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émanant des établissements d’enseignement et de
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June 15th 2010

MIXING AT 1-LOOP IN A SU(2)L GAUGE THEORY OF WEAK INTERACTIONS

B. Machet1 2

Abstract: Flavor mixing is scrutinized at 1-loop in aSU(2)L gauge theory of massive fermions. The
main issue is to cope with kinetic-like, momentum (p2) dependent effective interactions that arise at
this order. They spoil the unitarity of the connection between flavor and mass states, which potentially
alters the standard Cabibbo-Kobayashi-Maskawa (CKM) phenomenology by giving rise, in particular,
to extra flavor changing neutral currents (FCNC). We explorethe conservative requirement that these
should be suppressed, which yields relations between the CKM angles, the fermion andW masses, and a
renormalization scaleµ. For two generations, two solutions arise: either the mixing angle of the fermion
pair the closer to degeneracy is close to maximal while, inversely, the mass and flavor states of the other
pair are quasi-aligned, or mixing angles in both sectors arevery small. For three generations, all mixing
angles of neutrinos are predicted to be large (|θ23| ≈ maximal is the largest) and the smallness of their
mass differences induces mass-flavor quasi-alignment for all charged leptons. The hadronic sector differs
in that the top quark is twice as heavy as theW . The situation is, there, bleaker, as all angles come out
too large, but, nevertheless, encouraging, becauseθ12 decreases as the top mass increases. Whether other
super-heavy fermions could drag it down to realistic valuesstays an open issue, together with the role of
higher order corrections. The same type of counterterms that turned off the 4th order static corrections to
the quark electric dipole moment are, here too, needed, in particular to stabilize quantum corrections to
mixing angles.

PACS: 12.15.Ff 12.15.Lk 14.60.Pq Keywords: mixing, radiative corrections, mass-splitting

1 Introduction

The origin of large mixing angles observed in leptonic charged currents is still largely unknown [1]. A
widespread belief is that it is linked to a quasi-degeneracyof neutrinos, but this connection was never
firmly established. And it cannot be on simple grounds. Indeed, the mixing angles that are “observed”
in neutrino oscillations are the ones occurring in charged currents, which combine the individual mixing
matrices of fermions with different electric charges1 ; the path that goes from the quasi-degeneracy of one
of the two doublets to large mixing in the PMNS matrix [2] cannot thus be completely straightforward.
Furthermore, homographic transformations on a (mass) matrix, while changing its eigenvalues, do not
change its eigenvectors, neither, accordingly, mixing angles; an infinity of different mass spectra can thus
be associated with a given mixing angle.

1LPTHE (Laboratoire de Physique Théorique et HautesÉnergies), tour 13-14, 4ème étage, UPMC Univ Paris 06, BP 126, 4
place Jussieu, F-75252 Paris Cedex 05 (France),
Unité Mixte de Recherche UMR 7589 (CNRS / UPMC Univ Paris 06)

2machet@lpthe.jussieu.fr
1The electronic(νe), muonic(νµ), and tau(ντ ) neutrinos are defined as the neutrinos that couple, inside charged currents,

to the mass eigenstates of charged leptons. They are accordingly related to the neutrino mass eigenstates by(νe νµ ντ )
T =

K
†
ℓKν(νem νµm ντm)T whereKℓ andKν are the mixing matrices respectively of charged leptons andneutrinos. This connec-

tion is seen to involve the hermitian conjugateK
†
ℓKν of the PMNS matrix.
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We shall first focus on two pairs of fermions, making up two generations. For the sake of convenience
(mainly for the simplicity of notations) we shall often callthem generically(d, s) and(u, c). The first will
be supposed to be close to degeneracy and the second largely split. Results are transposed to the leptonic
sector: the Cabibbo angleθc [3] is then, in particular, replaced by the corresponding entry θPMNS of the
(2× 2) PMNS matrix. Results which are specific to neutrinos will ofcourse be written with the adequate
notations.

This study, which finally supports a relation between quasi-degeneracy and large mixing, rests on the
following argumentation.

The physical states are the eigenstates of the propagator atits poles; in case of a coupled system ofn
particles, like massive fermions in the standard model of electroweak interactions [4] which are coupled
through the scalar sector, the propagator, which is also theinverse of the quadratic Lagrangian, is an×n
matrix;
The determination of an orthogonal set of physical states accordingly requires the diagonalization of the
sum of the kinetic terms and of the mass terms in the Lagrangian;
At the classical level, this procedure yields the standard Cabibbo-Kobayashi-Maskawa (CKM) [3] [5]
phenomenology. The classical Lagrangian is written from the start devoida priori, in bare flavor space,
of FCNC. In direct connection with the unitarity of mixing matrices, in particular the Cabibbo matrix,
theSU(2) gauge algebra closes on a diagonalT

3 generator, which eliminates FCNC at this order, in bare
mass space as well as in bare flavor space2. FCNC are generated at 1-loop among bare flavor or mass
states (see Fig. 1), but they are damped by the so-called “Cabibbo suppression”. This phenomenology is,
up to now, in very good agreement with experiment, and we choose to preserve it;
Subtle issues arise when considering the quadratic effective Lagrangian at 1-loop since, in particular,
non-diagonal kinetic-like transitions are generated (Fig, 2). Then, the mandatory re-diagonalization of
kinetic terms, which is generally overlooked, exhibits twomain features. First, due to the presence of
mass-splittings, it unavoidably involves slightly non-unitary transformations, which introduces in bare
flavor space at 1-loop, a new set of, mass and mixing (andp2) dependent, FCNC. Secondly, the 1-loop
corrections to the mixing angles are non-perturbative and present a high instability in the vicinity of de-
generacy. This strongly motivates the introduction of counterterms “à la Shabalin” [6] that cancel 1-loop
non-diagonal transitions “on mass-shell”.
They restore a quasi-standard Cabibbo phenomenology, but for the persistence of extra, mass and mix-
ing dependent, FCNC in bare flavor space. Their occurring is rooted in the non-degeneracy of fermions,
which counterterms cannot turn off. They are built to cancelnon-diagonal 1-loop transitions when one of
the two concerned external fermions is on mass-shell, but the second can, then, only be off mass-shell. So,
while 1-loop mass eigenstates, which result from the diagonalization of the effective 1-loop Lagrangian,
are, by definition, orthogonal and, as we show, do not exhibitFCNC3, this is not exactly so for bare mass
states: orthogonality only truly occurs among one on mass-shell and one off-mass shell fermion.
We investigate at which condition these extra FCNC can get suppressed. Such a requirement estab-
lishes a connection between mass splittings and the Cabibboangleθc, which, for two generations and

m2
u,m

2
d,m

2
s,m

2
c , p

2 ≪ M2
W , writes cos 2θc ≈ −1

2
m2

s−m2
d

m2
c−m2

u
. θc is seen to be quasi-maximal as soon as

|ms −md| ≪ |mc −mu|, that is, when one of the two fermion pair is much closer to degeneracy than
the second. A similar condition is realized in the 2-generation leptonic sector, pushing to large values
the similar angle of the PMNS matrix. Thus, the conservativerequirement that the standard classical
Cabibbo phenomenology should be preserved at 1-loop provides, through FCNC, a connection between
large mixing and the quasi-degeneracy of two same-charge fermions.

Nature is however more complex: – first, there are three and not only two generations; secondly, in the
quark sector, all mixing angles are small; – last, while, in the lepton sector, the “atmospheric” angleθ23
seems actually close to maximal, this is not the case for the “solar” angleθ12 which, though large, looks

2The terminology FCNC is certainly not very good when dealingwith (bare) mass states. The reader should understand it as
“non-diagonal currents in mass space”.

3with a subtlety, due to the dependence ofp2, that is evoked in appendix A.1.
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closer to35o, nor for θ13, which could be much smaller [7]. This is why the last part of this work is
dedicated to the 3-generations case, making in particular the distinction between the leptonic case, where
all known fermions stand well below the electroweak scaleMW , and the quark case where the top quark
weights roughly2MW .

This work is structured as follows. Sections 2 to 6 deal with two generations of fermions, first, from
section 2 to 4, without introducing Shabalin’s counterterms, then, in sections 5 and 6, in their presence.
Section 7 analyzes in detail the case of three generations.

In section 2, we explain the procedure to re-diagonalize, at1-loop, the quadratic Lagrangian (kinetic +
mass terms) of anSU(2)L gauge theory for several generations of massive fermions. In subsection 2.1
we first briefly recall the standard procedure to diagonalize, by a bi-unitary transformation, the classical
quadratic Lagrangian. We then outline, taking the example of two generations, how it is modified when
1-loop transitions introduce non-diagonal,p2-dependent, kinetic-like interactions. In subsection 2.2we
give the analytical formulæ in the limitp2 ≪ m2

W , which then largely simplify when the four fermions
masses are much smaller than theW mass, too. Subsections 2.3 and 2.4 are respectively devotedto the
re-diagonalization of kinetic terms, and of mass terms. Thefirst are shown to unavoidably introduce, be-
cause of mass splittings, non-unitary transformations After these operations are done, the whole effective
quadratic Lagrangian at 1-loop is back to diagonal, with itskinetic terms proportional; to the unit matrix
I.

In section 3, we focus on the (realistic) case|ms − md| ≪ |mc − mu|. We study individual mixing
matrices (i.e. the ones in the(u, c) and(d, s) sectors) and the two corresponding mixing angles.

Section 4 is devoted to the 1-loop Cabibbo matrix. First we show how gauge invariance dictates the form
of the 1-loop effective Lagrangian, by, in particular, relating through the covariant derivative, kinetic terms
to gauge currents. We then demonstrate that, unlike individual mixing matrices, the Cabibbo matrix stays
unitary at 1-loop.

In section 5, we first show that, in the absence of counterterms, the 1-loop renormalization of the mixing
angle for degenerate(d, s) is pathological. We then show how the introduction of Shabalin’s counterterms
restore the stability and reliability of 1-loop corrections to mixing angles, in particular in the vicinity of
degeneracy. The 1-loop Cabibbo matrix still keeps unitary in their presence.

In section 6, still for two generations, we show how extra FCNC arise, and we we solve the constraints
controlling their suppression, first in the absence of counterterms, then in their presence.

Section 7 is an extensive study of the 3-generation case, in the presence of Shabalin’s counterterms. In
subsection 7.1, we write the three equations which guarantee that no extra FCNC is present in the bare
flavor (or mass) space. We then explicitly list all possible solutions. In subsection 7.2 we give analytical
expressions concerning 1-loop transitions between fermions when one among the six fermions making
up three generations (the top quark) is heavier than theW . In subsection 7.3 we solve the constraints for
quarks. In subsection 7.4 we solve them for neutrinos.

The conclusions and outlook are given in section 8. We also give, there, a comparison between this work
and previous approaches concerning the renormalization ofmixing angles.

In appendix A, we briefly comment on the dependence onp2 and some of its consequences, that we
neglected in the core of the paper where we considered the limit p2 ≪ m2

W .

For the sake of simplicity (like in [6]), we work in a pureSU(2)L theory of weak interactions instead
of the standardSU(2)L × U(1) electroweak model [4]. Since the theory is renormalizable,we use the
unitary gauge, devoid of the intricacies due to scalar fieldsand which, consistently working at orderg2,
yields finite results for the quantities of concern to us. While we cannot, accordingly, verify the gauge
independence of the results (independence on theξ parameter in anRξ gauge), gauge invariance is of
primordial importance.
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2 1-loop transitions between non-degenerate fermions ; re-diagonalizing
the quadratic Lagrangian

2.1 Principle of the method

At the classical level, a bi-unitary transformation is used, in flavor space, to diagonalize the sum of kinetic

+ mass terms
(

d̄0f s̄0f

) [

/p I−M0
f

]




d0f

s0f



 into
(

d̄0m s̄0m

)



/p I−




md

ms












d0m

s0m



.

The two unitary transformations, acting respectively on right- and left-handed fermions, preserve the
canonical form of both kinetic terms, which stay proportional to the unit matrixI. This defines the
classical massesmd andms. The corresponding classical mass eigenstatesd0m ands0m are orthogonal
with respect to the classical Lagrangian, which is akin to the property that no transition between them
occurs at the classical level. In particular, the classicalLagrangian in flavor space is written devoida
priori of FCNC; this is directly related to the property that kinetic terms are proportional to the unit
matrix, since gauge currents are simply deduced by introducing the covariant derivative with respect to
the gauge group. The above diagonalization leads to the standard Cabibbo (or CKM) phenomenology,
in which, in particular, non-diagonal neutral gauge currents only get generated at 1-loop (see Fig. 1),
and are damped, when expressed in bare mass space, by the so-called “Cabibbo suppression”. This
phenomenology is, up to now, in agreement with experiment.

W

W−

3

d0
m

s0
m

u,c

u,c

0dm
0dm

p

p−q

W

q p

sm
0

u  ,c

−

m
0

m  
0

p−r

W
3 r

Fig. 1: “Standard” flavor changing neutral currents at1-loop

However, 1-loop non-diagonal transitions, likes0m → d0m depicted in Fig. 2, trigger new phenomena
which have not yet been fully considered and which, in particular, also generate FCNC. By the effect
of the corresponding renormalization, the kinetic terms ofleft-handed fermions stay indeed no longer
proportional to the unit matrixI but to some non-diagonalKd = I +Hd,Hd = O(g2), which depends
on the classical masses (fermions and gauge fields), on the classical Cabibbo mixing angleθc, and onp2.

The pure kinetic termsKd for (d0m, s0m) written in (6) 4 can be cast back to their canonical form by a
p2-dependent non-unitary transformationVd(p2, . . .) according to

V†d Kd Vd = I. (1)

By (1), which entailsKd = (V−1
d )†V−1

d , the kinetic terms5 (d0mL, s
0
mL)Kd /p




d0mL

s0mL



 at 1-loop for

left-handedd ands in the bare mass basis rewrite(d0mL, s
0
mL)(V−1

d )†V−1
d /p




d0mL

s0mL



, which leads to

4For the sake of convenience, we work in the bare mass basis.
5The subscript “L” refers to left-handed fermions and “R” to right-handed ones.
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definingd1mL ands1mL such that




d1mL

s1mL



 = V−1
d




d0mL

s0mL



. The mass matrix, which had been made

diagonal in the classical basis(d0m, s0m), is no longer so in the basis(d1mL, s
1
mL). The second step of the

procedure is accordingly to re-diagonalize it by a second bi-unitary transformation. It leaves unchanged
the canonical form of the kinetic terms that has been rebuiltin the first step of the procedure. After the
two steps have been completed, the sum of kinetic + mass termsat 1-loop is diagonal. The resulting basis
of 1-loop mass eigenstates(dmL(p

2, . . .), smL(p
2, . . .)) is such that, at this order and at any givenp2,

there exists no transition betweendmL andsmL. They are thus, by definition, orthogonal at 1-loop.

2.2 1-loop transitions: explicit calculations

We now explicitly calculate 1-loop transitions. Gauge interactions induce diagonal and non-diagonal
transitions between bare mass states. For example, Fig. 2 describes non-diagonals0m → d0m transitions,
mediated by theW± gauge bosons. Diagonal transitions are mediated either byW±

µ or byW 3
µ .

p

p−q

W

q p

s dmm
00

u  ,c

−

m
0

m  
0

Fig. 2: s0m → d0m transition at 1-loop

The one depicted in Fig. 2 contributes as a left-handed, kinetic-like, p2-dependent interaction

Asd d̄
0
m /p(1− γ5) s

0
m, Asd = sin θc cos θc

(
h(p2,mu,mW )− h(p2,mc,mW )

)
, (2)

that we abbreviate, with shortened notationssin θc ≡ sc, cos θc ≡ cc, into

Asd = sccc(hu − hc). (3)

It depends in particular on the classical Cabibbo angleθc = θd − θu. The functionh is dimensionless.

