} \times \mathbb{R}^{d} \mapsto\left(\max _{j \in \mathcal{I}}\left\{y^{j}-c^{i j}(x)\right\}\right)_{1 \leq i \leq d}
$$

Finally, we are given

- an L-Lipschitz function $g: \mathbb{R}^{m} \rightarrow \mathbb{R}^{d}$ such that $g(x) \in \mathcal{Q}(x)$ for all $x \in \mathbb{R}^{m}$,
- a generator function, i.e. an L-lipschitz map $f: \mathbb{R}^{m} \times \mathbb{R}^{d} \times \mathcal{M}^{d, q} \rightarrow \mathbb{R}^{d}$.

From now on, we shall appeal to the following assumption:
$(\mathbf{H} f)$ the component i of $f(t, y, z)$ depends only on the component i of the vector y and on the column i of the matrix z i.e. $f^{i}(t, y, z)=f^{i}\left(t, y^{i}, z^{i}\right)$.

We denote by (Y, \tilde{Y}, Z) the solution of the discretely reflected $\operatorname{BSDE} \mathcal{D}(\Re, c(X), f(X, .,),. g(X))$ which reads on each interval $\left[r_{j}, r_{j+1}\right)$, for $j<\kappa$:

$$
\left\{\begin{array}{l}
\tilde{Y}_{t}=Y_{r_{j+1}}+\int_{t}^{r_{j+1}} f\left(X_{u}, \widetilde{Y}_{u}, Z_{u}\right) \mathrm{d} u-\int_{t}^{r_{j+1}} Z_{u} \mathrm{~d} W_{u} \tag{3.5}\\
Y_{t}=\widetilde{Y}_{t} \mathbf{1}_{\{t \notin\}}+\mathcal{P}\left(X_{t}, \widetilde{Y}_{t}\right) \mathbf{1}_{\{t \in \Re\}}
\end{array}\right.
$$

Or equivalently on $[0, T]$ as

$$
\left\{\begin{align*}
& \widetilde{Y}_{t}=g\left(X_{T}\right)+\int_{t}^{T} f\left(X_{u}, \widetilde{Y}_{u}, Z_{u}\right) \mathrm{d} u-\int_{t}^{T} Z_{u} \mathrm{~d} W_{u}+\left(\widetilde{K}_{T}-\widetilde{K}_{t}\right), \quad 0 \leq t \leq T \tag{3.6}\\
& \widetilde{K}_{t}:=\sum_{r \in \Re \backslash\{0\}} \Delta \widetilde{K}_{r} \mathbf{1}_{\{r \leq t\}} \quad \text { and } \Delta \widetilde{K}_{t}=Y_{t}-\widetilde{Y}_{t}=-\left(\widetilde{Y}_{t}-\widetilde{Y}_{t-}\right), \quad 0 \leq t \leq T
\end{align*}\right.
$$

From (3.2), it follows that the data $(c(X), f(X, .,),. g(X))$ satisfies the integrability condition $\left(\mathbf{C}_{p}\right)$ for all $p \geq 2$. We thus deduce from the proof of Proposition 2.1 and Proposition 2.2, the following estimate on (Y, \tilde{Y}, Z) and their associated optimal switched BSDEs, recalling Theorem 2.1.

Proposition 3.1. There exists a unique solution (\widetilde{Y}, Y, Z) to (3.5) and it satisfies

$$
\begin{equation*}
\mathbb{E}_{t}\left[\sup _{s \in[t, T]}\left|\tilde{Y}_{s}\right|^{p}+\left(\int_{t}^{T}\left|Z_{s}\right|^{2} \mathrm{~d} s\right)^{\frac{p}{2}}+\left|K_{T}-K_{t}\right|^{p}\right] \leq \beta^{X}, \forall t \leq T \tag{3.7}
\end{equation*}
$$

Moreover, for all $(t, i) \in[0, T] \times \mathcal{I}$, the optimal strategy $a^{*} \in \mathcal{A}_{t, i}^{\Re}$ satisfies

$$
\begin{equation*}
\mathbb{E}_{t}\left[\sup _{s \in[t, T]}\left|U_{s}^{a^{*}}\right|^{p}+\left(\int_{t}^{T}\left|V_{s}^{a^{*}}\right|^{2} d s\right)^{\frac{p}{2}}+\left|A_{T}^{a^{*}}\right|^{p}+\left|N^{a^{*}}\right|^{p}\right] \leq \beta^{X} \tag{3.8}
\end{equation*}
$$

3.2 Malliavin differentiability of (X, Y, \tilde{Y}, Z)

We shall sometimes use the following regularity assumption on the coefficients:
$(\mathbf{H} r) \quad$ The coefficients $b, \sigma, g f$, and $\left(c^{i j}\right)_{i, j}$ are $C^{1, b}$ in all their variables, with the Lipschitz constants dominated by L.

We denote by $\mathbb{D}^{1,2}$ the set of random variables G which are differentiable in the Malliavin sense and such that $\|G\|_{\mathbb{D}^{1,2}}^{2}:=\|G\|_{\mathbf{L}^{2}}^{2}+\int_{0}^{T}\left\|D_{t} G\right\|_{\mathbf{L}^{2}}^{2} d t<\infty$, where $D_{t} G$ denotes the Malliavin derivative of G at time $t \leq T$. After possibly passing to a suitable version, an adapted process belongs to the subspace $\mathcal{L}_{a}^{1,2}$ of \mathcal{H}^{2} whenever $V_{s} \in \mathbb{D}^{1,2}$ for all $s \leq T$ and $\|V\|_{\mathcal{L}_{a}^{1,2}}^{2}:=\|V\|_{\mathcal{H}^{2}}^{2}+\int_{0}^{T}\left\|D_{t} V\right\|_{\mathcal{H}^{2}}^{2} d t<\infty$. For a general presentation on Malliavin calculus for stochastic differential equations, the reader may refer to [20].

Remark 3.2. Under ($\mathbf{H} r$), the solution of (3.1) is Malliavin differentiable and its derivative satisfies

$$
\begin{equation*}
\left\|\sup _{s \leq T}\left|D_{s} X\right|\right\|_{\mathcal{S}^{p}}<\infty \tag{3.9}
\end{equation*}
$$

and we have

$$
\begin{equation*}
\sup _{s \leq u}\left\|D_{s} X_{t}-D_{s} X_{u}\right\|_{\mathbf{L}^{p}}+\left\|\sup _{t \leq s \leq T}\left|D_{t} X_{s}-D_{u} X_{s}\right|\right\|_{\mathbf{L}^{p}} \leq C_{L}^{p}|t-u|^{1 / 2} \tag{3.10}
\end{equation*}
$$

for any $0 \leq u \leq t \leq T$. Let $G \in \mathbb{D}^{1,2}\left(\mathbb{R}^{d}\right)$. Since X belongs to $\mathcal{L}_{a}^{1,2}$ under $(\mathbf{H} r)$, and \mathcal{P} is L-lipschitz continuous, we deduce that $\mathcal{P}\left(X_{t}, G\right) \in \mathbb{D}^{1,2}\left(\mathbb{R}^{d}\right)$. Using Lemma 5.1 in
[1] we compute

$$
\begin{align*}
& D_{s}\left(\mathcal{P}\left(X_{t}, G\right)\right)^{i}= \tag{3.11}\\
& \sum_{j=1}^{d}\left(D_{s} G^{j}-D_{s} c_{i j}\left(X_{t}\right)\right) \mathbf{1}_{\left\{G^{j}-c^{i j}\left(X_{t}\right)>\max _{\ell<j}\left(G^{\ell}-c^{i \ell}\left(X_{t}\right)\right)\right\}} \mathbf{1}_{\left\{G^{j}-c^{i j}\left(X_{t}\right) \geq \max _{\ell>j}\left(G^{\ell}-c^{i \ell}\left(X_{t}\right)\right)\right\}} .
\end{align*}
$$

Combining (3.11), Proposition 5.3 in [10] and an induction argument, we obtain that (Y, \tilde{Y}, Z) is Malliavin differentiable and that a version of $\left(D_{u} \tilde{Y}, D_{u} Z\right)$ is given by

$$
\begin{align*}
D_{u}\left(\widetilde{Y}_{t}\right)^{i} & =D_{u}\left(Y_{r_{j+1}}\right)^{i}+\int_{t}^{r_{j+1}} \nabla_{x} f^{i}\left(X_{s}, \widetilde{Y}_{s}^{i}, Z_{s}^{i \cdot}\right) D_{u} X_{s} \mathrm{~d} s+\int_{t}^{r_{j+1}} \nabla_{y^{i}} f^{i}\left(X_{s}, \widetilde{Y}_{s}^{i}, Z_{s}^{i \cdot}\right) D_{u}\left(\widetilde{Y}_{s}\right)^{i} \mathrm{~d} s \\
& +\int_{t}^{r_{j+1}} \nabla_{z} f^{i}\left(X_{s}, \widetilde{Y}_{s}^{i}, Z_{s}^{i \cdot}\right) D_{u}\left(Z_{s}\right)^{i \cdot} \cdot \mathrm{~d} s-\sum_{k=1}^{d} \int_{t}^{r_{j+1}} D_{u}\left(Z_{s}\right)^{i k} \mathrm{~d} W_{s}^{k}, \tag{3.12}
\end{align*}
$$

for $0 \leq u \leq t \leq r_{j+1}$ and $j<\kappa$. Here, $\nabla_{z} f^{i}$ denotes $\sum_{\ell=1}^{d} \nabla_{z^{\ell}} f^{i}$, recalling $(\mathbf{H} f)$.

3.3 Representation of Z

For $a \in \mathcal{A}^{\Re}$, we introduce the process Λ^{a} defined by
$\Lambda_{t, s}^{a}:=\exp \left\{\int_{t}^{s} \nabla_{z} f^{a_{r}}\left(X_{r}, \widetilde{Y}_{r}, Z_{r}\right) \mathrm{d} W_{r}-\int_{t}^{s}\left(\frac{1}{2}\left|\nabla_{z} f^{a_{r}}\left(X_{r}, \widetilde{Y}_{r}, Z_{r}\right)\right|^{2}-\nabla_{y} f^{a_{r}}\left(X_{r}, \widetilde{Y}_{r}, Z_{r}\right)\right) \mathrm{d} r\right\}$,
for $0 \leq t \leq s \leq T$.
For later use, we remark

$$
\begin{equation*}
\sup _{a \in \mathcal{A}^{\Re}}\left\|\sup _{t \leq s \leq T} \Lambda_{t, s}^{a}\right\|_{\mathcal{L}^{p}} \leq C_{L}^{p}, \quad 0 \leq t \leq T, \quad p \geq 2, \tag{3.14}
\end{equation*}
$$

and deduce from the dynamics of Λ that

$$
\begin{equation*}
\sup _{a \in \mathcal{A}^{\Re}}\left(\left\|\Lambda_{t, t}^{a}-\Lambda_{t, u}^{a}\right\|_{\mathcal{L}^{p}}+\left\|\sup _{t \leq s \leq T}\left|\Lambda_{u, s}^{a}-\Lambda_{t, s}^{a}\right|\right\|_{\mathcal{L}^{p}}\right) \leq C_{L}^{p} \sqrt{t-u}, \quad u \leq t \leq T, \quad p \geq 2 . \tag{3.15}
\end{equation*}
$$

Proposition 3.2. Under $(\mathbf{H} r)$, there is a version of Z such that,

$$
\begin{align*}
(Z)_{t}^{i}=\mathbb{E}_{t}\left[\nabla_{x} g^{a_{T}^{*}}\left(X_{T}\right) \Lambda_{t, T}^{a_{T}^{*}} D_{t} X_{T}\right. & +\int_{t}^{T} \nabla_{x} f^{a_{s}^{*}}\left(X_{s}, \widetilde{Y}_{s}, Z_{s}\right) \Lambda_{t, s}^{a_{s}^{*}} D_{t} X_{s} \mathrm{~d} s \\
& \left.-\sum_{j=1}^{N^{a^{*}}} \nabla_{x} c^{\alpha_{j-1}^{*} \alpha_{j}^{*}}\left(X_{\theta_{j}^{*}}\right) \Lambda_{t, \theta_{j}^{*}}^{a^{*}}\left(D_{t} X\right)_{\theta_{j}^{*}}\right], \tag{3.16}
\end{align*}
$$

for $(t, i) \in[0, T]$, with $a^{*}=\left(\theta_{j}^{*}, \alpha_{j}^{*}\right)_{j \geq 0} \in \mathcal{A}_{t, i}^{\Re}$ the optimal strategy given in Theorem 2.1 and recalling 2.6).

