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Abstract 

 

Bipolar disorder (BD) is one of the most common and persistent psychiatric disorders. Early-

onset BD has been shown to be the most severe and familial form. We recently carried out a 

whole-genome linkage analysis on sib-pairs affected by early-onset BD and showed that the 

20p12 region was more frequently shared in our families than expected by chance. The 

synaptosomal associated protein SNAP25 is a presynaptic plasma membrane protein essential 

for the triggering of vesicular fusion and neurotransmitter release, and for which abnormal 

protein levels have been reported in postmortem studies of bipolar patients. We hypothesised 

that variations in the gene encoding SNAP25, located on chromosome 20p12, might influence 

the susceptibility to early-onset BD.  

We screened SNAP25 for mutations and performed a case-control association study in 197 

patients with early-onset BD, 202 patients with late-onset BD and 136 unaffected subjects. In 

addition, we analysed the expression level of the two SNAP25 isoforms in 60 brains. We 

showed that one variant, located in the promoter region, was associated with early-onset BD but 

not with the late-onset subgroup. In addition, individuals homozygous for this variant showed a 

significant higher SNAP25b expression level in prefrontal cortex. 

These results show that variations in SNAP25, associated with an increased gene expression 

level in prefrontal cortex, might predispose to early-onset BD. Further analyses of this gene, as 

well as analysis of genes encoding for the SNAP25 protein partners, are required to understand 

the impact of such molecular mechanisms in BD. 
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Introduction 

Bipolar disorder (BD) affects 1 to 5% of the general population and is one of the most severe 

and frequent psychiatric disorders. It is characterised by alternating episodes of major 

depression and elevated mood (hypo or manic episodes).1 Twin, family and adoption studies 

have suggested that genetic factors play a major role in BD, but no causal mutation has yet 

been identified.2 The identification of susceptibility genes has been hampered by a lack of 

consensus concerning the most valid phenotype to investigate and by the unknown genetic 

validity of the classical clinical classifications. In order to disentangle the genetic and clinical 

heterogeneity of the disorder, a clinical approach based on candidate symptoms has been 

proposed.3 Age at onset (i.e. age at the first mood episode) is one of the most relevant 

indicators to identify homogeneous subgroups that may reduce the underlying genetic 

heterogeneity. Three age at onset (AAO) subgroups have been identified for BD4-6 and there is 

strong evidence showing that genetic factors make a greater contribution to the disease in the 

early-onset subgroup than in the other subgroups.7  

 

We recently carried out a whole-genome linkage analysis in early-onset BD sib-pairs, and 

identified six regions with a suggestive multipoint non-parametric lod-score.8 These regions 

included the 20p12 region, already reported by three independent studies to contain a gene 

conferring susceptibility to BD.9-11 The gene encoding the synaptosomal-associated protein of 

25 kDa (SNAP25) is located in this region.  

 

Several arguments suggest that SNAP25 is a strong candidate gene for BD. First, SNAP25 is a 

presynaptic plasma membrane protein essential for the triggering of vesicular fusion and 

neurotransmitter release.12, 13 Second, postmortem studies have shown modifications of 

SNAP25 protein levels in some brain regions of bipolar patients.14, 15 Third, SNAP25 gene has 
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been widely associated with attention deficit hyperactivity disorder (ADHD), which is known to 

share genetic susceptibility with early-onset BD.16-18 

 

We analysed SNAP25 as a candidate gene for susceptibility to bipolar disorder and, more 

specifically, to early-onset BD. We screened this gene for mutations and performed a case-

control association study taking into account the age at onset of the disease. Finally, we 

analysed the influence of associated susceptibility alleles on the expression level of SNAP25 in 

human prefrontal cortices. 