It is straightforward to deduce that all (diagonal and non-diagonal) 1-loop transitions betweens0m andd0m
mediated byW± gauge bosons transform their kinetic terms into

(

d̄0m s̄0m

)



I /p+




c2chu + s2chc sccc(hu − hc)

sccc(hu − hc) s2chu + c2chc



 /p(1 − γ5)








d0m

s0m





=
(

d̄0m s̄0m

)[

I /p+

(
hu + hc

2
+ (hu − hc) Tx(2θc)

)

/p(1 − γ5)

]



d0m

s0m



 , (4)

where we noted

Tx(ϕ) =
1

2




cosϕ sinϕ

sinϕ − cosϕ



 . (5)
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To the contributions (4) we must add the diagonal transitions mediated by theW 3
µ gauge boson. The

kinetic terms for left-handedd0m ands0m quarks then become (omitting the fermionic fields and the de-
pendence onp2, . . .) 6

Kd = I+Hd ;

Hd =




Add Ads

Asd Ass



 =
hu + hc

2
+ (hu − hc) Tx(2θc) +

1

2




hd

hs



 , (6)

wherehd = h(p2,md,mW ) andhs = h(p2,ms,mW ). Likewise, in the(u, c) sector, one has

Ku = I+Hu ;

Hu =




Auu Auc

Acu Acc



 =
hd + hs

2
+ (hd − hs) Tx(−2θc) +

1

2




hu

hc



 . (7)

Explicitly, one has

Asd =
g2

4

∫
d4q

(2π)4
1

q2 −m2
W

[

(2− ǫ)(/p − /q) +
2q.(p − q)/p − q2(/p− /q)

m2
W

]

(1− γ5)

[ VusV
∗
ud

(p − q)2 −m2
u

+
VcsV

∗
cd

(p − q)2 −m2
c

]

unitarity of V
=

g2

4

∫
d4q

(2π)4
1

q2 −m2
W

[

(2− ǫ)(/p − /q) +
2q.(p − q)/p − q2(/p− /q)

m2
W

]

(1− γ5)

VusV
∗
ud

m2
u −m2

c
[
(p − q)2 −m2

u

][
(p− q)2 −m2

c

] .

(8)

The factorVusV
∗
ud in (8) is thesccc of (2), which finally defines(hu − hc) of (3).

All our forthcoming results depend on differences like(hi − hj). In the unitary gauge, after introducing
2 Feynman parametersx andy, the dimensionally (forn = 4 − ǫ dimension) regularized expression for
(hi − hj) writes (γ ≈ 0.572 is the Euler constant)

hi − hj =
g2

4

i

16π2
(m2

i −m2
j )

∫ 1

0
dx

∫ 1

0
dy 2y

[

− (1− y)

(

1 +
y2p2

2m2
W

)
1

R2
+

1

m2
W

(

−
(

−1 + 3y

2

)(
2

ǫ
+ ln 4π − γ

)

+
1 + y

2
+

1 + 3y

2
ln

R2

µ2

)]

,

R2 = −y(1− y)p2 + y(1− x)m2
j + xym2

i + (1− y)m2
W . (9)

To obtain (9), the relationγνγαγν = −(2− ǫ)γα between the Dirac matrices has been used. The scaleµ
originates from the necessity, in4− ǫ dimensions, to replaceg2 by g2µǫ. The exact analytical expression
for all values ofp2,m2

i ,m
2
j cannot be easily obtained, but, whenp2 ≪ m2

W , y(1 − y)p2 can be safely
neglected with respect to(1−y)m2

W in R2, such that (9) simplifies into (we write this time its expression
once renormalized in theMS scheme which amounts to eliminating from (9) the pole in1/ǫ together

6From now onwards, to lighten the notations, we shall frequently omit the dependence onp2 and on the masses.
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with the terms proportional toln 4π − γ)

hi − hj
p2≪m2

W≈
MS

g2

4

i

16π2
(m2

i −m2
j)

∫ 1

0
dx

∫ 1

0
dy 2y

[

−1− y

r2
+

1

2m2
W

(

(1 + y) + (1 + 3y) ln
r2

µ2

)]

,

r2 = y(1− x)m2
j + xym2

i + (1− y)m2
W . (10)

The integration overx can be done explicitly. This leads to the expression

hi − hj
p2≪m2

W≈
MS

g2

4

i

16π2

∫ 1

0
dy

[

−2(1− y) ln
ym2

i + (1− y)m2
W

ym2
j + (1− y)m2

W

− 2y2
m2

i −m2
j

m2
W

y(1 + 3y)

(

m2
i

m2
W

ln
ym2

i + (1− y)m2
W

µ2
−

m2
j

m2
W

ln
ym2

j + (1− y)m2
W

µ2

)]

, (11)

which, like (9) and (10), vanishes whenmi = mj. After explicitly doing the
∫
dy integration, one gets

hi − hj
p2≪m2

W≈
MS

g2

4

i

16π2



−2

3

m2
i −m2

j

m2
W

− 2




m2

W ln
m2

W

µ2 −m2
i ln

m2
i

µ2

m2
W −m2

i

− (i↔ j)





+





(

2 +
m2

i

m2
W

)


− m2
W

m2
W −m2

i

+
m2

W

(

m2
W ln

m2
W

µ2 −m2
i ln

m2
i

µ2

)

(m2
W −m2

i )
2

+
1

4

m2
W +m2

i

m2
W −m2

i

− 1

2

m4
W ln

m2
W

µ2 −m4
i ln

m2
i

µ2

(m2
W −m2

i )
2



− (i↔ j)





+

(
m2

i

m2
W

1

(m2
W −m2

i )
2

(

−11m4
W − 7m2

Wm2
i + 2m4

i

6

+
m6

W ln
m2

W

µ2 +
(
−3m4

Wm2
i + 3m2

Wm4
i −m6

i

)
ln

m2
i

µ2

m2
W −m2

i



− (i↔ j)







 .

(12)

Eq. (12) is only valid forp2 ≪ m2
W but its dependence on the fermion massesmi andmj is then exact.

In the limit, always valid for 2 generations, whenm2
i ,m

2
j ≪ m2

W , it drastically simplifies to

hi − hj
p2,m2

i ,m
2
j≪m2

W≈
MS

g2

4

i

16π2

m2
i −m2

j

m2
W

(

−17

4
+

3

2
ln

m2
W

µ2

)

. (13)

In the case of 3 generations of quarks, the top quark enters the game and one is in the situation when
p2,m2

i ≪ m2
W butm2

j ≡ m2
t ≥ m2

W . The corresponding formulæ will be given in subsection 7.2.Note
that, in the approximationp2 ≪ m2

W that we are using, the final result (13) no longer depends onp2.

2.3 First step: re-diagonalizing kinetic terms back to the unit matrix

We shall now diagonalize the quadratic part of the effective1-loop Lagrangian, which means putting the
pure kinetic terms back to the unit matrix and, at the same time, re-diagonalizing the mass matrix. This
is accordingly a two-steps procedure.

Since the kinetic terms of right-handed fermions are not modified, we shall only be concerned with the
left-handed ones.

The pure kinetic termsKd for (d0m, s0m) written in (6) can be cast back to their canonical form by a
p2-dependent non-unitary transformationsVd(p2, . . .) according to (1).
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The procedure to findVd is the following. Let(1+ td+) and(1+ td−), t
d
+, t

d
− = O(g2), be the eigenvalues

of the symmetric matrixKd; explicitly

td± =
hu + hc +

[
hd+hs

2

]

2
± 1

2

√

(hu − hc)
2 +

[
hd − hs

2

]2

+ 2 (hu − hc)

[
hd − hs

2

]

cos 2θc. (14)

Kd can be diagonalized by a rotationR(ωd) ≡




cosωd sinωd

− sinωd cosωd



 according to

R(ωd)
†KdR(ωd) =




1 + td+

1 + td−



 , (15)

with

tan 2ωd =
−(hu − hc) sin 2θc

(hu − hc) cos 2θc +
[
hd−hs

2

] , (16)

or, equivalently,

cos 2ωd =
(hu − hc) cos 2θc +

[
hd−hs

2

]

td+ − td−
, sin 2ωd = −(hu − hc) sin 2θc

td+ − td−
, (17)

in which (td+ − td−) can be immediately obtained from (14)7 .

Eq. (16) definesωd in particular as a function ofθc, ωd = ωd(θc, . . .). Since both numerator and denomi-
nator of (16) areO(g2), ωd does not depend on the coupling constantg.

The diagonal matrix obtained in (15) is not yet the required unit matrix, but one simply gets to it by
renormalizing the columns ofR(ωd) respectively by 1

√

1+td+

and 1
√

1+td−

. The looked-for non-unitary

matrixVd writes finally

Vd =









cωd
√

1 + td+

sωd
√

1 + td−

− sωd
√

1 + td+

cωd
√

1 + td−









. (18)

It differs from the rotationR(ωd) only atO(g2) and satisfies

Vd V†d =
1

(1 + td+)(1 + td−)

(

I+
td+ + td−

2
− (td+ − td−) Tx(−2ωd)

)

, V†d Vd =







1

1 + td+
1

1 + td−







.

(19)

For |m2
d −m2

s| ≪ |m2
u −m2

c |, |hd − hs| ≪ |hu − hc|, (t+ − t−) ≈ (hu − hc) and the expression for
sin 2ωd in (17) shows thatωd(θc) ≈ −θc. So, when the pair(d, s) is close to degeneracy and(u, c) far
from it, Vd becomes close to a rotationR(−θc). We shall come back on this case in subsection 5.1.

Eq. (19) shows that mass splittings(t+ 6= t−) are responsible for the non-unitarity ofV, and, so, for the
non-unitary relation between 1-loop and bare mass states (the same occurs in flavor space). Note that
this non-unitarity persists whenωd → 0, which will be the case when counterterms are introduced (see
subsection 6.2). Unitarity can only be achieved fort+ = t−; according to (14), this requires(hu−hc)

2+
[
hd−hs

2

]2
+2(hu−hc)

[
hd−hs

2

]

cos 2θc = 0, which, sincecos 2θc ∈ [−1,+1], can only eventually occur:

– either for(hu−hc) =
hd−hs

2 , that is, for(mu−mc) =
md−ms√

2
, in which casecos 2θc = −1⇔ θc = π;

– or forhu = hc, hd = hs ⇔ mu = mc,md = ms (twice degenerate system).

7Eq. (16) also rewritessin 2(ωd+θc)
sin 2ωd

= − hd−hs

hu−hc
, which shows thatωd → −θc when|ms −md| ≪ |mu −mc|.
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2.4 Second step: re-diagonalizing the mass matrix

2.4.1 1-loop mass eigenstates

As mentioned in subsection 2.1, the re-diagonalization of kinetic terms leads to defining the basis(d1mL, s
1
mL),

which is related to the bare mass basis by the non-unitary relation Vd. In this basis, the mass terms

(d0mL, s
0
mL)Md




d0mR

s0mR



 + h.c., with Md = diag(md,ms), rewrite (d1mL, s
1
mL)V

†
dMd




d0mR

s0mR



 +

h.c.. Hence, the mass matrix that needs to be re-diagonalized isV†dMd. It is done through two unitary

transformationsR(ξd) andS(ξd) such thatR(ξd)†(V†dMd)S(ξd) = diag(µd, µs). SinceV†dMdM
†
dVd is

a real symmetric matrix

V†d MdM
†
d Vd = V†d




m2

d

m2
s



Vd =










m2
d c

2
ωd

+m2
ss

2
ωd

1 + td+
− sωd

cωd
(m2

s −m2
d)

√

(1 + td+)(1 + td−)

− sωd
cωd

(m2
s −m2

d)
√

(1 + td+)(1 + td−)

m2
ds

2
ωd

+m2
sc

2
ωd

1 + td−










,

(20)

R(ξd) can be taken as a rotation, according to

R(ξd)†
(

V†d MdM
†
d Vd

)

R(ξd) =




µ2
d

µ2
s



 . (21)

Being unitary, it preserves the canonical form of the kinetic terms that had been rebuilt in subsection 2.3.
It satisfies

tan 2ξd =
−(m2

d −m2
s)
√

(1 + td+)(1 + td−) sin 2ωd

(m2
d −m2

s)

(

1 +
td+ + td−

2

)

cos 2ωd − (m2
d +m2

s)
td+ − td−

2

. (22)

Throughωd(θc, . . .), (22) definesξd in particular as a function ofθc, ξd = ξd(θc, . . .).

Since the mass terms rewrite(d1mL, s
1
mL)R(ξd) diag(µd, µs) S(ξd)

†




d0mR

s0mR



 + h.c., the 1-loop left-

handed mass eigenstates(dmL, smL) are defined by(dmL, smL) = (d1mL, s
1
mL)R(ξd), which leads to




d0mL

s0mL



 = VdR(ξd)




dmL

smL



 . (23)

By construction, at this order, there exists no transition betweendmL andsmL, which are thus, by defini-
tion, orthogonal.

2.4.2 1-loop masses

The re-diagonalization of kinetic terms indirectly contributes to a renormalization of the masses:md →
µd,ms → µs. For

td+−td−
2

m2
s−m2

d

m2
s+m2

d

cos 2ωd ≪ 1 and
td+−td−

2
m2

s+m2
d

m2
s−m2

d

cos 2ωd ≪ 1 8, one gets, whenmd 6=

8The first condition is immediately seen to be always satisfied. The second too, unless(d, s) are extremely close to degener-
acy or degenerate, which does not occur for any known fermions.
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ms, from (20)

µ2
s ≈ m2

s

(

1− td+ + td−
2

)

−m2
d

td+ − td−
2

cos 2ωd,

µ2
d ≈ m2

d

(

1− td+ + td−
2

)

+m2
s

td+ − td−
2

cos 2ωd. (24)

This yields in particular, still when the two conditions mentioned at the beginning of this subsection are
satisfied,

µ2
s − µ2

d

µ2
s + µ2

d

≈ m2
s −m2

d

m2
s +m2

d

− (td+ − td−)
m4

s +m4
d

(m2
s +m2

d)
2
cos 2ωd, (25)

which becomes, forms ≈ md (ms 6= md)

µ2
s − µ2

d

µ2
s + µ2

d

ms≈md≈ m2
s −m2

d

m2
s +m2

d

− td+ − td−
2

cos 2ωd

(17)
≈ m2

s −m2
d

m2
s +m2

d

− 1

2
(hu − hc) cos 2θc =

m2
s −m2

d

m2
s +m2

d

+
g2

16π2

m2
c −m2

u

m2
W

cos 2θc.

(26)

Supposingcos 2θc > 0 andmc > mu,
µ2
s−µ2

d

µ2
s+µ2

d

goes to a minimum, identical to its classical value, when

θc becomes maximal. A similar property is satisfied in the case of the MSW resonance (see for example
[7]).

The classically degenerate casemd = ms is most easily studied directly from (20). Degeneracy gets

lifted at 1-loop since the renormalized masses become, then, µ2
d =

m2
d,s

1+td+
, µ2

s =
m2

d,s

1+td−
, such that

µ2
s−µ2

d

µ2
s+µ2

d

≈
hc−hu

2 ≈ g2

16π2
m2

c−m2
u

m2
W

. It turns out to be the limit of (26) formd = ms and vanishingθc.

3 Individual mixing matrices and mixing angles at 1-loop

3.1 1-loop and classical mass eigenstates are non-unitarily related

According to (23), the left-handed 1-loop mass eigenstates(dmL, smL) are related to the bare ones via
the product of a non-unitary transformationVd by a unitary oneR(ξd). The two bases are accordingly
non-unitarily related [8].

We recall (see subsection 2.3 after (19)) that mass splittings are at the origin of the non-unitarity ofVd.
[9] [10] [11].