Proof. We fix $j<\kappa$ and, observing that the process a^{*} is constant on the interval $\left[\theta_{j}^{*}, \theta_{j+1}^{*}\right)$, we deduce from (3.12] and Ito's formula that

$$
\Lambda_{t, t}^{a^{*}} D_{u}\left(\widetilde{Y}_{t}\right)^{\alpha_{j}^{*}}=\mathbb{E}_{t}\left[\Lambda_{t, \theta_{j+1}^{*}}^{a^{*}}\left(D_{u} Y^{\alpha_{j}^{*}}\right)_{\theta_{j+1}^{*}}+\int_{t}^{\theta_{j+1}^{*}} \nabla_{x} \alpha^{\alpha_{j}^{*}}\left(X_{s}, \widetilde{Y}_{s}, Z_{s}\right) \Lambda_{t, s}^{a^{*}} D_{u} X_{s} \mathrm{~d} s\right],
$$

for $\theta_{j}^{*} \leq u \leq t<\theta_{j+1}^{*}$. Combining (3.11) and the definition of a^{*} given in Theorem 2.1 (ii), we compute
$\Lambda_{t, \theta_{j+1}^{*}}^{a^{*}}\left(D_{u} Y^{\alpha_{j}^{*}}\right)_{\theta_{j+1}^{*}}=\Lambda_{t, \theta_{j+1}^{*}}^{a^{*}}\left(D_{u} \widetilde{Y}^{\alpha_{j+1}^{*}}\right)_{\theta_{j+1}^{*}}-\nabla_{x} c^{\alpha_{j}^{*} \alpha_{j+1}^{*}}\left(X_{\theta_{j+1}^{*}}\right) \Lambda_{t, \theta_{j+1}^{*}}^{a^{*}}\left(D_{t} X\right)_{\theta_{j+1}^{*}}, j<\kappa$.
Plugging the second equality into the first one and summing up over j concludes the proof.

We conclude this section by providing a 'weak' regularity property of Z in the general Lipschitz setting. In order to get rid of the previous Assumption ($\mathbf{H} r$), we make use of kernel regularization arguments. Since this procedure is very classical, we do not detail it here precisely, see e.g. the proofs of Proposition 4.2 in [7] or Proposition 3.3 in [1].

Proposition 3.3. There is a version of Z satisfying

$$
\begin{equation*}
\mathbb{E}\left[\int_{s}^{t}\left|Z_{u}\right|^{2} \mathrm{~d} u\right] \leq C_{L}|t-s|, \quad s \leq t \leq T . \tag{3.17}
\end{equation*}
$$

Proof. Combining (3.9), with (3.14), (3.16) and Doob's inequality, we observe that

$$
\sup _{t \in[0, T]}\left\|Z_{t}\right\|_{\mathrm{L}^{p}} \leq C_{L}^{p}, \quad p \geq 2,
$$

holds under ($\mathbf{H} r)$. Therefore (3.17) is satisfied under ($\mathbf{H} r$). As in the proof of Proposition 4.2 in [7], the stability results of Proposition 2.3 allow us to use classical Kernel regularization arguments. Since the previous estimate holds uniformly for the sequence of approximating regularized BSDE, the proof is complete.

3.4 Regularity results

We consider a grid $\pi:=\left\{t_{0}=0, \ldots, t_{n}=T\right\}$ on the time interval $[0, T]$, with modulus $|\pi|:=\max _{0 \leq i \leq n-1}\left|t_{i+1}-t_{i}\right|$, such that $\Re \subset \pi$.
We want to control the following quantities, representing the \mathcal{H}^{2}-regularity of (\widetilde{Y}, Z) :

$$
\begin{equation*}
\mathbb{E}\left[\int_{0}^{T}\left|\widetilde{Y}_{t}-\widetilde{Y}_{\pi(t)}\right|^{2} \mathrm{~d} t\right] \quad \text { and } \quad \mathbb{E}\left[\int_{0}^{T}\left|Z_{t}-\bar{Z}_{\pi(t)}\right|^{2} \mathrm{~d} t\right] \tag{3.18}
\end{equation*}
$$

where $\pi(t):=\sup \left\{t_{i} \in \pi ; t_{i} \leq t\right\}$ is defined on $[0, T]$ as the projection to the closest previous grid point of π and

$$
\begin{equation*}
\bar{Z}_{t_{i}}:=\frac{1}{t_{i+1}-t_{i}} \mathbb{E}\left[\int_{t_{i}}^{t_{i+1}} Z_{s} \mathrm{~d} s \mid \mathcal{F}_{t_{i}}\right], \quad i \in\{0, \ldots, n-1\} \tag{3.19}
\end{equation*}
$$

Remark 3.3. Observe that $\left(\bar{Z}_{s}\right)_{s \leq T}:=\left(\bar{Z}_{\pi(s)}\right)_{s \leq T}$ interprets as the best \mathcal{H}^{2}-approximation of the process Z by adapted processes which are constant on each interval $\left[t_{i}, t_{i+1}\right), i<n$.

Proposition 3.4. The following holds

$$
\frac{1}{T} \mathbb{E}\left[\int_{0}^{T}\left|\tilde{Y}_{t}-\tilde{Y}_{\pi(t)}\right|^{2} \mathrm{~d} t\right] \leq \sup _{t \in[0, T]} \mathbb{E}\left[\left|\tilde{Y}_{t}-\tilde{Y}_{\pi(t)}\right|^{2}\right] \leq C_{L}|\pi|
$$

Proof. Observe first that

$$
\mathbb{E}\left[\left|\widetilde{Y}_{t}-\widetilde{Y}_{\pi(t)}\right|^{2}\right] \leq \mathbb{E}\left[\left|\int_{\pi(t)}^{t} f\left(X_{s}, \widetilde{Y}_{s}, Z_{s}\right) \mathrm{d} s+\int_{\pi(t)}^{t} Z_{s} \mathrm{~d} W_{s}\right|^{2}\right], \quad 0 \leq t \leq T
$$

The proof is concluded combining this estimate with (3.2), Proposition 3.1 and Proposition 3.3 .

We now turn to the study of the regularity of the process Z.
Theorem 3.1. The process Z satisfies

$$
\begin{equation*}
\mathbb{E}\left[\int_{0}^{T}\left|Z_{s}-\bar{Z}_{s}\right|^{2} \mathrm{~d} s\right] \leq C_{L}\left(|\pi|^{\frac{1}{2}}+\kappa|\pi|\right) \tag{3.20}
\end{equation*}
$$

Proof. A regularization argument as in proof of Proposition 3.3 allows us to work under $(\mathbf{H} r)$. From Remark 3.3, it is clear that

$$
\begin{equation*}
\mathbb{E}\left[\int_{0}^{T}\left|Z_{s}-\bar{Z}_{s}\right|^{2} \mathrm{~d} s\right] \leq \mathbb{E}\left[\int_{0}^{T}\left|Z_{s}-Z_{\pi(s)}\right|^{2} \mathrm{~d} s\right] \tag{3.21}
\end{equation*}
$$

For $s \leq T$ and $a=\left(\alpha_{k}, \theta_{k}\right)_{k \geq 0} \in \mathcal{A}_{s, \ell}^{\Re}, \ell \in \mathcal{I}$, we define $\left(V_{s, t}^{a}\right)_{s \leq t \leq T}$ by

$$
\begin{aligned}
V_{s, t}^{a}:=\mathbb{E}_{t}\left[\nabla_{x} g^{a_{T}}\left(X_{T}\right) \Lambda_{s, T}^{a} D_{s} X_{T}\right. & +\int_{s}^{T} \nabla_{x} f^{a_{u}}\left(X_{u}, \widetilde{Y}_{u}, Z_{u}\right) \Lambda_{s, u}^{a} D_{s} X_{u} \mathrm{~d} u \\
& \left.-\sum_{k=1}^{N^{a}} \nabla_{x} c_{\alpha_{j-1}, \alpha_{j}}\left(X_{\theta_{k}}\right) \Lambda_{s, \theta_{k}}^{a}\left(D_{s} X\right)_{\theta_{k}}\right]
\end{aligned}
$$

We now fix $\ell \in \mathcal{I}$ and denote, for $u \leq T$, by $a^{u} \in \mathcal{A}_{u, \ell}^{\Re}$ the optimal strategy associated to the representation of $\left(\widetilde{Y}_{u}\right)^{\ell}$, recalling (ii) in Theorem 2.1

Observe that, by definition, we have

$$
\begin{equation*}
N^{a^{t}}=N^{a^{u}} \text { and } a^{t}=a^{u} \quad, \quad r_{j} \leq t \leq u<r_{j+1}, \quad j<\kappa \tag{3.22}
\end{equation*}
$$

Fix $i<n$, and deduce from Proposition 3.2 and 3.22 that

$$
\begin{equation*}
\mathbb{E}\left[\left|Z_{t}^{\ell}-Z_{t_{i}}^{\ell}\right|^{2}\right]=\mathbb{E}\left[\left|V_{t, t}^{a^{t}}-V_{t_{i}, t_{i}}^{a^{t_{i}}}\right|^{2}\right] \leq 2\left(\mathbb{E}\left[\left|V_{t, t}^{a^{t_{i}}}-V_{t_{i}, t}^{a^{t_{i}}}\right|^{2}\right]+\mathbb{E}\left[\left|V_{t_{i}, t}^{a_{i}^{t_{i}}}-V_{t_{i}, t_{i}}^{a_{i}^{t_{i}}}\right|^{2}\right]\right) \tag{3.23}
\end{equation*}
$$

for $t \in\left[t_{i}, t_{i+1}\right)$. Combining $(\mathbf{H} r)$, (3.9), 3.10, (3.14, (3.15) and Cauchy-Schwartz inequality with the definition of V^{a}, we deduce

$$
\begin{equation*}
\mathbb{E}\left[\left|V_{t, t}^{a^{t_{i}}}-V_{t_{i}, t}^{a_{i} t_{i}}\right|^{2}\right] \leq C_{L}|\pi|^{\frac{1}{2}}, \quad t_{i} \leq t \leq t_{i+1}, \quad i \leq n \tag{3.24}
\end{equation*}
$$

Since $V_{t_{i}, \text {, }}^{a^{t_{i}}}$ is a martingale on $\left[t_{i}, t_{i+1}\right]$, we obtain

$$
\begin{align*}
\mathbb{E}\left[\left|V_{t_{i}, t}^{a^{t_{i}}}-V_{t_{i}, t_{i}}^{a^{t_{i}}}\right|^{2}\right] & \leq \mathbb{E}\left[\left|V_{t_{i}, t_{i+1}}^{a^{t_{i}}}-V_{t_{i}, t_{i}}^{a^{t_{i}}}\right|^{2}\right] \\
& \leq \mathbb{E}\left[\left|V_{t_{i+1}, t_{i+1}}^{a^{t_{i}}}\right|^{2}-\left|V_{t_{i}, t_{i}}^{a^{t_{i}}}\right|^{2}\right]+\mathbb{E}\left[\left|V_{t_{i}, t_{i+1}}^{a^{t_{i}}}\right|^{2}-\left|V_{t_{i+1}, t_{i+1}}^{a^{t_{i}}}\right|^{2}\right] \\
& \leq \mathbb{E}\left[\left|V_{t_{i+1}, t_{i+1}}^{a^{t_{i}}}\right|^{2}-\left|V_{t_{i}, t_{i}}^{a^{t_{i}}}\right|^{2}\right]+C_{L}|\pi|^{\frac{1}{2}}, \quad t_{i} \leq t \leq t_{i+1} \tag{3.25}
\end{align*}
$$

where the last inequality follows from (3.24). Combining (3.23), (3.24), 3.25) and summing up over i, we obtain
$\mathbb{E}\left[\int_{0}^{T}\left|Z_{t}^{\ell}-Z_{\pi(t)}^{\ell}\right|^{2} \mathrm{~d} t\right] \leq C_{L}|\pi|^{\frac{1}{2}}+|\pi|\left(\mathbb{E}\left[\left|V_{T, T}^{a^{r_{\kappa-1}}}\right|^{2}-\left|V_{0,0}^{a^{0}}\right|^{2}\right]+\sum_{j=1}^{\kappa-1}\left(\left|V_{r_{j}, r_{j}}^{a_{j} r_{j-1}}\right|^{2}-\left|V_{r_{j}, r_{j}}^{a^{r_{j}}}\right|^{2}\right)\right)$.
Combined with (3.9) and (3.14), this concludes the proof since ℓ is arbitrary.

