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June 15th 2010 (revised)

DISCRETE SYMMETRIES AND THE PROPAGATOR APPROACH
TO COUPLED FERMIONS IN QUANTUM FIELD THEORY .
GENERALITIES . THE CASE OF A SINGLE FERMION-ANTIFERMION PAl  R.

Q. Duretf| } & B. Machet! [}

Abstract: Starting from Wigner's symmetry representation theorem,give a general account of dis-
crete symmetries (parityp, charge conjugatiod’, time-reversall’), focusing on fermions in Quantum
Field Theory. We provide the rules of transformation of Wagihors, both at the classical level (grassma-
nian wave functions) and quantum level (operators). Makisgof Wightman'’s definition of invariance,
we outline ambiguities linked to the notion of classicahfi@nic Lagrangian. We then present the gen-
eral constraints cast by these transformations and thailugts on the propagator of the simplest among
coupled fermionic system, the one made with one fermion endritifermion. Last, we put in corre-
spondence the propagation@feigenstates (Majorana fermions) and the criteria cast&inphopagator

by C' andC P invariance.
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1 Introduction

Fermions are usually treated, in most aspects of their phenology, as classical, though anticommut-
ing, objects. Their Lagrangian is commonly endowed with asmaatrix though, for coupled systeffis
this can only be a linear approximation in the vicinity of @mong the physical poles of their full (matri-
cial) propagator[J1][[2]. In this perspective, the study efitral kaons[]1], and more specially of the role
held, there, by discrete symmetri€s C', T and their products, has shown that subtle differences occur
between the “classical” treatment obtained from a Lageamgind a mass matrix, and the full guantum
treatment dealing with their propagator. Using a classiggiroximation for fermions is priori still
more subject to caution since, in particular, their antiomutation is of quantum origin. This is why, af-
ter the work [IL], we decided to perform a study of coupled fenit systems in Quantum Field Theory,
dealing especially with the propagator approficiireating fermions in a rigorous way is all the more
important as the very nature of neutrinos, Dirac or Majorasatill unknown, and that all theoretical
results, concerning specially flavor mixing, have been igaladuced from classical considerations.

The second and third parts of this work are dedicated to gésttements concerning, first, symmetry
transformations in general, then the discrete symmetagisyp”, charge conjugatiod’, time-reversal

T, and their products. It does not pretend to be original, fies to make a coherent synthesis of results
scattered in the literature. Starting from Wigner's repreation theorem[]J5] and Wightman’s point
of view for symmetry transformationg] [6], we give the gehetdes of transformations of operators
and of their hermitian conjugates by any unitary or antanyittransformation. We then specialize to
transforming Weyl spinors by, C, T and their products, first when they are considered at thsickls
level (grassmanian wave functions), then at the quantuei (emticommuting operators).

The fourth part deals with the concept of invariance of amitreeory. By taking the simple example
of fermionic mass terms (Dirac and Majorana), we exhibit iuities and inconsistencies that arise in
the transformations of a classical Lagrangian by antigniteansformations. This motivates, like for
neutral kaons[]1], the propagator approach, which is thg sale way of deducing unambiguously the
constraints cast by symmetry transformations on the Graeetibns of physical (propagating) particles,
from which the S-matrix can be in principle reconstructgd [6

For the sake of simplicity, it is extensively investigatadyoin the case of the simplest among coupled
fermionic systems, the one made with a single fermion andritfermion; such a coupling, which
concerns neutral particles, is indeed allowed by Lorentariance. This is the object of the fifth and last
part of this work. We derive in full generality the constigirtast on the propagator &, C, T, PC,
PCT. We show that the physical (propagating) fermions can oeliviajorana ¢ eigenstates) if their
propagator satisfies the constraints castbyr C'P invariance.

The extension to several flavors, with its expected deeggtithinto the issue of quantum mixing in
connection with discrete symmetries, is currently undeestigationf]

2 Generalities

In this paper, we shall note equivalengly R (€NR = R - ¢, wheret® is a Weyl spinor (see Appendix
A1) andR - £« its transformed byR; often the *” will be omitted such that this transformed will
also be notedRé®. The corresponding fermionic field operators will be pubistjuare brackets, for
example[¢“], [€2]R, the latter being the transformed of the former by the tramsétionR. Formally
(€217 = (€)™

1Both quarks and leptons form coupled systems through thgsHigctor.

2The propagator approach for coupled systems was initim@]j then applied in|]4] to the case of neutral kaons. By
defining the physical masses as the poles of the full (matyipropagator, it enabled to go beyond the Wigner-Weisskop
approximation, to deal with non-hermitian Lagrangiangahie for unstable particles, and to deduce general comstreast

by discrete symmetries. This method was then refineB in {illlirsthe case of neutral kaons.
3Results concerning mixing at the quantum level have beeairad, by less general techniques,l]n [ﬂ, [8] aﬂd [9].




The transition amplitude between two fermionic states teee: x | ¢ >; this defines a scalar product
and the corresponding nora ¢ | ¢ > is real positive. The scalar product satisfies

< x >T=< x| > 1)

we consider furthermore that representations of the Pérgaup satisfy[[70]

<Y x >T=<T x> 2

2.0.1 The symmetry representation theorem of Wigner[]5]

A symmetry transformation is defined as a transformationhenstates (ray representations)— W’
that preserve transition probabilities

| < WUy > P =] <[ Wy > ®3)

The so-called “symmetry representation theorem” sfites
Any symmetry transformation can be represented on the Hifipace of physical states by an operator
that is either linear and unitary, or antilinear and antidary.

Since we have to deal with unitary as well as antiunitary afes, it is important to state their general
properties and how they operate on fermionic field operatdrsnitary operatoi/ and an antiunitary
operatorA satisfy, respectively

Vi, x <UY|Ux>=<y|x> <AY|Ax>=<x|¢>=<¢|x>". (4)

Both preserve the probability transitionc ¢ | x > |> = | <Uy | Ux > > = | < Ay | Ax > |2

2.0.2 Antiunitarity and antilinearity
An antilinear operator is an operator that complex conggany c-number on its right
A antilinear < A(c|yp >)=c"A|Y >. (5)
An antiunitary operator is also antilinear. Let us indeedsider the antiunitary operatot.
<AY | A A >=< A | AAx >=<Ax |V >= N <x|v>=N < AYp|A| x>
shows thatA is antilinear.

2.0.3 Unitarity and linearity

In the same way, one shows that a unitary operator is linear.

2.0.4 Symmetry transformations: Wightman'’s point of view

Wightman [b] essentially deals with vacuum expectatiomealof strings of field operators. The trans-
formed© of an operato® is defined through the transformation that changes the gtat® ¢

<¢|O0|p>=<¢|O] 6> (6)

One has accordingly:
* for a unitary transformatio/ )
o=u-'ou, (")

“We refer the reader tl] for a careful demonstration of theorem.



* for a antiunitary transformationd fi f

O (ATT0A)T

= ATOT(AHT = ATOTA. 9)
This is the demonstration.
* For I unitary (U = 1 = UTU):
<UP | O |Ux >=<y |[UTOU | x >=< |[UTTOU | x >, q.e.d.

* For A antiunitary:
- first, we demonstrate the important relation

V(b x) <AY|AOA [Ax >=<x|0"|¢ >. (10)

Indeed:

<AY | AOA™ | Ax >=< AY | AO | x >=< Ay | A(Ox) >@<oxw>:<x\ouw>;
- one has then, in particulﬂr

CAY O] Ay >=< AP | AATOAA | Ax >=< x| (A0 ¥ >, (12)

which yields the desired result for = x fi.

According to [P), an extra hermitian conjugation occurshia transformation of an operator by an anti-
unitary transformatiof.

2.0.5 General constraints

~

\OTJ¢>@<¢\C/)\T]¢>evaluatesalsoa<s<5\(’ﬁ]$>:<$\Olé>*@<¢]@]¢>*
o | (O)"| ¢ >, such that, comparing the two expressions one gets

A

¢
<

ot = (O)f, (13)

which is a constraint that must be satisfied by any oper@transformed by unitary as well as antiu-
nitary symmetry transformations. E.}13) can easily bekbe explicitly. [)] being the field operator
associated with the grassmanian functigrone has:

* for a unitary transformatioi:

i By v
o @ @yt @ @ ey Sy (14)

The last equality in|]9) comes from the property, demonettaty Weinbergl], that an antiunitary operator must also
satisfy the relatiodd A" = 1 = A" A (see Appendik]B). So, in particular, one Ha$1)f A~ = 1 = (A~ = A.
% Because off}9), fo© = 0,05 ... O,

[010:...0,]° = (A'010:...0,4) = (AT OLAA T O2 A4 AL 0, A)
= (AT0A) L (AT04) (A0 )]
[04]° ... [02]°[04)%; ®)

antiunitarity implies that the order of operators has towepped when calculating the transformed of a string of dpesa
"When thein andout states are different, one can write accordingly

<AY | O Ax >=<x|O| ¢ >=<x|(AT'0A)" |y > (11)

Thein andout states have to be swapped in the expressions on the r.tsarjrenthat all terms inl) are linear ih and
antilinear iny.

80ne cannot us4) to transformy | (A" OA)T | ¢ > into < ¢ | A7 OA | x becaused ™' O A acts linearly and
should thus this considered as a unitary operator.

’See [b], eq.(1-30).



* for a antiunitary transformatiot:

=

(A )" AT = AT [y] A,
(AT ]t AT = AT [y] A. (15)

Since[)] and[y]" are, respectively, associated with the grassmanian fingti and+*, (13) also casts
constraints on the transformation of grassmanian funstion

P* = ()" (16)

)
(=]l

3 Discrete symmetries

3.1 Parity

3.1.1 Parity transformation on grassmanian wave functions

We adopt the conventio? = —1 [[3]. Then the transformation of spinors are

) o mal@ ) S (),

) L @) D —ita(—F ). (17)

The parity transformed of the complex conjugates are defiitas the complex conjugates of the
parity transformed

P.(£%)" = (P.£Y)%; (18)

this ensures in particular that the constraifit$ (13) a4l satisfied. It yields
(€)@ 1) 5 ~ilna) (~&1) . (a)"(@1) & —i(6")" (&

(ga)*(f7t) E) i(na)*(_fv t) ) (Wa)*(fﬂf) E) i(ga)*(_fvt

For Dirac bi-spinors (see Appendi} A), one gets

) (19)

Papp = Uptp, Up = n°, U}, = ~Up = U, U} = —1,ULUp = 1. (20)

3.1.2 Parity transformation on fermionic field operators

Going to field operators, one usgp (7), for unitary operators

[€*)" = P[P (21)
to get
P Z )P = ing(—2,t) , P na(Z,t)P = i%(—1,1),
Pl (Z,t)P = —in®(—Z,t) , P '@ t)P = —ifo(—1,1),
P_l(ga)f(fa t)P = _Z(na)T(_fa t) ) P_l(na)T(f?t)P = —Z( Q)T(_f’ t)a
PHE)N@ P =itn™) (=2, t) , P (™)@ )P =i(6)T(-7,1),

(22)

which satisfies the constrairft {13). The following constréien arises
(P~1)%oP? = —¢°. (23)

indeed:(P1y2¢2p? — p-i(p-igapyp B p1jy plincr  po, p @ o

Taking the hermitian conjugate of the first equation of thet fine in (22) and comparing it with the first
equation of the third line, it is also immediate to check taPT)O(PPT)~! = O, O = ¢*..., which
is correct forP unitary or antiunitary.