Since bare mass states are related to bare flavor states by theclassical mixing matrixCd0 ≡ R(θd) of the
(d, s) pair, which is unitary, the physical mass eigenstates are also non-unitarily related to the latter. The
relation is




d0fL

s0fL



 = Cd0




d0mL

s0mL




(23)
= Cd0 VdR(ξd)




dmL

smL



 , (27)

3.2 Individual mixing matrices and mixing angles at 1-loop

3.2.1 The(d, s) mixing angle

According to (27), the individual mixing matrix at 1-loop isgiven by

Cd = Cd0 VdR(ξd) = R(θd)VdR(ξd). (28)
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SinceVd ≈ R(ωd) + O(g2) (see (18)),Cd, though slightly non-unitary, stays nevertheless close toa
rotation

Cd ≈ R(θd + ωd + ξd) +O(g2). (29)

The quantity(ωd + ξd) is seen to renormalize the classical mixing angleθd; it satisfies, from (22), the
relation (neglecting the terms proportional tot++t−

2 which are of orderg>2)

tan 2(ωd + ξd) ≈
− tan 2ωd

[
td+−td−

2
m2

d+m2
s

m2
d−m2

s

1
cos 2ωd

]

1 + tan2 2ωd −
[
td+−td−

2

m2
d
+m2

s

m2
d
−m2

s

1
cos 2ωd

] . (30)

In practice,tan 2(ωd + ξd) stays small, and so does, accordingly,(ωd + ξd). Renormalization effects
could become large only close to the pole of (30). It occurs for

1

cos 2ωd
=

td+ − td−
2

m2
d +m2

s

m2
d −m2

s

, (31)

that is, for 1
cos 2ωd

= O(g2)× m2
d+m2

s

m2
d
−m2

s
, which is usually unphysical because it corresponds to| cos 2ωd| >

1. | cos 2ωd| could become smaller than1 only if, generically,
∣
∣
∣
m2

d−m2
s

m2
d
+m2

s

∣
∣
∣ <

td+−td−
2 ≈ g2

16π2
m2

c−m2
u

m2
W

, which

is never satisfied for known fermions, quarks or leptons9 .

From (30), (16) and (17) one also getstan 2(ωd + ξd) as a function ofθc and the classical masses

tan 2(ωd + ξd) ≈
1
2
m2

d+m2
s

m2
d
−m2

s
(hu − hc) sin 2θc

1− 1
2
m2

d
+m2

s

m2
d−m2

s

(
(hu − hc) cos 2θc +

[
hd−hs

2

] ) . (32)

3.2.2 The(u, c) mixing angle

In the same configuration|md −ms| ≪ |mu −mc|, from the expression equivalent to (16) in the(u, c)

sector,tan 2ωu = (hd−hs) sin 2θc

(hd−hs) cos 2θc+[hu−hc
2 ]

, one deduces that, since|hu − hc| ≫ |hd − hs|, ωu → 0. Then,

from the equivalent of (32), one getstan 2(ωu+ ξu) ≈ 1
2 (hd−hs) sin 2θc, which is very small (see (13)).

4 The 1-loop Cabibbo matrixC(p2, . . .)

4.1 The effective Lagrangian at 1-loop (in the bare mass basis)

SU(2)L gauge invariance demands the replacement, in the Lagrangian, of the partial derivative∂ by the
covariant derivativeD. This is how, at the classical level and in the bare mass basis, calling Ψ0 T

m =
(u0mL, c

0
mL, d

0
mL, s

0
mL), the kinetic + gauge terms write in their standard form

iΨ
0
m

←→
Dµγ

µΨ0
m ≡ i

2

(

Ψ
0
mγµ(DµΨ

0
m)− (DµΨ0

m)γµΨ0
m

)

, such that

Lclass = Ψ
0
m

(
I (i∂µ) + g ~T . ~Wµ

)
γµΨ0

m + . . . (33)

TheT ’s are the (Cabibbo rotated)SU(2) generators

T 3 =
1

2




1

−1



 , T+ =




C0


 , T− =





C†0



 , (34)

9For example, in the(νµ, ντ , ν, τ ) sector, the condition writes

∣

∣

∣

∣

m2

ντ
−m2

νµ

m2
ντ

+m2
νµ

∣

∣

∣

∣

< g2

16π2

m2

τ−m2

µ

m2

W

, the r.h.s. of which≈ 1.9 10−7,

while the l.h.s. is experimentally known to beO(10−3) if one considers that the neutrino mass scale isO(eV ). The mismatch
is similar in the(νe, ντ , e, τ ) sector and worse in the(νe, νµ, e, µ) sector.
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whereC0 is the classical Cabibbo matrix

C0 = R(θc) =




cos θc sin θc

− sin θc cos θc



 = C†u0 Cd0 = R(θu)†R(θd). (35)

Gauge currents and theirSU(2)L algebra are thus directly related to kinetic terms by gauge invariance
and the resulting Lagrangian is both gauge invariant and hermitian.

We shall use the same procedure to determine the Lagrangian after 1-loop transitions have been accounted
for. Still in the bare mass basisΨ0

m, we have seen in subsection 2.2 that the kinetic terms, whichare
classically proportional, in momentum space, toI /p get renormalized at 1-loop intoA(p2,mi,mW ) /p,
with

A(p2, . . .) =




Ku(p

2, . . .)

Kd(p
2, . . .)



 = I+




Hu(p

2, . . .)

Hd(p
2, . . .)



 ; (36)

pµ stands, there, for the common momentum of the ingoing and outgoing fermions, as depicted in Fig. 1.

The 1-loop kinetic + gauge Lagrangian that we will hereafterconsider is accordinglyiΨ
0
m

←−→
ADµ γ

µΨ0
m ≡

i
2

(

Ψ
0
mγµ(ADµ Ψ

0
m)− (ADµΨ0

m) γµΨ0
m

)

, which yields

L1−loop = Ψ
0
m

(

A (i∂µ) +
g

2
(A ~T + ~TA). ~Wµ

)

γµΨ0
m + . . . (37)

It has the required properties of gauge invariance and, thanks to the presence of the symmetric expression
A~T + ~TA, of hermiticity (hermiticity is, instead, not achieved if one considers a kinetic Lagrangian of the
form iΨ

0
m

−−→
ADµ γ

µΨ0
m (with “→” instead of “↔” on top ofADµ)). Gauge invariance has in particular

dictated the 1-loop expression of the gauge currents, from which we shall now deduce that of the 1-loop
Cabibbo matrix.

4.2 The Cabibbo matrixC(p2, . . .) stays unitary

The 1-loop Cabibbo matrix in the bare mass basis can be read directly from the expressiong2Ψ
0
m(A ~T +

~TA)γµΨ0
m of the gauge currents that results from (37). This yields

Cbm(p2, . . .) =
1

2

[
(I+Hu)
︸ ︷︷ ︸

Ku(p2,...)

C0 + C0 (I+Hd)
︸ ︷︷ ︸

Kd(p2,...)

]
. (38)

A naive calculation could erroneously lead to the conclusion that Cbm is non-unitary. Indeed, using
C0 = R(θd − θu) and the expressions (6) (7) forKd andKu, one findsCbm(Cbm)† 6= I. However, these
expressions are written in a basis which is non-orthogonal at 1-loop. Consider indeed, for example, the

relationC∗11C12+C∗21C22 6= 0. It traduces the non-orthogonality of the two vectorsC




0

1



 ≡




C12
C22





andC




1

0



 ≡




C11
C21



 when their scalar product is evaluated with the metric(1, 1). However, this is

the appropriate metric only at the classical level, where




0

1



 and




1

0



, which represent fermions

in bare mass space, are orthogonal since no transition occurs between the two of them; but it is no longer
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so at 1-loop (see Fig. 1)10. The pure kinetic terms in (37) are, in particular, not normalized toI but to the
non-diagonal matrixA. It is thus necessary, before drawing any conclusion, to go to the orthogonal basis
of 1-loop mass eigenstates by using the relation (23). Because of the unitarity of theR(ξ) rotations, one

has]Vu,dR(ξu,d)]†Ku,d[Vu,dR(ξu,d)] ≡ R(ξ†u,d)[V
†
u,dKu,dVu,d]R(ξu,d)

(1)
= R(ξu,d)†R(ξu,d) = I, such

that the pure kinetic terms get now normalized toI. And, as we show next, the 1-loop Cabibbo matrix
C(p2, . . .) rewrites, then, as a rotation. It becomes indeed in this basis

C(p2, . . .) = [VuR(ξu)]† Cbm(p2, . . .) [VdR(ξd)]. (39)

Transforming the general expressions (39) and (38) with thehelp of (1) which entailsKd = (V−1
d )†V−1

d

(Ku = (V−1
u )†V−1

u ), yields

C =
1

2
R(ξu)†

[

V−1
u C0Vd + V†uC0(V−1

d )†
]

R(ξd) =
1

2
R(ξu)†

[

V−1
u C0Vd +

(
(V−1

u C0Vd)−1
)†
]

R(ξd).
(40)

Using the expression (18) for theV ’s, one gets

V−1
u C0Vd =







cos(θc − ωu + ωd)

√
1+tu+
1+td+

sin(θc − ωu + ωd)

√
1+tu+
1+td−

− sin(θc − ωu + ωd)

√
1+tu−
1+td+

cos(θc − ωu + ωd)

√
1+tu−
1+td−







and
[(
V−1
u C0Vd

)−1
]†

=







cos(θc − ωu + ωd)

√

1+td+
1+tu+

sin(θc − ωu + ωd)

√

1+td+
1+tu−

− sin(θc − ωu + ωd)

√

1+td−
1+tu+

cos(θc − ωu + ωd)

√

1+td−
1+tu−







which leads finally to

C(p2, . . .) = R
((

θd + ωd + ξd
)
−
(
θu + ωu + ξu

))

+O(g(>2)). q.e.d. (41)

C(p2) stays thus unitary for any common value ofp2 at which its entries are evaluated11. (41) shows that
the Cabibbo angleθc = θd − θu gets renormalized by(ωd + ξd)− (ωu + ξu).

In the basis of 1-loop mass eigenstates, the LagrangianL rewrites

L =
(

umL cmL dmL smL

)

(p2, . . .)
(

/p + g ~T(p2, . . .). ~Wµ γ
µ + . . .

)











umL

cmL

dmL

smL











(p2, . . .) + . . . ,

(42)
with “1-loop” SU(2)L generators~T(p2, . . .) depending now onp2 and on the masses

T
3(p2, . . .) =

1

2




1

−1



 ,T+(p2, . . .) =




C(p2, . . .)



 ,T−(p2, . . .) =





C†(p2, . . .)



 .

(43)
Our procedure has accordingly preserved theSU(2)L structure of gauge currents at 1-loop, which guar-
antees in particular that the corresponding Ward identities are satisfied.

We keep mentioning the dependence onp2, reminding that it only goes away (becoming sub-leading in
powers of p2

m2
W

whenp2 ≪ m2
W . Since we are not able to get the exact dependence on this variable, we

10Likewise, for any matrixU , the relationUU† = 1 traduces unitarity only ifU is expressed in an orthogonal basis of states
(i.e. no transition exists between them at the order that is considered).

11This may not be in contradiction with the non-unitarity claimed in [9] and [11] when the two external fermions legs are on
different mass-shell, since, then, two differentp2 are involved. See also appendix A.1
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shall keep on working in this approximation, which is only justified at energies well below the electroweak
scale. Some remarks concerning thep2 dependence are given in appendix A.

Note: One can easily demonstrate thatC(p2, . . .) = C†u Cd +O(g2), reminiscent of the classical relation
C0 = C†u0 Cd0, as follows. SinceHu andHd in (38) areO(g2), the terms proportional to them in (39)
can be calculated with the expressions ofR(ξd) andVd atO(g0), that is, fort+ = 0 = t−; one can

accordingly take in thereR(ξd)
(22)→ R(−ωd) andVd

(18)→ R(ωd), such thatVdR(ξd) → I. The same
approximation can be done in the(u, c) sector. The resulting expression forC is

C(p2, . . .)
O(g2)
≈ R(ξu)† V†u C0 VdR(ξd) +

1

2

(
Hu C0 + C0Hd
︸ ︷︷ ︸

O(g2)

)
, (44)

which leads to the announced formula after using (35), and (28) and its equivalent forCu. SinceC(p2) is
unitary, the non-unitarity ofC†uCd gets compensated by that of1

2 (HuC0 + C0Hd).

5 Restoring “perturbative stability”: canceling non-diagonal transitions
at 1-loop with counterterms

5.1 Instability close to degeneracy

Quasi-degenerate systems are known to be unstable with respect to small perturbations. This property
is easily verified here, through the amount by which classical mixing angles are renormalized when 1-
loop transitions are accounted for. It undergoes indeed large variations when the classical masses span
a very small interval in the neighborhood of degeneracy: we first consider the case of exact classical
degeneracy (md = ms), secondly the pole of (30), which corresponds to a situation whered ands are
extremely close to degeneracy (see subsection 3.2), and, last, the pole oftan 2ξ, which also corresponds
to quasi-degenerate fermions, but not as close as previously.

• For exact classical degeneracyhd = hs such that, by the expression ofsin 2ωd in (17), ωd = −θc.
(20) shows then thatV†dMdM

†
dVd stays diagonal, and, so,ξd = 0 12 . The classical(d, s) mixing angleθd

is renormalized (see (29)) by(ωd + ξd) = −θc and becomesθd − θc = θu, the classical mixing angle of
the(u, c) pair.

According to (41), the Cabibbo mixing angle gets renormalized from its classical valueθc to θc + (ωd +
ξd) − (ωu + ξu) = −(ωu + ξu). This is vanishing by the equivalent of (16) which yieldsωu = 0 for
hd = hs, and then by that of (22) which entailsξu = 0 for ωu = 0. To such a system is accordingly
associated a vanishing 1-loop Cabibbo angle. Renormalization effects can thus be large.

• At the pole of (30), by definition, the renormalization ofθd becomes maximal(±π
4 ).

• At the pole oftan 2ξd, it becomes instead minimally small (see subsection 3.2.1).

So, in a close neighborhood of degeneracy, the renormalization (ωd+ξd) of θd undergoes large variations.
So does the one of the Cabibbo angle.

5.2 The counterterms of Shabalin

Let us now add to the classical Lagrangian in bare mass space the counterterms which were first proposed
by Shabalin in his study [6] of the electric dipole moment of quarks. They are devised to cancel the
(p2-dependent)s0m ↔ d0m transitions when eitherp2 = m2

d or p2 = m2
s (d or s on mass-shell). So, an on

mass-shells0m cannot anymore transmute into ad0m with the same virtuality, andvice versa. They were
also introduced in [10] and [12]. In the short letter [12], the inclusion of these counterterms was proposed

12This is in agreement with (22) which shows thattan 2ξd has no pole whenmd = ms.
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as a solution to rescue the standard CKM phenomenology. In [10], only the classical Lagrangian + the
counterterms were re-diagonalized, but the effective 1-loop transitions were not included. This comple-
tion is the goal of the lines below. We shall go through the same steps as previously, re-diagonalizing
simultaneously the effective kinetic and mass terms up toO(g2), including Shabalin’s counterterms.

Following [10], let us accordingly add to the bare Lagrangian the kinetic and mass-like counterterms
which concern both chiralities of fermions

−Ad d0m /p (1− γ5) s0m −Bd d0m (1− γ5) s0m − Ed d0m /p (1 + γ5) s0m −Dd d0m (1 + γ5) s0m. (45)

Requesting thats0m → d0m transitions vanish when eithers0m or d0m is on mass-shell yields (see Appendix
A of [10])

Ad = sccc
m2

d (hu − hc)p2=m2
d
−m2

s (hu − hc)p2=m2
s

m2
d −m2

s

≈ sccc

(

(hu − hc)p2=m2
d
+m2

s

∂(hu − hc)

∂p2

∣
∣
∣
p2=m2

d

)

,

Ed = sccc
msmd

(

(hu − hc)p2=m2
d
− (hu − hc)p2=m2

s

)

m2
d −m2

s

≈ scccmsmd
∂(hu − hc)

∂p2

∣
∣
∣
p2=m2

d

,

Bd = −msEd, Dd = −mdEd, (46)

The re-diagonalization of the left-handed kinetic terms at1-loop is operated via a non-unitary transfor-
mationVd of the same form as (18). Counterterms only induce the replacement ofsccc (hu−hc)(p

2, . . .)
with sccc (hu − hc)(p

2, . . .)−Ad, such that the angleωd changes from (16) to

tan 2ωdL(p
2, . . .) =

−2
(
sccc (hu − hc)(p

2, . . .)−Ad

)

(hu − hc)(p2, . . .) cos 2θc +
[
(hd−hs)(p2,...)