3.5 Extension

We shall approximate the process X by its Euler scheme X^{π}, whose dynamics are given by

$$
\begin{equation*}
X_{t}^{\pi}=X_{0}+\int_{0}^{t} b\left(X_{\pi(s)}^{\pi}\right) \mathrm{d} s+\int_{0}^{t} \sigma\left(X_{\pi(s)}^{\pi}\right) \mathrm{d} W_{s}, \quad 0 \leq t \leq T . \tag{3.26}
\end{equation*}
$$

Classically, we have the following upper-bound, uniformly in π :

$$
\begin{equation*}
\mathbb{E}\left[\sup _{0 \leq t \leq T}\left|X_{t}^{\pi}\right|^{p}\right]^{1 / p} \leq C_{L}^{p}, p \geq 2 \tag{3.27}
\end{equation*}
$$

The control of the error between X and its Euler scheme X^{π} is well understood, see e.g. [17], and we have

$$
\begin{equation*}
\mathbb{E}\left[\sup _{0 \leq t \leq T}\left|X_{t}-X_{t}^{\pi}\right|^{p}\right]^{1 / p} \leq C_{L}^{p}|\pi|^{\frac{1}{2}} \quad, p \geq 2 \tag{3.28}
\end{equation*}
$$

In this context, we denote by $\left(Y^{e u}, \tilde{Y}^{e u}, Z^{e u}\right)$ the unique solution of the reflected BSDE $\mathcal{D}\left(\Re, c\left(X^{\pi}\right), f\left(X^{\pi},.\right), g\left(X^{\pi}\right)\right)$. Our main result here is the counterpart of Proposition 3.4 and Theorem 3.1 when X is replaced by X^{π}.

Proposition 3.5. The following holds

$$
\mathbb{E}\left[\int_{0}^{T}\left|\tilde{Y}_{t}^{e u}-\tilde{Y}_{\pi(t)}^{e u}\right|^{2} \mathrm{~d} t\right] \leq C_{L}|\pi| \quad \text { and } \quad \mathbb{E}\left[\int_{0}^{T}\left|Z_{s}^{e u}-\bar{Z}_{s}^{e u}\right|^{2} \mathrm{~d} s\right] \leq C_{L}\left(|\pi|^{\frac{1}{2}}+\kappa|\pi|\right)
$$

Proof. We only sketch the main step of the proof since it follows formally exactly the same arguments as the one used to obtain Proposition 3.4 and Theorem 3.1.

Step 1. We use a kernel regularization argument which allows us to work under $(\mathbf{H} r)$. In this case, we observe that X^{π} belongs to $\mathcal{L}_{a}^{1,2}$ and satisfies

$$
D_{s} X_{t}^{\pi}=\sigma\left(X_{\pi(s)}^{\pi}\right)+\int_{s}^{t} \nabla_{x} b\left(X_{\pi(r)}^{\pi}\right) D_{s} X_{\pi(r)}^{\pi} \mathrm{d} r+\int_{s}^{t} \sum_{j=1}^{q} \nabla_{x} \sigma^{j}\left(X_{\pi(r)}^{\pi}\right) D_{s} X_{\pi(r)}^{\pi} \mathrm{d} W_{r}^{j}
$$

for $s \leq t$. One then checks, see Remark 5.2 in [1] for details, that

$$
\begin{equation*}
\left\|\sup _{s \leq T}\left|D_{s} X^{\pi}\right|\right\|_{\mathcal{S}^{p}}<\infty \tag{3.29}
\end{equation*}
$$

$\sup _{s \leq u}\left\|D_{s} X_{t}^{\pi}-D_{s} X_{u}^{\pi}\right\|_{\mathbf{L}^{p}}+\left\|\sup _{t \leq s \leq T}\left|D_{t} X_{s}^{\pi}-D_{u} X_{s}^{\pi}\right|\right\|_{\mathbf{L}^{p}} \leq C_{L}^{p}|t-u|^{1 / 2}, \quad 0 \leq u \leq t \leq T$.
It is also straightforward that $\left(Y^{e u}, \tilde{Y}^{e u}, Z^{e u}\right)$ is Malliavin differentiable and satisfies (3.12) with X^{π} instead of X.

Step 2. In order to retrieve the results of the Proposition, one then follows exactly the same steps and arguments as the one used in the previous Section 3.3 and Section 3.4 .

4 A Discrete-time Approximation for discretely reflected

We present here a discrete time scheme for the approximation of the solution of the discretely obliquely reflected $\mathrm{BSDE}(3.5)$.

Recall that $\pi:=\left\{t_{0}=0, \ldots, t_{n}=T\right\}$ is a grid on the time interval $[0, T]$, such that $\Re \subset \pi$ and $|\pi| n \leq L$. In the sequel, the process X is approximated by its Euler scheme X^{π}, see Section 3.5 for details.

4.1 An Euler scheme for discretely obliquely reflected BSDEs

We introduce an Euler-type approximation scheme for the discretely reflected BSDEs. Starting from the terminal condition

$$
Y_{T}^{\pi}=\widetilde{Y}_{T}^{\pi}:=g\left(X_{T}^{\pi}\right) \in \mathcal{C}\left(X_{T}^{\pi}\right),
$$

we compute recursively, for $i \leq n-1$,

$$
\left\{\begin{align*}
\bar{Z}_{t_{i}}^{\pi} & =\left(t_{i+1}-t_{i}\right)^{-1} \mathbb{E}\left[Y_{t_{i+1}}^{\pi}\left(W_{t_{i+1}}-W_{t_{i}}\right)^{\prime} \mid \mathcal{F}_{t_{i}}\right], \tag{4.1}\\
\widetilde{Y}_{t_{i}}^{\pi} & =\mathbb{E}\left[Y_{t_{i+1}}^{\pi} \mid \mathcal{F}_{t_{i}}\right]+\left(t_{i+1}-t_{i}\right) f\left(X_{t_{i}}^{\pi}, \widetilde{Y}_{t_{i}}^{\pi}, \bar{Z}_{t_{i}}^{\pi}\right), \\
Y_{t_{i}}^{\pi} & =\widetilde{Y}_{t_{i}}^{\pi} \mathbf{1}_{\left\{t_{i} \notin \mathcal{M}\right\}}+\mathcal{P}\left(X_{t_{i}}^{\pi}, \widetilde{Y}_{t_{i}}^{\pi}\right) \mathbf{1}_{\left\{t_{i} \in \Re\right\}} .
\end{align*}\right.
$$

This kind of backward scheme has been already considered when no reflection occurs, see e.g. [2], and in the reflected case, see e.g. [1, 19, 7]. See also [4] for a recent survey on the subject.

Combining an induction argument with the Lispchitz-continuity of f, g and the projection operator, one easily checks that the above processes are square integrable and that the conditional expectations are well defined at each step of the algorithm.

Remark 4.1. (i) This so-called "moonwalk" algorithm is given by an implicit formulation, and one should use a fixed point argument to compute explicitly \widetilde{Y}^{π} at each grid point.
(ii) In the two dimensional case, Hamadene and Jeanblanc [14] interpret $Y^{1}-Y^{2}$ as the solution of a doubly reflected BSDE. It is worth noticing that the solution of the corresponding discrete time scheme developed by [7 for the approximation of doubly reflected BSDE exactly coincides with $Y^{\pi, 1}-Y^{\pi, 2}$ derived here.

For later use, we introduce the piecewise continuous time scheme associated to $\left(Y^{\pi}, \widetilde{Y}^{\pi}, \bar{Z}^{\pi}\right)$. By the martingale representation theorem, there exists $Z^{\pi} \in \mathcal{H}^{2}$ such that

$$
Y_{t_{i+1}}^{\pi}=\mathbb{E}_{t_{i}}\left[Y_{t_{i+1}}^{\pi}\right]+\int_{t_{i}}^{t_{i+1}} Z_{u}^{\pi} \mathrm{d} W_{u}, \quad i \leq n-1,
$$

and by the Itô isometry, for $i \leq n-1$,

$$
\begin{equation*}
\bar{Z}_{t_{i}}^{\pi}=\frac{1}{t_{i+1}-t_{i}} \mathbb{E}\left[\int_{t_{i}}^{t_{i+1}} Z_{s}^{\pi} \mathrm{d} s \mid \mathcal{F}_{t_{i}}\right] . \tag{4.2}
\end{equation*}
$$

We set $\bar{Z}_{t}^{\pi}:=\bar{Z}_{\pi(t)}^{\pi}$ for $t \in[0, T]$, define \widetilde{Y}^{π} by

$$
\begin{equation*}
\widetilde{Y}_{t}^{\pi}=Y_{t_{i+1}}^{\pi}+\left(t_{i+1}-t\right) f\left(X_{t_{i}}^{\pi}, \widetilde{Y}_{t_{i}}^{\pi}, \bar{Z}_{t_{i}}^{\pi}\right)-\int_{t}^{t_{i+1}} Z_{u}^{\pi} \mathrm{d} W_{u}, \quad t_{i} \leq t \leq t_{i+1}, \quad i \in \mathcal{I}, \tag{4.3}
\end{equation*}
$$

and introduce Y^{π} on $[0, T]$ by $Y_{t}^{\pi}:=\widetilde{Y}_{t}^{\pi} \mathbf{1}_{\{t \notin \Re\}}+\mathcal{P}\left(X_{t}^{\pi}, \widetilde{Y}_{t}^{\pi}\right) \mathbf{1}_{\{t \in \Re\}}$.
This can be rewritten as

$$
\left\{\begin{array}{l}
\widetilde{Y}_{t}^{\pi}=g\left(X_{T}^{\pi}\right)+\int_{t}^{T} f\left(X_{\pi(u)}^{\pi}, \widetilde{Y}_{\pi(u)}^{\pi}, \bar{Z}_{u}^{\pi}\right) \mathrm{d} u-\int_{t}^{T} Z_{u}^{\pi} \mathrm{d} W_{u}+\left(\widetilde{K}_{T}^{\pi}-\widetilde{K}_{t}^{\pi}\right), \tag{4.4}\\
\widetilde{K}_{t}^{\pi}=\sum_{r \in \Re \backslash\{0\}} \Delta \widetilde{K}_{r}^{\pi} \mathbf{1}_{\{r \leq t\}} \text { and } \Delta \widetilde{K}_{t}^{\pi}=Y_{t}^{\pi}-\widetilde{Y}_{t}^{\pi}=-\left(\widetilde{Y}_{t}^{\pi}-\widetilde{Y}_{t-}^{\pi}\right) \\
Y_{t}^{\pi}=\widetilde{Y}_{t}^{\pi} \mathbf{1}_{\{t \notin \Re\}}+\mathcal{P}\left(X_{t}^{\pi}, \widetilde{Y}_{t}^{\pi}\right) \mathbf{1}_{\{t \in \Re\}}, \quad 0 \leq t \leq T .
\end{array}\right.
$$

We finally provide a useful a priori estimate for the solution of the discrete time scheme whenever f does not depend on Z, whose proof is postponed Section 6.2 of the Appendix.
Proposition 4.1. If f does not depend on Z and $|\pi| L<1$, the following bound holds

$$
\begin{equation*}
\mathbb{E}\left[\sup _{0 \leq i \leq n}\left|\widetilde{Y}_{t_{i}}^{\pi}\right|^{p}\right] \leq C_{L}^{p}, \quad p \geq 2 \tag{4.5}
\end{equation*}
$$

recall that C_{L}^{p} neither depends on \Re nor on π.

4.2 Convergence Results

The next proposition provides a control on the error between the discrete-time scheme (4.1) and the solution of the discretely reflected BSDE (3.5).

