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1 Introduction

Fermions are usually treated, in most aspects of their phenomenology, as classical, though anticommut-
ing, objects. Their Lagrangian is commonly endowed with a mass matrix though, for coupled systems1,
this can only be a linear approximation in the vicinity of oneamong the physical poles of their full (matri-
cial) propagator [1] [2]. In this perspective, the study of neutral kaons [1], and more specially of the role
held, there, by discrete symmetriesP , C, T and their products, has shown that subtle differences occur
between the “classical” treatment obtained from a Lagrangian and a mass matrix, and the full quantum
treatment dealing with their propagator. Using a classicalapproximation for fermions isa priori still
more subject to caution since, in particular, their anticommutation is of quantum origin. This is why, af-
ter the work [1], we decided to perform a study of coupled fermionic systems in Quantum Field Theory,
dealing especially with the propagator approach2. Treating fermions in a rigorous way is all the more
important as the very nature of neutrinos, Dirac or Majorana, is still unknown, and that all theoretical
results, concerning specially flavor mixing, have been mainly deduced from classical considerations.

The second and third parts of this work are dedicated to general statements concerning, first, symmetry
transformations in general, then the discrete symmetries parity P , charge conjugationC, time-reversal
T , and their products. It does not pretend to be original, but tries to make a coherent synthesis of results
scattered in the literature. Starting from Wigner’s representation theorem [5] and Wightman’s point
of view for symmetry transformations [6], we give the general rules of transformations of operators
and of their hermitian conjugates by any unitary or antiunitary transformation. We then specialize to
transforming Weyl spinors byP , C, T and their products, first when they are considered at the classical
level (grassmanian wave functions), then at the quantum level (anticommuting operators).

The fourth part deals with the concept of invariance of a given theory. By taking the simple example
of fermionic mass terms (Dirac and Majorana), we exhibit ambiguities and inconsistencies that arise in
the transformations of a classical Lagrangian by antiunitary transformations. This motivates, like for
neutral kaons [1], the propagator approach, which is the only safe way of deducing unambiguously the
constraints cast by symmetry transformations on the Green functions of physical (propagating) particles,
from which the S-matrix can be in principle reconstructed [6].

For the sake of simplicity, it is extensively investigated only in the case of the simplest among coupled
fermionic systems, the one made with a single fermion and itsantifermion; such a coupling, which
concerns neutral particles, is indeed allowed by Lorentz invariance. This is the object of the fifth and last
part of this work. We derive in full generality the constraints cast on the propagator byP , C, T , PC,
PCT . We show that the physical (propagating) fermions can only be Majorana (C eigenstates) if their
propagator satisfies the constraints cast byC orCP invariance.

The extension to several flavors, with its expected deeper insight into the issue of quantum mixing in
connection with discrete symmetries, is currently under investigation3.

2 Generalities

In this paper, we shall note equivalentlyξα
R→ (ξα)R ≡ R·ξα, whereξα is a Weyl spinor (see Appendix

A.1) andR · ξα its transformed byR; often the “·” will be omitted such that this transformed will
also be notedRξα. The corresponding fermionic field operators will be put into square brackets, for
example[ξα], [ξα]R, the latter being the transformed of the former by the transformationR. Formally
[ξα]R = (ξα)R.

1Both quarks and leptons form coupled systems through the Higgs sector.
2The propagator approach for coupled systems was initiated in [3], then applied in [4] to the case of neutral kaons. By

defining the physical masses as the poles of the full (matricial) propagator, it enabled to go beyond the Wigner-Weisskopf
approximation, to deal with non-hermitian Lagrangians suitable for unstable particles, and to deduce general constraints cast
by discrete symmetries. This method was then refined in [1], still in the case of neutral kaons.

3Results concerning mixing at the quantum level have been obtained, by less general techniques, in [7], [8] and [9].
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The transition amplitude between two fermionic states is noted< χ | ψ >; this defines a scalar product
and the corresponding norm< ψ | ψ > is real positive. The scalar product satisfies

< ψ | χ >∗=< χ | ψ >; (1)

we consider furthermore that representations of the Poincaré group satisfy [10]

< ψ | χ >∗=< ψ∗ | χ∗ > . (2)

2.0.1 The symmetry representation theorem of Wigner [5]

A symmetry transformation is defined as a transformation on the states (ray representations)Ψ → Ψ′

that preserve transition probabilities

| < Ψ′
1 | Ψ′

2 > |2 = | < Ψ1 | Ψ2 > |2. (3)

The so-called “symmetry representation theorem” states4:
Any symmetry transformation can be represented on the Hilbert space of physical states by an operator
that is either linear and unitary, or antilinear and antiunitary.

Since we have to deal with unitary as well as antiunitary operators, it is important to state their general
properties and how they operate on fermionic field operators. A unitary operatorU and an antiunitary
operatorA satisfy, respectively

∀ψ,χ < Uψ | Uχ >=< ψ | χ >, < Aψ | Aχ >=< χ | ψ >=< ψ | χ >∗ . (4)

Both preserve the probability transition| < ψ | χ > |2 = | < Uψ | Uχ > |2 = | < Aψ | Aχ > |2.

2.0.2 Antiunitarity and antilinearity

An antilinear operator is an operator that complex conjugates any c-number on its right

A antilinear ⇔ A (c | ψ >) = c∗A | ψ > . (5)

An antiunitary operator is also antilinear. Let us indeed consider the antiunitary operatorA.

< Aψ | A | λχ >=< Aψ | Aλχ >=< λχ | ψ >= λ∗ < χ | ψ >= λ∗ < Aψ | A | χ >
shows thatA is antilinear.

2.0.3 Unitarity and linearity

In the same way, one shows that a unitary operator is linear.

2.0.4 Symmetry transformations: Wightman’s point of view

Wightman [6] essentially deals with vacuum expectation values of strings of field operators. The trans-
formedÔ of an operatorO is defined through the transformation that changes the stateφ into φ̂

< φ̂ | O | φ̂ >=< φ | Ô | φ > (6)

One has accordingly:
* for a unitary transformationU

Ô=U−1OU , (7)

4We refer the reader to [11] for a careful demonstration of this theorem.
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* for a antiunitary transformationA 5 6

Ô = (A−1OA)†
= A†O†(A−1)† = A†O†A. (9)

This is the demonstration.
* For U unitary (UU† = 1 = U†U ):

< Uψ | O | Uχ >=< ψ | U†OU | χ >=< ψ | U−1OU | χ >, q.e.d.
* For A antiunitary:
- first, we demonstrate the important relation

∀(ψ,χ) < Aψ | AOA−1 | Aχ >=< χ | O† | ψ > . (10)

Indeed:

< Aψ | AOA−1 | Aχ >=< Aψ | AO | χ >=< Aψ | A(Oχ) >(4)
=< Oχ | ψ >=< χ | O† | ψ >;

- one has then, in particular7

< Aψ | O | Aχ >=< Aψ | A(A−1OA)A−1 | Aχ >=< χ | (A−1OA)† | ψ >, (12)

which yields the desired result forψ = χ 8.

According to (9), an extra hermitian conjugation occurs in the transformation of an operator by an anti-
unitary transformation9.

2.0.5 General constraints

< φ̂ | O† | φ̂ >(6)
=< φ | Ô† | φ > evaluates also as< φ̂ | O† | φ̂ >=< φ̂ | O | φ̂ >∗(6)=< φ | Ô | φ >∗

=< φ | (Ô)† | φ >, such that, comparing the two expressions one gets

Ô† = (Ô)†, (13)

which is a constraint that must be satisfied by any operatorO transformed by unitary as well as antiu-
nitary symmetry transformations. Eq. (13) can easily be checked explicitly. [ψ] being the field operator
associated with the grassmanian functionψ, one has:
* for a unitary transformationU :

[̂ψ]†
(7)
= U−1 [ψ]† U ,

[̂ψ]†
(13)
= ([ψ̂])†

(7)
= (U−1 [ψ]U)† UU†=1=U†U

= U−1 [ψ]† U ; (14)

5The last equality in (9) comes from the property, demonstrated by Weinberg [11], that an antiunitary operator must also
satisfy the relationAA† = 1 = A†A (see Appendix B). So, in particular, one has(A−1)†A−1 = 1⇒ (A−1)† = A.

6 Because of (9), forO = O1O2 . . .On

[O1O2 . . .On]
Θ =

(

A−1O1O2 . . .OnA
)†

=
(

A−1O1AA
−1O2AA

−1
. . .AA−1OnA

)†

=
(

A−1OnA
)†
. . .

(

A−1O2A
)† (

A−1O1A
)†

= [On]
Θ
. . . [O2]

Θ[O1]
Θ; (8)

antiunitarity implies that the order of operators has to be swapped when calculating the transformed of a string of operators.
7When thein andout states are different, one can write accordingly

< Aψ | O | Aχ >=< χ | Ô | ψ >=< χ | (A−1OA)† | ψ > (11)

The in andout states have to be swapped in the expressions on the r.h.s., ensuring that all terms in (11) are linear inψ and
antilinear inχ.

8One cannot use (164) to transform< χ | (A−1OA)† | ψ > into< ψ | A−1OA | χ becauseA−1OA acts linearly and
should thus this considered as a unitary operator.

9See [6], eq.(1-30).
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* for a antiunitary transformationA:

[̂ψ]†
(9)
= (A−1 [ψ]†A)† = A† [ψ]A,

[̂ψ]†
(13)
= (A† [ψ]†A)† = A† [ψ]A. (15)

Since[ψ] and[ψ]† are, respectively, associated with the grassmanian functionsψ andψ∗, (13) also casts
constraints on the transformation of grassmanian functions:

ψ̂∗ = (ψ̂)∗. (16)

3 Discrete symmetries

3.1 Parity

3.1.1 Parity transformation on grassmanian wave functions

We adopt the conventionP 2 = −1 [12]. Then the transformation of spinors are

ξα(~x, t)
P→ iηα̇(−~x, t) , ηα̇(~x, t)

P→ iξα(−~x, t),
ξα(~x, t)

P→ −iηα̇(−~x, t) , ηα̇(~x, t)
P→ −iξα(−~x, t). (17)

The parity transformed of the complex conjugates are defined[12] as the complex conjugates of the
parity transformed

P.(ξα)∗ = (P.ξα)∗; (18)

this ensures in particular that the constraints (13) and (16) are satisfied. It yields

(ξα)∗(~x, t)
P→ −i(ηα̇)∗(−~x, t) , (ηα̇)

∗(~x, t)
P→ −i(ξα)∗(−~x, t),

(ξα)
∗(~x, t)

P→ i(ηα̇)∗(−~x, t) , (ηα̇)∗(~x, t)
P→ i(ξα)

∗(−~x, t). (19)

For Dirac bi-spinors (see Appendix A), one gets

P.ψD = UPψD, UP = iγ0, U †
P = −UP = U−1

P , U2
P = −1, U †

PUP = 1. (20)

3.1.2 Parity transformation on fermionic field operators

Going to field operators, one uses (7), for unitary operators

[ξα]P = P−1[ξα]P (21)

to get

P−1ξα(~x, t)P = iηα̇(−~x, t) , P−1ηα̇(~x, t)P = iξα(−~x, t),
P−1ξα(~x, t)P = −iηα̇(−~x, t) , P−1ηα̇(~x, t)P = −iξα(−~x, t),

P−1(ξα)†(~x, t)P = −i(ηα̇)†(−~x, t) , P−1(ηα̇)
†(~x, t)P = −i(ξα)†(−~x, t),

P−1(ξα)
†(~x, t)P = i(ηα̇)†(−~x, t) , P−1(ηα̇)†(~x, t)P = i(ξα)

†(−~x, t),
(22)

which satisfies the constraint (13). The following constraint then arises

(P−1)2ξαP 2 = −ξα. (23)

Indeed:(P−1)2ξαP 2 = P−1(P−1ξαP )P
(22)
= P−1iηα̇P

linear
= i P−1ηα̇P

(22)
= −ξα.

Taking the hermitian conjugate of the first equation of the first line in (22) and comparing it with the first
equation of the third line, it is also immediate to check that(PP †)O(PP †)−1 = O, O = ξα . . . , which
is correct forP unitary or antiunitary.
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3.2 Charge conjugation

C is the operation which transforms a particle into its antiparticle, andvice versa, without changing its
spin and momentum (see for example [13] p.17); it satisfiesC2 = 1 [12]

3.2.1 Charge conjugation of grassmanian wave functions

A Dirac fermion and its charge conjugate transform alike [12] and satisfy the same equation; the charge
conjugate satisfies

C · ψD = VCψD
T
, (24)

whereVC is a unitary operator

VC = γ2γ0, (VC)
†VC = 1 = (VC)

2; (25)

equivalently
C · ψD = UCψ

∗
D, UC = VCγ

0 = γ2, U †
CUC = 1 = −(UC)

2. (26)

In terms of Weyl fermions (see Appendix A), one has

ψD ≡


 ξα

η
β̇


 C→ −i


 ηα̇∗

ξ∗β


 = −i


 gα̇β̇η∗

β̇

gαβξ
β∗


 =


 −σ

2
α̇β̇
η∗
β̇

σ2αβξ
β∗


 = γ2


 ξα

η
β̇




∗

= γ2ψ∗
D,

(27)
and, so

ξα
C→ −iηα̇∗ , ηα̇

C→ −iξ∗α,
ξα

C→ −iη∗α̇ , ηα̇
C→ −iξα∗

. (28)

The transformation of complex conjugates fields results from the constraint (16), which imposes

(ξα)∗
C→ iηα̇ , (ηα̇)

∗ C→ iξα,

(ξα)
∗ C→ iηα̇ , (ηα̇)∗

C→ iξα. (29)

One can now show that (recall thatU2
C = −1 from (26))

C unitary and linear, C2 = 1. (30)

If (16) holds, the propertyC2 = 1 can only be realized if one considers thatC is a linear operator.