2

] , (47)

in which we have added a subscript “L” to ωd to distinguish it from its counterpartωdR associated with
right-handed fermions.

The quantity
(
sccc (hu − hc)(p

2, . . .)−Ad

)
, which will be often encountered, writes

sccc (hu − hc)(p
2, . . .)−Ad ≈ sccc

(

(hu − hc)(p
2, . . .)− (hu − hc)p2=m2

d
−m2

s

∂(hu − hc)

∂p2

∣
∣
∣
p2=m2

d

)

≈ sccc
(
p2 − (m2

d +m2
s)
) ∂(hu − hc)

∂p2

∣
∣
∣
p2=m2

d

, (48)

in which we have takenp2 ∼ m2
d ∼ m2

s.

By differentiating (11) with respect top2, one gets, still in the limitp2,m2
i ,m

2
j ≪ m2

W and in theMS
scheme

∂(hi − hj)

∂p2

p2,m2
i ,m

2
j≪m2

W≈
MS

3
g2

4

i

16π2

m2
i −m2

j

m4
W

. (49)

One has now (we added a superscript “d” to t+ andt− becauseAd 6= Au, such thattd+ 6= tu+, t
u
− 6= td−,

and also a subscript “L” to recall that they concern left-handed fields)

td±L(p
2, . . .) =

hu + hc +
[
hd+hs

2

]

2
(p2, . . .)

±1

2

√
(

(hu − hc)(p2, . . .) cos 2θc +

[
(hd − hs)(p2, . . .)

2

])2

+ 4
(
sccc (hu − hc)(p2, . . .)−Ad

)2
,

(50)

which gives back (14) whenAd is set to zero.
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As far as the right-handed kinetic terms are concerned, theyare controlled by the matrix




1 −Ed

−Ed 1





and are accordingly re-diagonalized into the unit matrix bya non-unitary transformationUd

U†
d




1 −Ed

−Ed 1



Ud = I, Ud =
1√
2





1√
1+Ed

1√
1−Ed

−1√
1+Ed

1√
1−Ed



⇒ UdU†
d =

1

1− E2
d




1 Ed

Ed 1



 .

(51)
It corresponds toωdR = π

4 , t
d
+R = Ed, t

d
−R = −Ed.

The mass matrix to diagonalize is nowV†dMd Ud, where, including the counterterms,Md is now given by

Md =




md Dd ≡ −mdEd

Bd ≡ −msEd ms



 . (52)

The rotationR(ξdL) will accordingly diagonalize the matrix(V†dMdUd)(U†
dM

†
dVd).

Neglecting irrelevant terms proportional toE≥2 and tog>2, one gets

V†dMdUdU†
dM

†
dVd =







m2
dc

2
ωdL

+m2
ss

2
ωdL

+4mdmsEdsωdL
cωdL

1+td+L

(m2
d−m2

s)sωdL
cωdL

−2mdmsEd(c
2
ωdL

−s2ωdL
)

√

(1+td+L)(1−td−L)

(m2
d−m2

s)sωdL
cωdL

−2mdmsEd(c
2
ωdL

−s2ωdL
)

√

(1+td+L)(1−td−L)

m2
ds

2
ωdL

+m2
sc

2
ωdL

−4mdmsEdsωdL
cωdL

1+td−L







+ mdmsEd




− sin 2ωdL cos 2ωdL

cos 2ωdL sin 2ωdL



 . (53)

The expression (22) fortan 2ξd gets replaced by

tan 2ξdL(p
2, . . .) =

−(m2
d −m2

s) sin 2ωdL + 2mdmsEd cos 2ωdL

(m2
d −m2

s) cos 2ωdL + 2mdmsEd sin 2ωdL − (m2
d +m2

s)
td+L−td−L

2

, (54)

in which we have neglected factors(1 + αtd+L + βtd−L), α, β = O(1), which yield contributions of
unwanted higher order ing.

Unlesscos 2θc ≈ −1
2
hd−hs

hu−hc

(13)
≈ −m2

d−m2
s

m2
u−m2

c
, (47), (48) and (49), show that, whenp2 ≪ m2

W and since

m2
u,m

2
c ≪ m2

W , ωdL ∼ m2
s/m

2
W is very small. Then, usingsin 2ωdL ≈ tan 2ωdL, the expression forEd

in (46) and the one fortd+L−td−L coming from (50) (in which we neglect the term4(sccc(hu−hd)−Ad)),
(54) rewrites (the term2mdmsEd sin 2ωdL in its denominator can always be neglected)

tan 2ξdL ≈ 2sccc
∂(hu − hc)

∂p2




(m2

d −m2
s)
(
p2 − (m2

d +m2
s)
)
+m2

dm
2
s

(m2
d −m2

s)−
m2

d
+m2

s

2

(
(hu − hc) cos 2θc +

[
hd−hs

2

] )



 , (55)

showing, with (49), thatξdL ∼ (p2,m2)/m2
W is also very small.

Whencos 2θc ≈ −1
2
hd−hs

hu−hc

(13)
≈ −m2

d−m2
s

m2
u−m2

c
, tan 2ωdL → ∞, which corresponds toωdL maximal. Then,

(54) and (50) yieldtan 2ξdL → − m2
d−m2

s

2mdmsEd−(m2
d+m2

s)
(
sccc(hu−hd)−Ad

) , which, using (46) and (48), is

finally equivalent totan 2ξdL = − m2
d
−m2

s

sccc
∂(hu−hc)

∂p2

1

2m2
dm

2
s−(m2

d+m2
s)
(
p2−(m2

d+m2
s)
) . Unlessd ands are exactly

degenerate (in which caseξdL shrinks to0), this yields a quasi-maximalξdL, because of the very small
value of ∂(hu−hc)

∂p2
, given in (49).
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This is however not true when the numerator of (47) vanishes,which occurs forsccc(hu−hc)−Ad = 0,
or, likewise, by (50), fort+dL = t−dL. In this case,ωdL is undetermined and can be taken to vanish, since the
matrix of kinetic terms is proportional to the unit matrix. One then finds a very smalltan 2ξdL = 2mdmsEd

m2
d
−m2

s

(see (46) and (49)).

The expressions obtained in the(u, c) channel are very similar. One gets:

Au = −sccc
m2

u (hd − hs)p2=m2
u
−m2

c (hd − hs)p2=m2
c

m2
u −m2

c

≈ −sccc
(

(hd − hs)p2=m2
u
+m2

c

∂(hd − hs)

∂p2

∣
∣
∣
p2=m2

u

)

;

Eu = −sccc
mumc

(
(hd − hs)p2=m2

u
− (hd − hs)p2=m2

c

)

m2
u −m2

c

≈ scccmsmd
∂(hd − hs)

∂p2

∣
∣
∣
p2=m2

u

;

Bu = −mcEu, Du = −muEu; (56)

tan 2ωuL(p
2, . . .) =

−2
(
− sccc (hd − hs)(p

2, . . .)−Au

)

(hd − hs)(p2, . . .) cos 2θc +
[
(hu−hc)(p2,...)

2

] ; (57)

− sccc (hd − hs)(p
2, . . .)−Au ≈ −sccc

(

(hd − hs)(p
2, . . .)− (hd − hs)p2=m2

u
−m2

c

∂(hd − hs)

∂p2

∣
∣
∣
p2=m2

u

)

≈ −sccc
(
p2 − (m2

u +m2
c)
) ∂(hd − hs)

∂p2

∣
∣
∣
p2=m2

u

; (58)

tu±L(p
2, . . .) =

[
hu+hc

2

]
+ hd + hs

2
(p2, . . .)

±1

2

√
(

(hd − hs)(p2, . . .) cos 2θc +

[
(hu − hc)(p2, . . .)

2

])2

+ 4
(
− sccc (hd − hs)(p2, . . .)−Au

)2
;

(59)

tan 2ξuL(p
2, . . .) =

−(m2
u −m2

c) sin 2ωuL + 2mumcEu cos 2ωuL

(m2
u −m2

c) cos 2ωuL + 2mumcEu sin 2ωuL − (m2
u +m2

c)
tu+L−tu−L

2

≈ −2sccc
∂(hd − hs)

∂p2

(

(m2
u −m2

c)
(
p2 − (m2

u +m2
c)
)
+m2

um
2
c

(m2
u −m2

c)− m2
u+m2

c

2

(
(hd − hs) cos 2θc +

[
hu−hc

2

])

)

.

(60)

Unlike in the(d, s) sector, because|md − ms| < |mu − mc|, tan 2ωul given by (57) cannot have any
pole. This makesωuL always very small and, likewise,ξuL. Furthermore, the equalityt+uL = t−uL can
never be achieved (see also section 6). These results stay true whenmd = ms, in which casehd = hs,
which entails thatAu, Eu, Bu,Du, ωuL andξuL vanish.

5.3 Stability is restored

We now check that Shabalin’s counterterms stabilize 1-loopmixing angles in the vicinity ofd− s degen-
eracy.

Still except whencos 2θc = −1
2
hd−hs

hu−hc
, which corresponds, whenmd = ms, to θc maximal (see also

subsection 6.2),ωdL stays small whenmd ≈ ms. From (47), (48), (49), one gets

tan 2ωdL

p2,m2
d∼m2

s ,m
2
u,m

2
c≪m2

W≈
MS

−3 p2 − 2m2
d

m2
W

tan 2θc, (61)
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and so doesξdL, which, from (55), becomes

tan 2ξdL
p2,m2

d=m2
s ,m

2
u,m

2
c≪m2

W≈
MS

−3 m2
d

m2
W

1
(

−17
4 + 3

2 ln
m2

W

µ2

) tan 2θc, (62)

since, forµ2 ∈ [m2
K ,m2

D],
(

−17
4 + 3

2 ln
m2

W

µ2

)

∈ [7, 12].

So, whenmd ≃ ms, the mixing angleθdL is accordingly renormalized at 1-loop by the small quantity

ωdL + ξdL ≈ 1
2 (tan 2ωdL + tan 2ξdL) ∼ m2

d

m2
W

tan 2θc.

In the(u, c) sector,Eu = 0 = A+ u whenmd = ms and one gets

tan 2ξu ≈ − tan 2ωuL = − 4Au

hu − hc
= 0, (63)

such thatθuL is not renormalized at all.

5.4 The Cabibbo matrixC(p2, . . .) still stays unitary

The expression forC(p2, . . .) is still given by (40), but one must now accounts fortu±L 6= td±L since

Au 6= Ad. One gets nowV−1
u C0Vd =







cos(θc − ωu + ωd)

√
1+tu+L

1+td+L

sin(θc − ωu + ωd)

√
1+tu+L

1+td
−L

− sin(θc − ωu + ωd)

√
1+tu−L

1+td+L

cos(θc − ωu + ωd)

√
1+tu−L

1+td−L







and
[(
V−1
u C0Vd

)−1
]†

=







cos(θc − ωu + ωd)

√

1+td+L

1+tu+L
sin(θc − ωu + ωd)

√

1+td+L

1+tu−L

− sin(θc − ωu + ωd)

√

1+td−L

1+tu+L
cos(θc − ωu + ωd)

√

1+td−L

1+tu−L







, which leads

to the same formula (41) as before forC(p2, . . .), which is unitary. Accordingly, like in the absence of
Shabalin’s counterterms, the classical Cabibbo angleθc gets renormalized at 1-loop by
(ωdL + ξdL)(p

2,m2
d,m

2
s,m

2
u,m

2
c ,m

2
W )− (ωuL + ξuL)(p

2,m2
d,m

2
s,m

2
u,m

2
c ,m

2
W ).

For more remarks concerning thep2 dependence, see appendix A.

6 Suppressing extra flavor changing neutral currents

The absence of flavor changing neutral currents is classically implementedab initio in bare flavor space
by the canonical choice of the kinetic terms, proportional to the unit matrix, and by that of theSU(2)L

generators which, in the(u, c, d, s) basis, writeT 3 = 1
2




1

−1



 , T+ =




1


 , T− =





1



. The diagonality of theT 3 generator ensures that theW 3 gauge boson only couples, in both

(u, c) and(d, s) sectors, to diagonal fermionic currents: no FCNC occurs classically. That this property
is preserved in bare mass space is the essence of the GIM mechanism: the closure of theSU(2)L algebra
(34) on the sameT 3 as above is ensured by the unitarity of the classical CabibbomatrixC0. The situation
is different at 1-loop since vertex corrections with an internal charged gauge boson induce non-diagonal
couplings of theW 3 gauge field (see Fig. 1 left) and also, for example, the non-diagonals→ d transition
of Fig. 2 inserted on one of the two external fermion legs of aW 3ss̄ vertex triggers: – 1-loop FCNC’s
if one considerss0f → d0f transitions, – their equivalent for mass states if one considers, like we did,
s0m → d0m transitions (see Fig. 1 right).
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We have seen with (43), and this stays valid in the presence ofShabalin’s counterterms, that, in the 1-

loop mass basis, theSU(2)L algebra closes on the “canonical”T3 ≡ T 3 = 1
2




1

−1



. So, after

1-loop transitions of the type of Fig. 2, have been accountedfor, one is back to a situation similar to the
classical one. 1-loop non-diagonal neutral gauge currentsare triggered by vertex corrections. As for the
second origin of FCNC, insertion of Fig. 2 on one of the external leg of aW 2f f̄ vertex (Fig. 1 right),
it is important to recall, as was demonstrated in [10] (Appendix B), that the introduction of Shabalin’s
counterterms do not modify transitions of the types → dW 3: the counterterms do cancel the non-
diagonal transitions on external legs, buts → dW 3 transitions are re-created with the same amplitude
through the covariant derivative that has to be used inside them.

Is the situation strictly identical to the standard one? Theanswer is “not exactly”, and this is what we
investigate now. The issue is that of the existence of mass splittings, which are responsible for two facts:
* the slight non-unitarity of the connection between the orthogonal set of 1-loop mass eigenstates and
bare mass (or flavor) states;
* that the two fermions concerned by 1-loop non-diagonal transitions (Fig. 2) cannot be both on mass-
shell, such that Shabalin’s counterterms can only restore 1-loop orthogonality between one on mass-shell
fermion and a second one which is off mass-shell.

Since, by construction, 1-loop mass eigenstates as we defined them, by the diagonalization of the 1-
loop quadratic effective Lagrangian (kinetic + mass terms), are orthogonal, the non-unitarity of their
connection to bare mass states (and, thus, to bare flavor states, since the last two are unitarily connected)
makes FCNC still occur in bare flavor (or mass) space. This trivially appears by transforming back the
W 3f f̄ coupling in the space of 1-loop mass states, that we emphasized to be “canonical” (proportional
to T 3), to bare flavor space. So, we face a situation where, becauseof (unavoidable) mass splittings, the
standard situation in bare flavor space is spoiled.

We adopt a conservative point of view, require that the phenomenology should not differ from the standard
one, and therefore that these extra FCNC vanish or, at least,are strongly damped.

6.1 When no counterterm is added

As soon as 1-loop transitions Fig. 2 are accounted for, the bare flavor (or mass) states do not form anymore
an orthogonal set, such that requesting the absence of FCNC in this basis appears somewhat academic.
In spite of this, and since the principle of the method and formulae will keep valid when counterterms are
introduced, we proceed with this first case.

