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ABSTRACT  

L-glutamine is the primary metabolic fuel for enterocytes. Glutamine from the diet is 

transported into the absorptive cells by two sodium-dependent neutral amino acid transporters 

present at the apical membrane: ASCT2/SLC1A5 and B
0
AT1/SLC6A19. We have 

demonstrated that leptin is secreted into the stomach lumen after a meal and modulates the 

transport of sugars after binding to its receptors located at the brush border of the enterocytes. 

The present study was designed to address the effect of luminal leptin on Na
+
-dependent Gln 

transport in rat intestine and identify the transporters involved. We found that 0.2 nM leptin 

inhibited uptake of Gln and phenylalanine (substrate of B
0
AT1) using everted intestinal rings. 

In Ussing chambers, 10 mM Gln absorption followed as Na
+
-induced short-circuit current was 

inhibited by leptin in a dose-dependent manner (maximum inhibition at 10 nM; IC50~0.1 nM). 

Phe absorption was also decreased by leptin. Western blot analysis after 3 min incubation of 

the intestinal loops with 10 mM Gln, showed marked increase of ASCT2 and B
0
AT1 protein 

in the brush border membrane that was reduced by rapid pre-incubation of the intestinal 

lumen with 1 nM leptin. Similarly, the increase in ASCT2 and B
0
AT1 gene expression 

induced by 60 min incubation of the intestine with 10 mM Gln was strongly reduced after a 

short pre-incubation period with leptin. Altogether these data demonstrate that in rat, leptin 

controls the active Gln entry through reduction of both B
0
AT1 and ASCT2 proteins traffic to 

the apical plasma membrane and modulation of their gene expression. 
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INTRODUCTION 

Glutamine (Gln) is the most abundant amino acid in the plasma. It is absorbed by the 

intestine, making this organ a key player in the whole body Gln homeostasis. As Gln is 

precursor of the nucleosides and glucose synthesis and is involved in the acid-base balance in 

the kidney, it is crucial for the inter-organ nitrogen flux. Gln is also the most important energy 

source for the enterocytes, lymphocytes and fibroblasts, and necessary for the growth and 

viability of cells maintained in culture (5). Gln from the diet is transported into the enterocyte 

by two sodium-dependent neutral amino acid transporters present in the apical membrane: 

ASCT2 (System ASC) and B
0
AT1 (System B) (6). ASCT2/SLC1A5 shows high affinity for 

Ala, Ser, Cys, Thr and Gln (K0.5  20 µM), while B
0
AT1/ SLC6A19 is a low affinity 

transporter (K0.5 ranging from 1.4 to 4 mM) with preference for large neutral amino acids, 

including those with bulky lateral chain as Phe, a specific substrate for this transporter (6). In 

the cell, most of the Gln is metabolized to cover its energetic requirements and the rest is 

transported to the blood by the basolateral sodium-independent exchanger LAT-2/4F2hc, 

SLC7A8/SLC3A2 (system L) (6).  

Leptin was initially described as an adipostatic signal controlling food intake and energy 

expenditure (32). Today, it is well known that leptin is a multifunctional hormone that is also 

involved in immune and neuroendocrine functions and nutrients absorption (22). This action 

is consistent with the production of leptin by many other tissues (1, 15, 23), as well as the 

expression of its receptors in peripheral tissues (14, 22). Indeed, we have demonstrated that 

leptin receptor is expressed in both the apical and basolateral membrane of intestinal 

absorptive cells (3). Other authors also showed that leptin is secreted into the gastric lumen 

after a meal by pepsinogen-containing secretory granules of chief cells (11), which also 

contain the leptin soluble receptor, indicating that this leptin receptor isoform is also released 
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into the gastric lumen (12). Bound to this receptor, leptin remains stable in the gastric juice, 

despite the severe conditions of pH and proteolytic activity in the gastric lumen, and is able to 

reach the intestinal lumen (17). Accordingly, we have demonstrated that leptin present in the 

intestinal lumen inhibits sugar absorption in vivo by regulating the Na
+
/glucose cotransporter 