Indeed, then, using (28) and (29), one hasC · C · ξα (28)
= C · (−i(ηα̇)∗) linear

= (−i)C · (ηα̇)∗ (29)
= ξα,

which entails, as needed,C2 = 1.

The only way to keepC2 = 1 while havingC antilinear, as (26) seems to suggest, would be to break
the relation (16), in which case, the signs of (29) get swapped. Suppose indeed that we consider that
C is antilinear (thus also antiunitary), and suppose that we also want to preserve the relation (16); then,
(29) stays true together with (28), and, by operating a second time withC on the l.h.s. of (28) or (29),
one finds that it can only satisfyC2 = −1 instead ofC2 = 1. Among consequences, one finds that the
commutation and anticommutation relations with other symmetry transformationsP andT are changed
10, which swaps in particular the sign of(PCT )2; also, sinceT is antilinear andP is linear, this would
makePCT linear, thus unitary. So, if we wantC to be antilinear, we have to abandon (16); considering
that, at the same time, the equivalent relation (13) for operators in not true either causes serious problems
with Wightman’s definition (6) of the transformed of an operator (see subsection 2.0.5) which has to be
either unitary or antiunitary according to the Wigner’s symmetry representation theorem (see subsection
2.0.1). Refusing to go along this path, we have to keep (13) while giving up (16), that is we must

10With our conventions, we haveCP = PC, (PC)2 = −1, and(PCT )2 = 1.
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abandon the natural correspondenceψ ↔ [ψ], ψ∗ ↔ [ψ]† between fields and operators. This looks
extremely unnatural and a price too heavy to pay; this is why we consider that the relations (16) and
C2 = 1 are only compatible with unitarity and linearity forC.

The question now arises whether this causes any problem or leads to contradictions, thinking in particular
of (24) and (26); if one indeed considers these two equationsas the basic ones defining charge conjuga-
tion, one is led toC · (λψD) = λ∗C · (ψD) and that, accordingly,C acts antilinearly on wave functions.
Our argumentation rests on the fact that (24) and (26) shouldnot be considered as so. Indeed, the two
conditions defining the action ofC are [12]; – that a fermion and its charge conjugate should transform
alike by Lorentz; – that they should satisfy the same equation. Since the Dirac equation is linear, both
λC · ψD andλ∗C · ψD satisfy the same Dirac equation asC · ψD, and thus, the same equation asψD.
Likewise, bothλC · ψD andλ∗C · ψD transform by Lorentz asC · ψD, and thus, asψD. So, the two
fundamental requirements concerning the charge conjugateof a Dirac fermion bring no constraint on the
linearity or antilinearity ofC, and this last property must be fixed by other criteria. The ones in favor
of a linear action ofC have been enumerated above: – to preserve the relationC2 = 1; – to preserve
Wightman’s definition of a symmetry transformation and to stick to Wigner’s symmetry representation
theorem; – to preserve both relations (16) and (13); – to preserve the natural correspondence between
wave functions and field operators. Our final proposition is accordingly that: despiteC complex con-
jugates a Dirac spinor, it has to be considered as a linear andunitary operator (in particular the relation
C · λψ = λC · ψ has to be imposed), and this does not depend on whether it actson a wave function or
on a field operator.

We also refer the reader to appendix D, where a careful analysis is done of the pitfalls that accompany
the use ofγ matrices in the expression of the discrete transformationsP , C andT .

3.2.2 Charge conjugation of fermionic field operators

According to the choice of linearity and unitarity forC, the transition from (28) and (29) for grassmanian
wave functions to the transformations for field operators isdone according to (7) for unitary operators,
through the correspondenceUψ ↔ U−1[ψ]U . One gets

C−1ξαC = −i(ηα̇)† , C−1ηα̇C = −i(ξα)†,
C−1ξαC = −i(ηα̇)† , C−1ηα̇C = −i(ξα)†,
C−1(ξα)†C = i(ηα̇) , C−1(ηα̇)

†C = i(ξα),
C−1(ξα)

†C = i(ηα̇) , C−1((ηα̇)†C = i(ξα). (31)

Hermitian conjugating the first equation of the first line of (31) immediately shows its compatibility with
the first equation of the third line:C†(ξα)†(C−1)† = iηα̇ = C−1(ξα)†C ⇒ (ξα)† = CC†(ξα)†(C−1)†C−1,
which entailsCC† = ±1 which is correct forC unitary (or antiunitary). We would find an inconsistency
if the sign of the last four equations was swapped.

SinceC is linear, one immediately gets

(C−1)2OC2 = C−1(C−1OC)C = O,O = ξα . . . (32)

3.3 PC transformation

3.3.1 PC transformation on grassmanian wave functions

Combining (17), (28) and (29), and using, when needed, the linearity ofC, one gets

ξα(~x, t)
PC→ ξ∗α(−~x, t) , ηα̇(~x, t)

PC→ ηα̇∗(−~x, t),
ξα(~x, t)

PC→ −ξα∗

(−~x, t) , ηα̇(−~x, t) PC→ −η∗α̇(−~x, t), (33)

and
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(ξα)∗(~x, t)
PC→ ξα(−~x, t) , (ηα̇)

∗(~x, t)
PC→ ηα̇(−~x, t),

(ξα)
∗(~x, t)

PC→ −ξα(−~x, t) , (ηα̇)∗(~x, t)
PC→ −ηα̇(−~x, t). (34)

One easily checks that(PC)2 = −1.

Like for charge conjugation, one has

PC · (ξα)∗ =
(
PC · ξα

)∗
. (35)

For a Dirac fermion, one has


 ξα

η
β̇


 PC→


 ξ∗α

ηβ̇∗


 =


 gαβξ

β∗

gβ̇γ̇η∗γ̇


 =


 (iσ2)αβξ

β∗

(−iσ2)
β̇γ̇
η∗γ̇


 = i


 (ηα̇)

c

(ξβ)c


 = iγ0γ2


 ξα

η
β̇




∗

,

(36)
equivalently

PC · ψD = VPCψ
T
= UPVCψ

T
= UPCψ

∗ = UPUCψ
∗. (37)

As we will see in subsection 3.6, Majorana fermions havePC-parity±i.

3.3.2 PC transformation on fermionic field operators

Since we have definedPC as a linear (and unitary) operator, the transitions from grassmanian wave
functions to field operators goes through (7). This yields

(PC)−1ξα(PC) = ξ†α , (PC)−1ηα̇(PC) = (ηα̇)†,
(PC)−1ξα(PC) = −(ξα)† , (PC)−1ηα̇(PC) = −(ηα̇)†,
(PC)−1(ξα)†(PC) = ξα , (PC)−1(ηα̇)

†(PC) = ηα̇,
(PC)−1(ξα)

†(PC) = −ξα , (PC)−1((ηα̇)†(PC) = −ηα̇. (38)

3.4 Time-reversal

3.4.1 Time-reversal of grassmanian wave functions

The time reversed< χ(t′) | ψ(t) >T of a transition matrix element< χ(t′) | ψ(t) >, t < t′ is defined
by < χ(t) | ψ(t′) >∗=< ψ(t′) | χ(t) >, t > t′; the complex conjugation is made necessary byt < t′

and the fact thatin states must occur at a time smaller thanout states; the arrow of time is not modified
when one defines the time-reversed of a transition matrix element.

The operatorT is accordingly antiunitary, hence antilinear:

< TA | TB >=< B | A >⇒ T antiunitary, (39)

In Quantum Mechanics, time-reversal must change grassmanian functions into their complex conjugate
(see for example the argumentation concerning Schrœdinger’s equation in [13]). According to [12], the
grassmanian functionstransform by time inversion according to

ψD(~x, t)
T→ T · ψD(~x, t) = VTψD(~x,−t)

T
;

VT = iγ3γ1γ0, V †
TVT = 1 = V 2

T , V †
T = VT = V −1

T , (40)

which introducesT as antilinear when it acts on grassmanian functions. So doing, T.ψD andψD satisfy
time reversed equations. One also defines

UT = VTγ
0 = iγ3γ1 = −U∗

T , U
†
T = UT = U−1

T , U †
TUT = U2

T = 1. (41)

7



T · ψD = UTψ
∗
D = iγ3γ1ψ∗

D. (42)

This yields for Weyl fermions

ξα(~x, t)
T→ −iξ∗α(~x,−t) , ξα(~x, t)

T→ iξα∗(~x,−t),
ηα̇(~x, t)

T→ iηα̇∗(~x,−t) , ηα̇(~x, t)
T→ −iη∗α̇(~x,−t). (43)

The constraint (16) then entails

(ξα)∗(~x, t)
T→ iξα(~x,−t) , (ξα)

∗(~x, t)
T→ −iξα(~x,−t),

(ηα̇)
∗(~x, t)

T→ −iηα̇(~x,−t) , (ηα̇)∗(~x, t)
T→ iηα̇(~x,−t). (44)

One has
T 2 = 1, CT = −TC, PT = TP (45)

3.4.2 Time-reversal of fermionic field operators

The transition to field operators is done according to (9) forantiunitary transformations, through the
correspondence(Aψ)† ↔ A−1[ψ]A, which involves an extra hermitian conjugation with respect to the
transformations of grassmanian functions ([6], eq.(1-30)):

T−1ξα(~x, t)T = iξα(~x,−t) , T−1ηα̇(~x, t)T = −iηα̇(~x,−t),
T−1ξα(~x, t)T = −iξα(~x,−t) , T−1ηα̇(~x, t)T = iηα̇(~x,−t),

T−1(ξα)†(~x, t)T = −i(ξα)†(~x,−t) , T−1(ξα)
†(~x, t)T = i(ξα)†(~x,−t),

T−1(ηα̇)
†(~x, t)T = i(ηα̇)†(~x,−t) , T−1(ηα̇)†(~x, t)T = −i(ηα̇)†(~x,−t). (46)

SinceT is antilinear, one finds immediately that, thoughT 2 = 1, one must have

(T−1)2O T 2 = T−1(T−1O T )T = −O,O = ξα . . . (47)

3.5 PCT transformation

3.5.1 PCT operation on grassmanian wave functions

Combining the previous results, using the linearity ofP andC, one getsfor the grassmanian functions
11

ξα(x)
PCT→ iξα(−x) , ηα̇(x)

PCT→ −iηα̇(−x),
ξα(x)

PCT→ iξα(−x) , ηα̇(x)
PCT→ −iηα̇(−x),

ψD(x)
PCT→ iγ5ψD(−x), (48)

where the overall sign depends on the order in which the operators act; here they are supposed to act in
the order: firstT , thenC and lastP . When acting on bi-spinors, one hasCT = −TC andPT = TP 12.
So, using alsoCP = PC, one gets(PCT )(PCT ) = (PCT )(P (−)TC) = (PCT )(−TPC). T 2 = 1,
C2 = 1, P 2 = −1 (our choice) andPC = CP entail

(PCT )2 = 1. (49)

11Examples:
PCT · ξα = PC · (T · ξα) = PC · (−iξ∗α) = P · (−i)C · ξ∗α = (−i)P · C · ξ∗α = (−i)P · iηα̇ = P · ηα̇ = iξα;
PCT · (ξα)∗ = PC · (T · (ξα)∗)) = PC · (iξα) = P · iC · ξα = iP · (−i)(ηα̇)

∗ = P · (ηα̇)
∗ = −i(ξα)∗.

12We disagree with [12] who states thatT andP anticommute.
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Note that, bothC andT introducing complex conjugation, the latter finally disappears andPCT intro-
duces no complex conjugation for the grassmanian functions. This is why one has

PCT · ψD(x) = UΘψD(−x), (50)

UΘ = UPUCUT = −γ0γ1γ2γ3 = iγ5, UΘU
†
Θ = 1 = −U2

Θ, U †
Θ = −UΘ. (51)

For the complex conjugate fields, the constraint (16) gives

(ξα)∗(x)
PCT→ −i(ξα)∗(−x) , (ηα̇)

∗(x)
PCT→ i(ηα̇)

∗(−x),
(ξα)

∗(x)
PCT→ −i(ξα)∗(−x) , (ηα̇)∗(x)

PCT→ i(ηα̇)∗(−x),
ψ∗
D

PCT→ −iγ5ψ∗
D, (52)

such that (this only occurs forP andPCT )

PCT · (ξα)∗ = (PCT · ξα)∗ ⇔ UΘ(ξ
α)∗ ≡ ((ξα)∗)Θ = (UΘξ

α)∗ ≡ ((ξα)Θ)∗. (53)

SinceP andC are unitary andT antiunitary,PCT is antiunitary, thusantilinear. So, despite no complex
conjugation is involvedΘ · λξα = λ∗Θ · ξα 13.

3.5.2 PCT operation on fermionic field operators

SinceΘ is antiunitary, one has, according to (9)

Θ−1ξα(x)Θ = −i(ξα)†(−x) , Θ−1ξα(x)Θ = −i(ξα)†(−x),
Θ−1ηα̇(x)Θ = i(ηα̇)

†(−x) , Θ−1ηα̇(x)Θ = i(ηα̇)†(−x),
Θ−1(ξα)†(x)Θ = iξα(−x) , Θ−1(ξα)

†(x)Θ = iξα(−x),
Θ−1(ηα̇)

†(x)Θ = −iηα̇(−x) , Θ−1(ηα̇)†(x)Θ = −iηα̇(−x). (54)

and, using the antilinearity ofΘ, one gets

(Θ−1)2OΘ2 = Θ(Θ−1OΘ)Θ = −O,O = ξα . . . (55)

3.6 Majorana fermions

A Majorana fermion is a bi-spinor which is aC eigenstate (it is a special kind of Dirac fermion with
half as many degrees of freedom); sinceC2 = 1, the only two possible eigenvalues areC = +1 and
C = −1; thus, a Majorana fermions must satisfy (see (27)) one of thetwo possible Majorana conditions:

∗ −iηα̇∗ = ±ξα ⇔ ηα̇ = ±(−i)ξα∗ ⇔ η
β̇
= ±(−i)ξ∗β ;

∗ −iξ∗β = ±η
β̇
, which is the same condition as above;

so,

ψ±
M =


 ξα

±(−i)ξ∗β


 =


 ξα

±(−i)gαβξβ∗


 =


 ξα

±σ2αβξβ∗


 ; (56)

the+ sign in the lower spinor corresponds toC = +1 and the− sign toC = −1 14 .