Proposition 4.2. The following holds

$$
\begin{equation*}
\sup _{t \in[0, T]} \mathbb{E}\left[\left|\widetilde{Y}_{t}-\widetilde{Y}_{t}^{\pi}\right|^{2}+\left|Y_{t}-Y_{t}^{\pi}\right|^{2}\right]+\mathbb{E}\left[\int_{0}^{T}\left|Z_{s}-\bar{Z}_{s}^{\pi}\right|^{2} \mathrm{~d} s\right] \leq C_{L} L^{2 \kappa}\left(|\pi|^{\frac{1}{2}}+\kappa|\pi|\right) \tag{4.6}
\end{equation*}
$$

Proof. As in Section 3.5, we consider $\left(Y^{e u}, \tilde{Y}^{e u}, Z^{e u}\right)$ the unique solution of the reflected $\operatorname{BSDE} \mathcal{D}\left(\Re, c\left(X^{\pi}\right), f\left(X^{\pi},.\right), g\left(X^{\pi}\right)\right)$. Using Proposition 2.3, the Lipschitz property of f, g, c and 3.28 , we obtain

$$
\begin{equation*}
\sup _{t \in[0, T]} \mathbb{E}\left[\left|\widetilde{Y}_{t}-\widetilde{Y}_{t}^{e u}\right|^{2}+\left|Y_{t}-Y_{t}^{e u}\right|^{2}\right]+\frac{1}{\kappa} \mathbb{E}\left[\int_{0}^{T}\left|Z_{s}-Z_{s}^{e u}\right|^{2} \mathrm{~d} s\right] \leq C_{L}|\pi| \tag{4.7}
\end{equation*}
$$

Using the same arguments as in the proof of Proposition 3.4.1 Step 1.a in [6] e.g., we get the following inequality:

$$
\begin{align*}
\sup _{t \in\left[t_{i}, t_{i+1}\right)} \mathbb{E}\left[\left|\tilde{Y}_{t}^{e u}-\widetilde{Y}_{t}^{\pi}\right|^{2}+\left|Y_{t}^{e u}-Y_{t}^{\pi}\right|^{2}\right]+\mathbb{E}\left[\int_{t_{i}}^{t_{i+1}}\left|Z_{s}^{e u}-\bar{Z}_{s}^{\pi}\right|^{2} \mathrm{~d} s\right] \leq \\
C_{L}\left(\mathbb{E}\left[\left|Y_{t_{i+1}}^{e u}-Y_{t_{i+1}}^{\pi}\right|^{2}+\int_{t_{i}}^{t_{i+1}}\left(\left|\tilde{Y}_{s}^{e u}-\widetilde{Y}_{\pi(s)}\right|^{2}+\left|Z_{s}^{e u}-\bar{Z}_{\pi(s)}\right|^{2}\right) \mathrm{d} s\right]\right) \tag{4.8}
\end{align*}
$$

There are two differences with the proof of Proposition 3.4.1 in [6]. First, \mathcal{P} here depends both on x and y : but this is not a problem since $\left(Y^{e u}, \tilde{Y}^{e u}, Z^{e u}\right)$ and $\left(Y^{\pi}, \tilde{Y}^{\pi}, Z^{\pi}\right)$ are parametrized by the same forward process X^{π}.
Second, \mathcal{P} is not 1 -Lipschitz but only L-Lipschitz, with $L>1$, in its y component. This explain the term $L^{2 \kappa}$ in 4.6). Indeed, we have, for $i<n$,

$$
\left|Y_{t_{i+1}}^{e u}-Y_{t_{i+1}}^{\pi}\right|^{2}=\left|\mathcal{P}\left(X_{t_{i+1}}^{\pi}, \widetilde{Y}_{t_{i+1}}^{e u}\right)-\mathcal{P}\left(X_{t_{i+1}}^{\pi}, \widetilde{Y}_{t_{i+1}}^{\pi}\right)\right|^{2} \leq L^{2}\left|\widetilde{Y}_{t_{i+1}}^{e u}-\widetilde{Y}_{t_{i+1}}^{\pi}\right|^{2}
$$

This leads, using an induction argument (see e.g. Step 1.b in the proof of Proposition 3.4.1 in [6]), to

$$
\begin{aligned}
& \sup _{t \in[0, T]} \mathbb{E}\left[\left|\tilde{Y}_{t}^{e u}-\widetilde{Y}_{t}^{\pi}\right|^{2}+\left|Y_{t}^{e u}-Y_{t}^{\pi}\right|^{2}\right]+\mathbb{E}\left[\int_{0}^{T}\left|Z_{s}^{e u}-\bar{Z}_{s}^{\pi}\right|^{2} \mathrm{~d} s\right] \leq \\
& C_{L} L^{2 \kappa}\left(|\pi|+\int_{0}^{T}\left(\left|\widetilde{Y}_{s}^{e u}-\widetilde{Y}_{\pi(s)}\right|^{2}+\left|Z_{s}^{e u}-\bar{Z}_{\pi(s)}\right|^{2}\right) \mathrm{d} s\right)
\end{aligned}
$$

Combining the last inequality with Proposition 3.5 and 4.7 completes the proof.
The term $L^{2 \kappa}$, even when κ is small can be very large. Moreover, we shall see in the next section that it yields to a poor convergence rate for continuously reflected BSDEs. This term is due to the "geometric" approach, used in the proof of Proposition 4.2, and the fact that \mathcal{P} is only L-Lipschitz with $L>1$. We obtain below a better control, using the stability results proved at the end of Section 2 but unfortunately under the assumption that f does not depend on Z.

Theorem 4.1. If f does not depend on Z, the following holds

$$
\begin{aligned}
\sup _{t \in[0, T]} \mathbb{E}\left[\left|\tilde{Y}_{t}-\widetilde{Y}_{t}^{\pi}\right|^{2}+\left|Y_{t}-Y_{t}^{\pi}\right|^{2}\right] & \leq C_{L}|\pi| \\
\mathbb{E}\left[\int_{0}^{T}\left|Z_{t}-\bar{Z}_{t}^{\pi}\right|^{2} \mathrm{~d} t\right] & \leq C_{L}\left(\kappa|\pi|+|\pi|^{\frac{1}{2}}\right)
\end{aligned}
$$

for $|\pi|$ small enough.
Proof. We use here the stability results of Proposition 2.3 setting $\left(Y^{1}, \widetilde{Y}^{1}, Z^{1}\right)=$ (Y, \tilde{Y}, Z) with $F^{1}:(s, y, z) \mapsto f\left(X_{s}, \widetilde{Y}_{s}\right)$ and $\left(Y^{2}, \widetilde{Y}^{2}, Z^{2}\right)=\left(Y^{\pi}, \tilde{Y}^{\pi}, Z^{\pi}\right)$, with F^{2} : $(s, y, z) \mapsto f\left(X_{\pi(s)}^{\pi}, \widetilde{Y}_{\pi(s)}^{\pi}\right)$. Combining (4.5) and Proposition 3.1 with the Lipschitz property of f, it is clear that $\left(\mathbf{C}_{4}\right)$ holds. Applying Proposition 2.3 and 3.28 , we derive, for $t \in[0, T]$,
$\mathbb{E}\left|\widetilde{Y}_{t}-\widetilde{Y}_{t}^{\pi}\right|^{2}+\frac{1}{\kappa} \int_{t}^{T} \mathbb{E}\left|Z_{s}-Z_{s}^{\pi}\right|^{2} d s \leq C_{L}\left(|\pi|+\int_{t}^{T} \mathbb{E}\left|\widetilde{Y}_{s}-\widetilde{Y}_{\pi(s)}\right|^{2} d s+\int_{t}^{T} \mathbb{E}\left|\widetilde{Y}_{\pi(s)}^{\pi}-\widetilde{Y}_{\pi(s)}\right|^{2} \mathrm{~d} s\right)$,

Applying the discrete version of Gronwall's lemma to estimate 4.9 rewritten at time $t=t_{j} \in \pi$, we deduce

$$
\begin{equation*}
\mathbb{E}\left|\widetilde{Y}_{t_{j}}-\widetilde{Y}_{t_{j}}^{\pi}\right|^{2} \leq C_{L}\left(|\pi|+\int_{t}^{T} \mathbb{E}\left|\widetilde{Y}_{s}-\widetilde{Y}_{\pi(s)}\right|^{2} d s\right), \quad 0 \leq t \leq t_{j} \leq T, \quad t_{j} \in \pi \tag{4.10}
\end{equation*}
$$

Plugging this estimate into 4.9), we compute

$$
\mathbb{E}\left|\widetilde{Y}_{t}-\widetilde{Y}_{t}^{\pi}\right|^{2}+\frac{1}{\kappa} \int_{t}^{T} \mathbb{E}\left|Z_{s}-Z_{s}^{\pi}\right|^{2} d s \leq C_{L}\left(|\pi|+\int_{t}^{T} \mathbb{E}\left|\widetilde{Y}_{s}-\widetilde{Y}_{\pi(s)}\right|^{2} d s\right), \quad 0 \leq t \leq T
$$

which combined with Proposition 3.4 leads to the first claim of the Theorem.
Observe from the representations (3.19) and (4.2) that

$$
\mathbb{E}\left[\int_{0}^{T}\left|Z_{t}-\bar{Z}_{t}^{\pi}\right|^{2} \mathrm{~d} t\right] \leq C_{L}\left(\mathbb{E}\left[\int_{0}^{T}\left|Z_{t}-\bar{Z}_{t}\right|^{2} \mathrm{~d} t\right]+\mathbb{E}\left[\int_{0}^{T}\left|Z_{t}-Z_{t}^{\pi}\right|^{2} \mathrm{~d} t\right]\right)
$$

Plugging (3.20), estimate 4.9) written at time $t=0$ and the first claim of this Theorem into this expression concludes the proof.

5 Extension to the continuously reflected case

In this section, we extend the convergence results of the scheme 4.1 to the case of continuously reflected BSDEs. To this end, we show that the error between discretely and continuously obliquely reflected BSDEs is controled in a convenient way.

5.1 Continuously obliquely reflected BSDEs

In the sequel, we shall use the following assumption on f :

- $(\mathbf{H} z) \quad$ The function f is bounded in its last variable : $\sup _{z \in \mathcal{M}^{d, q}}|f(0,0, z)| \leq C_{L}$. and the following assumption on the cost c :
- ($\mathbf{H} c) \quad$ For $i, j \in \mathcal{I}$, the function $c^{i j}$ is equal to ${ }^{1} c^{i j}-{ }^{2} c^{i j}$, with ${ }^{1} c^{i j}$ is C^{2} with bounded first and second derivatives and ${ }^{2} c^{i j}$ is a convex function with bounded first derivative. This last assumption is needed to retrieve some regularity on the reflecting process K (see Lemma 5.1 below).
We denote by $(\dot{Y}, \dot{Z}, \dot{K}) \in\left(\mathcal{S}^{2} \times \mathcal{H}^{2} \times \mathbf{A}^{2}\right)^{\mathcal{I}}$ the solution of the continuously obliquely reflected BSDE $\mathcal{C}\left([0, T], c(X), f(X,),. g\left(X_{T}\right)\right)$ defined by

$$
\left\{\begin{array}{l}
\dot{Y}_{t}^{i}=g^{i}\left(X_{T}\right)+\int_{t}^{T} f^{i}\left(X_{s}, \dot{Y}_{s}^{i}, \dot{Z}_{s}^{i}\right) \mathrm{d} s-\int_{t}^{T} \dot{Z}_{s}^{i} \mathrm{~d} W_{s}+\dot{K}_{T}^{i}-\dot{K}_{t}^{i} \tag{5.1}\\
\dot{Y}_{t}^{i} \geq \max _{j \in \mathcal{I}}\left\{\dot{Y}_{t}^{j}-c^{i j}\left(X_{t}\right)\right\}, \quad 0 \leq t \leq T \\
\int_{0}^{T}\left[\dot{Y}_{t}^{i}-\max _{j \in \mathcal{I}}\left\{\dot{Y}_{t}^{j}-c^{i j}\left(X_{t}\right)\right\}\right] \mathrm{d} \dot{K}_{t}^{i}=0, \quad i \in \mathcal{I}
\end{array}\right.
$$

Under the assumption on f, g and c, the existence and uniqueness of such a solution is given in [15, 16].

The solution of 5.1 has also a representation property in term of switched BSDEs, recalling 2.7. Here of course the switching times of the strategy are not restricted to take their values in \Re. We refer to [8] for more details.

Theorem 5.1. There exists, for any fixed initial condition $(t, i) \in[0, T] \times \mathcal{I}$, an optimal switching strategy $\dot{a}:=\left(\dot{\theta}_{k}, \dot{\alpha}_{k}\right)_{k \geq 0} \in \mathcal{A}_{t, i}$, such that

$$
\begin{equation*}
\dot{Y}_{t}^{i}=U_{t}^{\dot{a}}=\underset{a \in \mathcal{A}_{t, i}}{\operatorname{ess} \sup _{t}^{a}, \quad \mathbb{P}-a . s . . ~} \tag{5.2}
\end{equation*}
$$

We deduce from (5.2), Theorem 2.1 (iii), the monotonicity property of \mathcal{P} and (5.1):

$$
\begin{equation*}
\dot{Y} \succeq Y \succeq \widetilde{Y} \tag{5.3}
\end{equation*}
$$

Moreover, most of the estimates presented in Section 2 for discretely reflected BSDEs hold true for continuously reflected BSDEs. For the convenience of the reader, we collect them in the following proposition. The proof itself is postponed to Section 6.3 of the Appendix.