SGLT1 (19). Similar effect was previously reported in vitro (2, 16, 18, 21) with implication of 

both PKC and PKA activation (4, 16). Interestingly, luminal leptin enhances the intestinal 

transport of dipeptides by the H+/peptide transporter PEPT1 and CD147/MCT-1 mediated 

uptake of butyrate in mice and Caco-2 cells (9, 10), as well as fructose transport by the 

facilitative transporter GLUT5 in rat intestine in vivo (25). Given that leptin seems to regulate 

different nutrients transporters, one could anticipate that it may also modulate amino acid 

transporters in the intestine. However, there are not data on this respect yet. Considering the 

importance of Gln for the whole organism and in the intestine itself, the aim of the present 

study was to investigate the effect of luminal leptin on Gln transport and the target 

transporters of the hormone. We found that both ASCT2 and B
0
AT1 are involved in Na

+
-

dependent uptake of glutamine in rat intestine and regulated by apical leptin. The present 

results give new insights into the role of leptin as a major gastrointestinal hormone regulating 

intake of rich energy molecules. 

 

MATERIAL AND METHODS 

Animals. Male Wistar rats weighing 220–260 g were obtained from Charles River 

Laboratories, L’Arbresle, France and the Applied Pharmacology Research Center (CIFA) of 

the University of Navarra, Pamplona, Spain. They were caged under standard laboratory 

conditions with tap water and regular food provided ad libitum, in a 12-h/12-h light/dark cycle 

at a temperature of 21–23°C and fasted for 16-18 h, with free access to water, before the 
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experiments. The animals were treated in accordance with the European Community 

Guidelines concerning the care and use of laboratory animals. The animal studies were 

performed under license from the veterinary department of Paris, France (to A. Bado and R. 

Ducroc, authorization no. 75-955 of September 22, 2004 and no. 75-174 of October 9, 2003, 

respectively; agreement no. B75-18-02; decision no. 05/12 established on July 12, 2005 by 

Prefecture de Police de Paris, France). The experimental protocol was approved by the 

Animal Research Ethic Committee of the University of Navarra, with the nº 064-06. 

Everted intestinal rings uptake assays. Rats were anesthetized by i.p. injection of a mixture 

(4:1) of ketamine chlorhydrate (Ketolar, Merial S.A., Barcelona, Spain) and medetomidine 

chlorhydrate (Domtor, Pfizer Orion Corporation, Espoo, Finland), at a dose of 0.25 ml per 

100 g body weight. Uptake of Gln or Phe by everted jejunal rings was determined as 

previously described (21). Briefly, rats were anesthetized and a segment (20-25 cm) of 

jejunum was quickly excised, rinsed with ice cold saline solution (NaCl 0.9%), everted and 

cut into 30 mg pieces. Groups of 6 rings were incubated for 15 min at 37°C under 

continuous shacking and gassed with O2, in Krebs-Ringer-Tris containing 0.5 mM Gln or 50 

µM Gln (Sigma-Aldrich Co. USA) and 0.064 µCi/ml L-[
14

C(U)]-glutamine (218 mCi/mmol; 

American Radiolabeled Chemicals, St Louis, MO, USA) or 0.5 mM Phe (Merck, Darmstadt) 

and 0.064 µCi/ml L-[
14

C (U)]-phenylalanine (370 mCi/mmol; American Radiolabeled 

Chemicals, St Louis, MO, USA), in the absence (control) and in the presence of 0.2 nM 

recombinant rat leptin (Peprotech EC Ldt., London, UK). After the incubation period, rings 

were washed in ice-cold saline solution and radioactivity incorporated into the tissue was 

determined by liquid scintillation counting. Results are expressed as pmol amino acid/g wet 

weight/min (pmol/g/min).  
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Tissue preparation and short-circuit measurement. Animals were killed by i.p. 

pentobarbital overdose and the proximal intestine was dissected out and rinsed in cold saline 

solution. The mesenteric border was carefully stripped off using forceps and the small 

intestine opened along this border and rinsed in Krebs-Ringer bicarbonate solution (KRB). 

Four adjacent proximal samples were mounted in modified Ussing chambers (Physiologic 

Instruments Inc., San Diego, CA). Exposed area was 0.50 cm
2
. The tissue samples were 

bathed with 4 mL of carbogen-gassed KRB solution on each side. Serosal KRB solution had 

the following composition (in mM): NaCl 115.4, KCl 5, MgCl2 1.2, NaH2PO4 0.6, NaHCO3 

25, CaCl2 1.2 and glucose 10. In mucosal KRB solution, glucose was replaced by mannitol. 