13This is to be put in correspondence withC, which islinear despite complex conjugation is involved.
14Remark: Arguing that(−i)(ξβ)∗) transforms like a right fermion, we can callωβ̇ = (−i)(ξβ)

∗), and the Majorana

fermionψ+

M rewritesψ+

M =





ξα

ωβ̇



. If we then calculate its charge conjugate according to the standard rules (28), one gets

ψ+

M

C
→





−i(ωα̇)†

−i(ξα)
∗



 ≡





ξα

−i(ξα)
∗



, which shows that it is indeed aC = +1 eigenstate. The argumentation becomes

trivial if one uses for Majorana fermions the same formula for charge conjugation as the one at the extreme right of (27) for
Dirac fermions(ψM )c = γ2(ψM )∗, (χM )c = γ2(χM )∗.
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The Majorana conditions linkingξ andη are

ξα
C=±1
= ±(−i)(ηα̇)∗ ⇔ η

β̇

C=±1
= ±(−i)(ξβ)∗; (57)

using formulæ(28,29) for the charge conjugates of Weyl fermions, they also write

ξα
C=±1
= ±(ξα)c, η

β̇

C=±1
= ±(η

β̇
)c. (58)

A Majorana bi-spinor can accordingly also be written15

χ±
M =


 ±(−i)(η

α̇)∗

η
β̇


 , (60)

which is identical toψ±
M by the relations (57). By charge conjugation, using (28),ψ+

M

C↔ χ+
M , ψ

−
M

C↔
−χ−

M .

A so-called Majorana mass term writes

ψMψM ≡ ψ†
Mγ

0ψM ≡ ±i [−(ξα)∗(ξα)∗ + ξαξ
α] = ±i [(ξα)∗(ξα)∗ + ξαξ

α]

or ψMγ
5ψM ≡ ψ†

Mγ
0γ5ψM ≡ ∓i [(ξα)∗(ξα)∗ + ξαξ

α] = ∓i [(−ξα)∗(ξα)∗ + ξαξ
α] . (61)

Along the same lines, Majorana kinetic terms write16 ψMγ
µ←→pµψM or ψMγ

µγ5←→pµψM ; they rewrite in
terms of Weyl spinors (using (162))

ψMγ
µ←→pµψM = ψ†

M



←−−−−−→
(p0 − ~p.~σ) 0

0
←−−−−−→
(p0 + ~p.~σ)


ψM

= (ξα)∗
←−−−−−→
(p0 − ~p.~σ)ξβ +

(
± (−i)(ξα)∗

)∗←−−−−−→
(p0 + ~p.~σ)

(
± (−i)ξ∗β

)

= (ξα)∗
←−−−−−→
(p0 − ~p.~σ)ξβ + ξα

←−−−−−→
(p0 + ~p.~σ)ξ∗β, (62)

and

ψMγ
µγ5←→pµψM = ψ†

M



←−−−−−→
(p0 − ~p.~σ) 0

0
←−−−−−→
(p0 + ~p.~σ)


 γ5ψM

= (ξα)∗
←−−−−−→
(p0 − ~p.~σ)ξβ −

(
± (−i)(ξα)∗

)∗←−−−−−→
(p0 + ~p.~σ)

(
± (−i)ξ∗α

)

= (ξα)∗
←−−−−−→
(p0 − ~p.~σ)ξβ − ξα

←−−−−−→
(p0 + ~p.~σ)ξ∗β. (63)

A Dirac fermion can always be written as the sum of two Majorana’s (the first hasC = +1 and the

secondC = −1):


 ξα

ηβ̇


 = 1

2




 ξα − i(ηα̇)∗

−iξ∗β + ηβ̇


+


 ξα + i(ηα̇)∗

iξ∗β + ηβ̇




.

While a Dirac fermion± its charge conjugate is always a Majorana fermion (C = ±1), any Majorana
fermion (i.e. a general bi-spinor which is aC eigenstate) cannot be uniquely written as the sum of a

15The Majorana spinorsψ±
M andχ±

M can also be written

ψ
±
M =





ξα

±(−i)(ξα)CP



 , χ
±
M =





±(−i)(ηβ̇)
CP

ηβ̇



 ; (59)

they involve one Weyl spinor and itsCP conjugate (see subsection 3.3).
16One defines as usualψ

←→
∂ χ = 1

2

(

ψ∂χ − (∂ψ)χ
)

. For anticommuting fermions[ψ, χ]+ = 0, one hasψ
←→
∂ χ = ψ∂χ =

χ∂ψ = χ
←→
∂ ψ.
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given Dirac fermion± its charge conjugate: this decomposition is not unique. Suppose indeed that, for
example, aC = +1 Majorana fermion is written like the sum of a Dirac fermion + its charge conjugate
 θα

−iθ∗β


 =


 ξα − i(ηα̇)∗

η
β̇
− iξ∗β


. Since the two corresponding equations are not independent, ξ andη

cannot be fixed, but only the combinationξα − i(ηα̇)∗ ∼ ξα − iηα. So, infinitely many different Dirac
fermions can be used for this purpose.

A Majorana fermion can always be written as the sum of a left fermion± its charge conjugate, or the
sum of a right fermion± its charge conjugate. Let us demonstrate the first case only,since the second
goes exactly along the same lines

ψ±
M =


 ξα

±(−i)ξ∗β


 =


 ξα

0


+


 0

±(−i)ξ∗β


 = ψL ± γ2ψ∗

L = ψL ± (ψL)
c,

ψL =


 ξα

0


 =

1 + γ5

2
ψD. (64)

Majorana fermions havePC parity = ±i. For example,PC.


 ξα

(η
β̇
)c


 =


 ξ∗α

iξβ


 = iγ0


 ξα

(η
β̇
)c


.

They arenotPC eigenstates (an extraγ0 comes into play in the definition ofPC-parity).

4 Invariance

4.1 Wightman’s point of view [6]

The invariance of a “theory” is expressed by the invariance of the vacuum and the invariance of alln-
point functions;O is then a product of fields at different space-time points and(Ô being the transformed
of O)

| 0 >= | 0̂ >,< 0 | O | 0 >=< 0 | Ô | 0 > . (65)

∗ in the case of a unitary transformationU ,

< 0 | O | 0 >sym
= < 0 | OU | 0 >vacuum inv

= < 0U | OU | 0U >, OU = U−1OU ; (66)

taking the example of parity and ifO = φ1(x1)φ2(x2) . . . φn(xn), one has

OP = P−1OP = φ1(t1,−~x1)φ2(t2,−~x2) . . . φn(tn,−~xn), such that parity invariance writes

< 0 | φ1(x1)φ2(x2) . . . φn(xn) | 0 >=< 0 | φ1(t1,−~x1)φ2(t2,−~x2) . . . φn(tn,−~xn) | 0 > . (67)

∗ in the case of a antiunitary transformationA,

< 0 | O | 0 > sym
= < 0 | OA | 0 >=< 0A | OA | 0A >;

OA = (A−1OA)† ⇒
< 0 | O | 0 > sym

= =< 0 | (A−1OA)† | 0 >=< 0 | A−1OA | 0 >∗;
(68)

taking the example ofΘ = PCT , withO = φ1(x1)φ2(x2) . . . φn(xn), one has

OΘ = (Θ−1OΘ)† = (Θ−1φnΘ)† . . . (Θ−1φ2Θ)†(Θ−1φnΘ)† = φΘn . . . φ
Θ
2 φ

Θ
1 .

For fermions [6]
φ(x)Θ ≡ ±φ(−x) = (Θ−1φ(x)Θ)†, (69)
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such thatPCT invariance expresses as (of course the sign is unique and must be precisely determined)

< 0 | φ1(x1)φ2(x2) . . . φn(xn) | 0 >
sym
= ± < 0 | φn(−xn) . . . φ2(−x2)φ1(−x1) | 0 >

= ± < 0 | φ∗1(−x1)φ∗2(−x2) . . . φ∗n(−xn) | 0 >∗

= ± < 0 | (Θ−1φ1(x1)Θ)(Θ−1φ2(x2)Θ) . . . (Θ−1φn(xn)Θ) | 0 >∗ .
(70)

It is enough to changexi → −xi and to read all Green functions from right to left instead of reading
them from left to right (like Pauli).

For a general antiunitary transformationA, the last line of (68) expressing the invariance also reads,
since the vacuum is supposed to be invariant byA−1 as well as byA:

< 0 | O | 0 >≡< 0 | O 0 >
=< A−10 | (A−1OA)† | A−10 >=< A−10 | (A−1OA) | A−10 >∗=< A−10 | A−1(O 0) >∗;

(71)

requesting that, for anyφ,< φ | O | φ >=< φ | (A−1OA)† | φ > would be much stronger a condition.

Wightman’s expression of the invariance is weaker than requestingO = Ô, since it occurs only for
VEV’s and not when sandwiched between any stateφ.

4.2 The conditionO = Ô

It is often used to express the invariance of a theory with (Lagrangian or) HamiltonianO by the transfor-
mation under consideration:

* For unitary transformations, this condition is equivalent to

O = U−1OU ⇔ [U ,O] = 0; (72)

* For antiunitary transformations it yields (we use the property that, for unitary as well as for antiunitary
operatorsU−1 = U† andA−1 = A†, see Footnote 5 and Appendix B)

O = (A−1OA)† = A−1O†A ⇔ AO = O†A. (73)

Note that this is similar (apart from the exchangeΘ ↔ Θ−1) to the condition proposed in [14] (p.322)
as the “PCT ” theorem for any Lagrangian densityL(x) considered as a hermitianoperator

ΘL(x)Θ−1 = L†(−x). (74)

So, that the Hamiltonian commutes with the symmetry transformation can eventually be accepted when
this transformation is unitary (and we have already mentioned that this statement is stronger that Wight-
man’s expression for invariance); however, when the transformation is antiunitary, one must be more
careful.

Requesting that the transformed states should satisfy the same equations as the original ones is only
true for unitary transformations. It is not in the case of antiunitary operations likeT (or PCT ) since a
time reversed fermion does not satisfy the same equation as the original fermion but the time-reversed
equation.

4.3 Hamiltonian - Lagrangian.

4.3.1 The case of a unitary transformation

• Invariance of the Hamiltonian:

12



In Quantum Mechanics, a system is said to be invariant by a unitary transformationU if the transformed
of the eigenstates of the HamiltonianH have the same energies as the original states

Hψ = Eψ and HU · ψ = EU · ψ; (75)

sinceU is unitary, it is in particular linear, such thatEU · ψ = U · Eψ = U · Hψ; this is why the
invariance of the theory is commonly expressed by

H = U−1HU ⇔ [U ,H] = 0. (76)

Defining, according to Wightman, the transformedĤ of the HamiltonianH by Ĥ = U−1HU , we see
the the invariance condition (76) also rewritesĤ = H. No special condition of reality is required forE.

• Invariance of the Lagrangian:

The Lagrangian approach is often more convenient in QuantumField Theory; it determines the (classical)
equations of motion, and also the perturbative expansion. The Lagrangian densityL(x) is written<
Ψ(x) | L(x) | Ψ(x) >, whereL is an operator andΨ(x) is a “vector” of different fields.

A reasonable definition for the invariance of the theory if that the transformedUΨ of Ψ satisfies the same
equation asΨ; sinceL(x) andeiαL(x) will provide the same (classical) dynamics, one expresses this
invariance by

< U ·Ψ(x) | L(x) | U ·Ψ(x) >= eiα < Ψ(x) | L(x) | Ψ(x) >= eiαL(x). (77)

Due to the unitarity ofU , this is equivalent to< Ψ(x) | U−1L(x)U |Ψ(x) >= eiα < Ψ(x) |L(x) |Ψ(x) >
or, owing to the fact thatΨ can be anything

LU = eiαUL. (78)

If one applies this rule to a mass term, and consider the mass (scalar) as an operator, the unitarity of
U entails that a scalar as well as the associated operator should stay unchanged. This leaves only the
possibilityα = 0. The condition (78) reduces accordingly to the vanishing ofthe commutator[L,U ].
Wightman’s definition (6) of the transformed̂L = U−1LU of the operatorL makes this condition equiv-
alent toL̂ = L. No condition of reality (hermiticity) is required onL.

4.3.2 The case of antiunitary transformations

The situation is more tricky, since, in particular, the states transformed by a antiunitary transformation
(for exampleT ) do not satisfy the same classical equations as the originalstates (in the case ofT , they
satisfy the time-reversed equations).

This why it is more convenient to work with each bilinear present in the Lagrangian or Hamiltonian,
which we write for example< φ | O | χ >. φ, ξ can be fermions or bosons,O a scalar, a derivative oper-

ator . . . . Taking the example ofPCT , this bilinear transforms into< Θφ | O |Θχ >(12)
= < χ | Ô | φ >=

< χ | (Θ−1OΘ)† | φ >.

Application: Dirac and Majorana mass terms

• Problems with a classical fermionic Lagrangian:

In view of all possible terms compatible with Lorentz invariance, we work in a basis which can accom-
modate, for example, both a Dirac fermion and its antiparticle. Accordingly, For a single Dirac fermion
(and its antiparticle), we introduce the 4-vector of Weyl fermions

ψ =


 nL

nR


 =




ξα

(ξβ)c

(ηγ̇)
c

η
δ̇



≡




ξα

−i(ηβ̇)∗

−i(ξγ)∗

η
δ̇




Lorentz∼




ξα

ηβ

ξγ̇

η
δ̇



, (79)
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where
Lorentz∼ means “transforms like (by Lorentz)”.