 

Material and methods 

Subjects 

Patients meeting DSM-IV criteria1 for type I or II bipolar disorder consecutively admitted to three 

French university-affiliated psychiatry departments (Paris-Créteil, Bordeaux and Nancy) were 

interviewed by trained psychiatrists, using the French version of the Diagnostic Interview for 

Genetic Studies (DIGS version 3.0)19. All patients were normothymic at inclusion (i.e. having a 

Montgomery-Asberg Depression Rating Scale20 score and a Mania Rating Scale21 score of no 

more than five). The healthy controls were recruited from blood donors at the Pitié-Salpêtrière 

and Henri Mondor Hospitals (France). Controls were interviewed with the DIGS, and asked 

about family history of psychiatric disorders, using the National Institute for Mental Health 

Family Interview for Genetic Studies22. Only controls, with no personal history of psychiatric 

disorders and no family history (first-degree) of affective disorders or suicidal behaviour, were 

included. All patients and controls were of French descent, with at least three grandparents from 

mainland France. The Research Ethics Board of Pitié-Salpêtrière Hospital reviewed and 

approved this study. Written informed consent was obtained from all participating subjects.  
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Definition of age-at-onset of bipolar disorder 

For association studies, AAO of bipolar disorder was defined as the age at which the first mood 

episode (depressive, manic or hypomanic) occurred, as determined by reviewing medical case 

notes and information obtained with the DIGS. The threshold for early-onset BD (AAO before 

the age of 22 years) was chosen on the basis of previous admixture analyses, this threshold 

being defined in four independent samples.4-6, 23 These studies identified three AAO subgroups: 

early, intermediate and late onset. In order to have comparable sample size in different 

subgroups and according to genetic homogeneity,24 intermediate- and late-onset samples were 

pooled into a single subgroup, referred to as the “late-onset” subgroup, and compared to early-

onset patients. 

 

Brain samples 

RNA, cDNA and DNA from 30 individuals affected with bipolar disorder and 30 unaffected 

control subjects were donated by the Stanley Medical Research Institute, as part of the Array 

Collection that consisted of samples from the dorsolateral prefrontal cortex (Brodmann’s area 

46).25 Diagnoses were made according to the Diagnostic and Statistical Manual of Mental 

Disorders, Fourth Edition.1 A summary of the demographic and clinical information of subjects 

used in this study is described in Table S1. The samples were coded and genotypes and 

disease-status were known only after expression analyses.  

 

Mutation screening and genotyping 

Genomic DNA was isolated from blood lymphocytes or B-lymphoblastoid cell lines from 

independent cases and controls, using the Nucleon BACC3 kit (GE HealthCare, Chalfont St 

Giles, UK). We first sequenced the whole SNAP25 genomic region (8 coding exons including 

one alternative splicing exon, one 5’-untranslated exon, flanking intronic regions and 1,400 bp 

upstream from the transcription start site) in 31 individuals with early-onset bipolar disorder, to 
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identify informative single nucleotide polymorphisms (SNPs) in the SNAP25 gene and to avoid 

ascertainment bias in the choice of markers to be tested. All the primers used for polymerase 

chain reaction (PCR) amplification and sequence analysis are available on request. The 

sequence of the SNAP25 gene was analyzed by direct sequencing of the PCR products, using 

the BigDye® terminator v3.1 cycle sequencing kit and a 16-Capillary ABI PRISM® 3100 Genetic 

Analyser (Applied Biosystems, Foster City, CA, USA). We used polymorphisms with a minor 

allele frequency (MAF) greater than 0.05 to convert unphased genotypic data into haplotypes, 

using the accelerated expectation maximisation algorithm implemented in Haploview v3.32.26 

We evaluated the accuracy of the this algorithm, by carrying out haplotype reconstruction in 

parallel, using the Bayesian statistical method implemented in Phase v.2.1.1.27 Equivalent 

results were obtained with both methods, with high levels of statistical support for all haplotypes. 

We defined the minimum number of SNPs accounting for the largest proportion of haplotypic 

diversity, using Haploview v3.32. Seven haplotype-tagging SNPs (htSNPs) were then selected 

for the genotyping of the entire panel of 545 individuals. DNA samples were genotyped by 

TaqMan® SNP genotyping assays on a 7000 Real-Time PCR system (Applied Biosystems). 