Each reservoir was gassed with 95% O2-5% CO2 and kept at constant temperature of 37°C 

(pH at 7.35).  

Electrogenic ion transport was monitored continuously as short-circuit current (Isc) by using 

an automated voltage clamp apparatus (DVC 1000, WPI, Aston, England) linked through a 

MacLab 8 to a MacIntosh computer. Results were expressed as the intensity of the Isc 

(µA/cm
2
) or as the difference (ΔIsc) between the peak Isc after amino acid challenge and the 

basal Isc measured just before the addition of the amino acid. Leptin was added in either the 

mucosal or the serosal bath 2-10 min before Gln challenge in the mucosal bath.  

We found that there were no difference neither in the quantitative sodium-dependent Gln 

transport nor in the effect of leptin between middle jejunum and middle ileum, so the rest of 

studies were performed using middle small intestine (jejunum-ileum). 

Western blot analysis. Fasted rats were anesthetized by i.p. administration of pentobarbital 

and laparotomized. Three small intestinal loops (7 cm length) per rat were prepared as 

previously described (16). They were filled with 3 mL of KRB-mannitol without (2 loops) or 

with 1 nM leptin (1 loop) using a syringe equipped with a 30-4/10 hypodermic needle 
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(Acierinox, Vincent, Paris, France). After 3 min in vivo incubation, the loop containing leptin 

and one loop without leptin were filled with ~1 ml of a 10 mM Gln solution and again 

incubated for 3 min. This protocol was performed in four different rats where the loops were 

treated in a randomized way. In some rats, one loop was injected with leptin but without Gln. 

After sacrifice, loops were removed, opened along the mesenteric border and the mucosa was 

scrapped off on ice with a glass blade. Brush border membrane vesicles (BBMV) were 

prepared from mucosa scrapings as previously described (16). Protein concentration was 

quantified using the BCA protein assay Kit (Pierce, Rockford II, USA). Solubilized proteins 

were resolved by electrophoresis on 12.5% SDS-PAGE gels. The resolved proteins were 

transferred onto nitrocellulose membranes and subjected to immunoblot analysis with a rabbit 

anti-ASCT2 polyclonal antibody (AB 1352, Chemicon Millipore, Temecula, CA) diluted 

1:7,500, rabbit anti-B
0
AT1 at 1:500 (generous gift from François Verrey) or with mouse 

monoclonal β-Actin antibody (sc-81178, Santa Cruz Biotechnology Inc., Santa Cruz CA. The 

intensity of the immunoreactive bands detected by enhanced chemiluminescence (Pierce, 

Rockford, IL) was quantified using NIH Image (Scion Corp. Frederick Maryland, USA). β-

Actin was used as loading controls. The results were expressed in relation to control and the 

value of control was arbitrarily set to 1.  

Real-time PCR analysis (qRT-PCR). Real-time PCR was used to examine the effect of leptin 

on Gln-induced ASCT2 and B
0
AT1 gene expression. Rats were anesthetized and 

laparotomized. Three small intestinal loops of ~8 cm starting 15 cm from the cecum were 

prepared and filled with 1 nM leptin or saline.  After 3 min in vivo incubation, loops were filled 

with 10 mM Gln for 60 min. After this time, rats were killed, loops were dissected and rinsed 

in saline and mucosa was scrapped off on ice. Total RNA was extracted from the mucosa 

samples with the Trizol reagent (Qiagen). The first-strand cDNA was synthesized by reverse 

transcription from 5 µg of total RNA with SuperScript II reverse transcriptase (Invitrogen, 
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Cergy-Pontoise, France). Quantification of cDNA was performed with a Light Cycler System 

(Roche Diagnostics, Meylan France) according to the manufacturer‘s instructions.  Primers 

were as follows: rASCT2 f5’- CCACATGCGAAAAGGAATCT-3’, and r5’-

CTCAAGAGCCCAATTTCCAA-3’; rB
0
AT1 f5’-TTACCAAGTCAGGGGGTGAG-3’ and 

r5’-GATGAGGGCTTCATGACGAT-3’; r18S f5’–CCCTGGCCTTTGTACACACC-3’ r5’- 

GATCCGAGGGCGCTCACTA-3’. They were designed with oligo 4 software and synthesized 

by Eurogentec (UK). The comparative CT-method was used for relative mRNA 

quantification of target genes, normalized to protein 18S and a relevant control equal to 2-

CT.   