Let us study the transform byPCT of a Dirac-type mass termmDξ
α∗(x)ηα̇(x) =< ξα(x) |mD | ηα̇(x) >

and of a Majorana-type mass termmMξ
α∗(x)(ηα̇)

c(x) =< ξα(x) |mM | (ηα̇)c(x) >.

* mD andmM we first consider as operators sandwiched between fermionicgrassmanian functions. The
two mass terms transform, respectively, into< Θξα(x) |mD |Θηα̇(x) > and< Θξα(x) |mM |Θ(ηα̇)

c(x) >.
We now use (12), which transforms these two expressions into< ηα̇ |mΘ

D | ξα > and< (ηα̇)
c |mΘ

M | ξα >.
SinceΘ is antilinear,Θ−1mΘ = m∗ ⇒ mΘ ≡ (Θ−1mΘ)† = m. So the two mass terms transform,
respectively, intomD < ηα̇ | ξα >≡ mDη

∗
α̇ξ

α andmM < ηcα̇ | ξα >≡ mM (ηcα̇)
∗ξα. Notice thatη∗α̇ξ

α

is (using anticommutation)(−) the complex conjugate ofξα∗ηα̇ and likewise, that(ηcα̇)
∗ξα is (−) the

complex conjugate ofξα∗ηcα̇.

The Lagrangian density also a priori involves Dirac and Majorana mass termsµDη∗α̇ξ
α andµM (ηcα̇)

∗ξα,
such thatPCT invariance requiresmD = µD andmM = µM

17.

* If we instead consider thatmφ∗χ
PCT→ m(Θφ∗)Θχ we obtain, using (48) and (52), that the Dirac

mass term transforms intomd(−iξα∗)(−iηα̇), that is, it changes sign byPCT . The Majorana mass term

transforms intomM (−iξα∗)Θ(−iξ∗α)
antilin
= mM (−iξα∗)(+i)Θξ∗α = (−iξ∗α)(+i)(−iξ∗α) = −iξα∗ξ∗α,

that is, unlike the Dirac mass term, the Majorana mass term does not change sign. This alternative would
in particular exclude the simultaneous presence of Dirac and Majorana mass terms (necessary for the
see-saw mechanism).

* Conclusion: antiunitary transformations of a classical fermionic Lagrangian are ambiguous and can
lead to contradictory statements. Defining a classical fermionic Lagrangian is most probably itself prob-
lematic18.

• Quantum (operator) Lagrangian

Dirac and Majorana mass terms write, respectively[ξα]†[mD][ηα̇] and[ξα]†[mM ][ηcα̇]
(31)
= [ξα]†[mM ](−i)[ξα]†.

Using (8), one gets([ξα]†[mD][ηα̇])
Θ = [ηα̇]

Θ[mD]
Θ([ξα]†)Θ = [ηα̇]

Θ[mD]
Θ([ξα]Θ)† = −i[ηα̇][mD](−i)[ξα]†,

such that, using the anticommutation of fermionic operators, the Dirac mass term transforms byΘ into
itself.
As far as the Majorana mass term is concerned, it transforms into([ξα]†[mM ][ηcα̇])

Θ = ([ηcα̇])
Θ[mM ]Θ([ξα]†)Θ =

(−i[ξα]†)Θ[mM ]Θ([ξα]†)Θ. One uses again (8) to evaluate(−i[ξα]†)Θ = ([ξα]
†)Θ(−i)Θ = (−i)[ξα]†(−i) =

−[ξα]†. So, finally, the Majorana mass term transforms into−[ξα]†mM(−i)[ξα]† anticom
= −i[ξα]†mM [ξα]

†,
that is, like the Dirac mass term, into itself.
The same conclusions are obtained in the propagator formalism.

5 The fermionic propagator and discrete symmetries (1 fermion + its an-
tifermion)

The fermionic propagator∆(x) is a matrix with a Lorentz tensorial structure, the matrix elements of
which are the vacuum expectation values ofT -products of two fermionic operators:

T ψ(x)χ(y) = θ(x0 − y0)ψ(x)χ(y) − θ(y0 − x0)χ(y)ψ(x); (80)

the Lorentz indices of the two operators yield the tensorialstructure of the matrix elements.

17If the Lagrangian (Hamiltonian) is furthermore real, it should match its complex conjugate (see Appendix C). The c.c. of

the Dirac mass terms arem∗
Dξ

αη∗α̇ + µ∗
Dηα̇ξ

α∗ anticom
= −m∗

Dη
∗
α̇ξ

α − µ∗
Dξ

α∗ηα̇ and the c.c. of the Majorana mass term are

m∗
Mξ

α(ηcα̇)
∗ + µ∗

M (ηcα̇)ξ
α∗ anticom

= −m∗
M (ηcα̇)

∗ξα − µ∗
Mξ

α∗(ηcα̇). Using (28) to replaceηcα̇ by (−i)ξ∗α, the reality of the
Lagrangian is seen to requiremD = −µ∗

D andmM = −µ∗
M .

So, combining the two, we see that a real andPCT invariant (classical) Lagrangian should satisfymD = µD imaginary

andmM = µM imaginary.
18Let us also mention the arbitrariness that results from adding to a mass matrix any vanishing anticommutator.
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If, for example, one works in the fermionic basis(ψ1, ψ2, ψ3, ψ4), and ifα, β . . . denote their Lorentz
indices, the propagator is a4× 4 matrix∆(x) such that

∆αβ
ij (x) =< ψα

i |∆(x)| ψβ
j >=< 0 |T (ψi)

α(
x

2
)(ψ†

j )
β(−x

2
)| 0 > . (81)

Supposing
< ψα

i | ψβ
j >= δijδ

αβ , (82)

we shall also use the notation,

∆(x) =
∑

i,j

| ψα
i > ∆αβ

ij (x) < ψβ
j |

=
(
| ψα

1 > | ψα
2 > | ψα

3 > | ψα
4 >

)
∆αβ

ij (x)




< ψβ
1 |

< ψβ
2 |

< ψβ
3 |

< ψβ
4 |




; (83)

since one indeed finds< ψα
i |∆(x)| ψβ

j >= ∆αβ
ij (x).

We will work hereafter in the basis (79), which includes enough degrees of freedom to describe a (Dirac)
fermion + its antifermion. The corresponding fermionic propagator is then a4×4 matrix which involves
the following types ofT -products19

∗mass-like propagators:

< 0 |T ξα(x)(ηβ̇)†(−x)| 0 > and< 0 |T (ξα)c(x)((ηβ̇)c)†(−x)| 0 > (Dirac-like),

< 0 |T (ηα̇)c(x)((ξβ)c)†(−x)| 0 > and< 0 |T ηα̇(x)(ξβ)†(−x)| 0 > (Dirac-like),

< 0 |T ξα(x)((η
β̇
)c)†(−x)| 0 >,< 0 |T (ξα)c(x)(η

β̇
)†(−x)| 0 > (Majorana-like),

< 0 |T (ηα̇)c(x)(ξβ)†(−x)| 0 >,< 0 |T ηα̇(x)((ξβ)c)†(−x)| 0 > (Majorana-like);

∗ kinetic-like propagators:

< 0 |T ξα(x)(ξβ)†(−x)| 0 > and< 0 |T (ξα)c(x)((ξβ)c)†(−x)| 0 > (diagonal),

< 0 |T (ηα̇)c(x)((ηβ̇)c)†(−x)| 0 > and< 0 |T ηα̇(x)(ηβ̇)†(−x)| 0 > (diagonal),

< 0 |T ξα(x)((ξβ)c)†(−x)| 0 > and< 0 |T (ξα)c(x)(ξβ)†(−x)| 0 > (non-diagonal),

< 0 |T (ηα̇)c(x)(ηβ̇)†(−x)| 0 > and< 0 |T ηα̇(x)((ηβ̇)c)†(−x)| 0 > (non-diagonal).

Because of electric charge conservation, some of the mixed propagators (Majorana mass terms, non-
diagonal kinetic terms) will only occur for neutral fermions.

Any propagator is a non-local functional of two fields, whichare evaluated at two different space-time
points; a consequence is that, unlike for the Lagrangian, which is a local functional of the fields, one
cannot implement constraints coming from the anticommutation of fermions. Likewise, a propagator has
no hermiticity (or reality) property, and no correspondingconstraint exist20 . So, the only constraints that
can be cast on the propagator come from discrete symmetries and their combinations:C, CP , PCT .
The mass eigenstates, which are determined from the propagator are accordingly expected to be less
constrained than the eigenstates of any quadratic Lagrangian21 .

19For the Lagrangian, the equivalent would be to consider all possible quadratic terms compatible with Lorentz invariance.
Dirac as well as Majorana mass terms are allowed, and for, kinetic terms, diagonal ones, for exampleξα†(p0 − ~p.~σ)αβ ξ

β as
well as non-diagonal ones, for example(ηα̇)c†(p0 + ~p.~σ)αβ ηβ̇ ≡ iξα(p

0 + ~p.~σ)αβ ηβ̇ .
20Only the spectral function has positivity properties.
21and any mass matrix, which can only be eventually introducedin a linear approximation to the inverse propagator in the

vicinity of one of its poles [2].
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5.1 PCT constraints

All demonstrations proceed along the following steps.

Suppose that we want to deducePCT constraints for< 0 |T ψ(x)χ†(−x)| 0 >. The information that
we have from (54) is: there existφ andω such thatψ(x) = Θφ†(−x)Θ−1, χ†(−x) = Θω(x)Θ−1 22 ,
the vacuum is supposed to be invariant| 0 >= | Θ 0 >, andΘ is antiunitary, which entails (10)23 . We
have accordingly

< 0 |T ψ(x)χ†(−x)| 0 >=< 0 |T Θφ†(−x)Θ−1Θω(x)Θ−1| 0 >
invariance of the vacuum

= < Θ 0 |T Θφ†(−x)Θ−1Θω(x)Θ−1|Θ 0 >=< Θ 0 |T Θφ†(−x)ω(x)Θ−1|Θ 0 >
(10)
= < 0 |θ(t)ω†(x)φ(−x)− θ(−t)φ(−x)ω†(x)| 0 >= − < 0 |T φ(−x)ω†(x)| 0 >.

5.1.1 Constraints on mass-like terms

∗ Majorana− like < 0 |T ξα(x)((η
β̇
)c)†(−x)| 0 > = < 0 |T ξα(−x)((η

β̇
)c)†(x)| 0 >

= − < 0 |T ((η
β̇
)c)†(x)ξα(−x)| 0 >;

∗Majorana− like < 0 |T (ηα̇)c(x)(ξβ)†(−x)| 0 > = < 0 |T (ηα̇)c(−x)(ξβ)†(x)| 0 >
= − < 0 |T (ξβ)†(x)(ηα̇)c(−x)| 0 >;

∗Majorana− like < 0 |T (ξα)c(x)(η
β̇
)†(−x)| 0 > = < 0 |T (ξα)c(−x)(η

β̇
)†(x)| 0 >

= − < 0 |T (η
β̇
)†(x)(ξα)c(−x)| 0 >;

∗Majorana− like < 0 |T ηα̇(x)((ξβ)c)†(−x)| 0 > = < 0 |T ηα̇(−x)((ξβ)c)†(x)| 0 >
= − < 0 |T ((ξβ)c)†(x)ηα̇(−x)| 0 >;

∗Dirac− like < 0 |T ξα(x)(η
β̇
)†(−x)| 0 > = < 0 |T ξα(−x)(η

β̇
)†(x)| 0 >

= − < 0 |T (η
β̇
)†(x)ξα(−x)| 0 >:

∗Dirac− like < 0 |T ηα̇(x)(ξβ)†(−x)| 0 > = < 0 |T ηα̇(−x)(ξβ)†(x)| 0 >
= − < 0 |T (ξβ)†(x)ηα̇(−x)| 0 >;

∗Dirac− like < 0 |T (ξα)c(x)((η
β̇
)c)†(−x)| 0 > = < 0 |T (ξα)c(−x)((η

β̇
)c)†(x)| 0 >

= − < 0 |T ((η
β̇
)c)†(x)(ξα)c(−x)| 0 >;

∗Dirac− like < 0 |T (ηα̇)c(x)((ξβ)c)†(−x)| 0 > = < 0 |T (ηα̇)c(−x)((ξβ)c)†(x)| 0 >
= − < 0 |T ((ξβ)c)†(x)(ηα̇)c(−x)| 0 > .

(84)

We give the demonstration of the first (Majorana-like) line of (84).

< 0 |T ξα(x)((η
β̇
)c)†(−x)| 0 >=< 0 |T ξα(x)iξβ(−x)| 0 >= i < 0 |T ξα(x)ξβ(−x)| 0 >

= i < 0 |T Θ(−i(ξα)†(−x))Θ−1Θ(−i(ξβ)†)(x)Θ−1| 0 >
invariance of the vacuum

= i < Θ0 |T Θ(−i(ξα)†)(−x)Θ−1Θ(−i(ξβ)†)(x)Θ−1| Θ0 >
= i < Θ0 |T Θ(−i(ξα)†)(−x)(−i(ξβ)†)(x)Θ−1| Θ0 >
= −i < Θ0 |T Θ(ξα)†(−x)(ξβ)†(x)Θ−1| Θ0 >
antiunitarity(10)

= −i < 0 |θ(t)ξβ(x)(ξα)(−x)| 0 > +i < 0 |θ(−t)ξα(−x)ξβ(x)| 0 >
= +i < 0 |T ξα(−x)ξβ(x)| 0 >=< 0 |T ξα(−x)((η

β̇
)c)†(x)| 0 > .

All these propagators are accordingly left invariant24 by the 4-inversionx → −x, or, in Fourier space,
they are invariant whenpµ → −pµ.