3.2 Charge conjugation

C' is the operation which transforms a particle into its antipke, andvice versa without changing its
spin and momentum (see for examglg [13] p.17); it satigfiés= 1 [[L7]

3.2.1 Charge conjugation of grassmanian wave functions

A Dirac fermion and its charge conjugate transform al[kg] Fird satisfy the same equation; the charge
conjugate satisfies

—7T
C-yp=Veiyp (24)
whereV/ is a unitary operator
Ve=79" (Vo)'Ve =1=(Vo)? (25)
equivalently
C-p =Uctp, Uc=Vey’ =12 ULUc=1=—(Uc) (26)

In terms of Weyl fermions (see Appendix A), one has

« Cuk &3, % 2 % a
¢D<§ )gz<n )z‘(gﬁnﬁ)(%g%)f(g )721/%,
ur s 9ap&™* a2 &% uk
(27)
and, so

EOé g _Zna* ) 77d g _2627
&S -y, ot S - (28)

The transformation of complex conjugates fields resultsiftee constraint[(16), which imposes

ayk C . G « C .
(§ ) ;)”7 ) (776\4) ;)Z§a7
)" =ina . (n%)" =" (29)
One can now show that (recall thag = —1 from (26))
C unitary and linear, C* = 1. (30)

If (L§) holds, the property>? = 1 can only be realized if one considers tigatis a linear ?éerator.

Indeed, then, using (28) anf[29), one kiasC - £ 1) C - (—i(n®)*) "= (—))C - (o) 2D ca,
which entails, as neede@? = 1.

The only way to keeg? = 1 while havingC' antilinear, as[(26) seems to suggest, would be to break
the relation [(16), in which case, the signs [of] (29) get swdpguppose indeed that we consider that
C'is antilinear (thus also antiunitary), and suppose thata®@&ant to preserve the relation [16); then,
E9) stays true together with (28), and, by operating a sitiome with C' on the I.h.s. of[(28) o (29),
one finds that it can only satisfy? = —1 instead ofC? = 1. Among consequences, one finds that the
commutation and anticommutation relations with other sgtmntransformationg” andT" are changed

B, which swaps in particular the sign ()PCT)2; also, sincel’ is antilinear andP is linear, this would
makePCT linear, thus unitary. So, if we wait to be antilinear, we have to abandn](16); considering
that, at the same time, the equivalent relato (13) for ajoes in not true either causes serious problems
with Wightman’s definition[(6) of the transformed of an ogergsee subsectidn 2.9.5) which has to be
either unitary or antiunitary according to the Wigner's sgetry representation theorem (see subsection
P.0.1). Refusing to go along this path, we have to kdep (13)evgiving up (I6), that is we must

with our conventions, we hav@ P = PC, (PC)?* = —1, and(PCT)? = 1.

5



abandon the natural correspondence— [¢],¢* <« []' between fields and operators. This looks
extremely unnatural and a price too heavy to pay; this is weycansider that the relationf [16) and
C? = 1 are only compatible with unitarity and linearity for.

The question now arises whether this causes any problerads te contradictions, thinking in particular
of (24) and [2p); if one indeed considers these two equatsrtie basic ones defining charge conjuga-
tion, one is led ta” - (\Yp) = A\*C' - (¢»p) and that, accordingly,' acts antilinearly on wave functions.
Our argumentation rests on the fact tHaf (24) (26) shootide considered as so. Indeed, the two
conditions defining the action &f are [12]; — that a fermion and its charge conjugate shouttsfeam
alike by Lorentz; — that they should satisfy the same eqgnatince the Dirac equation is linear, both
AC - yp and\*C - yp satisfy the same Dirac equation @s v p, and thus, the same equationas.
Likewise, bothAC - vp and \*C - ¢p transform by Lorentz a€’ - ¢p, and thus, ag)p. So, the two
fundamental requirements concerning the charge conjudat®irac fermion bring no constraint on the
linearity or antilinearity ofC, and this last property must be fixed by other criteria. Thesan favor

of a linear action ofC' have been enumerated above: — to preserve the relafioa 1; — to preserve
Wightman's definition of a symmetry transformation and foksto Wigner's symmetry representation
theorem; — to preserve both relatiofis] (16) and (13); — toepvesthe natural correspondence between
wave functions and field operators. Our final propositioncisoadingly that: despit€ complex con-
jugates a Dirac spinor, it has to be considered as a lineauwitary operator (in particular the relation
C - \p = AC -1 has to be imposed), and this does not depend on whether tmaetsvave function or
on a field operator.

We also refer the reader to appenflix D, where a careful a@rdfyslione of the pitfalls that accompany
the use ofy matrices in the expression of the discrete transformatidns andT.
3.2.2 Charge conjugation of fermionic field operators

According to the choice of linearity and unitarity fo¥, the transition from[(28) and (R9) for grassmanian
wave functions to the transformations for field operatordase according td](7) for unitary operators,
through the correspondentg) <> U~ [y)] . One gets

cleC = —iln®)t , C7IneC = —i(&)T,
C 1,0 = —i(na)t , CTIntC = —i(€M)T,
. CH()e = (). (31)

Hermitian conjugating the first equation of the first line BfY immediately shows its compatibility with
the first equation of the third line> (¢*)T(C~)t = in® = C~1(¢0)TC = (¢2)T = cCt(e)t(c—HiCc,
which entailsCCT = 41 which is correct foiC' unitary (or antiunitary). We would find an inconsistency
if the sign of the last four equations was swapped.

SinceC is linear, one immediately gets

(CcHroc*=cl(crtoc)c=0,0=¢"... (32)

3.3 PC transformation
3.3.1 PC transformation on grassmanian wave functions
Combining [1J), [(28) and (R9), and using, when needed, tigatity ofC, one gets

EEN DGR L m(@ S
< B A S B C DR

_#,1)
(

(
—ng (=7, 1), (33)

—T

and



() (@1) 5 &al=2,0) , ()" (@1) 5 n*(=2,0),
(€)' (@ 1) = =€ (=& 1), )@ 1) 5 —na(=7,1). (34)
One easily checks thaf(C)? = —
Like for charge conjugation, one has
C- (%) = (PC-€%)". (35)

For a Dirac fermion, one has

<§a)pc( £ )(ga@sﬁ*)(uﬁ)aﬁsﬁ* ).((%)C).O 2<§Q)*
- ) = . = =1 =1y )
g n’* 97 (—i0®) g1} (€°)e g

(36)

equivalently
=T T * *
PC -p =Vpcp =UpVey =Upcy™ = UpUct™. (37)

As we will see in subsectidn 3.6, Majorana fermions h&ve-parity +i.

3.3.2 PC transformation on fermionic field operators

Since we have definef?C as a linear (and unitary) operator, the transitions fronsgranian wave
functions to field operators goes througdh (7). This yields

(PC)” 150‘(1’30)25T . (PC) g (PC) = ()T,
(PO) 6 (PC) = ) , (PO 1% (PC) = (),
(P )1 l(po ) , (PO) )N (PC) =0,
(PC)H(¢ )T( 0)2—5“ . (PO H(nM)N(PC) = ~1a. (38)

3.4 Time-reversal
3.4.1 Time-reversal of grassmanian wave functions

The time reversee: x(t') | ¥ (¢t) > of a transition matrix element x(¢') | ¥(t) >,t < t' is defined
by < x(t) | ¥(t') >*=< (') | x(t) >,t > t’; the complex conjugation is made necessary By ¢/
and the fact thain states must occur at a time smaller thoan states; the arrow of time is not modified
when one defines the time-reversed of a transition matrixehd.

The operatofl’ is accordingly antiunitary, hence antilinear:
<TA|TB >=< B| A >= T antiunitary, (39)

In Quantum Mechanics, time-reversal must change grasamdunnctions into their complex conjugate
(see for example the argumentation concerning Schroedirgmgration in [1B]). According td]12], the
grassmanian functionsansform by time inversion according to
T — 7
Yp(Z,t) = T -p(&,t) = Vrp (T, —t)
Ve =iy, Vive=1=VE Vi=Vr=V;" (40)

which introducedl” as antilinear when it acts on grassmanian functions. Sa@d®in)p andvp satisfy
time reversed equations. One also defines

Ur =V = iv®y! = ~Up, UL = Ur = U ULUr = U} = 1. (41)



T -p = Urp = iv*y'vp. (42)
This yields for Weyl fermions

(Z, —t). (43)

(6" (@) & ia(@ ~1) , (6a)"(@1) = —i"(, ~1),
()" (@.8) B —in®(Z,~t) . ()" (@,0) B ina(Z, —1). (44)
One has
T2 =1, CT = -TC, PT =TP (45)

3.4.2 Time-reversal of fermionic field operators

The transition to field operators is done according[fo (9)autiunitary transformations, through the
correspondencéAq) < A~1[¢].4, which involves an extra hermitian conjugation with reggedhe
transformations of grassmanian functiorf$ ([6], eq.(1:30)

’ T_lnc'}é('ﬂt)

) Tﬁlna( _" t)T = “7(1(3_5, _t)a

> T_l(gq)f(fvt)T: i(ga)f(fv _t)7

T NEOT = —i(na) (7, ). (46)

|
~

T2, )T = i€
T o (Z,8)T = —i€
TH(EN(@E T = —i(&)'
T (na) V(& 0)T = i(n®)!

|
~

“&1 ﬁl ST
é/é/ SN—

SinceT is antilinear, one finds immediately that, thoufjh = 1, one must have

(T*1)2 OT? = Tfl(Tfl ON)T=-0,0=¢£... (47)

3.5 PCT transformation
3.5.1 PCT operation on grassmanian wave functions

Combining the previous results, using the linearityfondC', one getdor the grassmanian functions

&

(@) S ic(—x) , male) TS —ina(—a),
talz) TS ito(~2) , ni(2) ST —int(—a),
U (e) ST iy yp(—x), (48)

where the overall sign depends on the order in which the tgsract; here they are supposed to act in
the order: first, thenC and lastP. When acting on bi-spinors, one ha§" = —T'C andPT = TP [

So, using als@' P = PC, one get§ PCT)(PCT) = (PCT)(P(-)TC) = (PCT)(-TPC). T? =1,

C? =1, P? = —1 (our choice) and®C = CP entail

(PCT)? = 1. (49)

"Examples:

PCT €% = PC (T -£%) = PC - (=i€}) = P+ (=i)C - & = (—i)P - C - & = (=) P ina = P s, = i€%;
PCT - (£*)" =PC_(T-(£%)")) = PC - (i) = P -iC - &a =iP - (=1)(na)” = P~ (na)" = —i(§%)".
2\We disagree Witth] who states tHAtand P anticommute.



Note that, bothC' andT introducing complex conjugation, the latter finally diseps andPC'T intro-
duces no complex conjugation for the grassmanian functibhis is why one has

PCT - 4p(x) = Uetpp(—1), (50)
Uo = UpUcUr = —"v'7*y* = in®, UeUL =1=-U3, UL =—-Ue. (51)
For the complex conjugate fields, the constrdin} (16) gives
(€ (@) % i) (<o) s () (@) S ina)" (~),
()" (z) = —i(éa)*(;:g)T » () (@) "= i) (=),
b= =Y, (52)
such that (this only occurs fd? and PCT)
PCT - (%) = (PCT - €°)" & Us(£%)" = ((€)")° = (Uet™)" = ((£M)°)". (53)

SinceP andC are unitary and” antiunitary, PC'T is antiunitary, thusntilinear. So, despite no complex
conjugation is involve® - \é* = 10 - ¢ [§.