Chemicals. Recombinant murine leptin was purchased from PreProtech EC (PreProtech EC 

Ltd, London, United Kingdom). All other chemical reagents were purchased from Sigma (St. 

Louis, MO, USA). Leptin antagonist L39A/D40A (kind gift of Prof. Arieh Gertler) was 

diluted in saline. 

Statistical analysis. All results were expressed as means ± SEM. Student’s t test or one-way 

ANOVA with Tukey-Kramer multiple comparison post test when appropriate were performed 

using GraphPad Prism version 4.0 for Windows (Graphpad software Inc., San Diego, CA) or 

SPSS. v.15. The level of significance was set at p<0.05. 

RESULTS 

Leptin inhibits glutamine uptake in everted rings The effect of leptin on Gln uptake was first 

studied on preparations of everted intestinal rings after 15 min incubation. As shown in Fig 

1A, uptake of 0.5 mM Gln was significantly reduced (35%) by 0.2 leptin. The hormone also 

significantly reduced, by 25 %, uptake 50 µM Gln, a concentration close to the K0.5 for 

ASCT2 (6) (Fig 1B). To evaluate the contribution of B
0
AT1 on Gln absorption at both 
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concentrations, we examined the effect of 25 mM Phe (specific substrate of B
0
AT1) on Gln 

uptake. As depicted in Fig. 1A, Phe reduced 0.5 mM Gln uptake by ~65%, indicating a higher 

contribution of B
0
AT1 on Gln uptake in comparison to ASCT2. However, uptake of 50 µM 

was not inhibited by Phe (Fig 1B) demonstrating that at this concentration only ASCT2 was 

contributing to Gln absorption. The uptake of 0.5 mM Phe, assayed in the same tissue 

preparation as Fig. 1A, was found less than 10% of 0.5 mM Gln uptake but was  also inhibited 

(45%) by leptin (Fig 1C).  

Luminal leptin reduces glutamine-induced Isc. Leptin effect was further investigated in 

Ussing chambers, a polarized system that permits the access to either side of the tissue 

preparation. After the intestinal mucosa was isolated in the chamber and allowed to reach a 

steady state (usually 40 min), tissues were challenged with 10 mM Gln, which induced a rapid 

(less that 2 min) and significant rise in Isc (~23 μA/cm
2
). The increase in Isc was the result of 

the Na
+ 

mucosal-to-serosal movement that sustained the amino acid entry through sodium-

dependent amino acid transporter/s. In accordance to the results obtained with intestinal rings 

(Fig 1.A and C), 10 mM Phe induced a small Isc, which was ~12 % of that for Gln (Fig. 2A). 

Luminal addition of 10 mM Ala also significantly raised Isc (ΔIsc ~15 μA/cm
2
) whereas no 

change in Isc was observed after 10 mM methyl aminoisobutyric acid (data not shown), 

indicating the absence of system A participation in the electrogenic uptake of Gln.  

Again, in line with the data obtained with intestinal rings (Fig. 1A), 20 mM Phe reduced the 

Gln-induced Isc by ~70 % when it was added to the mucosal bath 3 min before 10 mM Gln 

challenge (Fig. 2B) and leptin (10 nM) inhibited by ~60 % Gln and Ala-induced Isc (Fig. 2C) 

Inhibition of 10 mM Gln transport across intestinal mucosa, following rapid incubation with 

leptin in the mucosal reservoir, was found concentration-dependent (Fig 2D). Inhibition was 

significant with 0.01 nM (~30 %), maximal for 10 nM (~80%), and decreased with 100 nM 
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leptin up to ~50 % The concentration producing a half-maximal inhibition of Gln transport 

(IC50) was 0.1 nM (Fig. 2D). Leptin (10 nM) reduced the Isc induced by 30 mM Gln (26% 

inhibition, p<0.05) and also the small Isc induced by 1 mM Gln, although in this case the 

inhibition did not reach statistical significance (data not shown). 

