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Generic super-exponential stability of

invariant tori in Hamiltonian systems.

Abed Bounemoura ∗

June 7, 2010

Abstract

In this article, we consider solutions starting close to some linearly
stable invariant tori in an analytic Hamiltonian system and we prove
results of stability for a super-exponentially long interval of time, under
generic conditions. The proof combines classical Birkhoff normal forms
and a new method to obtain generic Nekhoroshev’s estimates developed
by the author and L. Niederman in another paper. We will mainly focus
on the neighbourhood of elliptic fixed points, since with our approach
the other cases are completely similar.

1 Introduction and main results

In this paper, we are interested in the stability properties of some linearly
stable invariant tori in analytic Hamiltonian systems. Let us begin by the
case of elliptic fixed points.

1. As the problem is local, it is enough to consider a Hamiltonian H defined
and analytic on an open neighbourhood of 0 in R

2n, having the origin as
a fixed point. Up to an irrelevant additive constant and expanding the
Hamiltonian as a power series at the origin, we can write

H(z) = H2(z) + V (z),

where z is sufficiently close to 0 in R
2n, H2 is the quadratic part of H at 0

and V (z) = O(||z||3). Recall that the fixed point is said to be elliptic if the
spectrum of the linearized system is purely imaginary. Then it has the form
{±iα1, . . . ,±iαn}, for some vector α = (α1, . . . , αn) ∈ R

n which is called
the normal (or characteristic) frequency. Due to the symplectic character of
the equations, such equilibria are the only linearly stable fixed points. Now
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we assume that the components of α are all distinct so that we can make a
symplectic linear change of variables that diagonalizes the quadratic part:

H(z) =
n
∑

i=1

αi

2
(z2i + z2n+i) + V (z) = α.Ĩ + V (z),

where Ĩ = Ĩ(z) is the vector of “formal actions”, that is

Ĩ(z) =
1

2
(z21 + z2n+1, . . . , z

2
n + z22n) ∈ R

n.

Assuming the components of α are all of the same sign, it is easy to see that
H is a Lyapunov function so the fixed point is stable. But in the general
case, one has to study the influence of the higher order terms V (z), and we
will explain how it can be done using classical perturbation theory.

2. Let us first note that, given a solution z(t) of H, if Ĩ(t) = Ĩ(z(t)) then

|Ĩ(t)|1 =

n
∑

i=1

|Ĩi(t)|

is (up to a factor one-half) the square of the Euclidean distance of z(t) to
the origin, so that Lyapunov stability can be proved if |Ĩ(t) − Ĩ(0)|1 does
not vary much for all times.

Now in order to study the dynamics on a small neighbourhood of size
ρ around the origin in R

2n, it is more convenient to change coordinates by
performing the standard scalings

z 7−→ ρz, H 7−→ ρ−2H,

to have a Hamiltonian defined on a fixed neighbourhood of zero in R
2n.

Then, by analyticity, we extend the resulting Hamiltonian to a holomorphic
function on some complex neighbourhood of zero in C

2n. So eventually we
will consider the following setting: we define the Euclidean ball in C

2n

Ds = {z ∈ C
2n | ||z|| < s}

of radius s around the origin, and if As is the space of holomorphic functions
on Ds which are real valued for real arguments, endowed with its usual
supremum norm | . |s, we consider

{

H(z) = α.Ĩ + f(z)

H ∈ As, |f |s < ρ.
(A)

Let us emphasize that the small parameter ρ, which was originally describing
the size of the neighbourhood of 0, now describes the size of the “perturba-
tion” f on a neighbourhood of fixed size s. Without loss of generality, we
may assume s > 3.

2



3. Probably the main tool to investigate stability properties is the con-
struction of normal forms using averaging methods, and in this case these
are the so-called Birkhoff normal forms. For an integer m ≥ 1, assuming α
is non-resonant up to order 2m, that is

k.α 6= 0, k ∈ Z
n, 0 < |k|1 ≤ 2m,

there exists an analytic symplectic transformation Φm close to identity such
that H ◦ Φm is in Birkhoff normal form up to order 2m, that is

H ◦ Φm(z) = hm(Ĩ) + fm(z),

where hm is a polynomial of degree at most m in the Ĩ variables, and the
remainder fm is roughly of order ρ2m−1 (since before the scaling fm(z) is of
order ‖z‖2m+1, see [Bir66], or [Dou88] for a more recent exposition). The
polynomials hm are uniquely defined once α is fixed, and are usually called
the Birkhoff invariants. Therefore the transformed Hamiltonian is the sum
of an integrable part hm, for which the origin is trivially stable, since Ĩ(t)
is constant for all times, and a smaller perturbation fm. Moreover, if α
is non-resonant up to any order, we can even define a formal symplectic
transformation Φ∞ and a formal power series h∞ =

∑

k≥1 h
k, with hm =

∑m
k=1 h

k, such that
H ◦Φ∞(z) = h∞(Ĩ).

In general the series h∞ is divergent (this is a result of Siegel) and the
convergence properties of the transformation Φ∞ are even more subtle (see
[PM03]). However, Birkhoff normal forms at finite order are still very useful,
not only because the “perturbation” fm is made smaller, but also because
the “integrable” part hm, for m ≥ 2, is now non-linear and other classical
techniques from perturbation theory can be used.