22For example, from (54), one getsξα = Θ(−i(ξα)†)Θ−1.
23Θ, though antiunitary, does not act on theθ functions of theT -product because they are real.
24This is not much information, but it is correct. Consider indeed the usual Feynman propagator in Fourier space for a Dirac

fermion with massm

∫

d
4
xe

ipx
< 0 |T





ξα

ηα̇



 (x)
(

(ξβ)† (ηβ̇)
†

)

(−x)γ0| 0 >=
pµγ

µ +m

p2 −m2
=

1

p2 −m2





m pµσµ

pµσ
µ m



 ; (85)

16



5.1.2 Constraints on kinetic-like terms

∗ Diagonal < 0 |T ξα(x)(ξβ)†(−x)| 0 > = − < 0 |T ξα(−x)(ξβ)†(x)| 0 >
= < 0 |T (ξβ)†(x)ξα(−x)| 0 >;

∗Diagonal < 0 |T (ξα)c(x)((ξβ)c)†(−x)| 0 > = − < 0 |T (ξα)c(−x)((ξβ)c)†(x)| 0 >
= < 0 |T (ξβ)c)†(x)(ξα)c(−x)| 0 >;

∗Diagonal < 0 |T (ηα̇)c(x)((ηβ̇)c)†(−x)| 0 > = − < 0 |T (ηα̇)c(−x)((ηβ̇)c)†(x)| 0 >
= < 0 |T ((η

β̇
)c)†(x)(ηα̇)

c(−x)| 0 >;
∗Diagonal < 0 |T ηα̇(x)(ηβ̇)†(−x)| 0 > = − < 0 |T ηα̇(−x)(ηβ̇)†(x)| 0 >

= < 0 |T (η
β̇
)†(x)ηα̇(−x)| 0 >;

∗ Non− diagonal < 0 |T ξα(x)((ξβ)c)†(−x)| 0 > = − < 0 |T ξα(−x)((ξβ)c)†(x)| 0 >
= < 0 |T ((ξβ)c)†(x)ξα(−x)| 0 >;

∗ Non− diagonal < 0 |T (ξα)c(x)(ξβ)†(−x)| 0 > = − < 0 |T (ξα)c(−x)(ξβ)†(x)| 0 >
= < 0 |T (ξβ)†(x)(ξα)c(−x)| 0 >;

∗ Non− diagonal < 0 |T (ηα̇)c(x)(ηβ̇)†(−x)| 0 > = − < 0 |T (ηα̇)c(−x)(ηβ̇)†(x)| 0 >
= < 0 |T (ηβ̇)†(x)(ηα̇)c(−x)| 0 >;

∗ Non− diagonal < 0 |T ηα̇(x)((ηβ̇)c)†(−x)| 0 > = − < 0 |T ηα̇(−x)((ηβ̇)c)†(x)| 0 >
= < 0 |T ((η

β̇
)c)†(x)ηα̇(−x)| 0 > .

(87)

In Fourier space, all these propagators must accordingly beodd inpµ. We check like above on the Dirac
propagator that it is indeed the case. One gets for example (theγ0 in (85) now makesγµα,β+2 appear)

∫
d4xeipx < 0 |T ξα(x)(ξβ)†(−x)| 0 >=

pµγ
µ
αβ+2 +mδαβ+2

p2 −m2
, α, β = 1, 2, (88)

in which only the terms linear inpµ are present, which are indeed odd inpµ as predicted byPCT
invariance.

Note thatPCT invariance does not forbid non-diagonal kinetic-like propagators.

5.1.3 Simple assumptions and consequences

PCT symmetry constrains, in Fourier space, all mass-like propagators to bep-even and all kinetic-like
propagators to bep-odd; the former can only writef(p2)δαβ and the latterg(p2)pµσ

µ
αβ or h(p2)pµσµαβ .

This is what we will suppose hereafter, and consider, in Fourier space, a propagator

∆(p) =
(
| ξα > | (ξα)c > | (ηα̇)c > | ηα̇ >

)





 α1(p

2) a1(p
2)

b1(p
2) β1(p

2)


 pµσµαβ


 mL1(p

2) µ1(p
2)

m1(p
2) mR1(p

2)


 δαβ


 mL2(p

2) m2(p
2)

µ2(p
2) mR2(p

2)


 δαβ


 β2(p

2) b2(p
2)

a2(p
2) α2(p

2)


 pµσ

µ
αβ







< ξβ |
< (ξβ)c |
< (ηβ̇)

c |
< η

β̇
|



.

(89)

it yields in particular (theγ0 in (85) makesγµ
α,β appear)

∫

d
4
xe

ipx
< 0 |T ξα(x)ηβ̇(−x)| 0 >=

pµγ
µ
αβ +mδαβ

p2 −m2
, α, β = 1, 2. (86)

PCT invariance tells us that, in a Dirac mass-like propagator, thepµ term is not present, and the remaining term is diagonal in
α, β; and, indeed,γµ

αβ vanishes∀α, β = 1, 2, while the term proportional tom is diagonal inα, β.
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This ansätz enables to get explicit constraints on the propagator. It is motivated by the fact that, classi-
cally, the (quadratic) Lagrangian, which is the inverse propagator, has this same Lorentz structure

L =


 K1(p−)αβ M1 δαβ

M2 δαβ K2(p+)αβ


 . (90)

An important property is that it automatically satisfies thePCT constraints (84) (87). For mass-like
propagators, which are invariant by the 4-inversionx→ −x it is a triviality; for kinetic like propagators,
the “−” signs which occur in the r.h.s.’s of (87) are canceled by theone which comes from the differential
operatorpµ acting on(−x) instead ofx. We consider accordingly that (89) expresses the invariance of
the propagator byPCT .

From now onwards we shall always use the form (89) for the propagator, considering therefore that it is
PCT invariant. It includes sixteen complex parameters. We willsee how individual discrete symmetries
and their products reduce this number.

5.2 Charge conjugate fields

By using the definitions of charge conjugate fields

ξα = gαγξγ = −iσ2αγξγ = −iσ2αγ(−i)((ηγ̇)c)† = −σ2αγ((ηγ̇)c)†,
η
β̇

= gβδη
δ̇ = iσ2βδη

δ̇ = iσ2βδ(−i)((ξδ)c)† = σ2βδ((ξ
δ)c)†. (91)

one can bring additional constraints to the ones obtained from expressing the invariance by a discrete
symmetry likePCT . We first give the example of a Dirac-like propagator:

< 0 |T ξα(x)(ηβ̇)†(−x)| 0 >=< 0 |T (−)σ2αγ((ηγ̇)c)†(x)
(
σ2βδ((ξ

δ)c)†(−x)
)†

| 0 >
= σ2αγσ

2
βδ < 0 |T ((ηγ̇)c)†(x)(ξδ)c(−x)| 0 >= (δαδδβγ − δαβδδγ) < 0 |T ((ηγ̇)c)†(x)(ξδ)c(−x)| 0 >=

− < 0 |T (ξα)c(−x)((η
β̇
)c)†(x)| 0 > +δαβ < 0 |T (ξγ)c(−x)((ηγ̇)c)†(x)| 0 >.

The r.h.s. of the correspondingPCT constraint in the first line of (84) writes the same but for the
exchangex→ (−x). If we now use the ansätz (89) which implementsPCT invariance, one gets

µ1(p
2)δαβ = −(δβγδαδ − δαβδδγ)m1(p

2)δδγ = δαβm1(p
2), (92)

equivalently
m1(p

2) = µ1(p
2). (93)

Likewise, one getsm2(p
2) = µ2(p

2).

For Majorana-like propagator, using the definitions (91) ofcharge conjugate fields, one gets

< 0 | T ξα(x)(ηc
β̇
)†(−x) | 0 > = < 0 | T (ηc

β̇
)†(x)ξα(−x) | 0 > −δαβ < 0 | T (ηcγ̇)†(x)ξγ(−x) | 0 >

= − < 0 | T ξα(−x)(ηc
β̇
)†(x) | 0 > +δαβ < 0 | T ξγ(−x)(ηcγ̇)†(x) | 0 >,

(94)

while, with the same procedure, its transformed byPCT in the r.h.s. of (84) becomes

− < 0 | T (ηc
β̇
)†(x)ξα(−x) | 0 > = − < 0 | T ξα(x)(ηβ̇c)†(−x) + δαβ < 0 | T ξγ(x)(ηcγ̇)†(−x) | 0 > .

(95)

One only gets tautologies such that no additional constraint arises.

We implement the same procedure for kinetic-like terms, forexample< 0 |T ξα(x)(ξβ)†(−x)| 0 >=<
0 |T (ξβ)†(x)ξα(−x)| 0 >. Usingξα = −σ2αγ((ηγ̇)c)† and(ξβ)† = σ2βδ(ηδ̇)

c and (89), one gets

α1(p
2)pµσµαβ = −(δβγδαδ − δαβδδγ)β2(p2)pµσµδγ
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= −β2(p2)(pµσµαβ − δαβpµTrσµ)
= −β2(p2)

(
pµσ

µ
αβ − δαβ(2p0 + 0× pi)

)

= −β2(p2)(−p0σ0αβ + ~p.~σαβ)

= β2(p
2)pµσµαβ , (96)

which entails
α1(p

2) = β2(p
2). (97)

Likewise, one getsα2(p
2) = β1(p

2), and, for the non-diagonal kinetic-like propagators,a1(p
2) =

a2(p
2), b1(p

2) = b2(p
2).

So, after making use of the definition of charge conjugate fields, (89) expressing thePCT invariance of
the propagator rewrites

∆PCT (p) =
(
| ξα > | (ξα)c > | (ηα̇)c > | ηα̇ >

)





 α(p2) u(p2)

v(p2) β(p2)


 pµσµαβ


 mL1(p

2) µ1(p
2)

µ1(p
2) mR1(p

2)


 δαβ


 mL2(p

2) µ2(p
2)

µ2(p
2) mR2(p

2)


 δαβ


 α(p2) v(p2)

u(p2) β(p2)


 pµσ

µ
αβ







< ξβ |
< (ξβ)c |
< (η

β̇
)c |

< η
β̇
|



.

(98)

PCT symmetry has finally reduced the total number of arbitrary functions necessary to describe one
flavor of fermions from 16 to 10.

5.3 C constraints

C is a unitary operator and we may use directly (31) in the expression of the propagator. This is an
example of demonstration, in which we suppose that the vacuum is invariant byC.

< 0 |T ξα(x)(η
β̇
)†(−x)| 0 >=< C 0 |T C(−i(ηα̇)†)(x)C−1C(iξβ)(−x)C−1| C 0 >

=< C 0 |T C(ηα̇)†)(x)ξβ(−x)C−1| C 0 >=< 0 |T C†C(ηα̇)†)(x)ξβ(−x)C−1C | 0 >
=< 0 |T (ηα̇)†)(x)ξβ(−x)| 0 >=< 0 |T ((ξα)c)†(x)((η

β̇
)c)†(−x)| 0 > .

By using (89) expressingPCT invariance, one gets accordingly

∆C+PCT (p) =
(
| ξα > | (ξα)c > | (ηα̇)c > | ηα̇ >

)





 α(p2) a(p2)

a(p2) α(p2)


 pµσµαβ


 ρ(p2) µ(p2)

µ(p2) ρ(p2)


 δαβ


 σ(p2) m(p2)

m(p2) σ(p2)


 δαβ


 β(p2) b(p2)

b(p2) β(p2)


 pµσ

µ
αβ







< ξβ |
< (ξβ)c |
< (η

β̇
)c |

< η
β̇
|



.

(99)

All 2× 2 submatrices are in particular symmetric.

Combining now (98) and (99), aC + PCT invariant propagator, after using the definition of charge
conjugate fields, can finally be reduced to
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∆C+PCT (p) =
(
| ξα > | (ξα)c > | (ηα̇)c > | ηα̇ >

)





 α(p2) a(p2)

a(p2) α(p2)


 pµσµαβ


 ρ(p2) µ(p2)

µ(p2) ρ(p2)


 δαβ


 σ(p2) m(p2)

m(p2) σ(p2)


 δαβ


 α(p2) a(p2)

a(p2) α(p2)


 pµσ

µ
αβ







< ξβ |
< (ξβ)c |
< (η

β̇
)c |

< η
β̇
|



,

(100)

in which the number of arbitrary functions has now been reduced to 6.

5.4 P constraints

In momentum space, the parity transformed ofpµσ
µ ≡ (p0σ

0 + ~p.~σ) is (p0σ0 − ~p.~σ) ≡ pµσµ.

Using (22) and the assumption (89) expressingPCT invariance, and supposing the vacuum invariant by
parity, one gets

∆P+PCT (p) =
(
| ξα > | (ξα)c > | (ηα̇)c > | ηα̇ >

)





 α(p2) a(p2)

b(p2) β(p2)


 pµσµαβ


 ρ(p2) µ(p2)

m(p2) σ(p2)


 δαβ


 σ(p2) m(p2)

µ(p2) ρ(p2)


 δαβ


 β(p2) b(p2)

a(p2) α(p2)


 pµσ

µ
αβ







< ξβ |
< (ξβ)c |
< (η

β̇
)c |

< ηβ̇ |



.

(101)

A P + C + PCT invariant propagator writes

∆P+C+PCT (p) =
(
| ξα > | (ξα)c > | (ηα̇)c > | ηα̇ >

)





 α(p2) a(p2)

a(p2) α(p2)


 pµσµαβ


 ρ(p2) µ(p2)

µ(p2) ρ(p2)


 δαβ


 ρ(p2) µ(p2)

µ(p2) ρ(p2)


 δαβ


 α(p2) a(p2)

a(p2) α(p2)


 pµσ

µ
αβ







< ξβ |
< (ξβ)c |
< (η

β̇
)c |

< η
β̇
|



.