 

Mucosal vs. serosal leptin. The possible effect of leptin on Gln-induced Isc acting from the 

serosal side was also studied in Ussing chambers. As shown in figure 2E, 10 nM leptin after 2 

min in the serosal bath also decreased the 10 mM Gln-induced Isc by ~ 40%. This decrease, 

however, was smaller than that produced by the hormone acting from the mucosal side, which 

was around 80 %. After 10 min, leptin from the serosal side had no more inhibitory effect 

while it was still active from the mucosal side (50 % inhibition). 

Leptin inhibition of glutamine transport is blocked by leptin receptor antagonist. To 

examine whether the inhibitory effect of leptin was dependent upon leptin receptor, we 

studied the effect of L39A/D40A, a mutated leptin-based peptide acting as a leptin antagonist 

(26). As shown in Fig 2F, addition of 50 nM L39A/D40A to the mucosal bath immediately 

prior to 10 nM leptin, reversed leptin inhibition of Gln-induced Isc, whereas 5 nM 

L39A/D40A had no effect.  

Leptin reduces glutamine-induced ASCT2 and B
0
AT1 protein expression. Western blot 

assays were performed to investigate if leptin could modify the expression in the plasma 

membrane of ASCT2 and B
0
AT1 transporters. As shown in Fig. 3, incubation of the intestinal 

loops with 10 mM Gln during 3 min increased the presence of ASCT2 and, in a lesser extent, 

of B
0
AT1 in the brush border membrane vesicles (Fig. 3A and B). This increase was inhibited 
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when the loops had been previously incubated with 1 nM leptin for 3 min, showing that leptin 

reduced Gln-induced ASCT2 and B
0
AT1 expression in the plasma membrane. 

Leptin reduces glutamine-induced ASCT2 and B
0
AT1 mRNA expression. Finally, the effect 

of luminal leptin on Gln-induced ASCT2 and B
0
AT1 gene expression was studied. Luminal 

infusion of 10 mM Gln for 60 min markedly increased the level of ASCT2 and B
0
AT1 mRNA 

(6.7 fold and 2.8 fold respectively when compared to their relative controls ; Fig. 4A and B). 

When the intestinal loops were first incubated with 1 nM leptin for 3 min before the Gln 

infusion, the increase in ASCT2 and B
0
AT1 mRNA was significantly reduced (~55%). These 

results indicate that leptin can also regulate Gln-induce ASCT2 and B
0
AT1 mRNA 

expression. 

 

DISCUSSION  

The present  results demonstrate that, in rat intestine, leptin inhibits the absorption of Gln and 

the protein and mRNA expression of ASCT2 and B
0
AT1, the two major Gln transporters in 

the apical membrane of the enterocytes (6), and that this effect is a clear result of the luminal 

action of the hormone. 

Glutamine, the most abundant amino acid in the body, plays a central role in inter-organ 

nitrogen transfer (13). Circulating Gln concentration is maintained at relatively constant level 

which is critical to avoid Gln depletion in blood and organ dysfunction. The small intestine is 

the most important organ for the supply of exogenous Gln to the body. Gln is also the major 

fuel for intestine absorptive cells. Though the transport systems for the entry of L-glutamine 

by intestinal epithelia cells have been studied in different animal models (6), its regulation by 

hormones and peptides is not yet completely understood. Growth hormone (GH) and 
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epidermal-growth factor (EGF) can enhance intestinal Gln uptake (27), and a possible 

hormonal stimulation of ASCT2 in vivo has been suggested (24). 

Leptin is now well documented as an important regulator of nutrients transporters from the 

apical membrane of the enterocytes. Indeed, leptin was shown to control butyrate MCT-1-

mediated absorption (10) and di/tri-peptides transporter PepT-1 (9) and modulate the activity 

of glucose and fructose transporters through its action on SGLT1 (16, 19, 21) GLUT2 and 

GLUT5 (25). A significant role for leptin in controlling active transport of Gln was previously 

established in human placental villous fragments where leptin stimulates the activity of 

system A, thus controlling the availability of this important fuel to placenta cells (20).  