4. First, in the case n = 2, a complete result of stability follows from KAM
theory. Indeed, if the frequency α ∈ R

2 is non-resonant up to order 4, the
Birkhoff normal form reads

H(z) = α.Ĩ + βĨ.Ĩ + f2(z),

with β a symmetric matrix of size n = 2 and f2 a small perturbation.
This time we consider the non-linear part h2(Ĩ) = α.Ĩ + βĨ.Ĩ as the inte-
grable system, and if it is isoenergetically non degenerate, the persistence
of two-dimensional tori in each energy level close to the fixed point implies
Lyapunov stability (see [AKN06], [Arn63], or [Arn61] for other results).

However, for n ≥ 3, it is believed that “generic” elliptic fixed points
are unstable, although this is totally unclear for the moment (see [DLC83],
[Dou88] and [KMV04]).

Therefore, for n ≥ 3, stability results under general assumptions can only
concern finite but hopefully long intervals of time, and this is the content
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of the paper. More precisely, we will prove, under generic assumptions and
provided ρ is sufficiently small, that for all initial conditions the variation
|Ĩ(t) − Ĩ(0)|1 is of order ρ for t ∈ T (ρ), where T (ρ) is an interval of time
of order exp

(

exp(ρ−1)
)

(see Theorem 1.1 for a precise formulation). The
interpretation in the original coordinates is the following: if a solution starts
in a sufficiently small neighbourhood of the origin, it stays in some larger
neighbourhood during an interval of time which is super-exponentially long
with respect to the inverse of the initial distance to the origin. But first, let
us describe previously known results on exponential stability, where there
were basically two strategies.

5. In a first approach, one assumes a Diophantine condition on α, that is
there exist γ > 0 and τ > n− 1 such that

|k.α| ≥ γ|k|−τ
1 , k ∈ Z

n \ {0},

but no conditions on the Birkhoff invariants. From the point of view of
perturbation theory, the linear part is considered as the integrable system.
In particular, α is non-resonant up to any order, hence we can perform any
finite number of Birkhoff normalizations, and since we have a control on the
small divisors, we can precisely estimate the size of the remainder fm (in
terms of γ and τ). The usual trick is then to optimize the choice of m as
a function of ρ in order to obtain an exponentially small remainder with
respect to ρ−1. Therefore the exponential stability is immediately read from
the normal form, and this requires only an assumption on the linear part (see
[GDF+89] or [DG96]). The above Diophantine condition has full Lebesgue
measure. However, as we will see later, the threshold of the perturbation and
the constants of stability are very sensitive to the Diophantine properties of
α, in particular the small parameter γ.

6. The second approach is fundamentally different, and it does not rely on
the arithmetic properties of α. Here, one just assumes that α is non-resonant
up to order 4, so that the Hamiltonian reduces to

H(z) = α.Ĩ + βĨ.Ĩ + f2(z).

In this case h2(Ĩ) = α.Ĩ + βĨ.Ĩ is considered as the integrable system (β
being a symmetric matrix of size n). Now we suppose that the non-linear
part is convex, which is equivalent to β being sign definite. Under those
assumptions, it was predicted and partially proved by Lochak ([Loc92] and
[Loc95]), and completely proved independently by Niederman ([Nie98]) and
Fassò, Guzzo and Benettin ([FGB98] and [GFB98]) that exponential stabil-
ity holds. Their proofs are based on the implementation of Nekhoroshev’s
estimates in Cartesian coordinates, but they are radically different: the first
one uses Lochak’s method of periodic averagings and simultaneous Diophan-
tine approximations, while the second one is based on Nekhoroshev’s original
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mechanism. The proof of Niederman was later clarified by Pöschel ([Pös99]).
However, the method of Lochak was restricted to the convex case, and it
was not clear how to remove this hypothesis to have a result valid in a more
general context.

7. In this paper, using the method of [BN09] we are able to replace the
convexity condition by a generic assumption. Then, combining both Birkhoff
theory and Nekhoroshev theory as in [MG95], we will obtain the following
result.

Theorem 1.1. Suppose H is as in (A), with α non-resonant up to any
order. Then under a generic condition (G) on h∞, there exist positive con-
stants a, a′, c1, c2 and ρ0 such that for ρ ≤ ρ0, every solution z(t) of H with
|Ĩ(0)|1 < 1 satisfies

|Ĩ(t)− Ĩ(0)|1 < c1ρ, |t| < exp
(

ρ−a′ exp(c2a
′ρ−a)

)

.

Denoting h∞ =
∑

k≥1 h
k and hm =

∑m
k=1 h

k, let us explain our generic
condition (G) on the formal power series h∞. In fact

(G) =
⋃

m∈N∗

(Gm)

consists in countably many conditions, where (Gm) is a condition on hm.
The first condition (G1) requires that h1(I) = α.I with a (γ, τ)-Diophantine
vector α. The other conditions (Gm), for m ≥ 2, are that each polynomial
function hm belongs to a special class of functions called SDM τ ′

γ′ which was
introduced in [BN09] (SDM stands for “Simultaneous Diophantine Morse”
functions, see Appendix A for a definition). In this appendix we will show
that each condition (Gm) is of full Lebesgue measure in the finite dimensional
space of polynomials of degree m with n variables, assuming τ and τ ′ are
large enough. This is well-known for m = 1, it will be elementary for m = 2
(see Theorem A.8) but for m > 2 it requires the quantitative Morse-Sard
theory of Yomdin ([Yom83], [YC04], see Theorem A.3 in the appendix). Let
us point out that this would have not been possible if we had assumed hm,
for m ≥ 2, to be steep in the sense of Nekhoroshev, as polynomials are
generically steep only if their degrees are sufficiently large with respect to
the number of degrees of freedom (see [LM88]).