Probes were either obtained from commercial sources (SNP4, SNP6, SNP8, SNP12 and 

SNP15) or were custom-made (SNP1 and SNP14, Applied Biosystems).  

 

Quantitative real-time PCR 

Expression levels of the two isoforms of SNAP25 were determined using TaqMan® gene 

expression assays (Applied Biosystems), with probes specifically hybridising SNAP25a 

(Hs00938959_m1) and SNAP25b (Hs00938964_m1). Normalisation was performed using an 

endogenous housekeeping gene encoding the human β-actin (ACTB), with limited primers 

(Applied Biosystems). PCR reaction were performed in a final volume of 20 µl, containing 2.5 ng 

of cDNA, 1X of probe and 1X of TaqMan Universal Mastermix  (Applied Biosystems), and run in 

a Mastercycler® ep realplex2S (Eppendorf, Hamburg, Germany). PCR cycle parameters were 
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50°C for 2 min, 95°C for 10 min, 60 cycles of 95°C for 15 s and 60°C for 1 min. Common 

threshold fluorescence for all the samples was set into the exponential phase of the 

amplification and determined the CT, corresponding to the number of amplification cycles 

needed to reach this threshold. All reactions were performed in triplicate and the mean value of 

CT was used for subsequent analysis. Relative gene expression quantification was performed 

using the 2-ΔΔC
T method.28 For the calibrator, first strand cDNA was generated from 1 µg of 

human brain total RNA (Clontech Laboratories Inc., Mountain View, CA, USA) using random 

hexamers and 200 U of SuperScript III reverse transcriptase (Invitrogen Corporation, Carlsbad, 

CA, USA) in a final reaction volume of 20 µl. The cDNA was treated with 10 U of ribonuclease H 

(Invitrogen) to remove bound RNA template and diluted to 1/25.  

 

Statistical analyses 

Statistical testing for allelic, genotypic and haplotypic associations was carried out with PLINK 

v0.99p software (Shaun Purcell et al, the Center for Human Genetic Research, Massachusetts 

General Hospital, http://pngu.mgh.harvard.edu/~purcell/plink/index.shtml). We used the --hap-

window options to specify all haplotypes in sliding windows of a fixed number of SNPs, varying 

from two to seven and shifting by one SNP at a time. Haplotype frequencies were obtained by 

summing the fractional likelihoods of each individual having each haplotype. We tested for case-

control haplotype-specific association, using haplotype-specific tests with one degree of 

freedom. Analyses of variance (ANOVA) were carried out with StatView v5.0 software (SAS 

Institute Inc., Cary, North Carolina, USA), to analyse the relationship between age at onset and 

genotype as well as the mRNA expression level. A potential correlation between SNAP25a and 

SNAP25b expression levels and age, postmortem interval (PMI), refrigerator interval (RI) and 

brain pH has been tested using Spearman’s rank correlation test in cases and controls. 
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Results 

Mutation screening 

Direct sequencing of samples from 31 patients with early-onset BD led to the detection of one 

synonymous and fourteen non-coding variants (Table S2 and Figure 1). Three of these variants 

(SNP1-3) were located in the promoter region, one in exon 6 (SNP9), seven in introns flanking 

coding exons, and 3 in the 3’UTR (SNP13-15). Ten of these 15 SNPs had a MAF higher than 

0.05. We identified htSNPs by calculating the linkage disequilibrium between SNPs. Two 

linkage disequilibrium blocks had r2 values>0.8 (SNP6, SNP9 and SNP10, and SNP13 and 

SNP15), resulting in the definition of seven htSNPs (see Table S2 and Figure 1). Three amino-

acid changes were reported in public databases, in exons 2, 5a and 6. We therefore screened 

these exons for mutations in an additional sample of 78 individuals (43 early-onset BD and 35 

late-onset BD). No amino-acid change was observed in these individuals.  