Proposition 5.1. The following a priori estimates holds. For any $p \geq 2$,

$$
\begin{equation*}
\left|\dot{Y}_{t}\right|^{p}+\mathbb{E}_{t}\left[\left(\int_{t}^{T}\left|\dot{Z}_{s}\right|^{2} \mathrm{~d} s\right)^{\frac{p}{2}}\right]+\mathbb{E}_{t}\left[\left|\dot{K}_{T}-\dot{K}_{t}\right|^{p}\right] \leq \mathbb{E}_{t}\left[\beta^{X}\right], \quad 0 \leq t \leq T \tag{5.4}
\end{equation*}
$$

and, for all $(t, i) \in[0, T] \times \mathcal{I}$, the optimal strategy $\dot{a} \in \mathcal{A}_{t, i}$ satisfies

$$
\begin{equation*}
\mathbb{E}_{t}\left[\sup _{s \in[t, T]}\left|U_{s}^{\dot{a}}\right|^{p}\right]+\mathbb{E}_{t}\left[\left|N^{\dot{a}}\right|^{p}\right] \leq \mathbb{E}_{t}\left[\beta^{X}\right] \tag{5.5}
\end{equation*}
$$

5.2 Error between discretely and continuously reflected BSDEs

We first provide a control of the error on the grid points of \Re between the solutions of the obliquely discretely and continuously reflected BSDEs (3.6) and (5.1).

Theorem 5.2. Under $(\mathbf{H} z)$, the following holds

$$
\begin{equation*}
\mathbb{E}\left[\sup _{r \in \Re}\left\{\left|\dot{Y}_{r}-\tilde{Y}_{r}\right|^{2}+\left|\dot{Y}_{r}-Y_{r}\right|^{2}\right\}\right] \leq C_{L}^{\varepsilon}|\Re|^{1-\varepsilon}, \quad \varepsilon>0 . \tag{5.6}
\end{equation*}
$$

Moreover, if the cost functions are constant, the last inequality holds true with $\epsilon=0$.

Proof. The proof of this result relies mainly on the interpretation in terms of switched BSDEs provided in Section 2.2. For a fixed $(t, i) \in[0, T] \times \mathcal{I}$, we associate to the optimal strategy $\dot{a}=\left(\dot{\theta}_{k}, \dot{\alpha}_{k}\right)_{k} \in \mathcal{A}_{t, i}$ not restricted to lie in the grid \Re, the corresponding 'discretized' strategy $a:=\left(\theta_{k}, \alpha_{k}\right)_{k \geq 0} \in \mathcal{A}_{t, i}^{\Re}$ defined by

$$
\begin{equation*}
\theta_{k}:=\inf \left\{r \geq \dot{\theta}_{k} ; r \in \Re\right\} \quad \text { and } \quad \alpha_{k}:=\dot{\alpha}_{k}, \quad k \geq 0 \tag{5.7}
\end{equation*}
$$

Step 1. We first derive two key controls on the distance between $A^{\dot{a}}$ and A^{a}.
We fix $p \geq 2$ and, since $\dot{\theta}_{k} \leq \theta_{k}, k \geq 1$, we compute

$$
\begin{align*}
\left(\int_{t}^{T}\left|A_{s}^{\dot{a}}-A_{s}^{a}\right|^{2} \mathrm{~d} s\right)^{\frac{p}{2}}= & \left(\int_{t}^{T}\left|\sum_{k=1}^{N^{\dot{a}}} c^{\dot{\alpha}_{k-1} \dot{\alpha}_{k}}\left(X_{\dot{\theta}_{k}}\right) \mathbf{1}_{\dot{\theta}_{k} \leq s}-c^{\dot{\alpha}_{k-1} \dot{\alpha}_{k}}\left(X_{\theta_{k}}\right) \mathbf{1}_{\theta_{k} \leq s}\right|^{2} \mathrm{~d} s\right)^{\frac{p}{2}} \\
\leq & C_{L}^{p} \int_{t}^{T}\left|\sum_{k=1}^{N^{\dot{a}}}\left[c^{\dot{\alpha}_{k-1} \dot{\alpha}_{k}}\left(X_{\theta_{k}}\right)-c^{\dot{\alpha}_{k-1} \dot{\alpha}_{k}}\left(X_{\dot{\theta}_{k}}\right)\right] \mathbf{1}_{\theta_{k} \leq s}\right|^{p} \mathrm{~d} s \\
& +C_{L}^{p}\left(\int_{t}^{T}\left|\sum_{k=1}^{N^{\dot{a}}} c^{\dot{\alpha}_{k-1} \dot{\alpha}_{k}}\left(X_{\dot{\theta}_{k}}\right) \mathbf{1}_{\dot{\theta}_{k} \leq s<\theta_{k}}\right|^{2} \mathrm{~d} s\right)^{\frac{p}{2}} \tag{5.8}
\end{align*}
$$

Using the convexity inequality $\left(\sum_{k=1}^{n}\left|x_{k}\right|\right)^{p} \leq n^{p-1} \sum_{k=1}^{n}\left|x_{k}\right|^{p}$, we obtain

$$
\begin{equation*}
\left(\int_{t}^{T}\left|\sum_{k=1}^{N^{\dot{a}}} c^{\dot{\alpha}_{k-1} \dot{\alpha}_{k}}\left(X_{\dot{\theta}_{k}}\right) \mathbf{1}_{\dot{\theta}_{k} \leq s<\theta_{k}}\right|^{2} \mathrm{~d} s\right)^{\frac{p}{2}} \leq C_{L}^{p}\left(1+\sup _{t \in[0, T]}\left|X_{t}\right|^{p}\right)\left|N^{\dot{a}}\right|^{p}|\Re|^{\frac{p}{2}} . \tag{5.9}
\end{equation*}
$$

Using once again the same convexity inequality with $p=2$, the Lipschitz property of the maps $\left(c^{i j}\right)_{i, j \in \mathcal{I}}$ and the definition of $\dot{\theta}_{k}$ and θ_{k}, we get

$$
\begin{aligned}
\int_{t}^{T}\left|\sum_{k=1}^{N^{\dot{a}}}\left[c^{\dot{\alpha}_{k-1} \dot{\alpha}_{k}}\left(X_{\theta_{k}}\right)-c^{\dot{\alpha}_{k-1} \dot{\alpha}_{k}}\left(X_{\dot{\theta}_{k}}\right)\right] \mathbf{1}_{\theta_{k} \leq s}\right|^{p} \mathrm{~d} s & \leq C_{L}^{p}\left|N^{\dot{a}}\right|^{p-1} \sum_{k=1}^{N^{\dot{a}}}\left|X_{\theta_{k}}-X_{\dot{\theta}_{k}}\right|^{p} \\
& \leq C_{L}^{p}\left|N^{\dot{a}}\right|^{p} \chi^{|\Re|, p}
\end{aligned}
$$

where $\chi^{|\Re|, p}:=\sum_{k=1}^{\kappa} \sup _{r \in\left[r_{k-1}, r_{k}\right]}\left|X_{r}-X_{r_{k}}\right|^{p}$.
Plugging this estimate and (5.9) in 5.8, we deduce

$$
\begin{equation*}
\left(\int_{t}^{T}\left|A_{s}^{\dot{a}}-A_{s}^{a}\right|^{2} \mathrm{~d} s\right)^{\frac{p}{2}} \leq C_{L}^{p}\left|N^{\dot{a}}\right|^{p}\left(\left(1+\sup _{s \in[0, T]}\left|X_{s}\right|^{p}\right)|\Re|^{\frac{p}{2}}+\chi^{|\Re|, p}\right) \tag{5.10}
\end{equation*}
$$

Observe also that, for $r \in \Re$, we have $\mathbf{1}_{\dot{\theta}_{k} \leq r}=\mathbf{1}_{\theta_{k} \leq r}$ which gives

$$
\begin{equation*}
\left|A_{r}^{\dot{a}}-A_{r}^{a}\right|^{p} \leq\left(\sum_{k=1}^{N^{\dot{a}}}\left|c^{\dot{\alpha}_{k-1} \dot{\alpha}_{k}}\left(X_{\dot{\theta}_{k}}\right)-c^{\dot{\alpha}_{k-1} \dot{\alpha}_{k}}\left(X_{\theta_{k}}\right)\right| \mathbf{1}_{\theta_{k} \leq r}\right)^{p} \leq C_{L}\left|N^{\dot{a}}\right|^{p} \chi^{|\Re|, p} \tag{5.11}
\end{equation*}
$$

Step 2. We now prove the main result of the theorem.
We introduce the processes $\Gamma:=U^{a}-A$ and $\dot{\Gamma}:=U^{\dot{a}}-A^{\dot{a}}$, so that

$$
\begin{equation*}
\left|U^{a}-U^{\dot{a}}\right| \leq|\Gamma-\dot{\Gamma}|+\left|A^{a}-A^{\dot{a}}\right| . \tag{5.12}
\end{equation*}
$$

Applying Ito's formula to the continuous process $|\dot{\Gamma}-\Gamma|^{2}$ on $[t, T]$, using Gronwall Lemma and the Lipschitz property of f, we obtain

$$
\begin{equation*}
\left|\dot{\Gamma}_{t}-\Gamma_{t}\right|^{2} \leq C_{L} \mathbb{E}_{t}\left[\int_{t}^{T}\left|\left[f^{\dot{a}_{s}}-f^{a_{s}}\right]\left(X_{s}, U_{s}^{\dot{a}}, V_{s}^{\dot{a}}\right)\right|^{2} \mathrm{~d} s+\int_{t}^{T}\left|A_{s}^{\dot{a}}-A_{s}^{a}\right|^{2} \mathrm{~d} s\right] . \tag{5.13}
\end{equation*}
$$

Elevating this expression to the power $\frac{p}{2}$, we deduce

$$
\begin{equation*}
\left|\dot{\Gamma}_{t}-\Gamma_{t}\right|^{p} \leq C_{L}^{p} \mathbb{E}_{t}\left[\left(\int_{t}^{T}\left|\left[f^{\dot{a}_{s}}-f^{a_{s}}\right]\left(X_{s}, U_{s}^{\dot{a}}, V_{s}^{\dot{a}}\right)\right|^{2} \mathrm{~d} s\right)^{\frac{p}{2}}+\left(\int_{t}^{T}\left|A_{s}^{\dot{a}}-A_{s}^{a}\right|^{2} \mathrm{~d} s\right)^{\frac{p}{2}}\right] . \tag{5.14}
\end{equation*}
$$

Combining the definition of θ with the Lipschitz property of f and $(\mathbf{H} z)$, we compute

$$
\begin{aligned}
\int_{t}^{T}\left|\left[f^{\dot{a}_{s}}-f^{a_{s}}\right]\left(X_{s}, U_{s}^{\dot{a}}, V_{s}^{\dot{a}}\right)\right|^{2} \mathrm{~d} s & =\int_{t}^{T}\left|\sum_{k=1}^{N^{\dot{a}}} f^{\alpha_{k-1}}\left(X_{s}, U_{s}^{\dot{a}}, V_{s}^{\dot{a}}\right)\left(\mathbf{1}_{\dot{\theta}_{k-1} \leq s<\dot{\theta}_{k}}-\mathbf{1}_{\theta_{k-1} \leq s<\theta_{k}}\right)\right|^{2} \mathrm{~d} s \\
& \leq C_{L}\left|N^{\dot{a}}\right|^{2} \sup _{s \in[0, T]}\left(1+\left|X_{s}\right|^{2}+\left|U_{s}^{\dot{a}}\right|^{2}\right)|\Re| .
\end{aligned}
$$

Plugging the last inequality and (5.10) in (5.14), we deduce

$$
\left|\dot{\Gamma}_{t}-\Gamma_{t}\right|^{p} \leq C_{L}^{p} \mathbb{E}_{t}\left[\left|N^{\dot{a}}\right|^{p}\left(\sup _{s \in[0, T]}\left(1+\left|X_{s}\right|^{p}+\left|U_{s}^{\dot{a}}\right|^{p}\right)|\Re|^{\frac{p}{2}}+\chi^{|\Re|, p}\right)\right] .
$$

Restricting to the case where $t \in \Re$, we deduce from (5.11) and (5.12) that

$$
\left|\dot{Y}_{t}^{i}-\widetilde{Y}_{t}^{i}\right|^{2} \leq C_{L}^{p}\left(\mathbb{E}_{t}\left[\left|N^{\dot{a}}\right|^{p} \sup _{s \in[0, T]}\left(1+\left|X_{s}\right|^{p}+\left|\dot{Y}_{s}\right|^{p}\right)\right]^{\frac{2}{p}}|\Re|+\mathbb{E}_{t}\left[\left|N^{\dot{a}}\right|^{p} \mid \chi^{|\Re|, p}\right]^{\frac{2}{p}}\right) .
$$

Using Cauchy-Schwartz inequality and Proposition 5.1 with the last inequality, we obtain

$$
\left|\dot{Y}_{t}^{i}-\widetilde{Y}_{t}^{i}\right|^{2} \leq C_{L}^{p}\left(\beta^{X}|\Re|+\beta^{X} \mathbb{E}_{t}\left[\left|\chi^{|\Re|, p}\right|^{2}\right]^{\frac{1}{p}}\right) .
$$

Using again Cauchy Schwartz inequality and defining $M_{t}:=\mathbb{E}_{t}\left[\left|\chi^{\Re \Re \mid, p}\right|^{2}\right]$, we get

$$
\begin{equation*}
\mathbb{E}\left[\sup _{t \in \Re}\left|\dot{Y}_{t}^{i}-\widetilde{Y}_{t}^{i}\right|^{2}\right] \leq C_{L}^{p}\left(|\Re|+\mathbb{E}\left[\sup _{t \in[0, T]}\left|M_{t}\right|^{\frac{2}{p}}\right]^{\frac{1}{2}}\right) . \tag{5.15}
\end{equation*}
$$

Combining Burkholder-Davis-Gundy and convexity inequalities with (3.2), we compute

$$
\mathbb{E}\left[\sup _{t \in[0, T]}\left|M_{t}\right|^{\frac{2}{p}}\right] \leq C_{L}^{p}\left(\left|M_{0}\right|^{\frac{2}{p}}+\mathbb{E}\left[\left|M_{T}\right|^{2}\right]^{\frac{1}{p}}\right) \leq C_{L}^{p} \mathbb{E}\left[\left|\chi^{|\Re|, p}\right|^{4}\right]^{\frac{1}{p}} \leq C_{L}^{p}|\kappa|^{\frac{4}{p}}|\Re|^{2}
$$

Plugging this expression in (5.15, we deduce (5.6) from the condition $\kappa|\Re| \leq L$ and the arbitrariness of i.