Our condition (G) on the formal series h∞ is therefore of “full Lebesgue
measure at any order”. From an abstract point of view, this condition
defines a prevalent set in the space of formal power series, where prevalence
is an analog of the notion of full Lebesgue measure in the context of infinite
dimensional vector spaces. This will be proved in Appendix A, Theorem A.6.
In Theorem 1.1, we can choose the exponents

a = (1 + τ)−1, a′ = 3−1(2(n+ 1)τ ′)−n,
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and our threshold ρ0 depends in particular on γ and γ′. Moreover our
constants c1 and c2 also depend on γ but not on γ′, and we shall be a little
more precise later on.

As we have already explained, the proof is based on a combination of
Birkhoff normalizations up to an exponentially small remainder, which are
well-known (a statement is recalled in Proposition 2.1 below), and Nekhoro-
shev’s estimates for a generic integrable Hamiltonian near an elliptic fixed
point (Theorem 2.2 below). The latter result is new, and it will follow rather
easily from the new approach of Nekhoroshev theory in a generic case taken
in [BN09].

8. As a direct consequence of our Nekhoroshev estimates near an elliptic
fixed point, we can derive an exponential stability result more general than
those obtained in [FGB98] and [Nie98]. Like in those papers, we only require
α to be non-resonant up to order 4, and after the scalings

z 7−→ ρz, H 7−→ ρ−4H, α 7−→ ρ2α,

we consider
{

H(z) = α.Ĩ + βĨ.Ĩ + f(z)

H ∈ As, |f |s < ρ.
(B)

However, instead of assuming that β is sign definite, our result applies to
Lebesgue almost all symmetric matrices β without any condition on α. Let
Sn(R) be the space of symmetric matrices of size n with real entries.

Theorem 1.2. Suppose H is as in (B). For Lebesgue almost all β ∈ Sn(R),
there exist positive constants a′, b′ and ρ0 such that, for ρ ≤ ρ0, every solu-
tion z(t) of H with |Ĩ(0)|1 < 1 satisfies

|Ĩ(t)− Ĩ(0)|1 < n(n2 + 1)ρ−b′ , |t| < exp(ρ−a′).

The above theorem is a direct consequence of Theorem 2.2 below, pro-
vided that h2(Ĩ) = α.Ĩ + βĨ.Ĩ belongs to SDM τ ′

γ′ . But we will prove in
Appendix A that this happens for almost all symmetric matrices β, inde-
pendently of α (see Theorem A.8). Once again, let us also mention that this
result is not possible in the steep case, as the quadratic part h2(Ĩ) = βĨ.Ĩ is
steep if and only if β is sign definite. In the above statement one can choose
the exponents

a′ = b′ = 3−1(2(n + 1)τ ′)−n,

and the threshold ρ0 depends on γ′.

9. Let us add that in order to avoid useless expressions, we will only keep
track of the small parameters ρ, γ and γ′ and replace any other positive
constants by a dot (·) when it is convenient.
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Moreover, in this text we shall use various norms for vectors v ∈ R
n

or v ∈ C
n: | . | will be the supremum norm, | . |1 the ℓ1-norm and ‖ . ‖ the

Euclidean (or Hermitian) norm.

10. Let us now describe the plan of the paper. Section 2 is devoted to the
proof of Theorem 1.1 and Theorem 1.2. In 2.1, we give a statement of the
Birkhoff normal form up to an exponentially small remainder. In 2.2, we
will explain how Nekhoroshev’s estimates obtained in [BN09] generalize in
the neighbourhood of elliptic fixed points, and how they imply Theorem 1.2.
In 2.3, we will show how Theorem 1.1 follows from a simple combination of
Birkhoff’s estimates and Nekhoroshev’s estimates, provided our assumption
on h∞ is satisfied. Then, in section 3, we will state similar results for
invariant Lagrangian tori and more generally for invariant linearly stable
isotropic reducible tori. Finally, an appendix is devoted to our genericity
assumptions.

2 Proof of Theorem 1.1 and Theorem 1.2

In the sequel, we recall that we will use the “formal” actions

Ĩ = Ĩ(z) =
1

2
(z21 + z2n+1, . . . , z

2
n + z22n) ∈ R

n,

but one has to remember that these are nothing but notations for expressions
in z ∈ R

2n. Moreover, we will also need to use complex coordinates for the
normal forms, and, abusing notations, we will also denote them by z ∈ C

2n,
but of course the solutions we consider are real.

2.1 Birkhoff’s estimates

Here we consider a Hamiltonian as in (A), and we assume that the vector α
is (γ, τ)-Diophantine. In this context, the following result is classical.

Proposition 2.1. Under the previous assumptions, if ρ<· γ, then there exist
an integer m = m(ρ) and an analytic symplectic transformation

Φm : D3s/4 → Ds

such that
H ◦ Φm(z) = hm(Ĩ) + fm(z)

is in Birkhoff normal form, with a remainder fm satisfying the estimate

|fm|3s/4 <· ρ exp
(

−(γρ−1)a
)

, a = (1 + τ)−1.