To that purpose, it is enough to use the relation (27) between1-loop mass eigenstates and bare flavor
states (and its equivalent in the(u, c) sector), which leads to the expression (28) for the 1-loop mixing
matrixCd. Neutral gauge currents in the space of 1-loop mass eigenstates being proportional toT 3, their

expression in bare flavor space gets simply proportional to(C−1
d )†C−1

d = (CdC†d)−1 (28)
= (Cd0VdV†dC

†
d0)

−1,
and a similar expression in the(u, c) sector. From the expression (18) ofVd, it is easy matter to get (Tx is
defined in (5))

Cd0VdV†dC
†
d0 =

1

(1 + td+L)(1 + td−L)

(

1 +
td+L + td−L

2
− (td+L − td−L)Tx

(
− 2(θdL + ωdL)

))

⇒ (Cd0VdV†dC
†
d0)

−1 ≈ (1 + td+L)(1 + td−L)
(

1−
td+L + td−L

2
+ (td+L − td−L)Tx

(
− 2(θdL + ωdL)

))

,

(64)

which makes FCNC’s proportional to−(td+L−td−L) sin 2(θdL+ωdL) (the sine function corresponds to the
non-diagonal terms ofTx, as it appears in (5)), and an equivalent expression in the(u, c) sector. According
to (64), in both the(d, s) and(u, c) sectors, their suppression requires that(tu,d+L − tu,d−L) sin 2(θuL,dL +
ωuL,dL) vanishes or, at least, that it be as small as possible.
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• According to (14), the equality oftd+L andtd−L requires

cos 2θc = −1
2

(
hu−hc

hd−hs
+ hd−hs

hu−hc

)

≈ −1
2

(
m2

c−m2
u

m2
s−m2

d

+
m2

s−m2
d

m2
c−m2

u

)

. This corresponds to| cos 2θc| > 1, which

can never be satisfied.

• FCNC’s can accordingly only be suppressed if(ωdL + θdL) ≈ 0 and an equivalent condition in the
(u, c) sector. As already mentioned in subsection 2.3, when(d, s) are much closer to degeneracy that
(u, c), ωdL ≈ −θc such that the condition for FCNC suppression rewritesθdL ≈ θc. One also finds that
θuL ≈ −ωuL becomes small (see subsection 5.3). So, FCNC’s get suppressed when bare flavor and mass
states for the fermion pair which is the farthest from degeneracy get close to alignment. No condition on
θc arises in this case.

6.2 In the presence of Shabalin’s counterterms

If bare flavor states were a set of truly orthogonal states at 1-loop, they could only be unitarily connected
with 1-loop mass eigenstates since the latter are constructed as being orthogonal. Then, the absence of
FCNC would naturally translate from one basis to the other. That, instead, non-unitarity persists even in
the presence of counterterms can be traced out in the expression (18) forVd, to the relations (19), and is
due tot+dL 6= t−dL.

Relations (64) keep valid such that the discussion stays formally the same as in subsection 6.1). Results
are different because the expression ofωdL has changed into (47); so has the formula fort± which is now
given by (50). Unlike previously, maximal mixing turns out to be one of the two types of solutions that
arise.

• While, in the absence of counterterms, neithert+dL = t−dL, nor t+uL = t−uL could be satisfied, in their
presence the first relation now can be. According to (50), theequality of td+L and td−L requires both

cos 2θc = −1
2
hd−hs

hu−hc
≈ −1

2
m2

d−m2
s

m2
u−m2

c
and (sccc(hu − hc) − Ad) = 0. This corresponds to a Cabibbo

angle close to maximal and, according to (48), top2 = m2
d + m2

s. At these values ofθc andp2, the

1-loop kinetic terms for the d-type fermions become proportional to

(

1 +
hu+hc+

[

hd+hs
2

]

2

)

I, making

ωdL undetermined. It can be in particular taken to vanish, such that, according to (54),ξdL is then very
small.

In the (u, c) channel, since(mc − mu) > (ms − md), one can never havetu+L = tu−L because this
would correspond to| cos 2θc| > 1. So, FCNC’s can only be suppressed, there, forθuL = −ωuL(p

2, . . .).
Strictly speaking, sinceθuL is a constant andωuL a function ofp2 and of the masses, the equality can only
take place at one value ofp2. However, since all dependence’s onp2 are always very weak,(θuL + ωuL)
will only deviate very little from zero whenp2 varies. Since(−sccc(hd−hs)−Au) is always very small,
the equivalent of (47) entails that so isωuL(p

2, . . .), and, by the equivalent of (54), so isξuL(p2, . . .).

The set(td+L = td−L, θuL = −ωuL) constitutes the first possibility to suppress FCNC’s at 1-loop. It
corresponds to a quasi-maximal Cabibbo angle, to smallθuL, smallωuL, to ωdL = 0 and to smallξdL.
Accordingly, θdL is also quasi-maximal, and all angles get renormalized at 1-loop by small quantities,
which makes this solution perturbatively safe. Note that, since θuL is small and stays so at 1-loop, this
corresponds to a quasi-alignment of flavor and mass states inthe channel with the largest mass splitting.

For the sameθc (close to maximal) but whenp2 6= m2
d + m2

s, (sccc(hu − hc) − Ad) stays very small
(see (48), (49)).tan 2ωdL given by (47) becomes infinite, which corresponds toωdL maximal. The
FCNC’s can be taken to vanish (neglecting a very weak dependence onp2) for θdL = −ωdL, which is
then maximal, too (like in the previous case).θdL gets renormalized at 1-loop intoθdL+ωdL+ξdL = ξdL

such thattan 2ξdL
(54)
≈ − m2

d−m2
s

2mdmsEd−(m2
d
+m2

s)
fd(p

2,...)−Ad
2

, which is very large. So,ξdL becomes close to

maximal, too. This makes the classical and maximalθdL renormalized by a small amount, which however
results from the cancellation between two large angles. In the (u, c) channel, things are like previously:
smallθuL = −ωuL, and smallξuL.

20



This case is thus similar to the previous one in the sense thatθc has the same large value,θdL too, that
θuL is small, and that all of them are renormalized at 1-loop by small quantities. However, that the
renormalization ofθdL results from the cancellation between two large angles raises the question whether
this situation is perturbatively safe. The answer is positive for two reasons:
* a small variation inp2 away from(m2

d +m2
s), that is outside any of the two concerned mass-shells, is

not expected to change the nature of the perturbative series;
* the 1-loop calculation that we performed in the bare mass basis can as well be done in the bare flavor
basis; since the two are related by a unitary transformationR(θdL), such a transformation cannot change
either the character of the perturbative series. Going through the same steps, one easily finds thatωdL gets
replaced by(ωdL + θdL), which is now very small. In the bare flavor basis, one finds that the maximal
θdL still gets, of course, renormalized by a small amount, but this now results from the sum of two small
quantities, which is a perturbatively safe situation.

• Like in the absence of counterterms, from (64), FCNC’s can also be canceled when the two conditions,
respectivelyθdL = −ωdL(p

2, . . .) in the (d, s) channel, andθuL = −ωuL(p
2, . . .) in the (u, c) channel,

are satisfied (or very close to this, because of the very weak dependence onp2), without, now, any
relation connecting(td+L − td−L) andθc. Then, since, forp2,m2 < m2

W , (sccc(hu − hd) − Ad) and
(sccc(hd−hs)−Au) are small, so areωuL,dL(p

2, . . .) andξuL,dL(p2, . . .). Accordingly,θuL andθdL are
both small and renormalized at 1-loop by small quantities. This corresponds to a smallθc, which is also
renormalized by a small quantity. This configuration is perturbatively safe.

This discussion can be straightforwardly transposed to theleptonic case.

In addition to stabilizing the 1-loop renormalization of mixing angles in the vicinity of degeneracy, the in-
troduction of Shabalin’s counterterms has been seen to promote maximal mixing (in one channel, accom-
panied with quasi-alignment in the other channel) as one of the two natural solutions to the suppression
of extra FCNC in the bare flavor basis. Maximal mixing cannot play this role in their absence.

A delicate issue is of course to discriminate between the twotypes of solutions, and to determine why
one or the other should be preferred. Sincet±L are the eigenvalues of the 1-loop kinetic terms, the
equality t+L = t−L corresponds to the case where, up to an overall renormalization 1√

1+t±
, they can

be re-diagonalized by a unitaryV (see (18)); in the corresponding channel, which corresponds to the
fermionic pair the closest to degeneracy, the individual mixing matrix [C0dVdR(ξd)](p2, . . .) becomes
unitary, too (such that, in addition to the suppression of FCNC, neutral gauge currents also satisfy the
property of universality). A quasi-maximal Cabibbo (or PMNS) angle corresponds to a minimization of
FCNC’s, to the smallest possible deviation from unitarity of the individual mixing matrix in the channel
which is the closest to degeneracy, to a quasi-maximal individual mixing in this same channel, and to
the quasi-alignment of flavor and mass eigenstates in the other channel. This situation corroborates a
common argumentation that mass and flavor eigenstates of charged leptons coincide [13].

In the quark sector, reversely, the distinction between thetwo types of fermions, both charged, and which,
furthermore, are not observed as particles, is less clear. The second solution to the suppression of FCNC’s,
in which both mixing angles are small, and which treats the two channels on an equal footing, looks then
more adapted to the situation.

Note that the landscape that we obtain in this work is similarto the one present in [10]. Two types of
solutions to the unitarization equation were uncovered there: the so-called “Cabibbo-like” solutions, in
which no constraint occurred for the Cabibbo angle, and maximal mixing. The Cabibbo angle could then
only be constrained by additional assumption; it turned out, there, that a suitable one was that universality
and the absence of FCNC were violated with the same strength.

7 The case of 3 generations

Our goal is now to generalize the previous calculations to the case of 3 generations of fermions, asking in
particular that no extra (with respect to the “standard” phenomenology) FCNC is present at 1-loop in the
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basis of bare flavor states in the presence of Shabalin’s counterterms.

A major difference with the case of two generations is, in thequark sector, the presence of the heavy top
quarkmt ≃ 2mW . This makes in particular invalid the approximationm≪ mW for all fermion masses
m, that we used in this case.

7.1 Conditions for suppressing extra FCNC (in the presence of counterterms)

Like in the case of two generations, extra FCNC will be absentin the (d, s, b) sector iffCd0VdV†dC
†
d0 =

diag(αd, βd, γd) diagonal. (not necessarily proportional to the unit matrix), whereCd0 represents now
the3× 3 classical mixing matrix for(d, s, b) quarks. Similar expressions occur in the(u, c, t) sector and
for the two leptonic ones.

Kd being the kinetic terms of(d, s, b) at 1-loop (eventually including Shabalin’s counterterms), (1)⇒
VdV†d = K−1

d , such thatK−1
d = C†d0 diag(αd, βd, γd) Cd0. Now, Shabalin’s counterterms are precisely

devised so as to (nearly, that is, up to a very weak dependencein p2) cancel non-diagonal terms inKd,
which originate from 1-loop transitions of the type depicted in Fig. 2. Accordingly, in their presence,
Kd, and thusK−1

d , too, are practically diagonal. The condition for suppressing extra FCNC rewrites

accordinglyC†d0 diag(αd, βd, γd) Cd0 = diagonal. and we insist that it is only valid in the presence of
counterterms.

SinceCd0 is unitary, the condition rewrites:αd
I+C†d0 diag(0, ud ≡ βd−αd, vd ≡ γd−αd) Cd0 diagonal.

The first term, proportional toαd, being already diagonal, the condition applies to the second contri-
bution. Forgetting, as we always did, aboutCP violating phases, it is convenient to parametrizeCd0 =

R23R13R12, withR23 =








1 0 0

0 cd23 sd23

0 −sd23 cd23








,R13 =








cd13 0 sd13

0 1 0

−sd13 0 cd13








,R12








cd12 sd12 0

−sd12 cd12 0

0 0 1








,

to search for eventual solutions different fromαd = βd = γd (ud = 0 = vd). Equating to zero the 3
non-diagonal entries of the symmetric matrixC†d0 diag(αd, βd, γd) Cd0 yields the 3 equations:

(ud + vd) sd12c
d
12(c

d
13)

2 = (ud − vd)
[

−sd13 sin 2θd23 cos 2θd12 − sd12c
d
12 cos 2θ

d
23(1 + (sd13)

2)
]

; (65a)

(ud + vd) cd12s
d
13c

d
13 = (ud − vd) cd13

[

cd12s
d
13 cos 2θ

d
23 − sd12 sin 2θ

d
23

]

; (65b)

(ud + vd) sd12s
d
13c

d
13 = (ud − vd) cd13

[

sd12s
d
13 cos 2θ

d
23 + cd12 sin 2θ

d
23

]

, (65c)

that we now solve.

First make the ratio of (65b) and (65c). Forsd13c
d
13 6= 0 and cd13 6= 0, it yields sd12

cd12

sd13c
d
13 6=0,cd13 6=0
=

cd12s
d
13 cos 2θ

d
23−sd12 sin 2θd23

sd12s
d
13 cos 2θ

d
23+cd12 sin 2θd23

⇒ sin 2θd23 = 0⇒ θd23 = 0 or π
2 .

Forθd23 = 0 (65) become

(ud + vd) sd12c
d
12(c

d
13)

2 = −(ud − vd) sd12c
d
12(1 + (sd13)

2); (66a)

(ud + vd) cd12s
d
13c

d
13 = (ud − vd) cd12s

d
13c

d
13; (66b)

(ud + vd) sd12s
d
13c

d
13 = (ud − vd) sd12s

d
13c

d
13. (66c)

Sincesd13c
d
13 6= 0, (66b) and (66c) demandvd = 0 which, plugged into (66a), yields2udsd12c

d
12 = 0,

requiring eitherud = 0 or [sd12c
d
12 = 0⇒ θd12 = 0 or θd12 =

π
2 ].

Forθd23 =
π
2 (65) become

(ud + vd) sd12c
d
12(c

d
13)

2 = (ud − vd) sd12c
d
12(1 + (sd13)

2); (67a)
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(ud + vd) cd12s
d
13c

d
13 = −(ud − vd) cd12s

d
13c

d
13; (67b)

(ud + vd) sd12s
d
13c

d
13 = −(ud − vd) sd12s

d
13c

d
13. (67c)

Sincesd13c
d
13 6= 0, (67b) and (67c) demandud = 0 which, plugged into (67a), yields2vdsd12c

d
12 = 0,

requiring eithervd = 0 or [sd12c12 = 0⇒ θd12 = 0 or θd12 =
π
2 ].

cd13 = 0 is a trivial solution of (65b) and (65c); (65a) becomes, then,
(ud − vd)

[
sin 2θd23 cos 2θ

d
12 + sin 2θd12 cos 2θ

d
23

]
= 0⇒ θd12 = −θd23 + nπ

2 or u = v.

Forsd13 = 0, (65b) and (65c) entail again[sin 2θd23 = 0⇒ θd23 = 0 or θd23 = π
2 ], or ud = vd, while (65a)

becomes(ud + vd)sd12c
d
12 = −(ud − vd)sd12c

d
12 cos 2θ

d
23. For ud = vd this requiresθd12 = 0 or π

2 , for
θ23 = 0, this requires eitherud = 0 or [θd12 = 0 or π

2 ] and, forθd23 = π
2 , this requires eithervd = 0 or

[θd12 = 0 or π
2 ].

To summarize, the solutions to the suppression of FCNC at 1-loop in bare flavor space are the following:

(a) : ud = 0 = vd (⇔ αd = βd = γd);
(b) : θd12 = 0 = θd23 = θd13 : general mass-flavor alignment (trivial solution);

(c) : θd13 = 0 = θd12, θ
d
23 =

π

2
;

(d) : θd13 = 0, θd23 =
π

2
= θd12;

(e) : θd13 = 0 = θd23, θ
d
12 =

π

2
;

(f) : θd13 =
π

2
, θd23 = −θd12 +

nπ

2
;

(g) : θd13 =
π

2
, ud = vd (⇔ βd = γd);

(h) : θd12 = 0 = θd23, v
d = 0 (⇔ αd = γd);

(i) : θd12 = 0, θd23 =
π

2
, ud = 0 (⇔ αd = βd);

(j) : θd12 = 0 = θd13, u
d = vd (⇔ βd = γd);

(k) : θd12 =
π

2
, θd23 = 0, vd = 0 (⇔ αd = γd);

(l) : θd12 =
π

2
= θd23, u

d = 0 (⇔ αd = βd);

(m) : θd12 =
π

2
, θd13 = 0, ud = vd (⇔ βd = γd);

(n) : θd23 = 0 = θd13, u
d = 0 (⇔ αd = βd);

(o) : θd23 =
π

2
, θd13 = 0, vd = 0 (⇔ αd = γd). (68)

Note thatθ13 = 0 = θ23 is a solution of (65) included in (g). These solutions correspond to the following
Cd0’s:

(a)
αd=βd=γd

→ any; (b)→ I; (c)→








1 0 0

0 0 1

0 −1 0








; (d)→








0 1 0

0 0 1

1 0 0








; (e)→








0 1 0

−1 0 0

0 0 1








;

(f)
n=1→








0 0 1

−1 0 0

0 −1 0








n=2
or








0 0 1

0 −1 0

1 0 0








n=3
or








0 0 1

1 0 0

0 1 0








; (g)
βd=γd

→








0 0 1

−sd12+23 cd12+23 0

−cd12+23 −sd12+23 0








;

(h)
αd=γd

→ R13; (i)
αd=βd

→








cd13 0 sd13

−sd13 0 cd13

0 −1 0








; (j)
βd=γd

→ R23; (k)
αd=γd

→








0 cd13 sd13

−1 0 0

0 −sd13 cd13








;

23



(l)
αd=βd

→








0 cd13 sd13

0 −sd13 cd13

1 0 0








; (m)
βd=γd

→








0 1 0

−cd23 0 sd23

sd23 0 cd23








; (n)
αd=βd

→ R12; (o)
αd=γd

→








cd12 sd12 0

0 0 1

sd12 −cd12 0








.