 

Association study  

The seven htSNPs (SNP1, SNP4, SNP6, SNP8, SNP12, SNP14 and SNP15) were tested for 

association with BD subgroups. All SNPs were in Hardy-Weinberg equilibrium in control 

populations. One of the seven SNPs (SNP14) was not in Hardy-Weinberg equilibrium in 

affected subjects (p=0.017). Patients with early-onset (N=197) and late-onset (N=202) bipolar 

disorder were compared with unaffected individuals (N=136) in case-control studies (Table S3). 

Allele distribution for SNP4 and for SNP12 differed significantly between the early-onset and 

control groups (p=0.005 and p=0.04, respectively) (Table 1), whereas no association was 

observed in the late-onset subgroup (p=0.22 and p=0.63, respectively) (Table S4). For SNP4, 

the result remained significant in early-onset subgroup after correction for multiple testing 

(corrected empirical p-value for 100,000 permutations pc=0.03). Significant genotypic 

association was observed only for SNP4 (p=0.017), for which the ‘CC’ genotype was more 

frequent in early-onset cases (51%) than in controls (39%). Although not significant, a weak 
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difference was observed for allele frequencies of SNP4 between subjects affected with early-

onset and those affected with late-onset bipolar disorder (p=0.08). We also carried out an 

overall one-way ANOVA for the whole sample of BD patients, and found significant differences 

in mean AAO as a function of SNP4 genotype (F=3.371; Df=2; p=0.035) (Figure 2). 

 

We carried out a haplotype analysis for the early-onset subgroup, using two- to seven-marker 

haplotype windows, which we slid along the SNAP25 gene in a 5’ → 3’ direction. Several 

haplotypes gave significant p-values (not shown). The most significant association was obtained 

for a four-marker haplotype window (SNP1-SNP4-SNP6-SNP8 ‘GAAA’ haplotype, p=0.002, 

Table 2).  

 

Population stratification 

Our control population was ethnically matched to the cases, and we expected only moderate 

stratification for our population. Nonetheless, we assessed the risk of false positive results due 

to population stratification, by genotyping 15 unlinked genetic markers randomly distributed in 

the genome and with allele frequencies similar to those of SNP4 or SNP12 (Table S5). The 

mean χ2 value (µ) across these 15 loci, representing the level of stratification,29 was 1.17 

(p=0.28), suggesting that the two groups were not genetically different. After direct quantitative 

correction for stratification, the differences between our cases and controls remained significant 

for SNP4 (p=0.009), and were marginal for SNP12 (p=0.06). Thus, population stratification is 

unlikely to account for the observed association between SNAP25 polymorphisms and early-

onset bipolar disorder.  

 

Expression analysis 
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The SNAP25 promoter region has been previously defined to span 2073 bp upstream to the 

transcription start site,30 including the SNP4. In order to determine whether this SNP may affect 

the mRNA expression in patients’ brains, we analysed the transcript level of the two isoforms of 

SNAP25, SNPA25a and SNAP25b, in the prefrontal cortex of patients affected with bipolar 

disorder (N=30) and unaffected control individuals (n=30). The allelic and genotypic frequencies 

of SNP4 were similar in the brain sample and in our populations, for both affected and 

unaffected subjects (pexact=0.32 and pexact=0.83, respectively for genotypic distributions), 

showing a higher frequency of the ‘CC’ genotype in patients than in controls (Table S6). The 

expression level of SNAP25b was higher in individuals homozygous for the ‘C’ allele of SNP4, 

as compared to those carrying either ‘AA’ or ‘CA’ genotypes (one-way ANOVA, F=4.61; Df=1; 

p=0.04), whereas no significant difference was observed for SNAP25a (one-way ANOVA, 

F=2.17; Df=1; p=0.15), nor for the SNAP25b:SNAP25a ratio (one-way ANOVA, F=1.50; Df=1; 

p=0.23). We performed a similar analysis taking into account the disease status (affected or 

unaffected) in a multivariate model, and showed that the influence of genotypes on the mRNA 

expression level of SNAP25b in prefrontal cortex remained significant (two-way ANOVA, 