3.5.2 PCT operation on fermionic field operators

Since® is antiunitary, one has, according p (9)

071 (2)0 = —i(¢M)(—x) , O ()0 = —i(&)'(—x),
0 'na(2)0 =i(na)'(—z) , 7' ()0 =i(n*) (—x),
O (2)0 =i*(—x) , O () ()0 = ilu(—w),
O~ (1) ()0 = —ina(—z) . O~ (") (2)0 = —in*(-z). (54)
and, using the antilinearity @, one gets
©NH20e*=00 100 =-0,0==¢>... (55)

3.6 Majorana fermions

A Majorana fermion is a bi-spinor which is@ eigenstate (it is a special kind of Dirac fermion with
half as many degrees of freedom); sinGé = 1, the only two possible eigenvalues are= +1 and
C = —1; thus, a Majorana fermions must satisfy (e¢ (27)) one dfitbepossible Majorana conditions:

« =i = 20 S Y = £(—i)EY S 0y = £(—0)EE;
* —zf;; = inﬁ-, which is the same condition as above;

so,
= - ¢ - 3 6)
+(—i)E (i) gap®” o2 5

the + sign in the lower spinor corresponds@= +1 and the— sign toC = —1 .

13This is to be put in correspondence with which islinear despite complex conjugation is involved.
“Remark Arguing that(—i)(¢3)*) transforms like a right fermion, we can call; = (—1)(£s)"), and the Majorana

604

fermion, rewritesy, =
Ws

) . If we then calculate its charge conjugate according to tifvedsrd ruIesIES), one gets

S0 G\ T e
—1\w
o 5 ( ) ) = ( ¢ , which shows that it is indeed@ = +1 eigenstate. The argumentation becomes
~i(€a)" ~i(Ea)”
trivial if one uses for Majorana fermions the same formuladiearge conjugation as the one at the extreme rig@f (2a7) fo
Dirac fermions(yar)® = 7*(¢ar)", (xar)® = 7* (xar)*-



The Majorana conditions linking andn are

£ O i)y oy O (i) &0

using formulad(38,29) for the charge conjugates of Weyl fensy they also write

¢ =T EE 0y O £ ) (58)

A Majorana bi-spinor can accordingly also be writfén

i ( (=) ()" ) | 0)
3

which is identical tmﬁﬂiﬂ by the relations[(§7). By charge conjugation, usihd (Z@ﬁ & Xﬁ,w& &
—Xar-
A so-called Majorana mass term writes
Cnta = Bl = F [ (69" (6a)” + €€ = i[(6a)T(€)" + €l
or YUy = YL Y = Fi[(69) (Ea)” + Eal®] = Fi[(—Ea)T(E)" + £aE%]. (61)
Along the same lines, Majorana kinetic terms wiflel a5, var or wary 55 ar; they rewrite in
terms of Wey! spinors (using (1162))

(p" — p.d) 0
- — D.O
o By = wL( pr s )wM

0 (p° + p.&
S R
= (€ (p° — p.5)E% + (£ (i) (&))" (0° + p.F) (£ (—i)&5)
—> —
= (€ (p° — p.5)E” + &’ + P.5)ES, (62)
and
— (p° — p.&) 0
1/1M'YM'Y5E>1/}M = %Tw Vs
0 (p° + p.5)
= (€ (p" — .5)E7 — (£ (=) (&))" (0" + 9.5) (£ (—9)&L)
—>
= (€M) (p° — p.5)E" — &a(p” + 5.7)E5. (63)

A Dirac fermion can always be written as the sum of two Majafairfthe first ha®” = +1 and the

second”’ = —1): ) - L A T U
” i€+, ity 41,

While a Dirac fermiont its charge conjugate is always a Majorana fermién=t +1), any Majorana
fermion (.e. a general bi-spinor which is @ eigenstate) cannot be uniquely written as the sum of a

*The Majorana spinorg, andy, can also be written

« —q \CP
S PN T B (59)
=(—1)(€Y) UE

they involve one Weyl spirgr and itSP conjugate (see subsecti3.3). o
1%One defines as usugl 9 x = 1 (vdx — (9v)x). For anticommuting fermiong), x]4+ = 0, one hasp 0"y = ¢dx =
—
X0y =x 0 9.
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given Dirac fermiont its charge conjugate: this decomposition is not unique pSsp indeed that, for
example, &€ = +1 Majorana fermion is written like the sum of a Dirac fermionts- ¢charge conjugate

oo & —iln®) . . .
= . Since the two corresponding equations are not indepenglandn
=it 75 = i

cannot be fixed, but only the combinatiéfi — i(n®)* ~ £* — in®. So, infinitely many different Dirac
fermions can be used for this purpose.

A Majorana fermion can always be written as the sum of a lefofen + its charge conjugate, or the
sum of a right fermiont its charge conjugate. Let us demonstrate the first case sinte the second
goes exactly along the same lines

Var = ( §. )(§ )+< 0_ )wLi’YQi/JEwLi(wL)C,
+(=1)&5 0 +(=1)&5

S 1+7°
Y = = 27 Yp. (64)
0
. . . _ g & o o€
Majorana fermions havBC parity = +i. For examplePC. = =iy :
(n4)° i€” (ng)°

They arenot PC eigenstates (an extrd comes into play in the definition dPC-parity).

4 Invariance

4.1 Wightman'’s point of view [g]

The invariance of a “theory” is expressed by the invarianicthe vacuum and the invariance of all
point functions;Q is then a product of fields at different space-time points(@#being the transformed
of O)

[0>=10>,<0]0]0>=<0]O]0>. (65)

x in the case of a unitary transformatiof

sym

<0]O[0>"L'<0|OV 0> " e gV oV |0V >, 0V =u~tou; (66)

taking the example of parity and@® = ¢; (z1)d2(z2) . . . ¢n(xy), ONE has
OF = P7YOP = ¢1(t1, —Z1)pa(ta, —T2) . .. & (tn, —Fp), SUch that parity invariance writes

<0 ‘ ¢1(1‘1)¢2(1‘2) R (bn(l'n) ’ 0>=<0 ’ (bl(tl, —f1)¢2(t2, —fg) R ¢n(tn, —fn) ‘ 0>. (67)
x in the case of a antiunitary transformatiah

<0]O]0> £ <0]O0|0>=<0"]| 00" >;
o4 = (AoA) =

<0]O[0> £ =<0 (A0A)T|0>=<0]| ATOA|0 >*;
(68)
taking the example 0® = PCT, with O = ¢1(z1)d2(x2) . .. ¢n(zy,), ONE has
0% = (07100)" = (0716,0)"... (071920)1(071¢,0)T = ¢7)... 4T¢7.
For fermions [B]
$()° = £6(-2) = (07 ¢(2)0)", (69)
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such thatPC'T invariance expresses as (of course the sign is unique anchepsecisely determined)

< 0] 1(z1)d2(22) ... () [0> "B £ <0 dp(—an) ... d2(—22)p1(—21) ] 0>
=+ <0 ¢1(—21)p5(—22) ... by (—2) [ 0 >7
=+ < 0] (0 g1 (21)0) (O 1pa(22)0O) ... (O L (2,)O) | 0 >* .
(70)

It is enough to change; — —x; and to read all Green functions from right to left instead edding
them from left to right (like Pauli).

For a general antiunitary transformatiofy the last line of [(§8) expressing the invariance also reads,
since the vacuum is supposed to be invarianiby as well as byA:

<0]O0|0>=<0|00>
=< A0 (ATTOA)T | A0 >=< A0 | (ATT0A) | A0 > =< A0 | A7HO0) >
(71)

requesting that, forany, < ¢ | O | ¢ >=< ¢ | (A0 A)" | > would be much stronger a condition.

Wightman’s expression of the invariance is weaker thanesting® = O, since it occurs only for
VEV'’s and not when sandwiched between any siate

4.2 The condition® = O

It is often used to express the invariance of a theory witlgtaagian or) Hamiltonia® by the transfor-
mation under consideration:

* For unitary transformations, this condition is equivalém
O=U"oU < [U,0] =0, (72)

* For antiunitary transformations it yields (we use the padp that, for unitary as well as for antiunitary
operatorg/—! = ¢t and.A~! = AT, see Footnotf] 5 and Appendik B)

O=(A10A)T = ATTOTA = A0 = OTA. (73)

Note that this is similar (apart from the exchar@e—~ ©~!) to the condition proposed ifi [IL4] (p.322)
as the ‘PCT” theorem for any Lagrangian densify(x) considered as a hermitiaperator

OL(z)0 ! = LI(—a). (74)

So, that the Hamiltonian commutes with the symmetry tramsétion can eventually be accepted when
this transformation is unitary (and we have already meetiathat this statement is stronger that Wight-
man’s expression for invariance); however, when the tanstion is antiunitary, one must be more
careful.

Requesting that the transformed states should satisfyaime £quations as the original ones is only
true for unitary transformations. It is not in the case ofianitary operations liké” (or PCT) since a
time reversed fermion does not satisfy the same equationeasriginal fermion but the time-reversed
equation.

4.3 Hamiltonian - Lagrangian.
4.3.1 The case of a unitary transformation

e Invariance of the Hamiltonian:

12



In Quantum Mechanics, a system is said to be invariant bytamyrtransformatiord/ if the transformed
of the eigenstates of the Hamiltonid&h have the same energies as the original states

Hip = Exb and HU - = EU - (75)

sincel{ is unitary, it is in particular linear, such th#i/ - v = U - By = U - H; this is why the
invariance of the theory is commonly expressed by

H=U'HU < [U,H =0. (76)

Defining, according to Wightman, the transform&dof the HamiltonianH by H = ¢/~ HU, we see
the the invariance conditior (76) also rewritds= H. No special condition of reality is required far.

e Invariance of the Lagrangian:

The Lagrangian approach is often more convenient in QuaFiafd Theory; it determines the (classical)
equations of motion, and also the perturbative expansidme Jagrangian densitf(x) is written <
V(z) | L(z) | ¥(x) >, whereL is an operator an@(z) is a “vector” of different fields.

A reasonable definition for the invariance of the theory dfttthe transformety ¥ of ¥ satisfies the same
equation asl; sinceL(z) ande*L(x) will provide the same (classical) dynamics, one expredsiss t
invariance by

<U-V(2) | Lx) | U-P(2) >= e < U(z) | L(z) | U(z) >= *L(z). (77)

Due to the unitarity of/, this is equivalent tec ¥ (z) | U~ L(z)U | ¥(x) >= € < U(z) | L(x) | ¥(z) >
or, owing to the fact tha¥’ can be anything

LU = ¢UL. (78)

If one applies this rule to a mass term, and consider the nsaséa() as an operator, the unitarity of
U entails that a scalar as well as the associated operatoldsstay unchanged. This leaves only the
possibility « = 0. The condition [(78) reduces accordingly to the vanishinghefcommutatofL, i].
Wightman’s definition[(6) of the transformdd= ¢/~ LU/ of the operatoi. makes this condition equiv-
alent toL. = L. No condition of reality (hermiticity) is required ah.