Moreover, |Φm − Id|3s/4 <· γ
−1ρ and the image of Φm contains the domain

Ds/2.
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For a proof, we refer to [GDF+89] and [DG96]. The analogous result for
invariant Lagrangian tori can be found in [PW94] or [Pös93], and in [JV97]
in the more general case of isotropic and reducible linearly stable invariant
tori.

In the above proposition, one has to choose the integer m = m(ρ) of
order (γρ−1)(τ+1)−1

. So letting ρ go to zero, the degree of the polynomial
hm goes to infinity, and this explains why in the proof of Theorem 1.1 we
require a condition on the whole formal power series h∞.

2.2 Nekhoroshev’s estimates and proof of Theorem 1.2

1. Here we consider the Hamiltonian
{

H(z) = h(Ĩ) + f(z)

H ∈ As, h ∈ SDM τ ′

γ′ , |f |s < ε
(E)

and we have assumed that, on the real part of the domain, the derivatives
up to order 3 of h are uniformly bounded by some constant M > 1. The
definition of the set SDM τ ′

γ′ is recalled in Appendix A.

Theorem 2.2. Let H be as in (E), with τ ′ ≥ 2 and γ′ ≤ 1. Then there
exists ε0 such that if ε ≤ ε0, for every solution z(t) with |Ĩ(0)| < 1, we have

|Ĩ(t)− Ĩ(0)| < (n2 + 1)εb
′

, |t| < exp(ε−a′),

with the exponents a′ = b′ = 3−1(2(n + 1)τ ′)−n.

Theorem 1.2 is now an immediate consequence of this result and Theo-
rem A.8 (see Appendix A).

Proof of Theorem 1.2. From Theorem A.8, we know that for almost all β ∈
Sn(R), the Hamiltonian h(Ĩ) = α.Ĩ + βĨ.Ĩ belongs to SDM τ ′(B) with τ ′ >
n2+1. So we can apply Theorem 2.2: for every solution z(t) with |Ĩ(0)| < 1,
we have

|Ĩ(t)− Ĩ(0)| < (n2 + 1)εb
′

, |t| < exp(ε−a′),

with the exponents a′ = b′ = 3−1(2(n + 1)τ ′)−n. In particular, this gives

|Ĩ(t)− Ĩ(0)|1 < n(n2 + 1)εb
′

, |t| < exp(ε−a′),

for every solution z(t) with |Ĩ(0)|1 < 1.

2. The statement of Theorem 2.2 is the analogue of the main statement of
[BN09]. However, the difference is that here we are using Cartesian coordi-
nates and not action-angle coordinates (i.e. symplectic polar coordinates),
and we cannot use the latter since they become singular at the origin. So
we cannot apply directly the main result of [BN09]. This is not a serious
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issue when applying KAM theory in this context (see [Arn63] or [Pös82] for
example), but this becomes problematic in Nekhoroshev theory (see [Loc92]
or [Loc95] for detailed explanations). This result was only conjectured by
Nekhoroshev in [Nek77], and it took a long time before it could be solved in
the convex case ([Nie98],[FGB98]). Here we are able to solve this problem
in the generic case. The reason is that even though we cannot apply the
result of [BN09], we can use exactly the same approach, since the method
of averagings along unperturbed periodic flows is intrinsic, i.e. independent
of the choice of coordinates, a fact that was first used implicitly in [Nie98]
and made completely clear in [Pös99].

The proof of such estimates usually requires an analytic part, which boils
down to the construction of suitable normal forms, and a geometric part.
The geometric part of [BN09] goes exactly the same way, so in the sequel
we will restrict ourselves to indicating the very slight modifications in the
construction of the normal forms.

3. Consider linearly independent periodic vectors ω1, . . . , ωn of Rn, with
periods (T1, . . . , Tn), that is

Tj = inf{t > 0 | tωi ∈ Z
n}, 1 ≤ j ≤ n.

Define the domains

Drj ,sj(ωj) = {z ∈ Dsj | |∇h(Ĩ)− ωj|<· rj}, 1 ≤ j ≤ n,

given two sequences (r1, . . . , rn) and (s1, . . . , sn) (recall that Dsj is the com-
plex ball of radius sj). We will denote by lj the linear Hamiltonian with
frequency ωj, that is lj(Ĩ) = ωj .Ĩ.

The supremum norm of a function f defined on Drj ,sj(ωj) will be simply
denoted by

|f |rj ,sj = |f |Drj,sj
(ωj),

and for a Hamiltonian vector field Xf , we will write

|Xf |rj ,sj = max
1≤i≤2n

|∂zif |rj ,sj .

To obtain normal forms on these domains we will make the following as-
sumptions (Aj), for j ∈ {1, . . . , n}, where (A1) is

{

mT1ε ·<r1, mT1r1 ·<s1, 0 < r1 <· s1,

Dr1,s1(ω1) 6= ∅, s1 ·<s,
(A1)

and for j ∈ {2, . . . , n}, (Aj) is
{

mTjε ·<rj, mTjrj ·<sj, 0 < rj <· sj,

Drj ,sj(ωj) 6= ∅, Drj ,sj(ωj) ⊆ D2rj−1/3,2sj−1/3(ωj−1).
(Aj)

With these assumptions, one can prove the following proposition.
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Proposition 2.3. Consider H = h + f on the domain Dr1,s1(ω1), with
|Xf |r1,s1 < ε, and let j ∈ {1, . . . , n}. For any i ∈ {1, . . . , j}, if (Ai) is
satisfied, then there exists an analytic symplectic transformation

Ψj : D2rj/3,2sj/3(ωj) → Dr1,s1(ω1)

such that
H ◦Ψj = h+ gj + fj,

with {gj , li} = 0 for i ∈ {1, . . . , j}, and the estimates

|Xgj |2rj/3,2sj/3 <· ε, |Xfj |2rj/3,2sj/3 <· e
−mε.