Here, the functional studies were first performed in vitro using everted intestinal rings. The 

same technique was used to demonstrate for the first time that leptin inhibits sugar intestinal 

transport (21). Even though with this technique the mucosa is exposed to the medium and the 

access of the hormone to the enterocyte is mostly through the apical membrane, a possible 

basolateral action of leptin could not be discarded. Therefore, we further measured Gln 

transport in Ussing chambers, where contribution of mucosal vs. serosal leptin could be 

distinctly examined and mucosal-to-serosal Gln entry could be followed as sodium-induced 

short-circuit current. As observed with intestinal rings, leptin pre-treatment from mucosal side 

induced a rapid and marked reduction of the Gln-induced Isc. This effect was concentration-

dependent with characteristics of inhibition found in the nanomolar range (16, 21). The effect 

of leptin from the serosal side was found significantly less pronounced and disappeared at the 

longest incubation time (10 min). These results may reflect the fact that leptin exposed to the 

serosal side needs to diffuse a few layers of muscle and connective tissues before reaching its 

receptors on the basolateral membrane of the enterocytes, with possible reduction of the 

effective concentration. In addition, the membrane surface area for leptin action is smaller 

when it acts from the serosal side compared to the apical side and the distance between the 
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receptor and the Gln transporters higher. After 10 min, the lack of leptin action from the 

serosal side can be also related to the decrease of its effect from the apical side. 

The Ussing chamber technique mimics the relevant action of leptin which is produced and 

secreted by gastric cells (1, 11) together with its  soluble receptor (12) and can flow along the 

digestive lumen to reach the small intestine and act as a physiological modulator. In fact, 

using leptin mutein, a leptin receptor antagonist (26) we demonstrate that this modulation 

requires an effective interaction of leptin with its specific receptor located at the brush border 

membrane of the small intestine (3, 11). Interestingly, a recent report shows that in leptin-

receptor deficient obese Zucker rats, Gln transport is highly increased (29). This is in line with 

the inhibitory action of leptin as a regulator of the Gln uptake here reported. It is tempting to 

speculate, therefore, that leptin may act as a brake on the entry of Gln possibly in balance with 

other stimulating hormone (i.e. GH or EGF). Interestingly, this leptin-induced action is 

apparently different from the one recently proposed for angiotensin II which inhibits intestinal 

glucose uptake but not amino acid transport under normal and diabetic conditions (30, 31). 

In the intestine Gln transport is assumed to be predominantly achieved by the sodium-

dependent transporter B
0
AT1 (28). In rat intestinal rings, uptake of Phe, a specific substrate of 

B
0
AT1, was also inhibited by leptin, indicating that B

0
AT1 was a target for the hormone. 

Interestingly, Phe uptake was very low compared to Gln uptake at the same concentration, 

which can be explained by the fact that  B
0
AT1 shows lower affinity for its substrates (K0.5 

ranging from 1.4 to 4 mM) compared with ASCT2 (K0.5 ~20 µM) (6). Nevertheless, 25 mM 

Phe was able to inhibit by 65 % Gln uptake, suggesting a higher contribution of B
0
AT1 on 

Gln absorption in rat intestine under this experimental condition. By employing Ussing 

chamber, we also found that Phe-induced Isc was lower compared to the Gln-induced Isc. 

Aside to B
0
AT1, ASCT2 is the other sodium-dependent Gln transporter present in the apical 

membrane of small intestine (6). From the functional studies using 50 µM Gln (concentration 
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at which only ASCT2 in responsible for Gln absorption), we also demonstrate that ASCT2 is 

regulated by leptin.  

To assess directly the presence of the two Gln transporters in rat BBM and responsiveness to 

luminal substrate and/or leptin, we further used biochemical and molecular approaches. Our 

results clearly indicate that in basal condition, both B
0
AT1 and ASCT2 are present in rat 

BBM. Their expression in the membrane can be rapidly increased by luminal Gln and this 

increase can be reduced by leptin at nanomolar range. Interestingly, the ratio of 

ASCT2/B
0
AT1 protein expression in basal state was low (Fig. 3) and confirmed the reported 

predominance of  B
0
AT1 in intestinal BBM (28). However, after luminal challenge with Gln, 

more ASCT2 than B
0
AT1 protein was observed to swing into the BBM. These biochemical 

data would support a major importance of ASCT2 on Gln uptake in rat intestine. However, 

due to the differences in the experimental conditions, it is not possible to compare the 

functional and biochemical results to draw conclusions about which transporter is the 

principal in Gln entrance in the enterocytes. Nevertheless, both functional and biochemical 

data hallmark the contribution of ASCT2 and B
0
AT1 transporters in Gln uptake. 