4.3.2 The case of antiunitary transformations

The situation is more tricky, since, in particular, the egatransformed by a antiunitary transformation
(for exampleT’) do not satisfy the same classical equations as the origiatds (in the case @f, they
satisfy the time-reversed equations).

This why it is more convenient to work with each bilinear @meisin the Lagrangian or Hamiltonian,

which we write for example< ¢ | O | x >. ¢, & can be fermions or boson®, a scalar, a derivative oper-

ator .. .. Taking the example &fC'T, this bilinear transforms intec ©¢ | O | ©x >(@< x|O]¢>=

<x|(©7'06) ¢ >

Application: Dirac and Majorana mass terms

¢ Problems with a classical fermionic Lagrangian:

In view of all possible terms compatible with Lorentz inaarce, we work in a basis which can accom-
modate, for example, both a Dirac fermion and its antiplticcordingly, For a single Dirac fermion
(and its antiparticle), we introduce the 4-vector of Weyhfeons

& 3 &

1/} _ nr _ (gﬁ)c = —2(776)* Lorf\e/ntz 776 7 (79)
nR (15)° —i(&)" &
UR UK UF
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Lorentz

where means “transforms like (by Lorentz)”.

Let us study the transform BYCT of a Dirac-type mass term p&®* (x)ns () =< £*(x) | mp | na(x) >
and of a Majorana-type mass termn £ (z)(ns)¢(z) =< £¥(x) | mar | (na)¢(x) >.

* mp andm; we first consider as operators sandwiched between fermgpagsmanian functions. The
two mass terms transform, respectively, it®{* (z) | mp | Ong(z) >and< O (x) | mas | O(na)¢(x) >.
We now use[(12), which transforms these two expressionsdni | m® | € > and< (1) | m§, | €& >
Since® is antilinear,0 'm0 = m* = m® = (07'mO)" = m. So the two mass terms transform,
respectively, intanp < 74 | € >= mpni&® andmyy < 1S | £¢ >= my(n5)* €. Notice thatyt&®

is (using anticommutation)—) the complex conjugate @*n; and likewise, thafn$)*(* is (—) the
complex conjugate of**7¢.

The Lagrangian density also a priori involves Dirac and Maja mass termspn’; ™ and s (nS) €%,
such thatPC'T invariance requiresip = pp andmpy; = ups El

* If we instead consider that¢*y = m(©¢*)Ox we obtain, using[(48) and (52), that the Dirac

mass term transforms into;(— zga*)(—md), that is, it changes sign byC'T'. The Majorana mass term
transforms intamny (—ig™*)O(—i€s) " map(—i€™)(+1)OL; = (—il)(+i)(—i&]) = —iEEL,
that is, unlike the Dirac mass term, the Majorana mass tees dot change sign. This alternative would
in particular exclude the simultaneous presence of DiratMajorana mass terms (necessary for the
see-saw mechanism).

* Conclusion: antiunitary transformations of a classia@infionic Lagrangian are ambiguous and can
lead to contradictory statements. Defining a classical ifamio Lagrangian is most probably itself prob-
lematicf3.

e Quantum (operator) Lagrangian

Dirac and Majorana mass terms write, respectiVely! [m p][n.] and[€] T [m ] [7S] @) [mar](—i)[€a]T

Using (), one get§l¢® ] [mp][na])® = [a]®[mp]®([£°]7)° = [a)®[mp]®([€°] )T=—Z[na][mD](—i)[§°‘]T,

such that, using the anticommutation of fermionic opegttite Dirac mass term transforms ®yinto

itself.

As far as the Majorana mass term is concerned, it transforta$[¢ ] [m/] [77 ]) ([na])@[mM]e([gO‘]T)6 =
(=il€a]")®ma]® ([€*]7)°. One uses agaifi(8) to evalugteil¢a]")® = ([€a]")®(—1)® = (—i)[¢a](—i) =
—[€,]t. So, finally, the Majorana mass term transforms inf@,] s (—)[€2]T "™ —i[¢)tmas[alT,

that is, like the Dirac mass term, into itself.

The same conclusions are obtained in the propagator fagmali

5 The fermionic propagator and discrete symmetries (1 fernon + its an-
tifermion)

The fermionic propagatoA(x) is a matrix with a Lorentz tensorial structure, the matrigneénts of
which are the vacuum expectation valueseproducts of two fermionic operators:

To(z)x(y) = 0(z° — ) (x)x(y) — 0(y° — 2°)x(y)v(x); (80)

the Lorentz indices of the two operators yield the tensatiaicture of the matrix elements.

YIf the Lagrangian (Hamiltonian) is furthermore real, it sltbmatch its complex conjugate (see Apperﬂix C). The c.c. of
the Dirac mass terms areh oy + uhna®™ M —mihnié® — puhe* n, and the c.c. of the Majorana mass term are
mAE(0S)" + mhr (NE)E™™ “E —mi, (18)7€™ — parEe" (). Using [2B) to replacey; by (i), the reality of the
Lagrangian is seen to requirep = —up andma = —ujy-

So, combining the two, we see that a real @&@d7T invariant (classical) Lagrangian should satisfy, = up imaginary
andmas = pa imaginary.

18| et us also mention the arbitrariness that results fromragtth a mass matrix any vanishing anticommutator.
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If, for example, one works in the fermionic bagis;, v, v¥3,14), and ifa, 3 ... denote their Lorentz
indices, the propagator isdax 4 matrix A(x) such that

A%B(x) =< |A()] wf >=<0 !T(%)“(%)(w})ﬁ(—g)\ 0> . (81)

Supposing 5
<Y [ >=6;;6°7, (82)

we shall also use the notation,
Alz) = |¢“>Aa5 z) < |
J

<y |
<o |
<9 |
<9 |

= (1> Jug> 195> lug> ) AT @ ; (83)

since one indeed finds v¢ |A(x)] ¢ >= A (x).
We will work hereafter in the basif {79), which includes egivdegrees of freedom to describe a (Dirac)

fermion + its antifermion. The corresponding fermionicagator is then & x 4 matrix which involves
the following types of7 -product§

x mass-like propagators:

<0[T€¥()(ng)"(—x)] 0 > and< 0 [T (£*)(z)((15))T(==)| 0 > (Dirac-like),
<0[T(na)(x)((€7))(=2)| 0 > and< 0 [T (z)(¢°) (=) 0 > (Dirac-like),
<0[T€(2)((ng)) (=) 0 >, < O[T (£)()(n)"(~2)| 0 > (Majorana-like),
<O [T (1a)(x)(€%) (=) 0 >, < 0 Tna(2)((€7)°) T (—
x kinetic-like propagators:

<0 [TE(2) (€)1 (=) 0 > and< 0 |T(£*)“(2)((€7))(~

< O[T (1a)°(2) (1)) (=2)| 0 > and < 0 [T () (ng) " (—2
<0 [TE(@)((€7)) (—2)| 0 > and< 0 [T (£%)(x)(€”)(—

< O[T (1a)*(2)(mg) (=) 0 > and < 0 [T () (1)) (—2

x)| 0 > (Majorana-like);

| 0 > (diagonal),
| 0 > (diagonal),

X

x)| 0 > (non-diagonal),

| 0 > (non-diagonal).

Because of electric charge conservation, some of the mirkgioagators (Majorana mass terms, non-
diagonal kinetic terms) will only occur for neutral fermin

Any propagator is a non-local functional of two fields, whiexte evaluated at two different space-time
points; a consequence is that, unlike for the Lagrangianc¢iwis a local functional of the fields, one
cannot implement constraints coming from the anticomnanaif fermions. Likewise, a propagator has
no hermiticity (or reality) property, and no correspondaamstraint exisf] . So, the only constraints that
can be cast on the propagator come from discrete symmetribthair combinationsC, C P, PCT.
The mass eigenstates, which are determined from the prigpagy@ accordingly expected to be less
constrained than the eigenstates of any quadratic Lagrafbi

%For the Lagrangian, the equivalent would be to consideragbible quadratic terms compatible with Lorentz invar&anc
Dirac as well as Majorana mass terms are allowed, and fogtikiterms, diagonal ones, for examﬁlféT (p0 — P.0)as 53 as
well as non-diagonal ones, for examtg, )" (p° + 5.5)as 15 = ia(p° + 5.5)as ns-

200nly the spectral function has positivity properties.

Zland any mass matrix, which can only be eventually introdiinexlinear approximation to the inverse propagator in the
vicinity of one of its poles|]2].
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5.1 PCT constraints

All demonstrations proceed along the following steps.

Suppose that we want to deduB€'T' constraints for< 0 |74 (z)x'(—z)| 0 >. The information that
we have from[(§4) is: there exigtandw such that)(z) = 0¢'(—2)0~ !, xT(—2) = Ow(2)0~ ' A,
the vacuum is supposed to be invarigit>= | © 0 >, and® is antiunitary, which entail{ (1§ . We
have accordingly

<0 [T(a)x! (-2)| 0 >=< 0|TO! (~2)0 71O w(z)071] 0 >
fnvariance o the LI ¢ 0 |TO¢ (—2)0 10w ()01 © 0 >=< 0 0|TO¢! (—2)w(2)0~1|© 0 >
B 0 oot (@)6(-2) — 6-1p(—)! ()] 0 5= — < 0 [T () ()] 0 >.

5.1.1 Constraints on mass-like terms
x Majorana — like <0 \Tfa(x)((nB)C)T(—x)] 0> = <0|T¢(—x)(

« Magjorana — like < 0 |T(na)(z) (") (—2)|0> = <0|T1na)(—z)(E)(x)] 0>

= —<0|T(E") (@) (na)°
* Majorana —like <0 |T(£%)%(2)(ns) (=2)| 0> = < O[T (£*)(=2)(ng)'(
)

- 0Ty e
x Majorana — like < 0 |Tna(z)((€°))(=2)[0> = <0 [Tna(—2)(€%)9)T ()] 0 >
= — <0[T(EN)) (@)na(~2) 0 >;
* Dirac — like <0 |T§O‘(ac)(773)T(—:C)| 0> = <0|T¢(- x)(nﬂ)f(acﬂ 0>
= —<0[T(ny (=) (—2)[ 0 >
s Dirac — like <0 |[Tna(x)(€P)(=2)]0> = <0[Tna(—=z)(E%)T(z)] 0>
= — <0|T(E) (@)na(—x)| 0 >;
* Dirac — like < O[T (£%)%(2)((y)) (=2)[ 0> = < O[T (£*)(=a)((ny)*) ()| 0 >
= — <O0[T((my)) (@) () (=)] 0 >;
« Dirac —like <0|T(1a) (@) ((€)) (=) 0> = < O[T (na)*(=2)((¢7)9) ()| 0 >
= — < O[T (@) (na)(==)| 0 >

We give the demonstration of the first (Majorana-like) lirfigfd).

<0[7€* (@) (1)) (=2)] 0 >=< 0[TE*(2)i€s(~2)| 0 >=1i < 0 |TE(2)&p(~2)] 0 >

=i < 0[TO(—i(¢)(~2))010(=i()") ()07 0 >

tnvariance oéthe vacuum i< ©0 |T®(—Z(£Q)T)(—I)@_l@(—l(gﬁ)T)(ﬁ)@_l| 00 >

=1 <00[TO(=i(¢"))(~2)(=i(&)")(x)0~" 1 ©0 >

=—i<O0|TOE) (~z)(&) ()07 00 >

Y < 0 10(t)€s (@) (€)(=2)| 0 > +i < 0 [0(~1)€*(—2)€(x)| 0>

= +i < 0[TE*(~2)&s(x)| 0 >=< 0 [TE(—2)((nz)) ()| 0 > .