Moreover, we have Ψj = Φ1 ◦ · · · ◦ Φj with

Φi : D2ri/3,2si/3(ωi) → Dri,si(ωi)

such that |Φi − Id|2ri/3,2si/3 ·<ri.

The proof is completely analogous to the corresponding one in [BN09],
Appendix A, to which we refer for more details. In fact, here the proof is
even simpler since one does not have to use “weighted” norms for vector
fields. It relies on a finite composition of averagings along the periodic flows
generated by lj, j ∈ {1, . . . , n}. The case j = 1 is due to Pöschel ([Pös99])
and, for j > 1, the proof goes by induction using our assumption (Aj),
j ∈ {1, . . . , n}.

Once we have this normal form, the rest of the proof in [BN09] goes
exactly the same way: every solution z(t) of H with |Ĩ(0)| < 1 satisfies

|Ĩ(t)− Ĩ(0)| < (n2 + 1)εb
′

, |t| < exp(ε−a′),

provided that ε ≤ ε0, with ε0 depending on n, s,M, γ′ and τ ′ and with the
exponents

a′ = b′ = 3−1(2(n + 1)τ ′)−n.

2.3 Proof of Theorem 1.1

Now we can finally prove Theorem 1.1, by using successively Birkhoff’s es-
timates and Nekhoroshev’s estimates.

Proof of Theorem 1.1. Let H be as in (A), first assume that ρ < ρ1 with
ρ1=· γ so that using our assumption (G1) we can apply Proposition 2.1:
there exist an integer m = m(ρ) and an analytic symplectic transformation

Φm : D3s/4 → Ds

such that
H ◦ Φm(z) = hm(Ĩ) + fm(z)
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is in Birkhoff normal form, with a remainder fm satisfying the estimate

|fm|3s/4 <· ρ exp
(

−(γρ−1)a
−1
)

, a = τ + 1.

So let Hm = H ◦ Φm, and set

ε = ρ exp
(

−(γρ−1)a
−1
)

.

By our assumption (Gm), for m ≥ 2, the Hamiltonian Hm, which is defined
on the domain D3s/4, satisfies (E). Now assume that ε<· ε0, which gives an-
other threshold ρ < ρ2, with ρ2 also depending on γ′, and our final threshold
is ρ0 = min{ρ1, ρ2}. We can apply Theorem 2.2: every solution zm(t) of Hm

with |Ĩm(0)|1 < 1 satisfies

|Ĩm(t)− Ĩm(0)|1 <· ε
b′ , |t| < exp(ε−a′),

with
a′ = b′ = 3−1(2(n + 1)τ ′)−n.

Recalling the definition of ε, this gives

|Ĩm(t)− Ĩm(0)|1 <· ρ
b′ exp

(

−b′(γρ−1)a
)

, |t| < exp
(

ρ−a′ exp
(

a′(γρ−1)a
)

)

.

However, one has
ρb

′

exp
(

−b′(γρ−1)a
)

< γ−1ρ,

and as Φm satisfies |Φm− Id|3s/4 <· γ
−1ρ, and its image contains the domain

Ds/2, a standard argument gives

|I(t)− I(0)|1 <· γ
−1ρ, |t| < exp

(

ρ−a′ exp
(

a′(γρ−1)a
)

)

,

for any solution z(t) of H with |Ĩ(0)|1 < 1.

3 Further results and comments

As we have already mentioned, the idea of combining both Birkhoff theory
and Nekhoroshev theory to obtain super-exponential stability was discovered
by Morbidelli and Giorgilli ([MG95]) in the context of Lagrangian Diophan-
tine tori. Evidently, we can also state results in this context.

1. Consider a Hamiltonian system on a manifold which carries an invariant
Lagrangian Diophantine torus, that is an invariant sub-manifold T which is
diffeomorphic to the standard torus T

n, and whose induced flow is conju-
gated to a linear flow on T

n with a Diophantine frequency. Since the torus
is Lagrangian, one can locally reduce the situation to a Hamiltonian defined
on T ∗

T
n = T

n × R
n, having T

n × {0} as the invariant torus. Moreover, by
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invariance and transitivity of the torus, in the coordinates (θ, I) ∈ T
n × R

n

we can write
H(θ, I) = ω.I + F (θ, I),

where ω is a (γ, τ)-Diophantine vector and F (θ, I) = O(|I|2). After some
scalings one is led to consider

{

H(θ, I) = ω.I + f(θ, I)

H ∈ As, |f |s < ρ
(C)

where As is the space of holomorphic functions on the domain

Ds = {(θ, I) ∈ (Cn/Zn)× C
n | |I(θ)| < s, |I| < s},

with I(θ) the imaginary part of θ. Here one can also define polynomials hm
and a formal power series h∞ and we can state the following result.