(69)

Similar formulæ are obtained in the(u, c, t) sector. The relevant parameters will be then given a super-
script “u” instead of “d”.

We see that the configurations that suppress FCNC are described by two possible sets of conditions:
the ones which concern the(d, s, d) mixing anglesθdij, fixing the mass-flavor relations in this channel
(partial or total alignmentetc), and the ones concerningαd, βd, γd which establish connections between
the masses (fermions,W , µ) and the CKM anglesθij, δ. Solution (a) is of the second type; (b), (c), (d),
(e), (f) are of the first type; all others are mixed.

The physical mixing patterns that are observed exhibit, in addition to approximate alignment as one goes
up the generations, some peculiar values of some of CKM angles. This is why we shall focus in the
following on the solutions that possibly constrain the latter, i.e. (a) and (g) to (o).

The conditions of the second type may not be possible to achieve. The first task is accordingly to scruti-
nize the conditionsα = β, β = γ, α = γ in both channels,(d, s, b) and(u, c, t), and to select the ones
that can be fulfilled. If, for example, in the(d, s, b) channel, onlyαd = βd can be achieved, one has to
choose among the 7 solutions (b), (c), (d), (e), (f), (i), (l), (n). The first four are very constrained solutions.
For (b), there is total mass-flavour alignment in this sector. For (c), (d) and (e), the 3 angles in the(d, s, b)
sector are either vanishing of equal toπ

2 . For (f),θd13 =
π
2 while the sum of the 2 other angles is a multiple

of π
2 . In (i) and (l),θd12 andθd23 are constrained, respectively to0 or π

2 and toπ
2 , leavingθd13 free, while in

(n), θd13 andθd23 are both constrained to0, while θd12 is left free.

Still with the example of the(d, s, b) channel, the conditionsαd = βd, βd = γd, αd = γd write respec-
tively

A±
dd +A3

dd = A±
ss +A3

ss,
A±

ss +A3
ss = A±

bb +A3
bb,

A±
dd +A3

dd = A±
bb +A3

bb, (70)

in which, like in subsection 2.2,A±
ii andA3

ii denote the 1-loop amplitudes for the diagonal transition
i→ i mediated respectively byW± andW 3.

It is simple matter, using the unitarity ofV , to get

A3
ii −A3

jj =
1

2
(hi − hj). (71)

A±
dd = |Vud|2(hu − ht) + |Vcd|2(hc − ht),
A±

ss = |Vus|2(hu − ht) + |Vcs|2(hc − ht),
A±

bb = |Vub|2(hu − ht) + |Vcb|2(hc − ht),
A±

uu = |Vud|2(hd − hb) + |Vus|2(hs − hb),
A±

cc = |Vcd|2(hd − hb) + |Vcs|2(hs − hb),
A±

tt = |Vtd|2(hd − hb) + |Vts|2(hs − hb). (72)

The 6 non-trivial conditions (3 in the(d, s, b) sector and 3 in the(u, c, t) sector) that we need consider
write accordingly
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αu = βu :
1

2
(hd − hs) + (|Vud|2 − |Vus|2)(hu − ht) + (|Vcd|2 − |Vcs|2)(hc − ht) = 0, (73a)

βu = γu :
1

2
(hs − hb) + (|Vus|2 − |Vub|2)(hu − ht) + (|Vcs|2 − |Vcb|2)(hc − ht) = 0, (73b)

αu = γu :
1

2
(hd − hb) + (|Vud|2 − |Vub|2)(hu − ht) + (|Vcd|2 − |Vcb|2)(hc − ht) = 0, (73c)

αd = βd :
1

2
(hu − hc) + (|Vud|2 − |Vcd|2)(hd − hb) + (|Vus|2 − |Vcs|2)(hs − hb) = 0, (73d)

βd = γd :
1

2
(hc − ht) + (|Vcd|2 − |Vtd|2)(hd − hb) + (|Vcs|2 − |Vts|2)(hs − hb) = 0, (73e)

αd = γd :
1

2
(hu − ht) + (|Vud|2 − |Vtd|2)(hd − hb) + (|Vus|2 − |Vts|2)(hs − hb) = 0. (73f)

The 6 equations (73) include only 2 pairs of independent conditions ((73a) +(73a)=(73c), (73d)+(73e)=(73f)).

The particular case of 2 generations, that we studied before, is easily recovered. One has, then,|Vud|2 =
c2c = |Vcs|2, |Vus|2 = s2c = |Vcd|2. (73) shrinks to

αu = βu :
1

2
(hd − hs) + (c2c − s2c)(hu − hc) = 0,

αd = βd :
1

2
(hu − hc) + (c2c − s2c)(hd − hs) = 0, (74)

of which only the first can be realized, leading to a large (quasi-maximal) Cabibbo angle, and leaving
mass-flavor alignment as the only possibility in the(u, c) sector.

7.2 Coping with the top quark: analytic expressions for(hi − ht)

The approximate expression of(hi−hj) for m2
i ,m

2
j , p

2 ≪ m2
W is given by (13). It is valid foru, d, s, c, b

quarks, all leptons, but it is not valid when the top quark is involved. In this case, an approximate
expression for(hi − ht) can still be obtained from (12), which is valid for form2

i , p
2 ≪ m2

W , and keeps
exact in the top quark mass dependencemt:

hi − ht ≈
g2

4

i

16π2

(

−3

2
− ln

m2
W

µ2
+

m2
i

m2
W

(

−17

4
+

3

2
ln

m2
W

µ2

)

+ tterms

)

,

tterms ≈
2

3

m2
t

m2
W

+
7

2

m2
W

m2
W −m2

t

+
1

4

(

5− m2
t

m2
W

)
m2

t

m2
W −m2

t

+2
m2

W ln
m2

W

µ2 −m2
t ln

m2
t

µ2

m2
W −m2

t

− 1

2

(

2 +
m2

t

m2
W

)
m4

W ln
m2

W

µ2 −m4
t ln

m2
t

µ2

(m2
W −m2

t )
2

− m2
t

m2
W

1

(m2
W −m2

t )
2



−11m4
W − 7m2

Wm2
t + 2m4

t

6
+

m6
W ln

m2
W

µ2 + (−3m2
tm

4
W + 3m4

tm
2
W −m6

t ) ln
m2

t

µ2

m2
W −m2

t



 .

(75)

Whenmt becomes larger and larger,tterms scale like

tterms
mt≫mW∼ m2

t

m2
W

(
7

12
− 1

2
ln

m2
t

µ2

)

. (76)

In practice, according to (73), one needs(hu − ht) and(hc − ht).
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7.3 Solving the constraints for 3 generations of quarks

The CKM matrix we parametrize as

V =








Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb








=








c12c13 s12c13 s13 e
−iδ

−s12c23 − c12s23s13 e
iδ c12c23 − s12s23s13 e

iδ s23c13

s12s23 − c12c23s13 e
iδ −c12s23 − s12c23s13 e

iδ c23c13








,

(77)
such that

|Vud|2 − |Vus|2 = c213 cos 2θ12;
|Vcd|2 − |Vcs|2 = cos 2θ12(−c223 + s213s

2
23) + sin 2θ12 sin 2θ23s13 cos δ;

|Vus|2 − |Vub|2 = s212c
2
13 − s213;

|Vud|2 − |Vub|2 = c212c
2
13 − s213;

|Vcs|2 − |Vcb|2 = c212c
2
23 + s223(−c213 + s212s

2
13)−

1

2
sin 2θ12 sin 2θ23s13 cos δ;

|Vud|2 − |Vcd|2 = c212(c
2
13 − s223s

2
13)− s212c

2
23 −

1

2
sin 2θ12 sin 2θ23s13 cos δ;

|Vus|2 − |Vcs|2 = s212(c
2
13 − s223s

2
13)− c212c

2
23 +

1

2
sin 2θ12 sin 2θ23s13 cos δ;

|Vcd|2 − |Vcb|2 = s212c
2
23 + s223(c

2
12s

2
13 − c213) +

1

2
sin 2θ12 sin 2θ23s13 cos δ;

|Vcd|2 − |Vtd|2 = cos 2θ23(s
2
12 − c212s

2
13) + sin 2θ12 sin 2θ23s13 cos δ;

|Vcs|2 − |Vts|2 = cos 2θ23(c
2
12 − s212s

2
13)− sin 2θ12 sin 2θ23s13 cos δ;

|Vud|2 − |Vtd|2 = c212(c
2
13 − c223s

2
13)− s212s

2
23 +

1

2
sin 2θ12 sin 2θ23s13 cos δ;

|Vus|2 − |Vts|2 = s212(c
2
13 − c223s

2
13)− c212s

2
23 −

1

2
sin 2θ12 sin 2θ23s13 cos δ. (78)

The constraints (73) become (we remind thattterms is given in (75))

αu = βu :
1

2

m2
d −m2

s

m2
W

(

−17

4
+

3

2
ln

m2
W

µ2

)

=

−c213 cos 2θ12
[(

−3

2
− ln

m2
W

µ2
+

m2
u

m2
W

(

−17

4
+

3

2
ln

m2
W

µ2

)

+ tterms

)]

−
[
cos 2θ12(−c223 + s213s

2
23) + sin 2θ12 sin 2θ23s13 cos δ

]

[(

−3

2
− ln

m2
W

µ2
+

m2
c

m2
W

(

−17

4
+

3

2
ln

m2
W

µ2

)

+ tterms

)]

;

(79a)

βu = γu :
1

2

m2
s −m2

b

m2
W

(

−17

4
+

3

2
ln

m2
W

µ2

)

=

−(s212c213 − s213)

[(

−3

2
− ln

m2
W

µ2
+

m2
u

m2
W

(

−17

4
+

3

2
ln

m2
W

µ2

)

+ tterms

)]

−
[

c212c
2
23 + s223(−c213 + s212s

2
13)−

1

2
sin 2θ12 sin 2θ23s13 cos δ

]

[(

−3

2
− ln

m2
W

µ2
+

m2
c

m2
W

(

−17

4
+

3

2
ln

m2
W

µ2

)

+ tterms

)]

;

(79b)

αu = γu :
1

2

m2
d −m2

b

m2
W

(

−17

4
+

3

2
ln

m2
W

µ2

)

=
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−(c212c213 − s213)

[(

−3

2
− ln

m2
W

µ2
+

m2
u

m2
W

(

−17

4
+

3

2
ln

m2
W

µ2

)

+ tterms

)]

−
[

s212c
2
23 + s223(c

2
12s

2
13 − c213) +

1

2
sin 2θ12 sin 2θ23s13 cos δ

]

[(

−3

2
− ln

m2
W

µ2
+

m2
c

m2
W

(

−17

4
+

3

2
ln

m2
W

µ2

)

+ tterms

)]

;

(79c)

αd = βd :
1

2
(m2

u −m2
c) = −(m2

d −m2
s)

[

c212(c
2
13 − s223s

2
13)− s212c

2
23 −

1

2
sin 2θ12 sin 2θ23s13 cos δ

]

−(m2
s −m2

b)

[

s212(c
2
13 − s223s

2
13)− c212c

2
23 +

1

2
sin 2θ12 sin 2θ23s13 cos δ

]

; (79d)

βd = γd :
1

2

[(

−3

2
− ln

m2
W

µ2
+

m2
c

m2
W

(

−17

4
+

3

2
ln

m2
W

µ2

)

+ tterms

)]

=

−m2
d −m2

b

m2
W

(

−17

4
+

3

2
ln

m2
W

µ2

)
[
cos 2θ23(s

2
12 − c212s

2
13) + sin 2θ12 sin 2θ23s13 cos δ

]

−m2
s −m2

b

m2
W

(

−17

4
+

3

2
ln

m2
W

µ2

)
[
cos 2θ23(c

2
12 − s212s

2
13)− sin 2θ12 sin 2θ23s13 cos δ

]
;

(79e)

αd = γd :
1

2

[(

−3

2
− ln

m2
W

µ2
+

m2
u

m2
W

(

−17

4
+

3

2
ln

m2
W

µ2

)

+ tterms

)]

=

−m2
d −m2

b

m2
W

(

−17

4
+

3

2
ln

m2
W

µ2

)[

c212(c
2
13 − c223s

2
13)− s212s

2
23 +

1

2
sin 2θ12 sin 2θ23s13 cos δ

]

−m2
s −m2

b

m2
W

(

−17

4
+

3

2
ln

m2
W

µ2

)[

s212(c
2
13 − c223s

2
13)− c212s

2
23 −

1

2
sin 2θ12 sin 2θ23s13 cos δ
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(79f)

Notice that (79d) is the only equation which is not influencedby the large mass of the top quark.

For θ23 = 0 = θ13, (79a) reduces to12 (m
2
d −m2

s) = (m2
c −m2

u) cos 2θ12, which is the constraint on the
Cabibbo angle when 2 generations only are present (the first of eqs. (74)).

Once the masses of the fermions, the one of theW gauge boson, and the renormalization scaleµ are
fixed, they constitute a system of 4 equations for the 4 CKM anglesθ12, θ23, θ13 andδ.

Some simplifications can be performed. First, even in the large intervalµ ∈ [100MeV,mW ], thetterms

largely dominate over
m2

u,c

m2
W

(

−17
4 + 3

2 ln
m2

W

µ2

)

, at least by a factor1000. The latter can thus always be

neglected. The sametterms dominate overln
m2

W

µ2 by at least a factor 3, and over32 by at least a factor6.
It is accordingly a reasonable approximation to only consider their contribution inside the corresponding
[ ] brackets. Secondly, it is also reasonable to neglectm2

d ≪ m2
b ,m

2
s ≪ m2

b ,m
2
u ≪ m2

c and, even,
m2

d ≪ m2
s. The system (79) then simplifies to

αu = βu :
m2

s

m2
W

(

−17

4
+

3

2
ln

m2
W

µ2

)

≈ 2 tterms

(

(c213 − c223 + s223s
2
13) cos 2θ12 + s13 sin 2θ12 sin 2θ23 cos δ

)

;

(80a)
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βu = γu :
m2

b

m2
W

(

−17

4
+

3

2
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W

µ2

)

≈ 2 tterms

(
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2
13 − s213 + c212c

2
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2
13)
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2
s13 sin 2θ12 sin 2θ23 cos δ

)

; (80b)

αu = γu :
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b

m2
W

(

−17

4
+

3

2
ln

m2
W

µ2

)

≈ 2 tterms

(

c212c
2
13 − s213 + s212c

2
23 + s223(c

2
12s

2
13 − c213)

+
1

2
sin 2θ12 sin 2θ23s13 cos δ

)

; (80c)

αd = βd : m2
c ≈ −2

(

m2
s

[

cos 2θ12
(
c223 + c213 − s223s

2
13

)
− s13 sin 2θ12 sin 2θ23 cos δ

]

+m2
b

[

s212(c
2
13 − s223s

2
13)− c212c

2
23 +

1

2
s13 sin 2θ12 sin 2θ23 cos δ

]
)

; (80d)

βd = γd : tterms ≈ 2
m2

b

m2
W

(

−17

4
+

3

2
ln

m2
W

µ2

)

c213 cos 2θ23; (80e)

αd = γd : tterms ≈ 2
m2

b

m2
W

(

−17

4
+

3

2
ln

m2
W

µ2

)
(
c213 − s213 − s223c

2
13

)
. (80f)

It is important to stress that the system (80) is only approximate, while (79) is exact; this why, in
particular, while the simultaneous fulfillment of (79b) and(79c) (resp. (79e) and (79f)) entails that of
(79a) (resp. (79d)), the same does not occur for (80b), (80c)and (80a) (resp. (80e), (80f) and (80d)) .