All these propagators are accordingly left invarighby the 4-inversionr — —z, or, in Fourier space,
they are invariant whep, — —p,,.

22For example, from[(34), one geg§ = ©(—i(¢*)H)O~

29, though antiunitary, does not act on théunctions of the7-product because they are real.

%This is not much information, but it is correct. Considerédrd the usual Feynman propagator in Fourier space for a Dirac
fermion with massn

/d4xeipac <0 |7-( i ) (x)( (£B)T (nB)T )(_x),yol 0>= p;;;yi—;?;% _ = ij ( pm# Puct ) ; (85)

& Mes m
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5.1.2 Constraints on kinetic-like terms

« Diagonal <0 |T€ ()N (—2)]0> = — < 0T (=) () ()0 >
= <O0[T() (2)¢"(—2)[ 0 >;
x Diagonal < 0|T(€*)°(@)((€7)) (=2)]0> = — <0[T(€*)(—2)((¢")) ()] 0 >
= <O[T(E)) (@) () (=) 0 >;
x Diagonal < 0T (na)“(x)((nz))'(—=2)| 0> = —<0[T(na)(—2)((n5)*) ()| 0>
= <0|T((nz)) (@) (na) (=) 0 >;
+ Diagonal <0 [Tna(z)(nz) (=2)[ 0> = — < 0|Tna(—z)(n)"(x)| 0>
= <0 |T(776) (x)na(—x)| 0 >;

* Non — diagonal < 0 |T€(z)((€))(=z)| 0 >

— < 0|TE (=) (")) ()] 0 >

* Non — diagonal < 0 ]Tnd(x)((nB)C)T(—x)] 0>

(
= <O|T((E)) (@) (=) 0 >;
* Non — diagonal <0 |T(€")(x)(€7)!(=2)[0> = — <0[T(£")*(~2)(¢") (x)| 0 >
= <O[T(E) (2)(€™)(—2)| 0 >;
* Non — diagonal < 0 |T(?7d)c(£6)(776')T(—56)| 0> = —<0|T(na c(—x)(nﬂ-)T(azﬂ 0>
= <0|T(ny)' (= )(Ua)c(—xﬂ 0 >;
' (
)

I
|
A
o
< 3
= =
Q
—
\_/

(87)

In Fourier space, all these propagators must accordingbddenp,,. We check like above on the Dirac

propagator that it is indeed the case. One gets for exanie {tin (B%) now makes;” B2 appear)
. p L + Mg
[ dtacr <oiTe @) ol 0> Wi§7ﬁﬁ“ wp=12 (@9

in which only the terms linear ip, are present, which are indeed oddpin as predicted byPC'T
invariance.

Note thatPCT invariance does not forbid non-diagonal kinetic-like @gators.
5.1.3 Simple assumptions and consequences

PCT symmetry constrains, in Fourier space, all mass-like pyafms to bep-even and all kinetic-like
propagators to bg-odd; the former can only writ¢(p*)d.s and the lattey(p*)p.o 5 of h(p*)pucFas.

This is what we will suppose hereafter, and consider, in ieogpace, a propagator

8 = (16> 1E@r> 1r> m>)
(m@)M@) _ (mmw mﬁ)) <&f|
Puotap 50{5

bi(p*)  Bi(p?) mi(p?)  mpi(p?)
mra(p®)  ma(p?) » Ba(p < ()|
p2(p?)  mpa(p?) <ng |

it yields in particular (they® in (@) makeSy;"B appear)

(89)

ipx a Pu’YZ + méﬂﬁ
/d4xe P2 <0[TE (@)ns(—2)[ 0 >= pfi

PCT invariance tells us that, in a Dirac mass-like propagabearpt’ term is not present, and the remaining term is diagonal in
a, 8; and, indeedf,ygj5 vanishes/a, 8 = 1, 2, while the term proportional ten is diagonal inc, 8.

L, B=1,2. (86)

— m2
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This ansatz enables to get explicit constraints on theggafor. It is motivated by the fact that, classi-
cally, the (quadratic) Lagrangian, which is the inverseppgator, has this same Lorentz structure

Ki(p)a ‘ M, b,
o 1(P-)ap 1008 . (90)
Ms b4 ‘ Ks(py)ap

An important property is that it automatically satisfies tA€T" constraints [(84)[(87). For mass-like
propagators, which are invariant by the 4-inversion> —x it is a triviality; for kinetic like propagators,
the “—" signs which occur in the r.h.s.’s df (87) are canceled byathe which comes from the differential
operatorp,, acting on(—x) instead ofr. We consider accordingly thdt (89) expresses the invagiaric
the propagator byPC'T.

From now onwards we shall always use the fofn (89) for the ggafor, considering therefore that it is
PCT invariant. It includes sixteen complex parameters. Wese# how individual discrete symmetries
and their products reduce this number.

5.2 Charge conjugate fields

By using the definitions of charge conjugate fields

ga = gcwg’.y - _i037§7 = _iagw(_i)((nﬁ)c).r = _‘7(217((777)0”7
g = gasn’ = iogyn’ = iohs (=) (€)' = afs((€°))". (91)

one can bring additional constraints to the ones obtainam fxpressing the invariance by a discrete
symmetry likePCT. We first give the example of a Dirac-like propagator:

i
< O|TE (@) () (~)] 0 >=< 0 |T (=)o, ((n))!(2) (o35((£)*) (~2)) | 0 >

= 02,055 < O[T((13))1(2)(€7)°(=2)] 0 >= (80508, — Fapdsy) < O[T ((15))(2)(€°)*(—)| 0 >=

— < OT(EM) (=) (1)) ()] 0 > +8ap < O |[T(E7) (=) ((15)) ()] 0 >.

The r.h.s. of the correspondingCT' constraint in the first line of[(84) writes the same but for the
exchanger — (—z). If we now use the ansatg {89) which implemeRST invariance, one gets

111(p°)005 = —(0py6.6 — 6ap0sy )1 (P*)S5y = Sapma(p?), (92)
equivalently
mi(p?) = 1 (p?). (93)
Likewise, one getsns(p?) = pa(p?).
For Majorana-like propagator, using the definitiopd (913Hwirge conjugate fields, one gets
<0 T @) @) (—2) 0> = <0 Tn)N (@) (—a) [ 0> —dag < 0| T(15) ()€ (—2) | 0 >
= — <O TE(=2)(ng) (@) | 0> +dag < 0| TE (=) (1) (2) | 0 >,

(94)
while, with the same procedure, its transformedty'T in the r.h.s. of [84) becomes
— <0 T (@)% (=2) [0> = — <O TEX@) (%) (~2) +dag < 0| TE (2)(15) (=) [ 0 > .
(95)

One only gets tautologies such that no additional consteaiges.

We implement the same procedure for kinetic-like termsgs@mple< 0 [7¢(z)(¢°)(—z)| 0 >=<
07 (") (2)€*(—2)| 0 >. Using€® = —a7,,((n;))" and(£”)T = 035(15) and [8D), one gets

al(Pz)Pumaﬁ = _(567%5_5a5557)52(172)pu‘7“5’7
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= —Ba 2)(17#‘7#(15 - 5aﬁpuTTUu)

p _
= —B2(p?) (puo”ap — Sas(2p0 + 0 x p'))
= —Bo(p*)(—poolg + P-Gap)
Ba(p*)PuoFas; (96)

which entails

ai(p®) = Ba(p®). (97)
Likewise, one getsw(p?) = B1(p?), and, for the non-diagonal kinetic-like propagatous(p?) =
az(p?), b1 (p?) = ba(p?).

So, after making use of the definition of charge conjugatedigBP) expressing thBC'T invariance of
the propagator rewrites

Apcr(p) = ! &>

€ > 1) > |na> )

( ) up2 )puaﬂaﬁ (mmp?) () ) | [ <€
®*) BK? m(P?)  mpi(p?) < ()]

(mm p2 pa(p?) ) (a(pz) v(pQ)) i < (m3)° |
ity it ) | L sty ) <y

PCT symmetry has finally reduced the total number of arbitramncfions necessary to describe one
flavor of fermions from 16 to 10.

(98)

5.3 C constraints

C is a unitary operator and we may use direcfly] (31) in the esgiom of the propagator. This is an
example of demonstration, in which we suppose that the vadaunvariant byC'.

<0 [T (@) () (=2)| 0 >=< CO|TC(=i(n*)")(2)C~ ' C(igs) (—2)C 1| C O >
=< CO|TC(n*))(2)gs(~2)C~ C0>=< 0 |TCIC(n")")(2)€s(~2)C1C[0 >
=< 0T (@)€s(—2) 0 >=< 0 [T((6*)) () (1)) (=2)[ 0 > .

By using [8D) expressin@C'T invariance, one gets accordingly
Acirer®) = (&> 1> ) > |na> )

(a@?) ap?) )W%B <p<p2> u<p2>) i <

a(p®) a(p?) n®?)  pp?) < ()]

(W) b(p?) < (ng)° |
b(p*) B <1y

(99)
All 2 x 2 submatrices are in particular symmetric.

Combining now [(98) and ($9), @ + PCT invariant propagator, after using the definition of charge
conjugate fields, can finally be reduced to
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Acrrer®) = (&> [€)F> [ > na> )
Mﬁ)mﬁ))pwﬁ <Mﬁ>u@%)56 <&
a?) o?) | u?) p(p?) < (P)° |
a(p®) m(p?) a(p®)  a(p®) < (n3)° | ’
Oa oty
( m(p?)  o(p?) ) ’ ( a(p®) a(p?) )pu ’ <1y |

in which the number of arbitrary functions has now been reduo 6.

5.4 P constraints

In momentum space, the parity transformegpf” = (poo® + p.5) is (poo® — p.3) = p,oF.

Using (22) and the assumption(89) expressit@T invariance, and supposing the vacuum invariant by
parity, one gets

Apyper(p) = < €4 > | (&~

)
a(p?)  a(p?) . p(p?)  u(p?) <& |
Puo”ap 5&6
b(p*) BK?) m(p?) o(p?) < (&9)° |

u(p®)  p(?) a(p?)  a(p? < |
(101)
A P+ C + PCT invariant propagator writes
Aprorpor(®) = (&> [(€)F> [0 > |na> )
(Mﬁ)a@%)paﬂﬁ (Mﬁ>u@%)56 <€
a(p?) o?) ) ) () < ()|
p(P?)  p(p?) a(p®) a(p?) < (3)° |
Sa Pucta
(u(pZ) p(pQ)) ’ (a(pZ) a(pZ)) e <y |
(102)

The expressions above can be further reduced by using thetidefiof charge conjugate fields, which
leads to [9B) as the expression/of’'T invariance. So doing, & + PCT invariant propagator writes

Apper®) = (€5 [€)F> () > |na> )
(Mﬁ)a@%)pgu (Mﬁ>ﬂw%)5ﬁ <&l
b2 ap?) ) () o(p?) <@rl |
o(p?) up?) a(p?) bp?) \ <@gl |
Sa ot
( p(@®)  pp®) ) ’ a(p®) a(p?) )pu ’ <1 |

(103)
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and one finds again the expressipn [102) fét & C + PCT invariant propagator.
5.5 CP constraints
Using (33B), [8P), and supposing the vacuum invarian€tdy, one gets
Acrsrer(®) = (1€> [ > (2> |na> )
alp?) u(P®) | mr(p®)  p(p?) <& |
2 2 Puotap 2 2 Oap 3
v(p®)  B(p?) m(p”)  mg(p°) < (&) |

<mL<p2> u(p?) )@6 <a<p2> u<p2>)muaﬁ < ()"

<
(104)

It can be further constrained by using the definition of ckazgnjugate fields which makes tih&'T
constraint be[(98), to

Acrrrer®) = (10> [€)> [ > [na> )
(a(pQ) up?) \ (mL<p2> u(?) ) X
Puotap 5&6
u(p®) B(p?) p(p?)  mg(p?®) < (&%) |
(mL(pQ) p(p?) )505 (a(pZ) u(p?) — < (m3)° |
u(p®)  mr(p®) u(p®)  Bp®) < |
(105)

One then gets 4 symmetricx 2 sub-blocks.