Theorem 3.1. Suppose H is as in (C). Then, under a generic condition
on h∞, there exist positive constants a, a′, c1, c2 and ρ0 such that for ρ ≤ ρ0,
every solution (θ(t), I(t)) of H with |I(0)| < 1 satisfies

|I(t) − I(0)| < c1ρ, |t| < exp
(

ρ−a′ exp(c2a
′ρ−a)

)

.

The assumption on h∞ and the values of the constants a and a′ are the
same as in Theorem 1.1, as the proof is completely analogous. In fact, it is
even simpler since we are using action-angle coordinates, and therefore we
can immediately use Nekhoroshev’s estimates obtained in [BN09] without
any modifications.

However, it is important to note that one cannot obtain a statement
similar to Theorem 1.2, simply because in this case a non-resonant condition
up to a finite order does not allow to build the corresponding Birkhoff normal
form.

If we compare this result with [MG95], our assumption is generic and we
do not require any convexity. But of course the price to pay is that one has
to consider the full set of Birkhoff invariants.

2. As a final result, one can also obtain similar estimates for the general case
of a linearly stable lower-dimensional torus, under the common assumptions
of isotropicity and reducibility (which were automatic for a fixed point or a
Lagrangian torus). In that context, it is enough to consider a Hamiltonian
defined in T

k ×R
k × R

2l (by isotropicity), of the form

H(θ, I, z) = ω.I +
1

2
Bz.z + F (θ, I, z).

Here B is a symmetric matrix (constant by reducibility) such that J2lB has
a purely imaginary spectrum (J2l being the canonical symplectic structure
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of R2l), and F (θ, I, z) = O(|I|2, ||z||3). In those coordinates, the invariant
torus is simply given by I = 0, z = 0, and this generalizes both the case
of an elliptic fixed point (where the directions (θ, I) are absent) and of
a Lagrangian invariant torus (where the directions z are absent). If the
spectrum {±iα1, . . . ,±iαl} of J2lB is simple, one can assume further that

H(θ, I, z) = ω.I + α.Ĩ + F (θ, I, z),

where Ĩ are the “formal actions” associated to the z variables. Therefore,
after some appropriate scalings we can consider

{

H(θ, I, z) = ω.I + α.Ĩ + F (θ, I, z)

H ∈ As, |f |s < ρ
(D)

where As is the space of holomorphic functions on the domain

Ds = {(θ, I, z) ∈ (Ck/Zk)× C
k × C

2l | |I(θ)| < s, |I| < s, ||z|| < s}.

Under a suitable Diophantine condition on the vector (ω,α) ∈ R
k+l, one

can define polynomials hm and a formal series h∞ depending on J = (I, Ĩ).
Birkhoff’s exponential estimates in this more difficult situation have been
obtained in [JV97]. Regarding Nekhoroshev’s estimates for a generic inte-
grable Hamiltonian which depends both on actions and formal actions, they
can be easily obtained by obvious modifications of our method. Therefore
we can state the following result.

Theorem 3.2. Suppose H is as in (D). Then under a generic condition
on h∞, there exist positive constants a, a′, c1, c2 and ρ0 such that for ρ ≤ ρ0,
every solution (θ(t), I(t), z(t)) of H with |J(0)| < 1 satisfies

|J(t) − J(0)| < c1ρ, |t| < exp
(

ρ−a′ exp(c2a
′ρ−a)

)

.

Once again, the condition on h∞ and the values of the exponents are the
same.

3. Let us add that one could easily give similar estimates in the dis-
crete case, that is for exact symplectic diffeomorphisms near an elliptic fixed
point, an invariant Lagrangian torus or an invariant linearly stable isotropic
reducible torus. Even if one has the possibility to re-write the proof in
these settings, the easiest way is to use suspension arguments, as it is done
qualitatively in [Dou88] or quantitatively in [KP94] (see also [PT97] for a
different approach) and deduce stability results in the discrete case from the
corresponding results in the continuous case.

To conclude, let us mention that important examples of invariant tori
satisfying our assumptions (linearly stable, reducible, isotropic) are those
given by KAM theory. However, the latter not only gives individual tori but
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a whole Cantor family (see [Pös01] or [AKN06]). In this context, Popov has
proved exponential stability estimates for the family of Lagrangian KAM
tori, if the Hamiltonian is analytic or Gevrey ([Pop00] and [Pop04]). His
proof relies on a KAM theorem with Gevrey smoothness on the parameters
(in the sense of Whitney) and some kind of simultaneous Birkhoff normal
form over the Cantor set of tori. We believe that our method should be
useful in trying to extend those results to obtain super-exponential stability
under generic conditions. But clearly this is a more difficult problem, and
the first step is to obtain Nekhoroshev’s estimates in Gevrey regularity for
a generic integrable Hamiltonian, the quasi-convex case having been settled
in [MS02].

A Generic assumptions

In this appendix, we will show that our assumption (G) is generic, in the
sense that it defines a prevalent set in the infinite dimensional space of formal
power series.

1. Let us first recall the definition of Simultaneous Diophantine Morse func-
tions (SDM in the following). Let G(n, k) be the set of all vector subspaces
of R

n of dimension k. We equip R
n with the Euclidean scalar product,

and given an integer L ∈ N
∗, we define GL(n, k) as the subset of G(n, k)

consisting of subspaces whose orthogonal complement can be generated by
integer vectors with components bounded by L. In the sequel, B will be an
arbitrary open ball of Rn.