As a short numerical calculation shows, (80e) can never be satisfied, because it would correspond to
|c213 cos 2θ23| > 300 (still for µ ∈ [100MeV,mW ]). The same argumentation shows that (80f) cannot be
satisfied either. So, in the(d, s, b) sector, onlyαd = βd can eventually be satisfied and solutions (b), (c),
(d), (e), (f), (i), (l), (n) are the only ones that should be considered.

Summing (80b) and (80c) yields a constraint which does not includeθ12 nor δ:

1

tterms

m2
b

m2
W

(

−17

4
+

3

2
ln

m2
W

µ2

)

= 3c213(1 + s223)− 1, (81)

such that the quantity3c213(1 + s223)− 1 must be a small number, the modulus of which does not exceed
1.5 10−3. The condition0 ≤ s223 ≤ 1 entails

1

6
≤ c213 ≤

1

3

θ13∈[0,π2 ]⇒ 550 ≤ θ13 ≤ 66o. (82)

which is not compatible with the observed value ofθ13 in the CKM matrix. (80b) and (80c) are not either
individually compatible with the observed values of the CKMangles. Indeed, plugging in these values,
their r.h.s. come close to2tterms, which is much larger than their l.h.s.

Let us now consider (80a) and (80d). Since, forµ ∈ [100MeV,mW ], m2
s

m2
W

(

−17
4 + 3

2 ln
m2

W

µ2

)

≪
2tterms, (80a) rewrites

αu = βu : (s223 − s213 + s223s
2
13) cos 2θ12 + s13 sin 2θ12 sin 2θ23 cos δ ≈ 0, (83)
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which is presumably only trustable forδ = 0 since we did not introduce anyCP -violating phase in the
partial rotationsR12,R23,R13.

In case (80a) and (80d) are simultaneously satisfied, eliminating theCP -violating phaseδ between the
two of them yields

m2
c ≈ −2

(

2m2
sc

2
13 cos 2θ12 +m2

b

[

s212(c
2
13 − s223s

2
13)− c212c

2
23 −

1

2
(c213 − c223 + s223s

2
13) cos 2θ12

])

,

(84)
from which one deduces that very small values ofθ23 andθ13, like observed in the quark sector, are only

compatible withθ12 quasi-maximal:cos 2θ12 ≈ m2
c

2(m2
b−2m2

s)
(θ12 ≈ 44o), which is not the observed value

(θ12 ≈ 13o) of the Cabibbo angle. Consequently, a rather small Cabibboangle can only be achieved if at
least one among the two anglesθ23 andθ13 is not very small. As we saw by summing (80b) and (80c),

this must be the case ofθ13. From (81) and (84), one gets, after neglecting2m
2
s

3(1+s223)
≪ m2

b

3

s223 ≈
4

3
c212 +

m2
c

2m2
b

≈ 4

3
c212 + 4.5 10−2, (85)

which entails in particulars223 ≥ 4.5 10−2 ⇒ θ23 ≥ 12o andc212 ≤ 3
4 ⇒ θ12 ≥ 30o.

To summarize, the only equations that can eventually be simultaneously satisfied are (73a) to (73d). They
lead to CKM angles which are not the ones observed in the quarksector, and which are all fairly large
(exceptθ23 which can go as low as12o).

There are of course other possibilities, which are to be looked for among the solutions (a) to (o) in each
of the two sectors(d, s, b) and(u, c, t).

It is appropriate to consider solution (b) which means global mass-flavor alignment, in one of the two
sectors, first, for example(u, c, t). The only left over constraint from the demanded suppression of extra
FCNC is accordingly (80d), which corresponds toαd = βd (we recall that (80e) and (80f) can never be
satisfied). Only solutions (b), (c), (d), (e), (f), (i), (l),(n) are thus to be considered. They apply to mixing
angles of the(d, s, b) sector, but these can be identified with CKM angle due to the alignment in the
u-type sector. (b) corresponds to global mass-flavor alignment in the(d, s, b) sector, too. (c), (d), (e), (f)
correspond to the CKM matrices represented in (69). They offer no special interest, mixing angles being

0 or π
2 . (i), with θ12 = 0, θ23 = π

2 , yieldscos 2θ13 ≈ − m2
c

2m2
s

which is impossible because it is> 1. (l),

with θ12 =
π
2 = θ23, corresponds tocos 2θ23 = − m2

c

2(m2
b−m2

s)
very small, such thatθ13 is close to maximal.

(n), with θ13 = 0 = θ23, corresponds tocos 2θ12 ≈ − m2
c

2(m2
b−2m2

s)
, such thatθ12 is close to maximal.

Let us then choose global mass-flavor alignment in the(d, s, b) sector. Only (73a), (73b) and (73c) can
then be considered as eventual constraints to suppress extra FCNC, and we shall consider them forδ = 0,
neglectingCP -violation effects. If the 3 of them are realized, we have already seen thatθ13 will be large
55o ≤ θ13 ≤ 66o. Since this is in contradiction with observation, we have torelax at least one of the three
constraints. Since they are not independent, at least 2 of them must be relaxed, otherwise the 3rd would
be automatically satisfied. Keeping only (73b) or only (73c)cannot accommodate for very smallθ13 and
θ23 (see (68)), such that, if one looks for solutions close to reality, it looks appropriate to relax both of
them and only keep (73a), associated with the constraintαu = βu. Among the solutions associated with
the latter, (n) (see (68)) is specially worth investigatingbecause the exact suppression of extra FCNC
corresponds then to vanishingθ23 andθ13. In this case, as we already mentioned, (79a) reduces to the

2-generation constraintcos 2θ12 = 1
2
m2

d
−m2

s

m2
c−m2

u
, which corresponds to a Cabibbo angle close to maximal. A

not fully complete suppression can be thought to possibly accommodate for small values ofθ23 andθ13.

Instead of working on the approximate system (80), let us rather consider the exact one (79) and, more
specifically, (79a) in a realistic situation whenθ23 andθ13 are not strictly vanishing but only very small.
Solution (n) is not, then, exactly satisfied at 1-loop, but itcould be at higher orders. More precisely, let
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us determine which values ofθ12 are compatible with (79a) and realistic values ofθ23 andθ13. (79a)
rewrites (forδ = 0)

1

2

m2
d −m2

s

m2
W

− m2
c −m2

u

m2
W

cos 2θ12 ≈

− m2
c

m2
W

sin 2θ23s13 sin 2θ12 +
(
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)
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+
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2
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)
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T (mt,mW , µ) =
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−17
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−3
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W
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W

(
7
12 − 1

2 ln
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)

−17
4 + 3

2 ln
m2

W

µ2

.

(86)

The expression fortterms is given in (75) and its behaviour asmt grows, which we used in the r.h.s. of
(86), has been given in (76).

The prediction for 2 generations is obtained by putting the r.h.s. of (86) to0, that is, for example, by
settings23 = 0 = s13.

The modulus ofT is larger than1.45 as soon asµ ≥ 10MeV , while m2
c

m2
W

≈ 3.5 10−4. So, we can neglect

2 m2
c

m2
W

s23s13 sin 2θ12 with respect to2Ts23s13 sin 2θ12 is the r.h.s. of (86). As for the terms proportional

to cos 2θ12, s223s
2
13

m2
c

m2
W

≪ s223s
2
13T , such that (86) can be approximated by
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d −m2

s
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− m2
c −m2
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m2
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cos 2θ12 ≈ s213m
2
u − s223m

2
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cos 2θ12

+
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(s213 − s223 − s213s
2
23) cos 2θ12 − sin 2θ23s13 sin 2θ12

)

T (mt,mW , µ). (87)

The vanishing of the l.h.s. of (87) is the condition for no extra FCNC for 2 generations only (see (74)).

Its modulus is always smaller thanm
2
c

m2
W

. So is the modulus of the first term in the r.h.s. of (87). At the

opposite, the modulus ofT is, as we mentioned, larger than1.45 for µ ≥ 10MeV . Accordingly, the
coefficient ofT in (87) should be very small, which writes

∣
∣(s213−s223−s213s223) cos 2θ12−sin 2θ23s13 sin 2θ12

∣
∣ ≈

∣
∣
∣
∣
∣
∣
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u(1+s213)

m2
W

cos 2θ12
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∣
∣
∣
∣
∣
∣

≤ 2 10−4 ≪ 1.

(88)
There are two ways to consider the relation (88):
* the first is to directly plug in the experimental values fors23 and s13 and see whether they corre-
spond to a suitable value of the Cabibbo angleθ12. Experimentally,θ12 ≈ 13o, s13 ≈ Vub ≈ 4.1 10−3,
s23 ≈ Vcb ≈ 42 10−3, such that the l.h.s. of (88) is found approximately equal to1.5 10−3 instead of a
few 10−4. The agreement is far from being good;

* eqs. (76) and (86) show that the l.h.s. of (88) scales, whenmt gets larger and larger, likeλ1
m2

c

m2
t

(
1 + λ2 ln

m2
t

µ2

) ,

and goes accordingly to0 when the hierarchymt

mc
increases. Whenmt gets very largemt ≫ mW , the

CKM angles must therefore satisfy the condition

tan 2θ12 ≈
s213 − s223 − s213s

2
23

s13 sin 2θ23
. (89)

If one plugs in (89) the observed values ofθ12 andθ13, one finds that this corresponds toθ12 ≈ 38o.
Reciprocally, plugging in a realistic value| tan 2θ12| ≈ 1

2 for the Cabibbo angle, one getss13 ≈
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√
5−1
2 tan θ23 ≈ .618 tan θ23. Though the precise values disagree with experiment, they satisfy, as ob-

served,θ13 < θ23.

As we show now, a very heavy top quark tends to drag the value ofthe Cabibbo angle down from quasi-
maximal (which is the prediction for 2 generations) to a smaller value. For that purpose, let us perform
the same study assuming now thatmt ≪ mW , only, for example, slightly heavier than the bottom quark.
Instead of the system (79), eqs. (73) now yield
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2
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Neglectingmd ≪ ms, ms ≪ mb, md ≪ mb, mu ≪ mc, mu ≪ mt and supposing also thatmc ≪ mt,
(90a) approximates to

1

2
(m2

d −m2
s)− (m2

c −m2
u) cos 2θ12 ≈ m2

t

[

(−s213c223 + s223) cos 2θ12 + s13 sin 2θ23 sin 2θ12
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; (91)

the sum of (90b) and (90c) yields
m2

b

m2
t

≈ 1− 3 c213c
2
23; (92)

Eq. (90e) becomes
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and (90f)
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Eqs. (93) and (94) can only be simultaneously verified ifc213 ≈ 1, such thatθ13 ≈ 0. Plugging this

result into (92) requiresc223 ≈ 1
3

(

1− m2
b

m2
t

)

. This entailsθ23 ≥ arccos 1√
3
≈ 54o. Then, (91) yields

1
2(m

2
d − m2

s) = cos 2θ12

[

(m2
c −m2

u) +m2
t

(
2
3 +

m2
b

3m2
t

)]

. Because of the term proportional tom2
t , the

corresponding modulus ofcos 2θ12 gets accordingly smaller than for 2 generations; this corresponds to
a larger Cabibbo angle, thus still closer to maximal. This isthe opposite of what happens when the top
quark gets much heavier than theW . So, as announced, by going across the electroweak scale andgetting
more and more massive, the top quark shifts down the modulus of the 1-loop Cabibbo angle with respect
to the 2-generation case.

7.4 Solving the constraints for 3 generations of leptons

The case that we just investigated, when all fermion masses for 3 generations stand below theW scale
correspondsa priori to the leptonic sector. There, while one knows thatme ≪ mµ ≪ mτ , our knowledge
about the neutrino messes essentially concerns the extremesmallness of their differences [14][7].

This is why all 3 equations (90a), (90b) and (90c), in which the differences of neutrino mass squared
occurring in the r.h.s.’s are always much smaller than the ones of charged leptons occurring in the l.h.s.’s,
can never be satisfied. This leaves only (b), (c), (d), (e) and(f) as possible solutions of (68) for charged
leptons. (b) corresponds to general mass-flavor alignment;in (c) and (e), 1 flavor state is aligned with the
corresponding mass state, while exact swapping, 2 by 2, occurs for the remaining 4 states; for example,,
for (c), ef = em, µf = τm, τf = −µm; in (d) and (f), the 6 states are swapped 2 by 2, with no alignment
for any pair. This corroborates the common, but never demonstrated statement, that charged leptons do
not oscillate [13].

As for equations (90d), (90e) and (90f), the extreme smallness of their l.h.s.’s forces their r.h.s.’s to be
practically vanishing. (90e) and (90f) become respectively

m2
τc

2
13 cos 2θ23 ≈ 0 (95)

and
m2

τ (cos 2θ13 − s223c
2
13) = 0. (96)

Excludingθ13 = ±π
2 , (95) yieldscos 2θ23 = 0 ⇒ θ23 maximal⇒ c223 = 1

2 = s223; when plugged into
(96), this entailstan2 θ13 = c223 = 1

2 ⇒ θ13 ≈ ±35o. One hass13 ≈ ±.577, c13 ≈ .816. When the
numerical values ofs223 andc223 are plugged in (90d), it becomes

[

c212

(
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2
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− 1

2
s212 −

1

2
sin 2θ12s13 cos δ
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+
[
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(
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2
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+
1

2
s212 −

1

2
sin 2θ12s13 cos δ

]

(m2
µ −m2

τ ) = 0. (97)

Neglectingme ≪ mµ, mµ ≪ mτ , the approximate solution of (97) writestan θ12 ≈ −2s13 cos δ
3c213

δ=0≈
∓.577⇒ |θ12| ≈ 30o.

The values that we have found forθ12 andθ23 are very close to the experimental values. We furthermore
predict|θ13| ≈ 35o, which is still to be measured in future experiments.

Before concluding on the neutrino sector, and in relation with the common prejudice thatθ13 is small, let
us check that no other solution among (68) can accommodate for such a small angle. The only one that
could eventually fit is (o). Then, the equivalent of (90f) writes (takingθ23 = π

2 , θ13 ≈ 0)

1

2
(m2

e −m2
τ ) ≈ (c212 − s212)(m

2
νe −m2

νµ), (98)

which, due to the strong hierarchy(m2
τ −m2

e)≫ (m2
νµ
−m2

νe
), has no solution.
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8 Outlook

We have paid in this study special attention to 1-loop transitions and to their role in fermionic mixing.
They spoil the diagonality of kinetic terms which must be, first, cast back into their canonical form before
the mass matrix is re-diagonalized and orthogonal mass eigenstates suitably determined.

A first property that we encountered is that, for non-degenerate systems, bare mass states and 1-loop mass
states are non-unitarily related.

A second property is that the 1-loop mixing matrixC(p2) occurring in charged currents (Cabibbo, PMNS
. . . ) stays unitary atO(g2).
The third point concerns the 1-loop value of the CKM angles, and their equivalent for leptons. The
classical standard model does not provide any hint that could help connecting masses and mixing angles.
Therefore, most investigations have concerned special structures or textures of classical mass matrices
that could eventually be explained by subtle and broken symmetries, the origin of which being itself lying
presumably “beyond the standard model” [15]. To make it short, there are more free parameters than
masses and mixing angles in the classical standard model, and one is looking for constraints that reduce
their number, so as to, ultimately, put masses and mixing in one-to-one correspondence.