Step 3. We finally consider the particular case where the cost functions are constant. Following the same arguments as in Step 1., we observe that 5.10 turns into

$$
\left(\int_{t}^{T}\left|A_{s}^{\dot{a}}-A_{s}^{a}\right|^{2} \mathrm{~d} s\right)^{\frac{p}{2}} \leq C_{L}^{p}\left|N^{\dot{a}}\right|^{p}\left(1+\sup _{s \in[0, T]}\left|X_{s}\right|^{p}\right)|\Re|^{\frac{p}{2}}
$$

and that $A_{r}^{\dot{a}}-A_{r}^{a}=0$ for $r \in \Re$. The same reasoning as in Step 2. then leads to

$$
\left|\dot{Y}_{t}^{i}-\widetilde{Y}_{t}^{i}\right|^{2} \leq C_{L}^{2} \mathbb{E}_{t}\left[\left|N^{\dot{a}}\right|^{p} \sup _{s \in[0, T]}\left(1+\left|X_{s}\right|^{p}+\left|\dot{Y}_{s}\right|^{p}\right)\right]^{\frac{2}{p}}|\Re|
$$

Using Cauchy Schwartz and Proposition 5.1 concludes the proof.
We now present the main result of this section, which allows to control the error between the solutions of the continuously and the discretely obliquely reflected BSDE at any time between 0 and T.

Theorem 5.3. Under $(\mathbf{H} z)-(\mathbf{H}$ c $)$, the following holds

$$
\sup _{t \in[0, T]} \mathbb{E}\left[\left|\dot{Y}_{t}-\tilde{Y}_{t}\right|^{2}+\left|\dot{Y}_{t}-Y_{t}\right|^{2}\right]+\mathbb{E}\left[\int_{0}^{T}\left|\dot{Z}_{s}-Z_{s}\right|^{2} \mathrm{~d} s\right] \leq C_{L}^{\epsilon}|\Re|^{\frac{1}{2}-\epsilon}, \quad \epsilon>0
$$

If furthermore the cost functions are constant, the previous estimate holds true for $\epsilon=0$.
In order to prove this theorem, we first state the following lemma discussing the regularity of \dot{K}.

Lemma 5.1. Under $(\mathbf{H} z)-(\mathbf{H} c)$, there exists some positive process η satisfying $\|\eta\|_{\mathcal{H}^{2}} \leq$ C_{L} and such that, for all $i \in \mathcal{I}, \mathrm{~d} \dot{K}_{s}^{i} \leq \eta_{s} \mathrm{~d}$ s in the sense of random measure.

Proof. We follow here the main idea of the proof of Proposition 4.2 in [10] and divide the proof in three steps.
Step 1. Fix $i, j \in \mathcal{I}$. We first observe using Itô-Tanaka Formula, that, under $(\mathbf{H} c)$,

$$
c^{i j}\left(X_{t}\right)=c^{i j}\left(X_{0}\right)+\int_{0}^{t} b_{s}^{i j} \mathrm{~d} s+\int_{0}^{t} \nu_{s}^{i j} \mathrm{~d} W_{s}-\int_{0}^{t} \mathrm{~d} \Delta_{s}^{i j}, \quad 0 \leq t \leq T
$$

where $\Delta^{i j}$ is an increasing process and

$$
\begin{equation*}
\left\|b^{i j}\right\|_{\mathcal{H}^{2}}+\left\|\nu^{i j}\right\|_{\mathcal{H}^{2}} \leq C_{L} . \tag{5.16}
\end{equation*}
$$

We then introduce $\Gamma^{i j}:=\dot{Y}^{i}-\dot{Y}^{j}+c^{i j}(X) \geq 0$. Using once again Itô-Tanaka Formula, we compute

$$
\begin{aligned}
{\left[\Gamma_{t}^{i j}\right]^{+} } & =\left[\Gamma_{0}^{i j}\right]^{+}+\int_{0}^{t}\left(-f^{i}\left(X_{s}, \dot{Y}_{s}^{i}, \dot{Z}_{s}^{i}\right)+f^{j}\left(X_{s}, \dot{Y}_{s}^{j}, \dot{Z}_{s}^{j}\right)+b_{s}^{i j}\right) \mathbf{1}_{\left\{\Gamma_{s}^{i j}>0\right\}} \mathrm{d} s \\
& +\int_{0}^{t}\left(\nu_{s}^{i j}+\dot{Z}_{s}^{i}-\dot{Z}_{s}^{j}\right) \mathbf{1}_{\left\{\Gamma_{s}^{i j}>0\right\}} \mathrm{d} W_{s}+\int_{0}^{t} \mathbf{1}_{\left\{\Gamma_{s}^{i j}>0\right\}}\left(-\mathrm{d} \dot{K}_{s}^{i}+\mathrm{d} \dot{K}_{s}^{j}-\mathrm{d} \Delta_{s}^{i j}\right)+\frac{1}{2} \int_{0}^{t} \mathrm{~d} L_{s}^{i j},
\end{aligned}
$$

for $0 \leq t \leq T$, where $L^{i j}$ is the local time at 0 of the continuous semi-martingale $\Gamma^{i j}$. Since $\Gamma^{i j} \geq 0$ and $\Delta^{i j}, L^{i j}$ are increasing processes, we compute

$$
\begin{align*}
\mathbf{1}_{\left\{\Gamma_{s}^{i j}=0\right\}} \mathrm{d} \dot{K}_{s}^{i} & \leq\left(-f^{i}\left(X_{s}, \dot{Y}_{s}^{i}, \dot{Z}_{s}^{i}\right)+f^{j}\left(X_{s}, \dot{Y}_{s}^{j}, \dot{Z}_{s}^{j}\right)+b_{s}^{i j}\right) \mathbf{1}_{\left\{\Gamma_{s}^{i j}=0\right\}} \mathrm{d} s+\mathbf{1}_{\left\{\Gamma_{s}^{i j}=0\right\}} \mathrm{d} \dot{K}_{s}^{j} \\
& \leq C_{L}\left(1+\left|X_{s}\right|+\sup _{\ell \in \mathcal{I}}\left|\dot{Y}_{s}^{\ell}\right|+\sup _{\ell, k \in \mathcal{I}}\left|b_{s}^{\ell k}\right|\right) \mathrm{d} s+\mathbf{1}_{\left\{\Gamma_{s}^{i j}=0\right\}} \mathrm{d} \dot{K}_{s}^{j}, \tag{5.17}
\end{align*}
$$

for $0 \leq s \leq T$, where we used $(\mathbf{H} z)$ in order to obtain the last inequality.
Step 2. We now prove that

$$
\begin{equation*}
\mathbf{1}_{\left\{\Gamma_{s}^{i j}=0\right\}} \mathrm{d} \dot{K}_{s}^{j}=0, \tag{5.18}
\end{equation*}
$$

in the sense of random measure. We first observe that $\mathbf{1}_{\left\{\Gamma_{s}^{i j}=0\right\}} \mathrm{d} \dot{K}_{s}^{j}=\gamma_{s}^{i j} \mathrm{~d} \dot{K}_{s}^{j}$ with $\gamma_{s}^{i j}:=\mathbf{1}_{\left\{\Gamma_{s}^{i j}=0\right\}} \mathbf{1}_{\left\{Y_{s}^{j}-\mathcal{P}^{j}\left(X_{s}, \dot{Y}_{s}\right)=0\right\}}$. Indeed, if $\mathbf{1}_{\left\{Y_{s}^{j}-\mathcal{P}^{j}\left(X_{s}, \dot{Y}_{s}\right)>0\right\}} \mathrm{d} \dot{K}_{s}^{j}$ were a positive random measure on $[0, T]$, this would contradict the minimality condition (5.1] for \dot{K}.

Suppose the existence of a stopping time τ smaller than T, such that

$$
\begin{equation*}
\Gamma_{\tau}^{i j}=0 \text { and } \dot{Y}_{\tau}^{j}-\mathcal{P}^{j}\left(X_{\tau}, \dot{Y}_{\tau}\right)=0 \tag{5.19}
\end{equation*}
$$

By definition of the projection \mathcal{P}, we have

$$
\begin{equation*}
\dot{Y}_{\tau}^{j}-\mathcal{P}^{j}\left(X_{\tau}, \dot{Y}_{\tau}\right)=\dot{Y}_{\tau}^{j}-\dot{Y}_{\tau}^{k_{\tau}}+c^{j k_{\tau}}\left(X_{\tau}\right), \tag{5.20}
\end{equation*}
$$

where k_{τ} takes value in \mathcal{I}. Moreover $Y_{\tau}^{i}-Y_{\tau}^{k_{\tau}}+c^{i k_{\tau}}\left(X_{\tau}\right) \geq 0$, which leads, combined with (5.19) and 5.20, to $c^{i j}\left(X_{\tau}\right)+c^{j k_{\tau}}\left(X_{\tau}\right)-c^{i k_{\tau}}\left(X_{\tau}\right) \leq 0$ and contradicts then (3.3).

Thus $\gamma_{\tau}^{i j}=0$ for any stopping time τ smaller than T and we deduce that $\gamma^{i j}$ is undistinguishable from 0 , which proves (5.18).

Step 3. To conclude, using once again the minimality condition for K in (5.1), observe that $\mathrm{d} \dot{K}_{s}^{i}=\sum_{j} \mathbf{1}_{\left\{\Gamma_{s}^{i j}=0\right\}} \mathrm{d} \dot{K}_{s}^{i} \leq \eta_{s} \mathrm{~d} s$, with $\eta:=C_{L}\left(1+|X|+\sup _{\ell \in \mathcal{I}}\left|\dot{Y}^{\ell}\right|+\sup _{\ell, k \in \mathcal{I}}\left|b^{\ell k}\right|\right)$ which satisfies $\|\eta\|_{\mathcal{H}^{2}} \leq C_{L}$, recalling (3.2), (5.4) and (5.16).