(102)

The expressions above can be further reduced by using the definition of charge conjugate fields, which
leads to (98) as the expression ofPCT invariance. So doing, aP + PCT invariant propagator writes

∆P+PCT (p) =
(
| ξα > | (ξα)c > | (ηα̇)c > | ηα̇ >

)





 α(p2) a(p2)

b(p2) α(p2)


 pµσ

µ
αβ


 ρ(p2) µ(p2)

µ(p2) σ(p2)


 δαβ


 σ(p2) µ(p2)

µ(p2) ρ(p2)


 δαβ


 α(p2) b(p2)

a(p2) α(p2)


 pµσµαβ







< ξβ |
< (ξβ)c |
< (η

β̇
)c |

< η
β̇
|




;

(103)
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and one finds again the expression (102) for aP + C + PCT invariant propagator.

5.5 CP constraints

Using (33), (89), and supposing the vacuum invariant byCP , one gets

∆CP+PCT (p) =
(
| ξα > | (ξα)c > | (ηα̇)c > | ηα̇ >

)





 α(p2) u(p2)

v(p2) β(p2)


 pµσµαβ


 mL(p

2) µ(p2)

m(p2) mR(p
2)


 δαβ


 mL(p

2) µ(p2)

m(p2) mR(p
2)


 δαβ


 α(p2) u(p2)

v(p2) β(p2)


 pµσ

µ
αβ







< ξβ |
< (ξβ)c |
< (η

β̇
)c |

< η
β̇
|



.

(104)

It can be further constrained by using the definition of charge conjugate fields which makes thePCT
constraint be (98), to

∆CP+PCT (p) =
(
| ξα > | (ξα)c > | (ηα̇)c > | ηα̇ >

)





 α(p2) u(p2)

u(p2) β(p2)


 pµσµαβ


 mL(p

2) µ(p2)

µ(p2) mR(p
2)


 δαβ


 mL(p

2) µ(p2)

µ(p2) mR(p
2)


 δαβ


 α(p2) u(p2)

u(p2) β(p2)


 pµσ

µ
αβ







< ξβ |
< (ξβ)c |
< (η

β̇
)c |

< ηβ̇ |



.

(105)

One then gets 4 symmetric2× 2 sub-blocks.

5.6 Eigenstates of aC + PCT invariant propagator

We do not consider anyPCT violation, because, if this occurred, the very foundationsof local Quantum
Field Theory would be undermined, and the meaning of our conclusions itself could thus strongly be cast
in doubt.

We look here for the eigenstates of the4× 4 matrix in (100)

∆C+PCT (p
2) =





 α(p2) a(p2)

a(p2) α(p2)


 pµσ

µ
αβ


 ρ(p2) µ(p2)

µ(p2) ρ(p2)


 δαβ


 σ(p2) m(p2)

m(p2) σ(p2)


 δαβ


 α(p2) a(p2)

a(p2) α(p2)


 pµσµαβ



. (106)

The three symmetric matrices


 ρ µ

µ ρ


,


 σ m

m σ


 and


 α a

a α


 can be simultaneously diago-

nalized by a unitary matrixU according to
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UT


 ρ µ

µ ρ


U =


 (ρ+ µ)e2iϕ

(ρ− µ)e−2iϕ


 ,

UT


 α a

a α


U =


 (α+ a)e2iϕ

(α− a)e−2iϕ


 ,

U =
1√
2
eiω


 eiϕ −e−iϕ

eiϕ e−iϕ


 . (107)

We can choose the particular case

U = U0 ≡
1√
2


 1 −1

1 1


 . (108)

Call the initial basis

< nL | =


 < ξα |

< (ξβ)c |


 ≡


 < ξα |

< −i(ηβ̇)† |


 , < nR | =


 < (ηα̇)

c |
< η

β̇
|


 ≡


 < −i(ξα)† |

< η
β̇
|


 ,

(109)
one has (

| ξα > | (ξβ)c > | (ηγ̇)c > | η
δ̇
>

)
=

(
| nL > | nR >

)
. (110)

Define the new basis by

< NL | = U †
0 < nL | , < NR | = U †

0 < nR |,
| NL >= U0 | nL > , | NR >= U0 | nR > . (111)

One has explicitly

< NL | =
1√
2


 < ξα − i(ηα̇)† |

< −ξα − i(ηα̇)† |


 =

1√
2


 < ξα + (ξα)c |

< −ξα + (ξα)c |


 ,

< NR | =
1√
2


 < −i(ξα)† + ηα̇ |

< +i(ξα)
† + ηα̇ |


 =

1√
2


 < ηα̇ + (ηα̇)

c |
< ηα̇ − (ηα̇)

c |


 , (112)

and one can write

< NL | =


 < χα |

< (−i)(ωβ̇)† |


 , < NR | =


 < (−i)(χα)

† |
< ω

β̇
|


 . (113)

In this new basis, the propagator writes (using (from (108))UT
0 U0 = 1)

∆C+PCT (p
2) =

(
| NL > | NR >

)





 α(p2) + a(p2)

α(p2)− a(p2)


 pµσ

µ
αβ


 ρ(p2) + µ(p2)

ρ(p2)− µ(p2)


 δαβ


 σ(p2) +m(p2)

σ(p2)−m(p2)


 δαβ


 α(p2) + a(p2)

α(p2)− a(p2)


 pµσµαβ





 < NL |

< NR |


 .

(114)
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Remember that| u >< v | corresponds, in our notation, to a propagator< 0 |T u(x)v†(−x)| 0 >.

One introduces the Majorana fermions (see subsection 3.6)

X±
M =


 χα

±(−i)(χα)
†


 =

1√
2


 ξα + (ξα)c

± (ηα̇ + (ηα̇)
c)


 =

1√
2


 ξα − i(ηα̇)†

±(ηα̇ − i(ξα)†)


 ,

Ω±
M =


 ±(−i)(ω

β̇)†

ω
β̇


 =

1√
2


 ±

(
−ξβ + (ξβ)c

)

η
β̇
− (η

β̇
)c


 =

1√
2


 ±(−ξ

β − i(ηβ̇)†)
η
β̇
+ i(ξβ)

†


 .

(115)

5.6.1 Kinetic-like propagators

They can be rewritten
∫
d4xeipx < 0 |T χα(x)(χβ)†(−x)| 0 > = (α(p2) + a(p2))pµσ

µ
αβ ,∫

d4xeipx < 0 |T (χα)
†(x)χβ(−x)| 0 > = (α(p2) + a(p2))pµσµαβ ,

∫
d4xeipx < 0 |T (ωα̇)†(x)ωβ̇(−x)| 0 > = (α(p2)− a(p2))pµσµαβ ,∫
d4xeipx < 0 |T ωα̇(x)(ωβ̇

)†(−x)| 0 > = (α(p2)− a(p2))pµσµαβ , (116)

5.6.2 Mass-like propagators

They write
∫
d4xeipx < 0 |T χα(x)iχβ(−x)| 0 > = δαβ(ρ(p

2) + µ(p2)),
∫
d4xeipx < 0 |T (−i)(χα)

†(x)(χβ)†(−x)| 0 > = δαβ(σ(p
2) +m(p2)),

∫
d4xeipx < 0 |T (−i)(ωα̇)†(x)(ω

β̇
)†(−x)| 0 > = δαβ(ρ(p

2)− µ(p2)),
∫
d4xeipx < 0 |T ωα̇(x)iω

β̇(−x)| 0 > = δαβ(σ(p
2)−m(p2)). (117)

5.6.3 Conclusion

WhenC andPCT invariance holds, the fermion propagator decomposes into the propagators for the
Majorana fermionsX andΩ (115) (note that we have introduced below the() fields instead of the()†

fields, thus an extraγ0 matrix)

∫
d4xeipx < 0 |T X±

Mα(x)X
±
Mβ(−x)| 0 >=


 (ρ(p2) + µ(p2))δαβ (α(p2) + a(p2))pµσ

µ
αβ

(α(p2) + a(p2))pµσµαβ (σ(p2) +m(p2))δαβ


 ,

∫
d4xeipx < 0 |T Ω±

Mα(x)Ω
±
Mβ(−x)| 0 >=


 (ρ(p2)− µ(p2))δαβ (α(p2)− a(p2))pµσµαβ

(α(p2)− a(p2))pµσµαβ (σ(p2)−m(p2))δαβ


 .

(118)

(118) also writes
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1

2

∫
d4xeipx

(
< 0 |T X±

Mα(x)X
±
Mβ(−x)| 0 > + < 0 |T Ω±

Mα(x)Ω
±
Mβ(−x)| 0 >

)

=


 ρ(p2)δαβ α(p2)pµσ

µ
αβ

α(p2)pµσµαβ σ(p2)δαβ


 ,

1

2

∫
d4xeipx

(
< 0 |T X±

Mα(x)X
±
Mβ(−x)| 0 > − < 0 |T Ω±

Mα(x)Ω
±
Mβ(−x)| 0 >

)

=


 µ(p2)δαβ a(p2)pµσ

µ
αβ

a(p2)pµσµαβ m(p2)δαβ


 .

(119)

So, whenC + PCT invariance is realized, the most general fermion propagator is equivalent to two
Majorana propagators.

The determinant of∆(p2) (114) is the products of the determinants of the matrices in the r.h.s. of (118);
so, the poles of the two Majorana propagators in (118) are also poles of∆(p2), and the physical states
(eigenstates of the propagator at its poles) are the Majorana fermionsX andΩ.

5.7 Conditions for propagating Majorana eigenstates

We have shown in subsection 5.6 that, as expected since Majorana fermions areC eigenstates, aC+PCT
invariant propagator propagates Majorana fermions.

We now try to answer the reverse questioni.e. which are the conditions on the propagator, in particular
concerning discrete symmetries, for it to propagate Majorana fermions. This could look rather academic
since we deal with one flavor and that it is “well known” that, in particular, noCP violating phase can
occur in this case. So, we ask the reader to consider this section as a kind of intellectual exercise. In
addition to being a preparation to the more complete study with several generations, it is also motivated
by the fact that, in the propagator formalism (which differsfrom the one with a classical Lagrangian
endowed with a mass matrix), even for one flavor, a fermion andits antifermions get mixed as soon as
one allows all possible Lorentz invariant terms. That this peculiarity cana priori introduce a mixing
angle between a particle and its antiparticle (like for neutral kaons) suggests that the situation may not
be so trivial as naively expected. This section can also be considered as a test of the “common sense”
statement that, since Majorana fermions are defined asC eigenstates, a propagator can only be expected
to propagate Majorana fermions if it satisfies the constraints cast byC invariance. We shall indeed reach
a conclusion close to this one in the following, with the onlydifference thatCP symmetry also enters
the game, for reasons that will be easy to understand (the general demonstration for a number of flavors
greater than one, has been postponed to a further work).

5.7.1 General conditions for diagonalizing aPCT invariant propagator

We consider the most generalPCT invariant propagator (98).

We are only concerned here with neutral fermions, for which diagonalizing each2× 2 sub-matrix of the
propagator is meaningful: for charged fermions, this wouldmix in the same state fermions of different
charges, which is impossible as soon as we assume that electric charge is conserved.

The two diagonal2× 2 sub-blocks involve differential operators, with one dotted an one undotted spinor
index, factorized by simple functions of space-time. We will suppose that, inside each of these sub-
blocks, the four differential operators are identical, such that their elements only differ by the functions
of space-time. When we speak about diagonalizing these matrices, this concerns accordingly the space-
time functions; then the differential operators follow naturally.

The mass-like sub-blocks are diagonal in spinor indices andinvolve only functions of space-time.
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The propagatorP writes

P =
(
| nL > | nR >

)

 K1 M1

M2 K2





 < nL |

< nR |


 . (120)

K1,K2,M1 andM2 havea priori no special properties, are not hermitian nor symmetric.

There always existU1 andU2, which have no reason to be unitary, such that

U−1
1 K1U1 = ∆1 diagonal, U−1

2 K2U2 = ∆2 diagonal, (121)

such that the propagator rewrites

P =
(
| nL > U1 | nR > U2

)

 ∆1 U−1

1 M1U2

U−1
2 M2U1 ∆2





 U−1

1 < nL |
U−1
2 < nR |




=
(
| NL > | NR >

)

 ∆1 U−1

1 M1U2

U−1
2 M2U1 ∆2





 < NL |

< NR |


 ,

with < NL | = U−1
1 < nL | , < NR | = U−1

2 < nR | , |NL >= | nL > U1 , | NR >= | nR > U2 .
(122)

The propagator can be diagonalized⇔
U−1
1 M1U2 = D1 diagonal, U−1

2 M2U1 = D2 diagonal. (123)

That[D1,D2] = 0 entails in particular

U−1
1 M1M2U1 = D1D2 diagonal = D2D1 = U−1

2 M2M1U2, (124)

which coincides with the commutation ofM1 andM2 only whenU1 = U2.

Since[∆1,D1D2] = 0 = [∆2,D1D2], one also getsU−1
1 [K1,M1M2]U1 = 0 = U−1

2 [K2,M2M1]U2,
which entails

[K1,M1M2] = 0 = [K2,M2M1]. (125)

(121), (123), (124) and (125) are the conditions thatK1,K2,M1 andM2 must satisfy for the propagator
to be diagonalizable; they are must less stringent than the commutation of the four of them.

In practice: One supposes thatM1 andM2 fulfill condition (125). To determineU1 andU2, one
can accordingly use indifferently (121) or (124):U1 diagonalizesK1 or M1M2, U2 diagonalizesK2

or M2M1. Supposing that (124) is satisfied,M1M2 and ofM2M1 are constrained to have the same
eigenvalues, which may give additional restrictions onM1 andM2.

OnceU1 andU2 are determined, call

M1 = U−1
1 M1U2, M2 = U−1

2 M2U1. (126)

(124) entails that, in particular,M1 andM2 must commute. SinceU1 diagonalizesM1M2 andU2

diagonalizesM2M1,M1M2 andM2M1 are diagonal.