The classical SM is like a smooth polished sphere and it is extremely hard to find a defect or asperity to
break in and put it in jeopardy. The diagonalization of classical mass matrix by bi-unitary transformations
is perfectly adequate and kinetic terms keep unchanged since they are chosen from the beginning to be
proportional to the unit matrix. Through the covariant derivative, this form of the kinetic terms dictates
that of gauge currents, in particular neutral currents, forwhich FCNC can only occur at 1-loop with
the so-called “Cabibbo suppression”, “unfortunately” very successful, too. The last cornerstone which
bears this elegant construction is the unitarity of the Cabibbo (CKM) matrix, which ensures, in bare mass
space, the closure of theSU(2)L algebra, when embedded inSU(2nf ) (nf is the number of flavors),
on a diagonalT 3 generator, in which bothnf × nf sub-blocks are proportional to the unit matrix. The
grain of salt that may grip this beautiful machinery is, for example, if kinetic terms are no longer diagonal.
Through gauge invariance and the covariant derivative, neutral gauge currents are then no longer diagonal
either: extra FCNC have been generated, which we know is extremely dangerous because these are very
constrained by experiments. Now, experiments concern physical states, which are defined at the poles of
the full propagator. Since for them the standard CKM phenomenology is perfectly successful, we think
rather unlikely that “something goes wrong” in this space. Getting, there, a suitableSU(2)L algebra
which closes on “good old diagonalT 3” is therefore a suitable goal to achieve. This goes, for example,
with a unitary renormalized CKM matrix. Then, where can things go “wrong”? If not in physical mass
space, maybe in bare mass or flavor space, the two of them beingunitary related. Classically, physical
and bare mass spaces are identical. But they are not at 1-loop. Extra FCNC can be generated in bare mass
space if they are no longer unitarily related with physical states. Since physical states are constructed
to be orthogonal (one diagonalizes the renormalized quadratic Lagrangian), a non-unitary relation with
bare mass states can only occur if the latter are non-orthogonal i.e. if there exists non-diagonal transitions
among them. This is the point that we exploited in this work. Bare mass or flavor states are no longer
orthogonal at 1-loop, and they can never be, because of mass splittings. We show that it is much better, for
the stability of corrections, to introduce counterterms “`a la Shabalin”, but they cannot completely restore
the orthogonality of bare mass states on mass shell, becausethe different mass-shells do not coincide.
So, some trace of non-orthogonality always subsists in thisspace, and thus, a slight non-unitarity in
the connection between physical states and bare mass (or flavor) states always remains, too. Therefore,
in these last bases, some extra FCNC are always generated at 1-loop with respect to the classical SM.
This means in particular that, in there, the gauge structure(generators, closure on niceT 3 . . . ) is not
perturbatively stable. It might be possible to cope with this, but, in this work, we chose to be very
conservative and to perturbatively preserve the structureof the Lagrangian that was chosen at the classical
level. We therefore asked that these extra FCNC vanish or, atleast, be strongly damped. Since they depend
on the classical CKM (or PMNS) angles, on the fermion andW masses (and on one renormalization
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schemeµ), the constraints that we obtained connect these parameters.

Shabalin’s counterterms play a decisive role. They are veryseldom introduced, though they were already
proved to be determinant in the calculation of the electric dipole moment of the quarks [6]. We have
shown that, in their absence, quantum corrections to mixingangle go all the more out of control as
fermions come closer to degeneracy. One then faces technical problems such that results of perturbative
calculations cannot manifestly be trusted. As we explicitly saw in the case of two generations, they
furthermore allow for non-trivial solutions to the suppression of extra FCNC. In their absence, while
mass-flavor quasi-alignment occurs for the fermion pair thefarthest from degeneracy, no special condition
arises concerning the Cabibbo angle. Instead, in their presence, in addition to the trivial, aligned, solution,
quasi-maximal mixing for the fermion pair the closest to degeneracy, associated with mass-flavor quasi-
alignment for the other pair comes out as another suitable possibility. In the case of three generations, we
systematically introduced them, which had also the technical advantage to largely ease the calculations
because they “nearly” cancel non-diagonal kinetic terms.

The results that we obtained in the leptonic sector have the twofold advantage to be quite encouraging
(nice agreement forθ12 andθ23) and also easily falsifiable in coming neutrinos experiments since we also
predict a largeθ13 ≈ 35o. The quark sector looks more problematic. We have been unable to get a small
Cabibbo angle, and the other two CKM angles also come out muchtoo large. The only encouraging point
is the role of a heavy quarkmt ≪ mW which decreases the value of the 1-loopθ12 possibly down to38o.
Unfortunately. this value is still much too large. So, what is happening in the hadronic sector13? The role
of leptons and quarks seem to have been interchanged because, while, previously, the large values of the
neutrino mixing angles were problematic, it is now the smallvalues of the ones of quarks that are hard to
accounted for. One could be tempted to invoke the eventual existence of more super-heavy fermions that
could eventually drag down still more the renormalized mixing angles. But the complexity of calculations
in the presence of extra generations of fermions rises so dramatically that it can only be the object of a
(long and tedious) forthcoming work. More simply, the smallmeasured values could just be thought of as
second order corrections to the trivial solution with general mass-flavor alignment for all quark species.
Unfortunately, 2-loops calculations in the presence of Shabalin’s like counterterms stand at present also
beyond our technical abilities.

Should physics “beyond the standard model” be invoked? Suppose that the leptonicθ13 is measured to be
large≈ 35o as we predict. The conservative conjecture of ours that Shabalin’s counterterms are enough to
cancel extra FCNC with respect to the standard CKM phenomenology looks then reliable and presumably
carries some part of truth. Then, if BSM physics is needed, itis to find a theoretical more sound basis
to this statement. The situation looks different for hadrons, but one should not be too much in a hurry to
invoke BSM physics before calculations of 2-loop corrections have been achieved.

We end up this work by pointing out at some differences with previous approaches of the subject. This
study is based on the mandatory (re)-diagonalization of thesum of kinetic and mass terms to suitably
determine an orthogonal set of mass eigenstates. While thisrequirement is always and simply taken care
of at the classical level by a bi-unitary diagonalization ofthe mass matrix, it is generally overlooked as
soon as radiative corrections are concerned [16] [17] [18] [19] [20]. In particular, only considering self-
mass contributions to determine the renormalized mass states from the renormalized mass matrix exposes
to the problem that they are not orthogonal since there stillexist kinetic-like transitions between them.
We show that the re-diagonalization of kinetic terms can have important effects.
* First, and this is not a new result [8] [9] [10] [11] but we confirm it, bare mass (or flavor) states are non-
unitarily related to 1-loop mass eigenstates for non-degenerate systems. It turns out however, that, unlike
individual mixing matrices, the 1-loop Cabibbo matrixC(p2) occurring in charged currents stays unitary
(see however the caveat in appendix A.1). It is a consequenceof gauge invariance, which in particular
connects, through the covariant derivative of fermion fields, kinetic terms to gauge currents, both at the
classical level and including radiative corrections. The expression of the 1-loop Cabibbo matrixC(p2)

13A solution has been proposed in [16] in which, in the quark sector, (d, s) and(u, c) mixing angles largely cancel each other
while, in the lepton sector, the opposite occurs.
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is thus directly dictated by that of the 1-loop kinetic terms, which is one more reason to pay a special
attention to them;
* then, by a cascade of mechanisms, mixing angles close to maximal naturally appear if one wants to
preserve the standard CKM phenomenology.

We hope to have convinced the reader that a reasonable argumentation exists that can account for large
mixing angles by linking them with small mass splittings without invoking BSM physics from the start.
If explaining both leptonic and hadronic sectors still remains a challenge, at least 2 among the 3 neutrino
mixing angles come out with magnitudes which are close to their measured values. Future lies accord-
ingly in the hands and both experimentalists and theorists,the first, in p[[articular, to measure the leptonic
θ13, and the second to estimate higher order corrections to mass-flavor quasi-alignment of quarks and see
whether their can account for the smallness of the CKM angles.

Acknowledgments: It is a pleasure to thank M.I. Vysotsky for comments and advice.

A The dependence onp2. Canceling transitions between non-degenerate
physical states

A.1 Non-orthogonality of non-degenerate physical states

Eqs. (10), (11), (12), (13), which we obtained in the absenceof Shabalin’s counterterms, are only valid
whenp2 ≪ m2

W , but it must kept in mind that all formuæ depend onp2, even though this dependence
becomes very weak whenp2 ≪ m2

W .

At the price, when no counterterms are introduced, of a high instability in the vicinity of degeneracy (see
subsection 5.1) the Cabibbo procedure can be rescued and ap2-dependent, unitary renormalized Cabibbo
matrix C(p2, . . .) be defined. The 1-loop effective Lagrangian is made diagonal(see section 2) in the
basisdmL(p

2, . . .), smL(p
2, . . .), in whichpµ stands for the common 4-momentum ofd ands (see Fig. 2).

This means that there exist no more non-diagonal transitions between them, such thatdmL(p
2, . . .) and

smL(p
2, . . .) are, by definition, orthogonal at 1-loop. However, as soon asa mass splitting exists, both

cannot be simultaneously on mass-shell and the physical fermions

dphysmL ≡ dmL

(
p2 = µ2

d(p
2)
)
= [(VdR(ξd))−1]11

(
p2 = µ2

d(p
2)
)
d0mL + [(VdR(ξd))−1]12

(
p2 = µ2

d(p
2)
)
s0mL,

sphysmL ≡ smL

(
p2 = µ2

s(p
2)
)
= [(VdR(ξd))−1]21

(
p2 = µ2

s(p
2)
)
d0mL + [(VdR(ξd))−1]22

(
p2 = µ2

s(p
2)
)
s0mL,
(99)

which belong to two different sets of orthogonal states, arethemselves expected to be non-orthogonal.
So, unless subtle cancellations take place, non-diagonal transitions are expected to occur among them,
which is akin to saying that the 1-loop Lagrangian, despite it has been built by diagonalization, is itself
not diagonal when re-expressed in terms physical non-degenerate eigenstates. At the same time, unlike
C(p2) in (38), which is defined for an overall globalp2, the “on mass-shell” Cabibbo matrix is expected
to exhibit some slight non-unitarity [9] [10] [11].

More specifically, the 1-loop quadratic effective Lagrangian (kinetic and mass terms) can be generically
rewritten in the basis of physical eigenstates
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+ . . . (100)

Indeed, combined with (23) which relates bare mass states to1-loop mass eigenstates, (99) entails that
the coefficients of the linear relation between the latter and physical states are functions of(p2, . . .).
Hermiticity requires the (supposedly real and presumablyO(g2)) quantitiesg2, g3, σ2, σ3, ρ2, ρ3 to satisfy
the relationsg3 = g2, ρ2 = σ3, ρ3 = σ2. Furthermore, since right-handed fermions are not concerned by
1-loop transitions,(1 + γ5)dphysm = (1 + γ5)d0m and(1 + γ5)sphysm = (1 + γ5)s0m.

A.2 Recovering orthogonality on mass-shell

Whether Shabalin’s counterterms are included or not, the same technique of diagonalizing the effective,
p2-dependent, quadratic Lagrangian yields by definition orthogonal 1-loop mass eigenstatesdm(p2), sm(p2),
which are however not the physical states. Therefore, an argumentation similar to the one used, in the
absence of counterterms, in subsection A.1, can be invoked in their presence: non-diagonal transitions
between physical mass eigenstates at 1-loop are expected tooccur, and, when expressed in terms of them,
the effective Lagrangian at 1-loop is expected to also be of the form (100).

When classical physical states (which are nothing more thanbare mass states) and 1-loop physical states
do not drastically differ (for example would they differ by perturbative amounts), one expects the non-
diagonal “scalar products” not to be drastically differenteither within the two sets. This cannot be guar-
anteed in the absence of Shabalin’s counterterms because ofthe non-perturbative nature of the link that
occurs, then, between the two sets. In their presence, instead, they only differ by “small amounts” and the
above property is expected to be true: since non-diagonal transitions between bare mass states are, then,
canceled atO(g2), this is certainly also true among 1-loop physical states.

Higher order non-diagonal transitions that still exist, inthe presence of Shabalin’s counterterms, between
on mass-shell 1-loopsmL(p

2) anddmL(p
2) can always be canceled by another set of counterterms. This

is shown in subsection A.3 below. However, being presumablyof order higher thang2, they should only
be introduced in the framework of a 2-loop calculation, which is out of the scope of the present work.

A.3 Expression of the additional counterterms in the basis of physical states

From any Lagrangian of the form (100), on-diagonal,p2-dependent transitions between on mass-shell
fermions, likeµ ↔ e are expected This can be embarrassing since defining on mass-shell muon and
electron as asymptotic states seems then problematic. Theycan however be themselves canceled by
introducing counterterms, as follows. But for the fact thatwe are now working in the space of physical
states, the procedure is formally similar to the one used in [6] to determine Shabalin’s counterterms,
which we recalled in section 5.2 (see also [10], appendix A).Canceling, for example, (on mass-shells)
→ (on mass-shelld) transitions can be done by adding to (100) four kinetic and mass-like counterterms,
concerning both chiralities of fermions:

−Ad d
phys
m /p(1− γ5)sphysm −Bd dphysm (1− γ5)sphysm −Ed dphysm /p(1 + γ5)sphysm −Dd d

phys
m (1+ γ5)sphysm .

(101)
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Sincesphysm is on mass-shell, one gets the condition (we call respectively µs andµd the 1-loop physical
masses ofs andd, that is, the square roots of the values ofp2 solutions ofp2 = µ2

s(p
2) andp2 = µ2

d(p
2)

(see subsection 2.4.2))

g2(µ
2
s) d

phys
m (1 + γ5)µs s

phys
m − ρ2(µ

2
s) d

phys
m (1 + γ5)sphysm − σ2(µ

2
s) d

phys
m (1− γ5)sphysm

= Ad d
phys
m (1 + γ5)µss

phys
m + Bd dphysm (1− γ5)sphysm + Ed dphysm (1− γ5)µss

phys
m +Dd d

phys
m (1 + γ5)sphysm ,

(102)

and sincedphysm is also on mass-shell,

g2(µ
2
d) d

phys
m (1− γ5)µd s

phys
m − ρ2(µ

2
d) d

phys
m (1 + γ5)sphysm − σ2(µ

2
d) d

phys
m (1− γ5)sphysm

= Ad d
phys
m (1− γ5)µds

phys
m + Bd dphysm (1− γ5)sphysm + Ed dphysm (1 + γ5)µds

phys
m +Dd d

phys
m (1 + γ5)sphysm .

(103)

Equating the terms with identical chiralities in (102) and (103) yields the four equations

µs g2(µ
2
s)− ρ2(µ

2
s) = µsAd +Dd,

−σ2(µ2
s) = µsEd + Bd,

µd g2(µ
2
d)− σ2(µ

2
d) = µdAd + Bd,

−ρ2(µ2
d) = µdEd +Dd, (104)

which have theO(g2) solutions

Ad =
µ2
s g2(µ

2
s)− µ2

d g2(µ
2
d) + µs

(
ρ2(µ

2
d)− ρ2(µ

2
s)
)
− µd

(
σ2(µ

2
s)− σ2(µ

2
d)
)

µ2
s − µ2

d

,

Ed =
µdµs

(
g2(µ

2
s)− g2(µ

2
d)
)
+ µd

(
ρ2(µ

2
d)− ρ2(µ

2
s)
)
− µs

(
σ2(µ

2
s)− σ2(µ

2
d)
)

µ2
s − µ2

d

,

Bd = −σ2(µ2
s)− µsEd,

Dd = −ρ2(µ2
d)− µdEd. (105)

Likewise, four counterterms̃Ad, Ẽd, B̃d, D̃d can get rid of the on mass-shelldphysm → sphysm transitions.
Hermiticity (see above) constrains them to satisfyÃd = Ad, Ẽd = Ed, B̃d = Dd, D̃d = Bd. Similar
additions can be done in the(u, c) sector.

As emphasized at the end of subsection A.2, when Shabalin’s counterterms are already present, the addi-
tional counterterms invoked here are presumably of higher order ing.
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