Definition A.1. A smooth function h : B → R is said to be SDM if there
exist γ′ > 0 and τ ′ ≥ 0 such that for any L ∈ N

∗, any k ∈ {1, . . . , n}
and any Λ ∈ GL(n, k), there exists (e1, . . . , ek) (resp. (f1, . . . , fn−k)), an
orthonormal basis of Λ (resp. of Λ⊥), such that the function hΛ defined on
B by

hΛ(α, β) = h (α1e1 + · · ·+ αkek + β1f1 + · · ·+ βn−kfn−k)

satisfies the following: for any (α, β) ∈ B,

‖∂αhΛ(α, β)‖ ≤ γ′L−τ ′ =⇒ ‖∂ααhΛ(α, β).η‖ > γ′L−τ ′‖η‖,

for any η ∈ R
k \ {0}.

This definition is inspired by the steepness condition of Nekhoroshev and
the quantitative Morse-Sard theory of Yomdin (see [BN09] for more expla-
nations). It depends on a choice of coordinates adapted to the orthogonal
decomposition Λ ⊕ Λ⊥, so for Λ ∈ GL(n, k) and (α, β) ∈ B, ∂αhΛ(α, β) is
a vector in R

k and ∂ααhΛ(α, β) is a symmetric matrix of size k with real
entries.
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Remark A.2. Note also that the definition can be stated as the following
alternative: for any (α, β) ∈ B, either we have ‖∂αhΛ(α, β)‖ > γL−τ or
‖∂ααhΛ(α, β).η‖ > γL−τ‖η‖ for any η ∈ R

k\{0}. Hence for a given function
it is sufficient to verify that ‖∂ααhΛ(α, β).η‖ > γL−τ‖η‖ for any η ∈ R

k\{0},
and we will use this fact later (in Theorem A.8).

2. The set of SDM functions on B with respect to γ′ > 0 and τ ′ ≥ 0 will
be denoted by SDM τ ′

γ′ (B), and we will also use the notation

SDM τ ′(B) =
⋃

γ′>0

SDM τ ′

γ′ (B).

The following theorem was proved in [BN09], and it relies on non trivial
results from quantitative Morse-Sard theory ([Yom83],[YC04]).

Proposition A.3 ([BN09]). Let τ > 2(n2 + 1), and h ∈ C2n+2(B). Then
for Lebesgue almost all ξ ∈ R

n, the function hξ, defined by hξ(I) = h(I)−ξ.I
for I ∈ B, belongs to SDM τ ′(B).

Now let us recall the definition of a prevalent set ([HSY92], see also
[OY05]).

Definition A.4. Let E be a completely metrizable topological vector space.
A Borel subset S ⊆ E is said to be shy if there exists a Borel measure µ on
E, with 0 < µ(C) < ∞ for some compact set C ⊆ E, such that µ(x+S) = 0
for all x ∈ E.

An arbitrary set is called shy if it is contained in a shy Borel subset, and
finally the complement of a shy set is called prevalent.

For a finite dimensional vector space E, by an easy application of Fubini
theorem, prevalence is equivalent to full Lebesgue measure. The following
“genericity” properties can be checked ([OY05]): a prevalent set is dense, a
set containing a prevalent set is also prevalent, and prevalent sets are stable
under translation and countable intersection. Furthermore, we have an easy
but useful criterion for a set to be prevalent.

Proposition A.5 ([HSY92]). Let A be a Borel subset of E. Suppose there
exists a finite dimensional subspace F of E such that, denoting λF the
Lebesgue measure supported on F , the set x + A has full λF -measure for
all x ∈ E. Then A is prevalent.

It is an obvious consequence of Proposition A.3 and Proposition A.5 that
SDM τ ′(B) is prevalent in C2n+2(B) for τ ′ > 2(n2 + 1).

3. Now let P∞ = R[[X1, . . . ,Xn]] be the space of all formal power series
in n variables with real coefficients. It is naturally a Fréchet space, as the

15



projective limit of the finite dimensional spaces Pm consisting of polynomials
in n variables of degree less than or equal to m. We define the subset

Sτ ′

∞ = {h∞ ∈ P∞ | hm ∈ SDM τ ′(B), ∀m ≥ 2},

where hm =
∑m

k=1 h
k if h∞ =

∑

k≥1 h
k, and we identify the polynomial hm

with the associated function defined on B. Let us also define

Dτ
∞ = {h∞ ∈ P∞ | h1(X) = α.X, α ∈ Dτ},

where Dτ is the set of Diophantine vectors of Rn with exponent τ , and finally

Gτ,τ ′
∞ = Dτ

∞ ∩ Sτ ′
∞.

The set Gτ,τ ′
∞ is the set of formal power series for which condition (G) holds.

Theorem A.6. For τ > n− 1 and τ ′ > 2(n2 +1), the set Gτ,τ ′
∞ is prevalent

in P∞.

Proof. As the intersection of two prevalent sets is prevalent, it is enough to
prove that both sets Dτ

∞, for τ > n − 1, and Sτ ′
∞, for τ ′ > 2(n2 + 1), are

prevalent.
For the set Dτ

∞, this is an easy consequence of the fact that Dτ is of full
Lebesgue measure in R

n, for τ > n− 1, and Proposition A.5 with F = P1,
the space of linear forms. For the set Sτ ′

∞, first note that we can write

Sτ ′

∞ =
⋂

m≥2

Sτ ′

∞,m,

where, for an integer m ≥ 2,

Sτ ′
∞,m = {h∞ ∈ P∞ | hm ∈ SDM τ ′(B)}.