WriteM1 =


 a b

c d


 andM2 =


 p q

r s


; by direct inspection, one finds that the two products

M1M2 andM2M1 are diagonal either ifM1 andM2 are diagonal, or ifM2 = t


 d −b
−c a


, that

is, is proportional toM−1
1 ; in this last case,M1M2 =M2M1 is proportional to the unit matrix, which

means that the eigenvalues ofM1M2 are all identical (and so are the eigenvalues ofM2M1).

We are looking for more: the conditions that must satisfyM1 andM2 forM1 andM2 to be separately
diagonal. We attempt to find them by putting the additional restriction that the eigenstates are Majorana
fermions.
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5.7.2 Condition for propagating Majorana fermions

A necessary (but not sufficient) condition for the propagating states to be Majorana is that, by some
change of basis, the propagator can be cast in the form

∆Maj(p
2) =





 a1(p

2)

b1(p
2)


 pµσ

µ
αβ


 m1(p

2)

µ1(p
2)


 δαβ


 m2(p

2)

µ2(p
2)


 δαβ


 a2(p

2)

b2(p
2)


 pµσµαβ



, (127)

with four diagonal2 × 2 sub-blocks. Indeed, on can then decompose the propagator into two 4 × 4

propagators (in a shortened notation)


 a1 m1

m2 a2


 and


 b1 µ1

µ2 b2


, and the Majorana fermions

(see subsection 3.6) are eventually, respectively, composed with the first components ofnL andnR, and
with the second components of the same set. So, in particular, both kinetic-like and mass-like terms,
should be diagonalizable simultaneously25 . We note

U−1
1 =


 a b

c d


 , U−1

2 =


 p q

r s


 , D1 =


 d1 0

0 δ1


 , D2 =


 d2 0

0 δ2


 . (128)

One has

< NL | =


 a < ξα |+ b < (−i)(ηα̇)∗ |

c < ξα |+ d < (−i)(ηα̇)∗ |


 ,

< NR | =


 p < (−i)ξ∗α |+ q < ηα̇ |

r < (−i)ξ∗α |+ s < ηα̇ |


 ,

| NL >=
1

ad− bc
(
d| ξα > −c| (−i)(ηα̇)∗ > −b| ξα > +a| (−i)(ηα̇)∗ >

)
,

| NR >=
1

ps− qr
(
s| (−i)ξ∗α > −r| ηα̇ > −q| (−i)ξ∗α > +p| ηα̇ >

)
,

(129)

and the question is whether the propagator< 0 | T


 NL(x)

NR(x)




(
NL(−x) NR(−x)

)†

| 0 > can

be identified with that of a Majorana fermion and its antifermion (that is, itself) . Eq. (129) yields in
particular the four mass-like propagators

< 0 |T
(
dξα + ic(ηα̇)†

)
(x)

(
ip∗ξβ + q∗(η

β̇
)†
)
(−x)| 0 >= (ad− bc)d1(x)δαβ , (a)

< 0 |T
(
−bξα − ia(ηα̇)†

)
(x)

(
ir∗ξβ + s∗(η

β̇
)†
)
(−x)| 0 >= (ad− bc)δ1(x)δαβ , (b)

< 0 |T
(
−is(ξα)† − rηα̇

)
(x)

(
a∗(ξβ)† + ib∗ηβ̇

)
(−x)| 0 >= (ps− qr)d2(x)δαβ , (c)

< 0 |T
(
iq(ξα)

† + pηα̇

)
(x)

(
c∗(ξβ)† + id∗ηβ̇

)
(−x)| 0 >= (ps− qr)δ2(x)δαβ , (d)

(130)

which must be the only four non-vanishing such propagators sinceU−1
1 M1U2 andU−1

2 M2U1 must be
diagonal. We have to identify them with typical mass-like Majorana propagators. For that purpose, we

25Imposing commutation relations between all2× 2 sub-blocks of the propagator is excessive.
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have a priori to introduce two Majorana fermions;X±
M =


 ζα

±(−i)(ζα)∗


, associated, together with

its antifermion, to(NL, NR), andY ±
M =


 χβ

±(−i)(χβ)
∗


, associated, together with its antifermion,

to (NL,NR). An X − Y propagator26 reads (we go to the() fields, which introduces an extraγ0; this
has in particular for consequence that “mass-like” propagators now appear on the diagonal)

< 0 |T XM (x)YM (−x)| 0 >=


 < 0 |T ζα(x)(±i)χβ(−x)| 0 > < 0 |T ζα(x)(χβ)†(−x)| 0 >

< 0 |T (ζα)†(x)χβ(−x)| 0 > < 0 |T (∓i)(ζα)†(x)(χβ)†(−x)| 0 >


 .

(131)
The four lines of (130) correspond to two mass-likeX − Y propagators only if one can associate them
into two pairs, such that each pair has the same structure as the diagonal terms of (131). There are
accordingly two possibilities: pairing (a) with (c) and (b)with (d), or (a) with (d) and (b) with (c).

∗ The first possibilityrequires (κ andλ are proportionality constants)p = iλa∗, q = iλb∗, r = −iκc∗, s =
−iκd∗, such that

U−1
2 = i


 λa∗ λb∗

−κc∗ −κd∗


 . (132)

∗ The second possibilityrequiresp = iρc∗, q = iρd∗, r = iθa∗, s = iθb∗ such that

U−1
2 = i


 ρc∗ ρd∗

θa∗ θb∗


 . (133)

From now onwards, we furthermore request that a single Majorana fermion propagatesin the sense that
only T -products of the type< 0 | TXα(x)Xα(−x) | 0 > occur, which associates| NL >= | Xα >
and< NR | =< X∗

α |. The only possibility is that the coefficients of| NL > and | NR > in (129)
be proportional, and so be the ones of| NR > and | NL > (the two sets of conditions are the same);
this gives the supplementary conditions (σ andβ are two other proportionality constants)p = iσd∗, q =
−iσc∗, r = −iγb∗, s = iγa∗, such that

U−1
2 = i


 σd∗ −σc∗

−γb∗ γa∗


 . (134)

* First possibility (U−1
2 is given by (132) above).

Compatibility between (132) and (134) requiresq
p
= b∗

a∗
= − c∗

d∗
= − r

s
= ω∗ such that we end up with

U−1
1 =


 a ωa

−ωd d


 , U−1

2 =


 p ω∗p

−ω∗s s


 =


 λa∗ λω∗a∗

κω∗d∗ −κd∗


 . (135)

We look forPCT invariantM1 =


 mL1(x) µ1(x)

µ1(x) mR1(x)


 andM2 =


 mL2(x) µ2(x)

µ2(x) mR2(x)


 (see

(98)) and their diagonalization according to (123) and (128) byU1 andU2 given by (135) and satisfying
(125).

26We allow hereX 6= Y , but will then become more restrictive by requestingX = Y , which better corresponds to the
intuitive picture of propagating a definite Majorana fermion.
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The equations (121) of diagonalization for the kinetic-like termsK1 =


 α u

v β


 andK2 =


 α v

u β




(see (98)) yield, for the vanishing of the non-diagonal terms, the conditions

u− ω2v = ω(α− β),
v − ω2u = ω(α− β),
v − ω∗2u = ω∗(α− β),
u− ω∗2v = ω∗(α− β). (136)

Likewise, the diagonalization equations (123) for the mass-like terms yield

ω∗mL1 − ωmR1 = µ1(1− |ω|2),
ωmL1 − ω∗mR1 = µ1(1− |ω|2),
ω∗mL2 − ωmR2 = µ2(1− |ω|2),
ωmL2 − ω∗mR2 = µ2(1− |ω|2). (137)

First, we eliminate the trivial caseω = 1 which brings back to aC invariant propagator.

Subtracting the first or the last two equations of (136) yields u = v. One then getsα − β = u1−ω2

ω
=

u1−ω∗2

ω∗ , such thatω must be real.

Subtracting the first two equations of (137) also shows thatω must be real as soon as one supposes
mL1 +mR1 6= 0, which we do. Then, one gets µ1

mL1−mR1
= ω

1−ω2 = µ2

mL2−mR2
. Gathering the results

from (136) and (137) leads accordingly to

K1 = u




α (α− β) ω

1− ω2

(α− β) ω

1− ω2
β


 = K2,

M1 =




mL1 (mL1 −mR1)
ω

1− ω2

(mL1 −mR1)
ω

1− ω2
mR1


 ,

M2 =




mL2 (mL2 −mR2)
ω

1− ω2

(mL2 −mR2)
ω

1− ω2
mR1


 , (138)

and we shall hereafter writeω = tanϑ. The four real symmetric matricesK1 = K2,M1,M2 can be
simultaneously diagonalized by the same rotation matrixU(ϑ) of angleϑ. After diagonalization, the
propagator writes

∆ =
(
| nL > U | nR > U

)




δ+ µ1+

δ− µ1−

µ2+ δ+

µ2− δ−





 UT < nL |

UT < nR |


 ,

with δ± =
1

2

(
α+ β ± α− β

cos 2ϑ

)
, µ1,2,± =

1

2

(
mL1,2 +mR1,2 ±

mL1,2 −mR1,2

cos 2ϑ

)
.(139)

To propagate a Majorana fermion, the conditionµ1+ = µ2+ should furthermore be fulfilled. This
requires, for arbitraryϑ,mR1 = mR2,mL1 = mL2 (and thusµ1 = µ2). This corresponds to a propagator
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(before diagonalization)

∆ =
(
| nL > | nR >

)




α u mL µ

u β µ mR

mL µ α u

µ mR u β





 < nL |

< nR |


 ,

u

α− β =
µ

mL −mR
, (140)

that is, aCP invariant propagator (see (105)) (theC invariant case corresponds toω = 1 (see (100)),
which has been treated previously). The propagating Majorana fermion are

ψM =


 cosϑξα − sinϑ(−i(ηα̇)∗)

cos ϑ(−i(ξγ)∗)− sinϑηγ̇


 andχM =


 sinϑξα + cos ϑ(−i(ηβ̇)∗

sinϑ(−i(ξγ)∗) + cos ϑηγ̇


.

* Second possibility(U−1
2 is given by (133) above). Equating (134), (133) and the expression forU−1

2

in (128), one getsq/p = d∗/c∗ = −c∗/d∗, s/r = b∗/a∗ = −a∗/b∗, which givesd = ±ic, b = ±ia and
thus

U−1
1 =


 a ±ia

c ±ic


 , U−1

2 = i


 ρc∗ ∓iρc∗

±iγa∗ γa∗


 . (141)

The diagonalization equations (123) for the mass-like terms yield, for the vanishing of the non-diagonal
terms, the conditions

mL1 = −mR1,
mL2 = −mR2. (142)

The equations (121) of diagonalization for the kinetic-like terms yield the conditions

u+ v = ±i(α− β),
u+ v = ±i(β − α), (143)

which requirev = −u, β = α.

So, the kinetic and mass-like propagators write

K1 =


 α u

−u α


 , K2 =


 α −u

u α


 ,

M1 =


 m1 µ1

µ1 −m1


 , M2 =


 m2 µ2

µ2 −m2


 . (144)

K1 andK2, which commute, can be diagonalized simultaneously by a single matrixU . The conditions
(125) [K1,M1M2] = 0 = [K2,M2M1] requirem1/m2 = µ1/µ2, such thatM2 = χM1. Since
U1 = U = U2, the diagonalization equations (123) for the mass-like propagators rewriteU−1M1U =
D1, U

−1M2U = χD1, such that the set of four matricesK1,K2,M1,M2 must commute, which requires
u = 0. The kinetic-like propagators are thus “standard”,i.e. proportional to the unit matrix. Before
diagonalization, the propagator writes

∆ =
(
| nL > | nR >

)




α m1 µ1

α µ1 −m1

χm1 χµ1 α

χµ1 −χm1 α





 < nL |

< nR |


 , (145)
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and, after diagonalization,

∆ =
(
| nL > U | nR > U

)




α µ

α −µ
χµ α

−χµ α





 UT < nL |

UT < nR |


 ,

with µ =
√
m2

1 + µ21. (146)

It can propagate Majorana fermions only ifχ = 1, such thatM1 = M2. Then, (145) is a special
kind of PC invariant propagator (see (105)), which becomesC invariant only whenm1 = 0. The

two Majorana fermions have masses±µ/α. They areψM =


 cosϑξα − sinϑ(−i(ηα̇)∗)

cos ϑ(−i(ξγ)∗)− sinϑηγ̇


 and

χM =


 sinϑξα + cos ϑ(−i(ηβ̇)∗

sinϑ(−i(ξγ)∗) + cos ϑηγ̇


, with tan 2ϑ = µ1/m1.

5.7.3 Conclusion

For one flavor (particle + antiparticle), a necessary condition for the eigenstates of the propagator to
be Majorana is either that this propagator (supposed to satisfy the constraints cast byPCT invariance)
satisfies the constraints cast byC invariance (which corresponds toω = 1) or byCP invariance27. So,
reciprocally, if the most generalPCT invariant propagator for one flavor does not satisfy the constraints
cast byC nor the ones cast byCP , its eigenstates cannot be Majorana.

6 General conclusion

In this work, we have extended the propagator approach [3] [4] [1] to coupled fermionic systems. It
is motivated, in particular, by the ambiguities that unavoidably occur when dealing with a classical
fermionic Lagrangian endowed with a mass matrix. The goal ofthis formalism is, in particular, to
determine at which condition the propagating neutral fermions, defined as the eigenstates, at the poles,
of their full propagator, are Majorana. Due to the intricacies of this approach, we presently limited
ourselves to the simplest case of a single fermion and its antifermion. Since Lorentz invariance allows
that they get coupled (as long as it is not forbidden by electric charge conservation), one can expect
properties similar to the ones of the neutral kaons system. In this simple case, we have proved what is
suggested by common sense,i.e. that the propagating fermions can only be Majorana if their propagator
satisfies the constraints cast byC (orCP ) invariance.

The generalization to several flavors will be the object of a subsequent work, with, in particular, the
persistent goal of unraveling the nature of neutrinos.