5.6 Eigenstates of & + PC'T invariant propagator

We do not consider anyC'T" violation, because, if this occurred, the very foundatioh®cal Quantum
Field Theory would be undermined, and the meaning of ourlasians itself could thus strongly be cast

in doubt.
We look here for the eigenstates of the: 4 matrix in (100)

( a(p?) a(p?) )p a“ ( p(®) p(p?) ) b
aw?) a@?) ) np?)  p(p?)

Acypor(p?) = 5 S 5 5
a(p®) m(p?) 5 a(p®) a(p®) —
af 2) 2) Puotap

m(p?) o(p?)

(106)

. : p M o m o a . .
The three symmetric matricgs : and can be simultaneously diago-
nwop m o a «

nalized by a unitary matrik/ according to
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v (T (107)
= —=€ .
\/5 6i90 e_iso
We can choose the patrticular case
N R (108)
= 0 = — .
V21
Call the initial basis
<& ) <& <ma)| | _ [ <—il€)T]
< nr ’ = - . 3 < nr ‘ - = s
< (&%) | < —i(n”)"| < | <n |
(109)
one has
(1> 1> 1m)e> Ing>)=(Ine> Inp> ). (110)
Define the new basis by
<NL|:U3<TLL| R <NR|:US<’I’LR|,
’NL>=U0’7”LL> s ’NR>:U0‘TLR>. (111)

One has explicitly
1 [ <& =it 1 [ <&+ (&)
< NL ’ = —= . - — = )
2\ < —imi| ) V2 \ <—grt )
1 [ <—i(¢)"+na | 1 <na+ (1a)]
2(<+i(§a)T+77a) \/5<<77a(77a)c)
and one can write

<N |= <x*| gl | © (=) (xa)" | . 113)
< (=)W | <ws|

In this new basis, the propagator writes (using (frffm(108)y/, = 1)

Actper(p?) = < | N, > | Ng > )

a(p®) + a(p?) M
ap?) —ap?) |

( o (p?) + m(p?)

da
a(p?) —m(p?) ) ’
(114)
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Remember thatu >< v | corresponds, in our notation, to a propagatod |7 u(x)vl (—z)| 0 >.
One introduces the Majorana fermions (see subseLtidn 3.6)

X ( X )1( £+ (€)° )1( & — i)t )
. )l | V2 Emat @) ) V2 \ £ —ite)) )

)
0e [ EHEDE) ) 1 ( + (€7 + (€°)°) ) 1 ( (~£" — i(P)1) ) |
" wg V2 g = (1)° 2 n +i(€p)!

as
(115)
5.6.1 Kinetic-like propagators
They can be rewritten
[ e <oIT @O (=) 0> = (@) + alpuots
[ e <0IT () @xs(-) 0> = (al?) + alp)pTas,
[ e <07 @l (-a) 0> = () - alr?)puls
[ dtacr <0 Tun()s) (<) 0> = (al) - alp)pTTas, (116)
5.6.2 Mass-like propagators
They write
[ e <T@ (0 0> = aslplt?) + ),
[ e <o) @0 (0] 0> = Sus(o ) + m(s?)),
[ e <0 [T @) (00> = Saplol?) - )
/d4xei”x<0\7'wd( Jiw” ( )| 0> = S4p(a(p?) —m(p?)). (117)

5.6.3 Conclusion

WhenC and PCT invariance holds, the fermion propagator decomposes h&@topagators for the
Majorana fermionsX and( ([I5) (note that we have introduced below thdields instead of thé)T
fields, thus an extra® matrix)

(p(?) + 1(p%))3ap <a<p2>+a<p2>>puagﬁ)
(a(p?) + a(P*))pucfas  (0(p?) + m(p?))das
(P(r?) — () <a<p2>a<p2>>puogﬁ)‘

(@(p?) — a(P)puoFas  (0(p?) — m(p*))das
(118)

/d4xeip$ <0 ]TX]“\—L/IQ(QU)XAi/M(—x)\ 0>= (

/cl‘lzrzeipm <0 |TQEQ(:U)Q]T/M(—$)| 0>= (
([L18) also writes
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S / dtoe'™ (< 0 [T X5, (0)Xi5(=2) 0> + < 0 [T, (2) 2 5(~2)| 0 >)

[a—

2
2 § 2 w
p(p*)0as  p”)Puos

a(P?)puoFas  o(p?*)dap

—

3 /d‘lxeim (< 01T X370(2) X 375(—2)] 0> — < 0 [T Q0 (2)Q;5(—2)] 0 >)

u(P*)oap  a(p®)puohs

a(p)puotas  m(p?)dus
(119)

So, whenC' + PCT invariance is realized, the most general fermion propagatequivalent to two
Majorana propagators.

The determinant of\(p?) ([LI3) is the products of the determinants of the matriceBer.h.s. of [118);
so, the poles of the two Majorana propagatord in](118) aeites ofA(p?), and the physical states
(eigenstates of the propagator at its poles) are the MademmionsX and(.

5.7 Conditions for propagating Majorana eigenstates

We have shown in subsectipn]5.6 that, as expected since Atajéermions ar€’ eigenstates, &@+PCT
invariant propagator propagates Majorana fermions.

We now try to answer the reverse questian which are the conditions on the propagator, in particular
concerning discrete symmetries, for it to propagate Maj@if@rmions. This could look rather academic
since we deal with one flavor and that it is “well known” that,darticular, naC' P violating phase can
occur in this case. So, we ask the reader to consider thimgeas a kind of intellectual exercise. In
addition to being a preparation to the more complete study sé@veral generations, it is also motivated
by the fact that, in the propagator formalism (which difféneam the one with a classical Lagrangian
endowed with a mass matrix), even for one flavor, a fermionienantifermions get mixed as soon as
one allows all possible Lorentz invariant terms. That thesipiarity cana priori introduce a mixing
angle between a particle and its antiparticle (like for redutaons) suggests that the situation may not
be so trivial as naively expected. This section can also bsidered as a test of the “common sense”
statement that, since Majorana fermions are defingd eigienstates, a propagator can only be expected
to propagate Majorana fermions if it satisfies the condsaiast byC' invariance. We shall indeed reach
a conclusion close to this one in the following, with the odifference that” P symmetry also enters
the game, for reasons that will be easy to understand (therglesiemonstration for a number of flavors
greater than one, has been postponed to a further work).

5.7.1 General conditions for diagonalizing aP C'T invariant propagator

We consider the most genet@C'T invariant propagatof (98).

We are only concerned here with neutral fermions, for whiglgonalizing eac2 x 2 sub-matrix of the
propagator is meaningful: for charged fermions, this waulig in the same state fermions of different
charges, which is impossible as soon as we assume thaietdwrge is conserved.

The two diagona® x 2 sub-blocks involve differential operators, with one ddtéen one undotted spinor
index, factorized by simple functions of space-time. Wd saiilppose that, inside each of these sub-
blocks, the four differential operators are identical,stltat their elements only differ by the functions
of space-time. When we speak about diagonalizing thesdamstithis concerns accordingly the space-
time functions; then the differential operators follow uraily.

The mass-like sub-blocks are diagonal in spinor indicesimradve only functions of space-time.
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The propagatoP writes

K1 M1 <nr |
P=(InL> [na>) . (120)
Mo Ky <MNR |
K4, K5, M7 and M, havea priori no special properties, are not hermitian nor symmetric.
There always exidl/; andUs,, which have no reason to be unitary, such that
Ul_lKlUl = A diagonal, U2_1K2U2 = As diagonal, (121)

such that the propagator rewrites

Ay ‘ U MUy Ut <np |
P = <|nL>U1 |TLR>U2) 1
U, ' MyUy ‘ Ay U, ' <ng|
AN | ‘ UflMlUQ < Ny, |
= <|‘ﬁL> |‘.TIR>) =
U2 MU, ‘ JAD < Npg ’
with <Np|=U'<np|, <Np|=Ust<ngpl|, M >=|n,>Uy, |Ng>=|ng>Us.
(122)
The propagator can be diagonalized
UflMlUg = D1 diagonal, U;lMgUl = Dy diagonal. (123)
That[D;, D2] = 0 entails in particular
Uy ' My MUy = Dy Dy diagonal = DaDy = Uy ' My My U, (124)

which coincides with the commutation 8f; and M> only whenU; = Us.
Since[A1, D1 Ds] = 0 = [Ag, Dy Ds], one also getd/; ' [Ky, My Ma)Uy = 0 = Uy Ko, Mo M;]Us,
which entails

(K1, My Ms] = 0 = [Ka, Ma M. (125)
([T23), (12B),[(124) and (1p5) are the conditions thiat K5, M; and M, must satisfy for the propagator
to be diagonalizable; they are must less stringent thandhewtation of the four of them.
In practice: One supposes that/; and M, fulfill condition ([25). To determind/, and Us, one
can accordingly use indifferently (121) dr (124); diagonalizesK; or M, M, U, diagonalizesKs
or M,M,. Supposing that[ (1P4) is satisfiefif; > and of M, M, are constrained to have the same
eigenvalues, which may give additional restrictionsidnand M.
OnceU; andU, are determined, call

My = U MUy, Mo = Uy ' MaUs. (126)
([T29) entails that, in particulartM; and My must commute. Sinc&; diagonalizesi; M, and Us
diagonalizesMs M7, M1 My and Mo M1 are diagonal.

a b
Write M, = and M, = P ; by direct inspection, one finds that the two products

c 0 L1

0o —b

M1 M3 and My M, are diagonal either ifM; and M, are diagonal, or iiMy = ¢ , that

- a
is, is proportional t0/\41‘1; in this last caseM 1My = My M; is proportional to the unit matrix, which
means that the eigenvalues/df M are all identical (and so are the eigenvalued 6V ).
We are looking for more: the conditions that must sati&fy and M for M, and M, to be separately
diagonal. We attempt to find them by putting the additionatrietion that the eigenstates are Majorana
fermions.
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5.7.2 Condition for propagating Majorana fermions

A necessary (but not sufficient) condition for the propagatstates to be Majorana is that, by some
change of basis, the propagator can be cast in the form

ax(p?) p ma (p?) 5
b ) w )"
AMaj(pz) _ 1p Hn1(p (127)

mo(p?) as(p?) _ ’
Oa oty
( p2(p?) ) ’ ( b2(p?) )pu ’

with four diagonal2 x 2 sub-blocks. Indeed, on can then decompose the propagabotwio 4 x 4