We further demonstrated that leptin, in addition to its effect on post-translational regulation, 

can rapidly trigger transcriptional control of the two Gln transporters. Thus, leptin inhibits the 

Gln-induced increase of ASCT2 and B
0
AT1 mRNA levels. Regulation of ASCT2 gene 

expression by Gln was previously reported in hepatic epithelial (7). The stimulation of  

expression in response to Gln was shown to involve in part binding of FXR/RXR to the 

ASCT2 promoter (8) .  

In summary, we demonstrate that luminal leptin can modulate the intestinal activity and 

expression of the  Gln transporters ASCT2 and B
0
AT1 in the apical membrane of the 

enterocytes. Because Gln is known to have both acute and chronic effects on cell metabolism 

and function (13), the present findings of leptin involvement in the modulation of Gln uptake 
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in both short and long-term mode of action is believed to be of major importance for the 

biology of intestinal cells. 
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FIGURE LEGENDS 

Figure 1. Effect of leptin on glutamine and phenylalanine uptake by everted intestinal rings. 

Uptake of 0.5 mM Gln (A), 50 µM Gln (B) or 0.5 mM Phe (C) was measured in the absence 

or presence of 0.2 nM leptin after 15 min incubation. Uptake of Gln was also measured in the 

presence of 25 mM Phe (A and B) . Experiments in A and C were performed in the same 

experimental group. The results are expressed as mean ± SEM; ***, p<0.001 (n=18 from 3 

animals).  

Figure 2. Leptin inhibition of glutamine induced Isc in Ussing chamber. (A) Isc induced by 

10 mM Gln, Ala and Phe (n=8-29) (B). Effect of 20 mM Phe on 10 mM glutamine-induced 

Isc (n=4) (C) Effect of 10 nM mucosal leptin on Isc induced by 10 mM Gln or Ala. (D). 

Dose-response for mucosal leptin inhibition of Gln-induced Isc. Leptin was added in the 

mucosal bath 2 min before tissues were challenged with 10 mM Gln. Values for Isc were 

standardized to control value. Each point represents the mean ± SEM of 4-6 non cumulative 

values from 4 separate experiments. (E). Effect of serosal leptin (sx) vs. mucosal leptin (mq) 

at 10 nM concentration on 10 mM Gln-induced Isc (control) (n=6) .*, p<0.05 vs. control; .#, 

p<0.05 v.s. 2 min mq. (F) Action of leptin is receptor specific: leptin antagonist L39A/D40A 

was added to the  mucosal bath 5 min before the addition of leptin and 3 min later, tissues 

were challenged in the mucosal side with 10 mM Gln (n=6). 

 

Figure 3. Effect of luminal leptin on Gln-induced expression of ASCT2 and B
0
AT1 proteins 

in BBM. Brush border membrane vesicles were obtained from mucosa of NaCl (control), 1 

nM leptin and 10 mM Gln treated (3 min) intestinal loops, and ASCT2 (A) and B
0
AT1 (B) 

protein expression analyzed by Western blot. Representative Western blot images are shown. 

Intensity of the immunoreactive bands was quantified and expressed in relation to control. 
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Results are expressed as mean ± SEM for 3-4 rats per experimental group. **, p<0.01 and *** 

, p<0.001 vs. control. # P<0.05 vs. Gln. 

.  

Figure 4. Effect of leptin on Gln-induced ASCT2 and  B
0
AT1 gene expression. Total RNA 

was extracted from mucosa of NaCl (control), 1 nM leptin and 10 mM Gln treated (60 min) 

intestinal loops, and ASCT2 (A) and B
0
AT1 (B) mRNA expression analyzed by RT-PCR. 

Results are expressed as ratio of transporter/r18S mRNA expression in relation to control  and 

presented as mean ± SEM of 3-4 rats per experimental group. * P<0.05; ** P<0.01 and *** 

P<0.001 vs. control; # P<0.05 vs. Gln 

 

 

 