As a countable intersection of prevalent sets is prevalent, it is enough to
prove that for each m ≥ 2, the set Sτ ′

∞,m is prevalent in P∞. But once
again this is just a consequence of Proposition A.3 and Proposition A.5
with F = P1 the space of linear forms.

For m ≥ 2, the set of polynomials hm for which condition (Gm) is satis-
fied is given by

Sτ ′
m = {hm ∈ Pm | hm ∈ SDM τ ′(B)},

and the proof of the above theorem immediately gives the following result.

Theorem A.7. For τ ′ > 2(n2 + 1), the set Sτ ′
m is of full Lebesgue measure

in Pm.
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4. Now in the special case m = 2, we can state a refined result which is
due to Niederman ([Nie07]).

Theorem A.8. For Lebesgue almost all β ∈ Sn(R), the function

h(I) = α.I + βI.I

belongs to SDM τ ′(B) provided τ ′ > n2 + 1.

In the above theorem, there is no condition on α, and contrary to Propo-
sition A.3, the proof does not rely on Morse-Sard theory. Let us denote by
λ the one-dimensional Lebesgue measure and by Ik the identity matrix of
size k. We shall use the following elementary lemma.

Lemma A.9. Let k ∈ {1, . . . , n}, βk ∈ Sk(R) and κ > 0. Then there exists
a subset Cκ ⊆ R such that

λ(Cκ) ≤ 2kκ,

and for any ξ /∈ Cκ, the matrix βk,ξ = βk − ξIk satisfies

‖βk,ξ.η‖ > κ‖η‖,

for any η ∈ R
k \ {0}.

Of course, the set Cκ depends on the matrix βk.

Proof. Let {λ1, . . . , λk} be the eigenvalues of βk, then in an orthonormal
basis of eigenvectors for βk, the matrix βk,ξ is also diagonal, with eigenvalues
{λ1 − ξ, . . . , λk − ξ}. Then one has ‖βk,ξ.η‖ > κ‖η‖ for any η ∈ R

k \ {0}
provided that for all i ∈ {1, . . . , k}, |λi − ξ| > κ, that is if ξ does not belong
to

Cκ =
k
⋃

i=1

[λi − κ, λi + κ].

The measure estimate λ(Cκ) ≤ 2kκ is trivial.

With this lemma, the proof is now similar to that of Proposition A.3.

Proof of Theorem A.8. Let h(I) = α.I + βI.I, and given Λ ∈ GL(n, k),
we denote by βΛ ∈ Sk(R) the matrix which represents the quadratic form
βI.I restricted to the subspace Λ. Since the second derivative of h along
any subspace is constant, then coming back to definition A.1 and using
remark A.2, h ∈ SDM τ ′

γ′ if

‖βΛ.η‖ > γ′L−τ ′‖η‖, (1)

for any Λ ∈ GL(n, k) and any η ∈ R
k \ {0}. Let Aτ ′

γ′ be the subset of Sn(R)
whose elements contradict condition (1), that is

Aτ ′

γ′ = {β ∈ Sn(R) | ‖βΛ.η‖ ≤ γ′Lτ ′‖η‖, Λ ∈ GL(n, k), η ∈ R
k \ {0}},
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and
Aτ ′ =

⋂

γ′>0

Aτ ′

γ′ .

What we need to show is that Aτ ′ has zero Lebesgue measure in Sn(R)
provided τ ′ > n2 + 1.

Apply lemma A.9 to βΛ ∈ Sk(R), with κ = γ′L−τ ′ , to have a subset
Cγ′,τ ′,L,Λ ⊆ R such that

λ(Cγ′,τ ′,L,Λ) ≤ 2kγ′L−τ ′ , (2)

and for any ξ /∈ Cγ′,τ ′,L,Λ, the matrix βΛ,ξ = βΛ − ξIk satisfies

‖βΛ,ξ.η‖ > γ′L−τ ′‖η‖

for any η ∈ R
k \ {0}. If we define

Cγ′,τ ′ =
⋃

L∈N∗

⋃

k∈{1,...,n}

⋃

Λ∈GL(n,k)

Cγ′,τ ′,L,Λ,

then
Cγ′,τ ′ = {ξ ∈ R | βξ = β − ξIn ∈ Aτ ′

γ′}

and so
Cτ ′ =

⋂

γ′>0

Cγ′,τ ′ = {ξ ∈ R | βξ ∈ Aτ ′}.

It remains to prove that the Lebesgue measure of Cτ ′ is zero, since by Fubini
theorem, this will imply that the Lebesgue measure of Aτ ′ is zero. By our
estimate (2), we have

λ(Cγ′,τ ′) ≤
∑

L∈N∗

n
∑

k=1

|GL(n, k)|2kγ′L−τ ′

≤
∑

L∈N∗

n
∑

k=1

Ln2

2kγ′L−τ ′

= 2

(

n
∑

k=1

k

)(

∑

L∈N∗

Ln2−τ ′

)

γ′

= n(n+ 1)

(

∑

L∈N∗

Ln2−τ ′

)

γ′

and, since τ ′ > n2 + 1, the above series is convergent. Hence

λ(Cτ ′) = inf
γ′>0

λ(Cγ′,τ ′) = 0.
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