. [ a1 My b . .
propagators (in a shortened notatioh) and , and the Majorana fermions
mo a9

p2  bo
(see subsection 3.6) are eventually, respectively, coetpwaith the first components af;, andnr, and
with the second components of the same set. So, in partidudéin kinetic-like and mass-like terms,
should be diagonalizable simultaneouly We note

b d 0 d 0
vrt= | o =" ), b= ™ D= | @ . (128)
c d r s 0 & 0 69

One has
o b s Q) *
SN L A GO N
¢ <& [+d < (=i)(n*)" |
< (=) |+ 9 <na
cnpl= [ (=& | +a<nal
< (=1)&a | +s <na |
2= o bc<d| &> —c| (<)) > b€ > tal (<)) > )
9t >= ——— (8] (i) > rlma > —al ()5 > plma> ).
(129)
o Ni(z) f
and the question is whether the propagato® | 7 <9TL(—90) ‘.TIR(—x)> | 0 > can
Ng(z)

be identified with that of a Majorana fermion and its antifeam(that is, itself) . Eq.[(129) yields in
particular the four mass-like propagators

< O[T (dg* +icn™)1) (@) (in*€s + 4" (1)") (—=2)] 0 >= (ad = be)da ()03, (a)
<0|T (—b{o‘ —da(n )T) (x) (zr £ +s"(ng) Jr) z)| 0 >= (ad — bc)d1()dap, (b)
< 0T (—is(€)! —rna> (x ( (€T +ib*n )

( (-

( ) B) (=2)| 0 >= (ps — qr)da(2)das, (c)
<0|T (m(ﬁa +pna) x) (c (N + id* B)

z)| 0 >= (ps — qr)d2()dap, (d)
(130)

which must be the only four non-vanishing such propagaﬁmsei]flMlUg and U;leUl must be
diagonal. We have to identify them with typical mass-likejdana propagators. For that purpose, we

Imposing commutation relations betweenalk 2 sub-blocks of the propagator is excessive.
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(6%
have a priori to introduce two Majorana fermion$s, = ¢ , associated, together with
(=) (Ca)”
X/B
its antifermion, to(Ny,, Ng), andY]\}E = , associated, together with its antifermion,
(=) (xp)"

to (Mp,Ng). AnX —Y propagatoﬁ reads (we go to thé fields, which introduces an extrd; this
has in particular for consequence that “mass-like” propganow appear on the diagonal)

< O|T¢(@)(+i)xp(=2)[ 0> <0[T¢ (@) (x") (=) 0 >

<O [T (Ca) (@)xs(=2)| 0> <O |T(F0)(Ca) () () (=) 0 >
(131)
The four lines of [(130) correspond to two mass-like— Y propagators only if one can associate them
into two pairs, such that each pair has the same structureeadiagonal terms of (1B1). There are
accordingly two possibilities: pairing (a) with (c) and (ith (d), or (a) with (d) and (b) with (c).

< 0|T Xar(2)Var (—2)] 0 >= (

x The first possibilityrequires £ and) are proportionality constantp)= iAa*, g = iAb*,r = —ikc*,s =
—ikd*, such that

. Aa*  \b*
U, " =i . (132)
—kc*  —kd*
x The second possibilityequiresp = ipc*, g = ipd*,r = ifa*, s = i6b* such that
¢ pd*
ut=i 707, (133)
fa*  Ob*

From now onwards, we furthermore request that a single Majarfermion propagateis the sense that
only 7-products of the type< 0 | 7TX*(z)X,(—x) | 0 > occur, which associatds\;, >= | X* >
and< Np | =< X! |. The only possibility is that the coefficients pf\;, > and| Nr > in ([[29)
be proportional, and so be the ones|dfz > and| N, > (the two sets of conditions are the same);
this gives the supplementary conditiomsgnd are two other proportionality constanis)= iocd*, ¢ =
—ioc*,r = —iyb*, s = iya®, such that

ocd* —oc*

Uyt =i . (134)

* First possibility (U, * is given by [13P) above).
Compatibility between[(132) anfl (134) requires= B — ¢ = £ = w* such that we end up with

a wa w* Aa® dw*a*
Ut = Cut= | P ) = . (@35)
—wd d —w*s s rw*d*  —rd*

m X X m X X
We look for PCT invariant M; = n@) - m) and M, = r2(z) - pa(®) (see

pi(z)  mpi(z) p2(z)  mpa(z)
(©8)) and their diagonalization according fo (123) gnd[j1880; andU; given by (1I3p) and satisfying
([L23).

ZWe allow hereX £ Y, but will then become more restrictive by requestiig= Y, which better corresponds to the
intuitive picture of propagating a definite Majorana fermio
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. . . L a U a v
The equationd (1P1) of diagonalization for the kinetieltermsk; = andK; =
v B u B
(see [9B)) yield, for the vanishing of the non-diagonal ®rthe conditions
u—wv = wla-p),
v—wu = wla-p),
v—wu = w(a—p),
u—w? = w(a—P). (136)
Likewise, the diagonalization equatiorjs ({123) for the rikesterms yield
w'mpr —wmpr = (11— |w]?),
wmpy —w'mpr = il — |wf?),
w'mpy —wmpy = pa(1— |w]?),
wmrpy —w'mpy = pa(l — |w]?). (137)

First, we eliminate the trivial case = 1 which brings back to & invariant propagator.

. . . . 1— 2
Subtrgctlng the first or the last two equations|[of [136) \@eld= v. One then getsr — 3 = U= =
uw=“" such thato must be real.

KJJ*
Subtracting the first two equations ¢f (137) also shows thatust be real as soon as one supposes
mr1 +mpg1 # 0, which we do. Then, one ge;.%l“jiml%1 =Y = L2 Gathering the results

1—w? mro—m
from [136) and[(137) leads accordingly to .

w
«Q (a - 5) 1 — W2
Ki = u w = Koy,
((X - /8) 1 — w2 /8
w
mr1 (mr1 —mp) 5
]w1 — 1—w
w )
(mpy —mpi)7— 2 mp1
w
mr2 (M2 = mp2)T——
My, — . —w? | (138)
(mr2 — mp2) mp1

1 — w?

and we shall hereafter write = tan«. The four real symmetric matrices, = Ks, My, M> can be
simultaneously diagonalized by the same rotation mdtri®) of anglev. After diagonalization, the
propagator writes

04 Hi+
0_ 11— UT<TLL’
A = (]nL>U ‘TLR>U) T ’
P+ Oy U™ <ng|
o 0_
with cSi:l a+ﬁia_ﬁ ,u12i=l mL12+leziw (139)
2 cos 2y )’ " 2 ’ ’ cos 2¢

To propagate a Majorana fermion, the condition, = po, should furthermore be fulfilled. This
requires, for arbitrary, mr, = mpge, mp1 = mpo (@nd thusu; = ws). This corresponds to a propagator
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(before diagonalization)

«@ U mr W
u p B omp <ng | u p
A=(Ing> [ne>) T o (149)
mp a  u < ng | L R
pomp | uw B

that is, aC P invariant propagator (sef (305)) (theinvariant case correspondsdo= 1 (see [100)),
which has been treated previously). The propagating Magofarmion are

cos V&Y — sin I (—i(n*)*) sin 9€* + cos ﬂ(—i(ng)*
Yy = andxn =

cos U(—i(&,)*) — sinvny sin¥(—i(&4)*) + cos ¥,

* Second possibilityU, ' is given by [I3B) above). Equatinf (}34), (133) and the esgioa forU, *
in (L28), one getg/p = d*/c* = —c*/d*, s/r = b*/a* = —a*/b*, which givesd = +ic, b = +ia and
thus

a Tia c*  Fipc*
Ut = Cugt=i| ” S (141)
c *ic +iva*  ~vya*
The diagonalization equationis (323) for the mass-like ¢eyreld, for the vanishing of the non-diagonal
terms, the conditions

mr1 = —MR1,
mrz = —MR. (142)

The equations[(121) of diagonalization for the kinetielierms yield the conditions

ut+v = ila—p),
ut+v = Zi(f—a), (143)

which requirev = —u, 5 = a.
So, the kinetic and mass-like propagators write

m m
My = 1 H1 , M,y = 2 K2 ' (144)
1o o—ma M2 —m2

K, and K5, which commute, can be diagonalized simultaneously byg@esimatrixU/. The conditions
@) [Kl,MlMQ] =0 = [KQ,MQMl] rEQUireml/mz = ,ul/,ug, such thatM,; = xM;. Since
U, = U = U,, the diagonalization equationg (123) for the mass-likeppgators rewritd/ ~' MU =
D, U~ M,U = x Dy, such that the set of four matricé§ , Ko, M;, M, must commute, which requires
u = 0. The kinetic-like propagators are thus “standarid, proportional to the unit matrix. Before
diagonalization, the propagator writes

a my M1
o w1 —mq <ng |
A= (fng> |np>) ., (145)
Xmi - XH1 o <ng|
XH1  —Xmy «
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and, after diagonalization,

o' —1 Ul <ny |
A = (]nL>U ]nR>U) T )
XM ! U' <ng|

—XH a

with = /m? + ui. (146)

It can propagate Majorana fermions onlyxif = 1, such that\/; = M,. Then, [14p) is a special
kind of PC invariant propagator (se¢ (105)), which beconigégvariant only whenm; = 0. The
. _ cos V&Y — sin I (—i(n*)*)
two Majorana fermions have masseg/«. They arey), = and
cos U(—i(&,)*) — sinvny

sin €% + cos Y(—1 By
M = ¢ (=iln”) , With tan 29 = pq /m;.
sin¥(—i(&,)*) + cos ¥,

5.7.3 Conclusion

For one flavor (particle + antiparticle), a necessary cdamlifor the eigenstates of the propagator to
be Majorana is either that this propagator (supposed tefgdlie constraints cast byCT invariance)
satisfies the constraints cast Gyinvariance (which corresponds ¢o= 1) or by C'P invariancef]. So,
reciprocally, if the most gener&C'T invariant propagator for one flavor does not satisfy the tamgs
cast byC nor the ones cast b§/ P, its eigenstates cannot be Majorana.

6 General conclusion

In this work, we have extended the propagator approfch[Jj3]Lj4to coupled fermionic systems. It

is motivated, in particular, by the ambiguities that undebily occur when dealing with a classical
fermionic Lagrangian endowed with a mass matrix. The goahisf formalism is, in particular, to
determine at which condition the propagating neutral fermsj defined as the eigenstates, at the poles,
of their full propagator, are Majorana. Due to the intriescif this approach, we presently limited
ourselves to the simplest case of a single fermion and itkeeamion. Since Lorentz invariance allows
that they get coupled (as long as it is not forbidden by dlecinarge conservation), one can expect
properties similar to the ones of the neutral kaons systenthi$ simple case, we have proved what is
suggested by common senie, that the propagating fermions can only be Majorana if thesppgator
satisfies the constraints cast&y(or C' P) invariance.

The generalization to several flavors will be the object ofiasgquent work, with, in particular, the
persistent goal of unraveling the nature of neutrinos.

Acknowledgmentsconversations, comments and critics with / from V.A. NowikM.l. Vysotsky and
J.B. Zuber are gratefully acknowledged.