Proof of Theorem 5.3.
Fix $t \in[0, T]$ and introduce $\dot{\delta} \widetilde{Y}:=\dot{Y}-\widetilde{Y}, \dot{\delta} Y:=\dot{Y}-Y, \dot{\delta} Z:=\dot{Z}-Z$ and $\dot{\delta} f:=f(X, \dot{Y}, \dot{Z})-$ $f(X, \widetilde{Y}, Z)$. Applying Ito's formula to the càdlàg process $|\dot{\delta} \widetilde{Y}|^{2}$, we get

$$
\begin{equation*}
\left|\dot{\delta} \widetilde{Y}_{t}\right|^{2}+\int_{t}^{T}\left|\dot{\delta} Z_{s}\right|^{2} \mathrm{~d} s=\left|\dot{\delta} \widetilde{Y}_{T}\right|^{2}-2 \int_{(t, T]} \dot{\delta} \widetilde{Y}_{s-} \mathrm{d} \dot{\delta} \widetilde{Y}_{s}-\sum_{t<s \leq T}\left|\dot{\delta} \widetilde{Y}_{s}-\dot{\delta} Y_{s}\right|^{2} \tag{5.21}
\end{equation*}
$$

Recalling that $\dot{\delta} \widetilde{Y}_{s-}=\dot{\delta} Y_{s}, \int_{(t, T]} \dot{\delta} Y_{s} \mathrm{~d} \widetilde{K}_{s} \geq 0$ and the Lipschitz property of f, standard arguments lead to

$$
\begin{equation*}
\mathbb{E}\left[\left|\dot{\delta} \widetilde{Y}_{t}\right|^{2}+\int_{t}^{T}\left|\dot{\delta} Z_{s}\right|^{2} \mathrm{~d} s\right] \leq C_{L} \mathbb{E}\left[\int_{t}^{T} \dot{\delta} Y_{s} \mathrm{~d} \dot{K}_{s}\right] \leq C_{L} \sum_{j<\kappa} \mathbb{E}\left[\int_{r_{j}}^{r_{j+1}} \dot{\delta} Y_{s} \mathrm{~d} \dot{K}_{s}\right] \tag{5.22}
\end{equation*}
$$

Using the expression of $\dot{\delta} Y$ and Lemma 5.1, we obtain

$$
\dot{\delta} Y_{s} \leq \dot{\delta} Y_{r_{j+1}}+\int_{s}^{r_{j+1}}\left(\dot{\delta} f_{u}+\eta_{u}\right) \mathrm{d} u-\int_{s}^{r_{j+1}} \dot{\delta} Z_{u} \mathrm{~d} W_{u}, \quad r_{j} \leq s<r_{j+1}, \quad j<\kappa .
$$

Combining $(\mathbf{H} z),(3.2),(\sqrt[3.7]{ }),(5.4)$ and the fact that $\|\eta\|_{\mathcal{H}^{2}} \leq C_{L}$, we deduce

$$
\begin{aligned}
\sum_{j<\kappa} \mathbb{E}\left[\int_{r_{j}}^{r_{j+1}} \dot{\delta} Y_{s} \mathrm{~d} \dot{K}_{s}\right] & \leq \mathbb{E}\left[\sum_{j<\kappa} \int_{r_{j}}^{r_{j+1}} \int_{s}^{r_{j+1}}\left(\dot{\delta} f_{u}+\eta_{u}\right) \mathrm{d} u \mathrm{~d} \dot{K}_{s}\right]+\mathbb{E}\left[\sum_{j<\kappa} \int_{r_{j}}^{r_{j+1}} \dot{\delta} Y_{r_{j+1}} \mathrm{~d} \dot{K}_{s}\right] \\
& \leq C_{L}|\Re|+\mathbb{E}\left[\dot{K}_{T} \sup _{r \in \Re}\left|\dot{\delta} Y_{r}\right|\right] .
\end{aligned}
$$

Plugging this expression in (5.22) and using Cauchy Schwartz inequality together with (5.6) and Proposition 2.1 concludes the proof.

5.3 Convergence of the discrete-time scheme

Combining the previous results with the control of the error between the discrete-time scheme and the discretely obliquely reflected BSDE derived in Section 4 , we obtain the convergence of the discrete time scheme to the solution of the continuously obliquely reflected BSDE. In the next theorem, we detail the corresponding approximation error for different choices of reflection time step $|\Re|$ with respect to the discrete time step $|\pi|$.

Theorem 5.4. The following holds.
(i) If $(\mathbf{H} f)-(\mathbf{H} c)$ holds, taking $|\Re| \sim \frac{\log L}{-\varepsilon \log |\pi|}$ for $\varepsilon>0$, we have

$$
\sup _{t \in[0, T]} \mathbb{E}\left[\left|\dot{Y}_{t}-\widetilde{Y}_{t}^{\pi}\right|^{2}+\left|\dot{Y}_{t}-Y_{t}^{\pi}\right|^{2}\right]+\mathbb{E}\left[\int_{0}^{T}\left|\dot{Z}_{s}-\bar{Z}_{s}^{\pi}\right|^{2} \mathrm{~d} s\right] \leq \frac{C_{L}^{\varepsilon}}{[-\log (|\pi|)]^{\frac{1}{2}-\varepsilon}}
$$

(ii) If f does not depend on z and $|\pi| L<1$, taking similar grids $\Re=\pi$, we have

$$
\sup _{i \leq n} \mathbb{E}\left[\left|\dot{Y}_{t_{i}}-Y_{t_{i}}^{\pi}\right|^{2}+\left|\dot{Y}_{t_{i}}-\widetilde{Y}_{t_{i}}^{\pi}\right|^{2}\right] \leq C_{L}^{\varepsilon}|\pi|^{1-\varepsilon}, \quad \varepsilon>0
$$

Moreover under $(\mathbf{H} c)$,

$$
\sup _{t \in[0, T]} \mathbb{E}\left[\left|\dot{Y}_{t}-Y_{t}^{\pi}\right|^{2}+\left|\dot{Y}_{t}-\tilde{Y}_{t}^{\pi}\right|^{2}\right] \leq C_{L}^{\epsilon}|\pi|^{\frac{1}{2}-\varepsilon}, \quad \varepsilon>0
$$

(iii) Under $(\mathbf{H} c)$, if f does not depend on z and $|\pi| L<1$, taking $|\Re| \sim|\pi|^{2 / 3}$, we get

$$
\mathbb{E}\left[\int_{0}^{T}\left|\dot{Z}_{s}-\bar{Z}_{s}^{\pi}\right|^{2} \mathrm{~d} s\right] \leq C_{L}^{\varepsilon}|\pi|^{\frac{1}{3}-\varepsilon}, \quad \varepsilon>0
$$

(iv) Furthermore, for constant cost functions, the statements (ii) and (iii) hold true with $\varepsilon=0$.

Proof. For $\varepsilon>0$, setting \Re such that $|\Re| \sim \frac{\log L}{-\varepsilon \log |\pi|}$, we obtain combining Proposition 4.2 and Theorem 5.3 that

$$
\sup _{t \in[0, T]} \mathbb{E}\left[\left|\dot{Y}_{t}-\tilde{Y}_{t}^{\pi}\right|^{2}+\left|\dot{Y}_{t}-Y_{t}^{\pi}\right|^{2}\right]+\mathbb{E}\left[\int^{T}\left|\dot{Z}_{s}-\bar{Z}_{s}^{\pi}\right|^{2} \mathrm{~d} s\right] \leq C_{L}^{\varepsilon}\left[\left(\frac{-1}{\log (|\pi|)}\right)^{\frac{1}{2}-\varepsilon} \vee|\pi|^{\frac{1}{2}-\varepsilon}\right]
$$

Therefore (i) is proved. Furthermore (ii), (iii) and (iv) are direct consequences of Theorem 4.1 and Theorem 5.2 or Theorem 5.3 ,

6 Appendix

6.1 A priori estimates for discretely RBSDEs

We collect here the proofs for a priori estimates given in Proposition 2.1 and Proposition 2.2 .

Proof of Proposition 2.1

Observing that on each interval $\left[r_{j}, r_{j+1}\right),(Y, \tilde{Y}, Z)$ solves a standard BSDE, existence and uniqueness follow from a concatenation procedure and [21]. The rest of the proof divides in two steps controlling separately \widetilde{Y} and (Z, K).

Step 1. Control of \widetilde{Y}
As in proof of Theorem 2.4 in [15], we consider two non-reflected BSDEs bounding \widetilde{Y}. Define the \mathbb{R}^{d}-valued random variable $\breve{\xi}$ and the random map \breve{F} by $(\breve{\xi})^{j}:=\sum_{i=1}^{d}|\xi|^{i}$ and $(\breve{F})^{j}:=\sum_{i=1}^{d}\left|(F)^{i}\right|$ for $1 \leq j \leq d$.
We then denote by $(\breve{Y}, \breve{Z}) \in\left(\mathcal{S}^{2} \times \mathcal{H}^{2}\right)^{\mathcal{I}}$ the solution to the following non-reflected BSDE

$$
\begin{equation*}
\breve{Y}_{t}=\breve{\xi}+\int_{t}^{T} \breve{F}\left(s, \breve{Y}_{s}, \breve{Z}_{s}\right) \mathrm{d} s-\int_{t}^{T} \breve{Z}_{s} \mathrm{~d} W_{s}, \quad 0 \leq t \leq T \tag{6.1}
\end{equation*}
$$

Since all the components of \breve{Y} are similar, $\breve{Y} \in \mathcal{C}$.
We also introduce $\left({ }^{0} Y,{ }^{0} Z\right)$ the solution to the BSDE

$$
{ }^{0} Y_{t}=\xi+\int_{t}^{T} F\left(s,{ }^{0} Y_{s},{ }^{0} Z_{s}\right) \mathrm{d} s-\int_{t}^{T}{ }^{0} Z_{s} \mathrm{~d} W_{s}, \quad 0 \leq t \leq T
$$

Using a comparison argument on each interval $\left[r_{j}, r_{j+1}\right)$ and the monotony property of \mathcal{P}, we straightforwardly deduce ${ }^{0} Y \preceq Y \preceq \breve{Y}$.
Since $\left({ }^{0} Y, \breve{Y}\right)$ are solutions to standard non-reflected BSDEs, usual arguments lead to

$$
\begin{equation*}
\sup _{0 \leq s \leq T}\left|\widetilde{Y}_{s}\right|^{p} \leq \sup _{0 \leq s \leq T}\left|{ }^{0} Y_{s}\right|^{p}+\sup _{0 \leq s \leq T}\left|\breve{Y}_{s}\right|^{p}=: \bar{\beta} \tag{6.2}
\end{equation*}
$$

where the positive random variable $\bar{\beta}$ satisfies classically $\mathbb{E}[\bar{\beta}] \leq C_{L}$, under condition $\left(\mathbf{C}_{p}\right)$ for a given $p \geq 2$.

Step 2. Control of (Z, K)
We fix $t \leq T$ and applying Ito's formula to the càdlàg process $|\widetilde{Y}|^{2}$ on $[0, t]$ to derive

$$
\left|\widetilde{Y}_{t}\right|^{2}=\left|\widetilde{Y}_{0}\right|^{2}+2 \int_{(0, t]} \tilde{Y}_{s-} \mathrm{d} \tilde{Y}_{s}+\int_{(0, t]}\left|Z_{s}\right|^{2} \mathrm{~d} s+\sum_{s \leq t}\left(\left|\tilde{Y}_{s}\right|^{2}-\left|\tilde{Y}_{s-}\right|^{2}-2 \tilde{Y}_{s-} \Delta Y_{s}^{g}\right)
$$

Since the last term on the right-hand side is non negative we deduce that

$$
\left|\widetilde{Y}_{t}\right|^{2}+\int_{t}^{T}\left|Z_{s}\right|^{2} \mathrm{~d} s \leq\left|\widetilde{Y}_{T}\right|^{2}+2 \int_{t}^{T} \widetilde{Y}_{s-} F\left(s, \widetilde{Y}_{s}, Z_{s}\right) \mathrm{d} s+2 \int_{(t, T]} \widetilde{Y}_{s-} \mathrm{d} \widetilde{K}_{s}+2 \int_{t}^{T}\left(Z_{s} \widetilde{Y}_{s}\right) \mathrm{d} W_{s}
$$

Using standard arguments, together with $\sqrt{6.2}$ and $\left(\mathbf{C}_{p}\right)$ for a fixed $p \geq 2$, we compute

$$
\begin{equation*}
\int_{t}^{T}\left|Z_{s}\right|^{2} \mathrm{~d} s \leq C_{L}\left(\bar{\beta}^{\frac{2}{p}}+\bar{\beta}^{\frac{1}{p}}\left(\widetilde{K}_{T}-\widetilde{K}_{t}\right)+\int_{t}^{T}\left(Z_{s} \widetilde{Y}_{s}\right) \mathrm{d} W_{s}\right) \tag{6.3}
\end{equation*}
$$

Moreover, we get from (2.5) and $\left(\mathbf{C}_{p}\right)$ that

$$
\begin{equation*}
\left|\widetilde{K}_{T}-\widetilde{K}_{t}\right|^{2} \leq C_{L}\left[\bar{\beta}^{\frac{2}{p}}+\int_{t}^{T}\left|Z_{s}\right|^{2} \mathrm{~d} s+\left(\int_{t}^{T} Z_{s} \mathrm{~d} W_{s}\right)^{2}\right] \tag{6.4}
\end{equation*}
$$