Acknowledgments: conversations, comments and critics with / from V.A. Novikov, M.I. Vysotsky and
J.B. Zuber are gratefully acknowledged.

27This is linked to the property of Majorana fermions to haveCP parity = ±i (see subsections 3.3 and 3.6). The two
corresponding(±iγ0) factors cancel in theT -product of their propagator, which makes itCP invariant. This explains why not
onlyC invariant, but alsoCP invariant propagators can propagate Majorana fermions

30



A Notations: spinors

A.1 Weyl spinors

We adopt the notations of [12], with undotted and dotted indices.

Undotted spinors, contravariantξα or covariantξα can be also called left spinors. Dotted spinors, co-
variantηα̇ or contravariantηα̇ can then be identified as right spinors. They are 2-components complex
spinors. The 2-valued spinor indices are not explicitly written.

By an arbitrary transformation of the proper Lorentz group

αδ − βγ = 1, (147)

they transform by

ξ1
′

= αξ1 + βξ2,
ξ2

′

= γξ1 + δξ2,

η1̇
′

= α∗η1̇ + β∗η2̇,

η2̇
′

= γ∗η1̇ + δ∗η2̇. (148)

To raise or lower spinor indices, one has to use the metric ofSL(2, C)

gαβ =


 0 1

−1 0


 = iσ2αβ ; gαβ =


 0 −1

1 0


 = −i(σ2)αβ, (149)

and the same for dotted indices. Theσ2 matrix will always be represented with indices down.

ξα = gαβξ
β = iσ2αβξ

β , ηα̇ = gα̇β̇ηβ̇ = −iσ2
α̇β̇
ηβ̇. (150)

One has
ξ.ζ = ξαζα = ξ1ζ2 − ξ2ζ1 = −ξαζα invariant. (151)

By definition,ηα̇ ∼ ξα∗ (transforms as);

ηα̇ ∼ (gαβξ
β)∗ = gαβ(ξ

β)∗ = iσ2αβξ
β∗ : (152)

a right-handed Weyl spinor and the complex conjugate of a left-handed Weyl spinor transform alike by
Lorentz; likewise, a left-handed spinor transforms like the complex conjugate of a right-handed spinor.

A Dirac (bi-)spinor is

ξD =


 ξα

ηα̇


 . (153)

A.2 Pauli and Dirac matrices

Since we work with Weyl fermions, we naturally choose the Weyl representation.

Pauli matrices:

σ0 =


 1 0

0 1


 , σ1 =


 0 1

1 0


 , σ2 =


 0 −i

i 0


 , σ3 =


 1 0

0 −1


 ; (154)
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γ matrices

γ0 =




0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0



, γi =


 0 −σi

σi 0


 , γ5 = iγ0γ1γ2γ3 =




1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 −1



,

(155)
and one notes

γµ = (γ0, ~γ) = γ0


 σµ 0

0 σµ


 , (156)

with
σµ = (σ0, ~σ), σµ = (σ0,−~σ), ~σ = (σ1, σ2, σ3). (157)

(γ0)† = γ0, (γ5)† = γ5, (γ1,2,3)† = −γ1,2,3,
(γ0)∗ = γ0, (γ5)∗ = γ5, (γ1,3)∗ = γ1,3, (γ2)∗ = −γ2,
(γ0)2 = 1, (γ5)2 = 1, (γ1,2,3)2 = −1,
γ0(γ0)† = 1, γ5(γ5)† = 1, γ1,2,3(γ1,2,3)† = 1. (158)

One has
(σ0)2 = 1 = (σi)2, {σi, σj} = 2δij . (159)

One has the relation
σ2βδσ

2
αγ = δβγδαδ − δαβδδγ , (160)

and the following one is very useful

σ2σiσ2 = −(σi)∗, σ2σ0σ2 = σ0 ⇒ σ2σµσ2 = (σ0,−~σ∗) = σµ
∗
. (161)

As far as kinetic terms are concerned,

γ0γµpµ = (γ0)2pµ


 σµ 0

0 σµ


 =


 p0 − ~p.~σ 0

0 p0 + ~p.~σ


 . (162)

B The adjoint of an antilinear operator

Following Weinberg [11], let us show that the adjoint of an antilinear operator (see (5) for the definition)
A cannot be defined by< Aψ | χ >=< ψ | A† | χ > 28 . Indeed, suppose that we can take the usual
definition above, and letc be a c-number; using the antilinearity ofA one gets< A(cψ) | χ >=<
c∗(Aψ) | χ >= c < (Aψ) | χ >= c < ψ | A† | χ > is linear inψ.

But one has also< A(cψ) | χ >=< (cψ) | A† | χ >=< ψ | c∗A† | χ >= c∗ < ψ | A† | χ > is
antilinear inψ, which is incompatible with the result above. So, the two expressions cannot be identical
and< Aψ | χ > 6=< ψ | A† | χ >.

Weinberg ([11] p.51) defines the adjoint by29

< ψ | A† | χ >≡< ψ | A† χ >=< Aψ | χ >∗=< χ | A ψ >≡< χ | A | ψ > (164)

28This changes nothing to our demonstrations.
29So defined, takingψ = χ, the adjoint satisfies< ψ | A | ψ >=< ψ | A† | ψ >. This entails in particular that, for a

antiunitary operator
< ψ | A† | ψ >∗ 6=< ψ | A | ψ >, (163)

unless what happens for antiunitary operators (otherwise the matrix element< ψ | A | ψ > of any antiunitary operator could
only be real, which is nonsense).
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Then, even for an antilinear and antiunitary operator one has 30

A†A = 1. (165)

Indeed,< ψ | A†A | χ >=< ψ | A† | Aχ >(164)
= < Aχ | A | ψ >=< Aχ | Aψ >antiunitarity

= < ψ | χ >.

By a similar argument, and becauseA† is also antiunitary, one shows that one can also takeAA† = 1.

So, both linear unitaryU and antilinear antiunitaryA operators satisfy

UU† = 1 = U†U , AA† = 1 = A†A. (166)

C Classical versus quantum Lagrangian; complex versus hermitian con-
jugation

In most literature, a fermionic Lagrangian (specially for neutrinos), is completed by its complex conju-
gate. This is because, at the classical level, a Lagrangian is a scalar and the fields in there are classical
fields, not operators.

However, when fields are quantized, they become operators, so does the Lagrangian which is a sum
of (local) products of fields, such that, in this case, the complex conjugate should be replaced by the
hermitian conjugate.

Consider for example two Dirac fermionsχ =


 ξα

η
β̇


 andψ =


 ϕα

ω
β̇


; a typical mass term in a

classical Lagrangian readsχLψR = (ξα)∗ωα̇ = ξα̇ωα̇ = −ωα̇ξ
α̇ = ωα̇ξα̇, where we have supposed that

ξ andω anticommute; its complex conjugate reads then(χLψR)
∗ = ωαξα = (ωα̇)∗ξα.

If we now consider operators(χLψR) = [ξα]†[ωα̇] = [χL]
†[ψR], and its hermitian conjugate is[ωα̇]

†[ξα] =

[ω∗
α̇][ξ

α]. Since
(
[χL]

†[ψR]
)†

= [ψR]
†[χL], it only ‘coincides” with the classical complex conjugate if

we adopt the convention

ψ†
RχL = (ωβ̇)∗ξβ, (167)

where one has raised the index ofω and lowered the one ofξ. We will hereafter adopt (167).

D On the use of effective expressions for theP , C andT operators when
acting on a Dirac fermion

In the body of this paper we have chosen to work with fundamental Weyl fermionsξα andηα̇. In order
to determine how the discrete symmetriesP , C andT act on them, we started by their action on Dirac
fermions in terms ofγ matrices, from which, then, we deduced how each component transforms.
However, one must be very cautious concerning the wayP , C andT act in terms of Diracγ matrices;
this notation can indeed easily cause confusion and induce into error, as we show below. It can be spe-
cially misleading when calculating the action of various products of these three transformations and only
an extreme care can prevent from going astray. This is why, inmanipulating these symmetry operators,
we take as a general principle to strictly use their action onWeyl fermions, together with the knowledge
of their linearity or antilinearity.
Since, nevertheless, the Dirac formalism is of very common use among physicists, we also give in the
following the correct rules for manipulating, in this framework, discrete transformations and their prod-
ucts.

LetK be a transformation acting as follows on a Dirac fermionψD : K · ψD = UKψ
(∗)
D , whereUK is

a matrix which is in general unitary. In the case of the usual transformationsP , C andT , UK may be

30This is in contradiction with [13].
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expressed in terms ofγ matrices. One must however keep in mind that this does not provide a complete
characterization of the corresponding transformation, but only an effective one that must be handled
with extreme care. It can indeed be be misleading, speciallyif one relies on “intuition” to infer from
this expression the linearity or antilinearity of the transformation under consideration. This is what we
showed in subsection 3.2 concerning charge conjugation. Indeed,P · ψD = iγ0ψD andP is linear
(unitary);C ·ψD = γ2ψ∗

D andC is linear (unitary);T ·ψD = iγ3γ1ψ∗
D andT is antilinear (antiunitary);

PCT · ψD = −γ0γ1γ2γ3ψD andPCT is antilinear (antiunitary).

To illustrate this, let us investigate threea priori possible ways of computing the action ofPCT , and
compare them with the correct result, obtained by applying directly to Weyl fermions the three transfor-
mations successively (taking into account the linear or antilinear character of operators):
* the crudest way consists in basically multiplying theUK ’s, without considering any action on a spinor
(hence neglecting any consideration concerning complex conjugation);
* the second one [12], that we call “Landau” uses as a rule the composition of the symmetry actions on
a Dirac spinor;
* the third one consists of making use of the linearity/antilinearity of each transformation to move the
corresponding operator through any factor that may be present on the left of the fermion until it acts
on the fermion itself. This last method, as we will see by going back to the transformation of each
component ofψ, is the only correct one.

• crude :PCT · ψD = UPUCUTψD = (iγ0)γ2(iγ3γ1)ψD = −γ0γ1γ2γ3ψD.

• “Landau” : PCT · ψD = P · (C · (T · ψD)) = iγ0(γ2(iγ3γ1ψ∗)∗)ψD = γ0γ1γ2γ3ψD.

• cautious :

ψD
T−→ T · ψD = iγ3γ1ψ∗

D
C−→ C · (iγ3γ1ψ∗

D)
C linear

= iγ3γ1C · ψ∗
D

(16)
= iγ3γ1(C · ψD)

∗ = iγ3γ1(γ2)∗ψD

= −iγ3γ1γ2ψD
P−→ P · (−iγ3γ1γ2ψD)

P linear
= −iγ3γ1γ2P · ψD = −iγ3γ1γ2(iγ0ψD) = γ3γ1γ2γ0ψD

= −γ0γ1γ2γ3ψD.

Similarly, when calculating the action of(PCT )2, one gets:

• crude :(PCT )2ψD = (−γ0γ1γ2γ3)(−γ0γ1γ2γ3)ψD = −ψD.

• “Landau” : (PCT )2 · ψD = PCT · (PCT · ψD) = (γ0γ1γ2γ3)(γ0γ1γ2γ3)ψD = −ψD.

• cautious :

(PCT )2 · ψD = (PCT ) · ((PCT ) · ψ)
= (PCT ) · (−γ0γ1γ2γ3ψD)

PCT antilinear
= (−γ0γ1γ2γ3)∗(PCT ) · ψD

= (−γ0γ1γ2γ3)∗(−γ0γ1γ2γ3)ψD

= ψD.

The “cautious” method is the only one which agrees with that directly inferred from transforming directly
Weyl spinors according to the rules given in the core of the paper. One nevertheless gets the correct
sign forPCT (though not for(PCT )2) by the crude calculation. So, in order to discriminate without
any ambiguity between the three ways of manipulating the symmetry operators when acting on a Dirac
fermion, i.e. to avoid (or minimize) any risk of accidental agreement due to the cancellation of two
mistakes, we calculated the other possible products of two operators, and compared the results with the
(reliable) ones obtained when acting directly on Weyl fermions. The results are summarized below :
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TP TC CP

Crude (trivial product ofU ’s) ξα → −(ηα̇)∗ ξα → −ηα̇ ξα → −(ξα)∗

ηα̇ → (ξα)
∗ ηα̇ → ξα ηα̇ → −(ηα̇)∗

PT = TP CT = TC PC = CP

“Landau” (composition) ξα → (ηα̇)∗ ξα → ηα̇ ξα → (ξα)
∗

ηα̇ → −(ξα)∗ ηα̇ → −ξα ηα̇ → (ηα̇)∗

PT = −TP CT = TC PC = CP

Cautious (our way of computing) ξα → (ηα̇)∗ ξα → −ηα̇ ξα → (ξα)∗
ηα̇ → −(ξα)∗ ηα̇ → ξα ηα̇ → (ηα̇)∗

PT = TP CT = −TC PC = CP

Correct result (acting directly on Weyl fermions) ξα → (ηα̇)∗ ξα → −ηα̇ ξα → (ξα)∗
ηα̇ → −(ξα)∗ ηα̇ → ξα ηα̇ → (ηα̇)∗

PT = TP CT = −TC PC = CP

Moreover, our way of computing ensures thatT 2 = 1, in agreement with the result obtained when
acting directly on Weyl spinors, while one faces problems with the Landau method which leads to

T 2 = −1. Indeed,T 2 · ψD = T · (iγ3γ1ψ∗
D)

T antilinear
= −iγ3γ1T · ψ∗

D

(16)
= −iγ3γ1(T · ψD)

∗ =
−iγ3γ1(−i)γ3γ1ψD = ψD, while “Landau’s” prescription leads toT 2 · ψD = iγ3γ1(iγ3γ1ψ∗

D)
∗ =

iγ3γ1(−i)γ3γ1ψD = γ3γ1γ3γ1ψD = −ψD.
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