?'This is linked to the property of Majorana fermions to hav@ parity = +i (see subsectiorfs B.3 afid]3.6). The two
corresponding+i+°) factors cancel in th@-product of their propagator, which make€iP invariant. This explains why not
only C invariant, but alsa@” P invariant propagators can propagate Majorana fermions

30



A Notations: spinors

A.1 Weyl spinors

We adopt the notations df [[12], with undotted and dotteddesli

Undotted spinors, contravariagt or covarianté, can be also called left spinors. Dotted spinors, co-
variantn or contravariant)® can then be identified as right spinors. They are 2-compsrearhplex
spinors. The 2-valued spinor indices are not explicitlytien.

By an arbitrary transformation of the proper Lorentz group

ad — By =1, 247)
they transform by
b = atl+ e,
& = 4688
o= a4 A
no= A+ (148)

To raise or lower spinor indices, one has to use the metritZdq®, C')

0 1 . 9 af 0 -1 9
Jap = =11048; 9 = = _Z(U )aﬁv (149)
-1 0 1 0

and the same for dotted indices. Tdematrix will always be represented with indices down.

€a = gapt” = 1005’ 0 = ¥y = —ia? 1. (150)
One has
§0=E%a = €' = E¢" = —£aC” invariant. (151)
By definition,ns ~ £,* (transforms as);
o ~ (9ap€”)" = gap(€7)" = ioh s : (152)

a right-handed Weyl spinor and the complex conjugate oftehlmided Weyl spinor transform alike by
Lorentz; likewise, a left-handed spinor transforms like tomplex conjugate of a right-handed spinor.

A Dirac (bi-)spinor is
§p = ¢ , (153)
Ne

Since we work with Weyl fermions, we naturally choose the Wepresentation.
Pauli matrices:

A.2 Pauli and Dirac matrices



~ matrices

0 0 1 0 1 0 0 0
0 0 01 ) 0 —o ) 0 1 0 0
7’ = A= 15 =y Y = :
1 0 0 0 ot 0 0 0 -1 0
0 1 0 0 0 0 0 -1
(155)
and one notes
i 0 0 ot 0
=07 = s (156)
0 ot
with
Uu = (007&)7 W = (007 _6:)7 6: = (017027 03)' (157)
oD = =R = e
(70)227 ,(gg*zv ,1(33’ g*zv () =77
(fg]/ )0: 17(7 5 S 17(7 - 1)2: _11273
VAT =1,7(")T = 1,423 (3123 = 1. (158)
One has _ o -
o g = (O g .0 = .
(0°)? =1=(c')" {0’07} = 267 (159)
One has the relation
03500y = 08705 — a5y, (160)
and the following one is very useful
oclo? = —(0V)*, 0%0%?* = 0" = 6%0"0? = (60, —5*) = oF". (161)
As far as kinetic terms are concerned,
a* 0 P’ —p.é 0
Yy = (7°)*pu ] = (162)
0 oF 0 P’ + p.d

B The adjoint of an antilinear operator

Following Weinberg[[T]1], let us show that the adjoint of atilarear operator (seg](5) for the definition)
A cannot be defined by Ay | x >=< v | AT | x > . Indeed, suppose that we can take the usual
definition above, and let be a c-number; using the antilinearity g@f one gets< A(cy) | x >=<
H(AY) | x >=c < (AY) | x >=c < | AT | x > is linear inw.

But one has alsec A(cy) | x >=< () | AT | x >=< ¢ | AT | x >=c" < ¢ | AT | x > is
antilinear iny, which is incompatible with the result above. So, the tworegpions cannot be identical
and< Ay | x >#<y | AT | x >.

Weinberg ([IL] p.51) defines the adjoint By

<Y | AT | x>=<y | AT x >=< A | x >'=< x| Ay >=< x| A| ¢ > (164)

2This changes nothing to our demonstrations.
230 defined, taking) = Y, the adjoint satisfies: ¢ | A | ¢ >=< 1 | A" | ¢ >. This entails in particular that, for a
antiunitary operator
<Yl AT Y >TE<P Al >, (163)
unless what happens for antiunitary operators (othenhisertatrix elemen + | A | ¢ > of any antiunitary operator could
only be real, which is nonsense).

32



Then, even for an antilinear and antiunitary operator orsfha

ATA=1. (165)
+ + (@) antiunitarity
Indeed,< ¥ | ATA | x >=< ¢ | AT | Ax > ="< Ax | A| ¢ >=< Ax | Ay > = <] x>
By a similar argument, and becaugé is also antiunitary, one shows that one can also také = 1.
So, both linear unitary/ and antilinear antiunitaryl operators satisfy

U =1=uu, AAT=1=ATA (166)

C Classical versus quantum Lagrangian; complex versus heritian con-
jugation

In most literature, a fermionic Lagrangian (specially feutrinos), is completed by its complex conju-
gate. This is because, at the classical level, a Lagrangiarscalar and the fields in there are classical
fields, not operators.

However, when fields are quantized, they become operatordpas the Lagrangian which is a sum
of (local) products of fields, such that, in this case, the glem conjugate should be replaced by the
hermitian conjugate.

Consider for example two Dirac fermions= ( ¢ ) andy = ( 4 ); a typical mass term in a
L “

classical Lagrangian readfgyr = (£%)*ws = % = —walY = w4, where we have supposed that

¢ andw anticommute; its complex conjugate reads thigpyr)* = w®é, = (W9)*E,.

If we now consider operato(§zvr) = [£¥]T[wa] = [xz]T[¢r], and its hermitian conjugatefis,]T[¢%] =

[wk][€%]. Since([XL]T[sz])T = [¢r][xz], it only ‘coincides” with the classical complex conjugate i

we adopt the convention

I CON (167)
where one has raised the index.ofind lowered the one gf We will hereafter adop{(167).

D Onthe use of effective expressions for th&, C' and T operators when
acting on a Dirac fermion

In the body of this paper we have chosen to work with fundaaiaffeyl fermions{® andn,,. In order

to determine how the discrete symmetrigsC' andT' act on them, we started by their action on Dirac
fermions in terms ofy matrices, from which, then, we deduced how each comporemforms.
However, one must be very cautious concerning the ®ag’ andT' act in terms of Diracy matrices;
this notation can indeed easily cause confusion and indiioeeiror, as we show below. It can be spe-
cially misleading when calculating the action of variousdarcts of these three transformations and only
an extreme care can prevent from going astray. This is whyanipulating these symmetry operators,
we take as a general principle to strictly use their actiohayl fermions, together with the knowledge
of their linearity or antilinearity.

Since, nevertheless, the Dirac formalism is of very comm&mamong physicists, we also give in the
following the correct rules for manipulating, in this framark, discrete transformations and their prod-
ucts.

Let K be a transformation acting as follows on a Dirac fermigh: K - ¢p = Ung), whereUy is
a matrix which is in general unitary. In the case of the ustaidformationsP, C' andT, Ux may be

**This is in contradiction with[[33].
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expressed in terms of matrices. One must however keep in mind that this does neidew@ complete
characterization of the corresponding transformation,dmly an effective one that must be handled
with extreme care. It can indeed be be misleading, spedfatige relies on “intuition” to infer from
this expression the linearity or antilinearity of the trmmeation under consideration. This is what we
showed in subsectioh 3.2 concerning charge conjugatiodeeith P - 1»p = iv%)p and P is linear
(unitary); C-vp = 2% andC is linear (unitary); T -y p = i3yl andT is antilinear (antiunitary);
PCT -¢p = —"y142y3¢yp and PCT is antilinear (antiunitary).

To illustrate this, let us investigate thraepriori possible ways of computing the action BT, and
compare them with the correct result, obtained by applyingctly to Weyl fermions the three transfor-
mations successively (taking into account the linear dfiaear character of operators):

* the crudest way consists in basically multiplying ttig’s, without considering any action on a spinor
(hence neglecting any consideration concerning complejugation);

* the second ong[]2], that we call “Landau” uses as a rule tineposition of the symmetry actions on
a Dirac spinor;

* the third one consists of making use of the linearity/amgérity of each transformation to move the
corresponding operator through any factor that may be ptase the left of the fermion until it acts
on the fermion itself. This last method, as we will see by gaiack to the transformation of each
component ofy, is the only correct one.

e crude :PCT - ¢p = UpUcUry¢p = (iY°)V*(iv*v" ) vp = ="' *¢p.
e “Landau”: PCT - ¢p = P- (C - (T -¢p)) = ir*(V*(iv* ' ¢*)*)p = 1°v' 9?3 ¢p.
e cautious :

T . .
vp — T-p=iv>yh

C . * Clinear. « (L) . * . *
— C-(iv’*y'p) ~ E i Oy g i’y (C - Yp)* =iy () v

N b iw?’vlf%
— P (=i’ Yp) B =iy P yp = —i*y ' (i "yp) = 7 'y 'y v%D
= —"7'*7*yp.
Similarly, when calculating the action 6PCT)?, one gets:
e crude :(PCT)*¢Yp = (—°v'*9*) (=1"4'v*7*)vp = —¢p.
e “Landau” : (PCT)*-¢pp = PCT - (PCT - ¢p) = (4*7'4*7*)(4°7'+*7*)vp = —vp.
e cautious :
(POT? op = (POT)-((PCT) )
= (PCT) - (—"v'v*+*¢p)
PCT antilinear
= (=707'727%)" (PCT) - ¥p
(=Y *2)* (="
= Yp.

The “cautious” method is the only one which agrees with tiiratody inferred from transforming directly
Weyl spinors according to the rules given in the core of thegepa One nevertheless gets the correct
sign for PC'T (though not for(PC'T)?) by the crude calculation. So, in order to discriminate with
any ambiguity between the three ways of manipulating thensgtry operators when acting on a Dirac
fermion, i.e. to avoid (or minimize) any risk of accidental agreement du¢he cancellation of two
mistakes, we calculated the other possible products of peoators, and compared the results with the
(reliable) ones obtained when acting directly on Weyl femnsi. The results are summarized below :
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TP TC CP

Crude (trivial product of/’s) £ = —(mM)* | &= —na | €Y = —(&)*
Na — (§a)” ne — &% | na — —(n%)*

PT =TP cCT=TC PC=CP

“Landau” (composition) €% — (n®)* % = ng £ — (&)

Na = —(a)* | na— =€~ | na— (n*)*

PT =-TP cCT=TC PC=CP

Cautious (our way of computing) €% — (n¥)* | €2 = —n% | €Y = (Ea)x
Na = — ()™ | ma — &2 ne — (n%)*

PT =TP CT=-TC PC=CP

Correct result (acting directly on Weyl fermions) €& — (n®)* | €% — —n® | €~ — (&a)*
Na — — (&)™ | ma — &2 ne — (n%)*

PT =TP CT=-TC PC=CP

Moreover, our way of computing ensures that = 1, in agreement with the result obtained when
acting directly on Weyl spinors, while one faces problem¢hwihe Landau method which leads to

T2 = —1. Indeed,T? - pp = T - (in31apsy) © T _inSaAT Ly, 1) —iy*y N (T - ¢p)* =
—iy3yt(=i)y3ylp = v¥p, while “Landau’s” prescription leads t62 - ¢p = i3yl (iy3ylvs)* =
i3y (=i)v*y o = ¥y p = —¢p.
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