Combining 6.3 and 6.4 we obtain

$$
\begin{equation*}
\int_{t}^{T}\left|Z_{s}\right|^{2} \mathrm{~d} s \leq \frac{C_{L}}{\varepsilon} \bar{\beta}^{\frac{2}{p}}+\varepsilon \int_{t}^{T}\left|Z_{s}\right|^{2} \mathrm{~d} s+\varepsilon\left(\int_{t}^{T} Z_{s} \mathrm{~d} W_{s}\right)^{2}+C_{L} \int_{t}^{T}\left(Z_{s} \widetilde{Y}_{s}\right) \mathrm{d} W_{s} \tag{6.5}
\end{equation*}
$$

for any $\varepsilon>0$. Elevating the previous estimate to the power $p / 2$, it follows from Burkholder-Davis-Gundy inequality that

$$
\begin{aligned}
\mathbb{E}_{t}\left[\left(\int_{t}^{T}\left|Z_{s}\right|^{2} \mathrm{~d} s\right)^{\frac{p}{2}}\right] & \leq C_{L}^{p}\left(\varepsilon^{-\frac{p}{2}} \mathbb{E}_{t}[\bar{\beta}]+\varepsilon^{\frac{p}{2}} \mathbb{E}_{t}\left[\left(\int_{t}^{T}\left|Z_{s}\right|^{2} \mathrm{~d} s\right)^{\frac{p}{2}}\right]+\mathbb{E}_{t}\left[\left(\int_{t}^{T}\left|Z_{s} \widetilde{Y}_{s}\right|^{2} \mathrm{~d} s\right)^{\frac{p}{4}}\right]\right) \\
& \leq C_{L}^{p}\left(\varepsilon^{-\frac{p}{2}} \mathbb{E}_{t}[\bar{\beta}]+\varepsilon^{-\frac{p}{2}} \mathbb{E}_{t}\left[\sup _{s \in[t, T]}\left|\widetilde{Y}_{s}\right|^{p}\right]+\varepsilon^{\frac{p}{2}} \mathbb{E}_{t}\left[\left(\int_{t}^{T}\left|Z_{s}\right|^{2} \mathrm{~d} s\right)^{\frac{p}{2}}\right]\right)
\end{aligned}
$$

Using (6.2 and $\left(\mathbf{C}_{p}\right)$, we deduce, for ε small enough,

$$
\begin{equation*}
\mathbb{E}_{t}\left[\left(\int_{t}^{T}\left|Z_{s}\right|^{2} \mathrm{~d} s\right)^{\frac{p}{2}}\right] \leq C_{L}^{p} \mathbb{E}_{t}[\bar{\beta}] . \tag{6.6}
\end{equation*}
$$

Taking (6.4) up to the power $\frac{p}{2}$, and combining Burkholder-Davis-Gundy inequality with (6.6) yields $\mathbb{E}_{t}\left[\left|\widetilde{K}_{T}-\widetilde{K}_{t}\right|^{p}\right] \leq C_{L}^{p} \mathbb{E}_{t}[\bar{\beta}]$, which concludes the proof of the Proposition, recalling $\left(\mathbf{C}_{p}\right)$.

Proof of Proposition 2.2

Fix $(t, i) \in[0, T] \times \mathcal{I}$ and $p \geq 2$. According to the identification of $\left(U^{a^{*}}, V^{a^{*}}\right)$ with $\left(\widetilde{Y}^{a^{*}}, Z^{a^{*}}\right)$, obtained in the proof of Theorem 2.1, we deduce from Proposition 2.1 the expected controls on $U^{a^{*}}$ and $V^{a^{*}}$. Writing the equation satisfied by $\left(U^{a^{*}}, V^{a^{*}}\right)$ and using standard arguments for BSDEs, we observe that

$$
\mathbb{E}_{t}\left[\left|A_{T}^{a^{*}}\right|^{p}\right] \leq C_{L}^{p}\left(\mathbb{E}_{t}\left[\sup _{s \in[t, T]}\left|U_{s}^{a^{*}}\right|^{p}+\left(\int_{t}^{T}\left|V_{s}^{a^{*}}\right|^{2} d s\right)^{\frac{p}{2}}\right]+\left|A_{t}^{a^{*}}\right|^{p}\right)
$$

By definition of a^{*} and 2.2, we have $\left|A_{t}^{a^{*}}\right| \leq \max _{k \neq i}\left|C_{t}^{i, k}\right|$, which plugged in the previous inequality leads to $\mathbb{E}_{t}\left[\left|A_{T}^{a^{*}}\right|^{p}\right] \leq C_{L}^{p} \mathbb{E}_{t}[\bar{\beta}]$, recalling $\left(\mathbf{C}_{p}\right)$.
We finally complete the proof, noticing from $\sqrt[2.2]{ }$ that $\mathbb{E}_{t}\left[\left|N^{a^{*}}\right|^{p}\right] \leq C_{L}^{p} \mathbb{E}_{t}\left[\left|A_{T}^{a^{*}}\right|^{p}\right]$.

6.2 A priori estimates for the Euler scheme

This paragraph provides the proof of Proposition 4.1. concerning a-priori estimates for the Euler scheme associated to RBSDEs.

Proof of Proposition 4.1

The proof follows exactly the same arguments as in Step 1 of the proof of Proposition 2.1 above. The only difficulty is the use of a comparison argument for Euler Scheme that we provide right below in Lemma 6.1.

We detail here a comparison theorem for discrete-time schemes of BSDEs in the case where the driver does not depend on the variable Z.
For $k=1,2$, let ξ_{k} be a square integrable random variable and $\psi_{k}: \mathbb{R}^{m} \times \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ a L-Lipschitz generator function. We suppose that $\xi_{1} \geq \xi_{2}$ and $\psi_{1} \geq \psi_{2}$ on $\mathbb{R}^{m} \times \mathbb{R}^{d}$. For a time grid π, we denote by $Y^{\pi, k}$ the discrete-time scheme starting from the terminal condition $Y_{T}^{\pi, k}:=\xi_{k}$ and computing recursively, for $i=n-1, \ldots, 0$,

$$
\begin{equation*}
Y_{t_{i}}^{\pi, k}=\mathbb{E}\left[Y_{t_{i+1}}^{\pi, k} \mid \mathcal{F}_{t_{i}}\right]+\left(t_{i+1}-t_{i}\right) \psi_{k}\left(X_{t_{i}}^{\pi}, Y_{t_{i}}^{\pi, k}\right) \tag{6.7}
\end{equation*}
$$

Lemma 6.1. For any π such that $|\pi| L<1$, we have $Y_{t_{i}}^{\pi, 1} \geq Y_{t_{i}}^{\pi, 2}, i \leq n$.
Proof. Since the results holds true on the grid point $t_{n}=T$ and follows from a backward induction on π, we just prove $Y_{t_{n-1}}^{\pi, 1} \geq Y_{t_{n-1}}^{\pi, 2}$. Using 6.7, we compute
$Y_{t_{n-1}}^{\pi, 1}-Y_{t_{n-1}}^{\pi, 2}=\mathbb{E}_{t_{n-1}}\left[\xi_{1}-\xi_{2} \mid \mathcal{F}_{t_{n-1}}\right]+\left(T-t_{n-1}\right) \Lambda_{n-1}\left(Y_{t_{n-1}}^{\pi, 1}-Y_{t_{n-1}}^{\pi, 2}\right)+\Delta_{n-1}$,
where $\Delta_{n-1}:=\psi_{1}\left(X_{t_{n-1}}^{\pi} Y_{t_{n-1}}^{\pi, 2}\right)-\psi_{2}\left(X_{t_{n-1}}^{\pi} Y_{t_{n-1}}^{\pi, 2}\right) \geq 0$ and

$$
\Lambda_{n-1}:=\left\{\begin{array}{ccc}
\frac{\psi_{1}\left(X_{t_{n-1}}^{\pi} Y_{t_{n-1}}^{\pi, 1}\right)-\psi_{1}\left(X_{t_{n-1}}^{\pi} Y_{t_{n-1}}^{\pi, 2}\right)}{Y_{t_{n-1}}^{\pi, 1}-Y_{t_{n-1}, 2}} & \text { if } & Y_{t_{n-1}}^{\pi, 1}-Y_{t_{n-1}}^{\pi, 2} \neq 0 \tag{6.9}\\
0 & \text { else }
\end{array}\right.
$$

Since ψ_{1} is L-Lipschitz, the condition $|\pi| L<1$, implies $\left(T-t_{n-1}\right) \Lambda_{n-1}<1$. Plugging this estimate, $\Delta_{n-1} \geq 0$ and $\xi_{1} \geq \xi_{2}$ and ψ_{1} in 6.8, we complete the proof.

6.3 A priori estimates for continuously RBSDEs

This last paragraph is dedicated to the proof of Proposition 5.1.

Proof of Proposition 5.1

The proof of 5.4 is a direct adaptation of the proof of Proposition 2.1 The only difference is in Step 1: we approximate $(\dot{Y}, \dot{Z}, \dot{K})$ by a sequence of penalized BSDEs (see proof of Theorem 2.4 in [15] or Step 3 in the proof of Theorem 5.3) which are bounded by ${ }^{0} Y$ and \breve{Y}. Estimate (5.5) follows from the exact same arguments as the one used in the proof of Proposition 2.2 .

References

[1] Bouchard B. and J.-F. Chassagneux (2008), Discrete time approximation for continuously and discretely reflected BSDE's. Stochastic Processes and their Applications, 118 (12), 612-632.
[2] Bouchard B. and N. Touzi (2004), Discrete-Time Approximation and Monte-Carlo Simulation of Backward Stochastic Differential Equations. Stochastic Processes and their Applications, 111 (2), 175-206.
[3] Bouchard B. and R. Elie (2008), Discrete-time approximation of decoupled forward-backward SDE with jumps, Stoch. Proc. and their Appl., 118, 53-75.
[4] Bouchard B., R. Elie and N. Touzi (2009), Discrete-time Approximation of BSDEs and Probabilistic schemes for Fully Nonlinear PDEs, Radon Series on Computational and Applied Mathematics.
[5] Carmona R. and M. Ludkovski (2005), Optimal switching with applications to energy tolling agreements, Preprint.
[6] Chassagneux J.F. (2008), Processus réfléchis en finance et probabilité numérique. PhD Thesis, Université Paris 7.
[7] Chassagneux J.F. (2009), A discrete time approximation for doubly reflected BSDEs. Advances in Applied Probability, 4, 101-130.
[8] Chassagneux J.F., R. Elie and I. Kharroubi (2010), A note on the existence and unqueness of solutions of reflected BSDEs associated to switching problems. Preprint.
[9] Djehiche B., Hamadène S. and A. Popier (2009), The finite horizon optimal multiple switching problem. SIAM Journal fo Control and Optimization, 48(4), 2751-2770.
[10] El Karoui N., C. Kapoudjian, E. Pardoux, S. Peng, M.C. Quenez (1997), Reflected solutions of Backward SDE's and related obstacle problems for PDE's Annals of Probability, 25(2), 702-737.
[11] Elie R. and I. Kharroubi (2009), Constrained Backward SDEs with Jumps: Application to Optimal Switching, Preprint.
[12] Elie R. and I. Kharroubi (2009), Probabilistic representation and approximation for coupled systems of variational inequalities, Preprint.
[13] Gobet E., J.-P. Lemor and X. Warin (2005), A regression-based Monte Carlo method to solve backward stochastic differential equations. Annals of Applied Probability, 15 (3), pp. 2172-2202.
[14] Hamadene, S. and M. Jeanblanc (2007), On the starting and stopping problem: application in reversible investments. Math. of Operations Research, 32 (1).
[15] Hamadène S. and J. Zhang (2007), The Starting and Stopping Problem under Knightian Uncertainty and Related Systems of Reflected BSDEs. Preprint.
[16] Hu Y. and S. Tang (2007), Multi-dimensional BSDE with oblique Reflection and optimal switching, To appear in Prob. Theory and Related Fields.
[17] Kloeden P. E. and E. Platen (1992), Numerical solutions of Stochastic Differential Equations, Applied Math. 23, Springer, Berlin.
[18] Kunita H. (1990), Stochastic flows and stochastic differential equations, Cambridge Stud. Adv. Math. 24, Cambridge University Press, Cambridge.
[19] Ma J. and J. Zhang (2005), Representations and regularities for solutions to BSDEs with reflections. Stoch. Process. Appl., 115, 539-569.
[20] Nualart D. (1995), The Malliavin Calculus and Related Topics, Springer Verlag, Berlin.
[21] Pardoux E. and S. Peng (1990), Adapted solution of a backward stochastic differential equation, Systems and Control Letters, 14, 55-61.
[22] Peng S. (1999), Monotonic limit theory of BSDE and nonlinear decomposition theorem of Doob-Meyer's type, Prob. Theory and Related Fields, 113, 473-499.
[23] Pham H., V. Ly Vath and X. Zhou (2009), Optimal switching over multiple regimes, SIAM J. Control Optim, 48-4, 2217-2253.
[24] Porchet A., N. Touzi and X. Warin (2009), Valuation of a powerplant under production constraints and markets incompleteness, Mathematical Methods of Operations research, 70-1.
[25] Zhang J. (2004), A numerical scheme for BSDEs. Annals of Applied Probability, 14 (1), 459-488.