F=4.19; Df=1; p=0.045) (Figure 3). In this analysis, neither an effect of the disease status 

(p=0.21) nor an interaction between the genotype and the disease status (p=0.87) was 

observed. Since our genetic results showed a significant increase of the SNP4 ‘CC’ genotype 

only in patients with early-onset BD, we carried out a secondary analysis to compare the three 

diagnostic groups (controls, late-onset BD and early-onset BD). We did not find any significant 

influence of these subgroups on the expression level of SNAP25a and SNPA25b (one-way 

ANOVA, FSNAP25a=0.99; DfSNAP25a=2; pSNAP25a=0.38, and FSNAP25b=0.95; DfSNAP25b=2; 

pSNAP25b=0.39), although the small sample size hampered the interpretation of these results. A 

previous study reported a significant increase of SNAP25 and syntaxin interaction in subjects 

who died by suicide.31 Thus, we carried out an additional analysis taking into account the 

suicide status of subjects. However, no significant effect of suicide status was observed on this 
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sample (Sudent’s t-test, pSNAP25a=0.58 and pSNAP25b=0.36). Finally, no significant correlation was 

detected between SNAP25a and SNAP25b expression levels and age, PMI, RI, and brain pH 

(data not shown). Altogether, these results showed that the SNAP25b expression level was only 

dependent on the subjects’ SNP4 genotype. 

 

Discussion 

We provide here evidence for an association between early-onset BD and a SNP located in the 

promoter region of the SNAP25 gene. This association was not observed when considering 

late-onset BD, suggesting that this susceptibility variant might play a predominant role only in 

the early-onset subgroup of patients. These results are consistent with those of our previous 

genome-wide scan for early-onset BD,8 and strengthened by three other genome-wide scans 

reporting linkage on chromosome 20p12.9-11  

The SNP, for which the highest significant association was observed (SNP4), is located in a 

CpG island, spanning the promoter region of the gene, and may affect the transcription level of 

SNAP25. Using quantitative RT-PCR analysis on brain samples, we showed that individuals 

with ‘CC’ genotype showed a significant increase in mRNA level of the major isoform of 

SNAP25 (SNAP25b) in prefrontal cortex. These results are consistent with the significant 

increase in SNAP25 protein level previously reported in Brodmann’s area 9 (dorsolateral 

prefrontal cortex) in patients with BD,15 since cellular and animal studies showed that variations 

in mRNA levels of SNAP25 correspond to equivalent variation in protein levels.32, 33 

The SNP4 is located between two AP-1 consensus-binding sequences in a region that 

contribute to the repression of the SNAP25 transcription by binding of POU4F2 (also called Brn-

3b).30, 34 This protein is a member of the POU (Pict-Oct-Unc) transcription factor family that play 

a critical role in the development of the mammalian nervous system and for which an over-

expression results in a failure of SNAP25 activation and neurite outgrowth.35 Thus, SNP4 might 

result in a modification in the binding affinity of a transcriptional factor, such as POU4F2, leading 
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to the increase of SNAP25b expression level that we observed in prefrontal cortex of 

homozygous subjects for the ‘C’ allele of SNP4.  

In mice, SNAP25 is regulated during brain growth and synaptogenesis at the level of expression 

and by alternative splicing between tandem exon 5.36 This results in a developmental switch 

between 1 and 3 weeks of age from expression of predominantly SNAP25a to SNAP25b 

transcripts that ultimately constitute more than 80% of SNAP25 mRNA in mouse adult brain. 

These two isoforms diverge only for 9 amino acids in a domain involved in membrane 

association and disassembly, after exocytosis, of the soluble N-ethylmaleimide-sensitive factor 

attachment protein receptor (SNARE) complex.37-39 In individuals homozygous for the ‘C’ allele, 

we observed that only SNAP25b is significantly increased. Interestingly, in absence of this 

isoform, 75% of mice die before five weeks of age and surviving animals present alteration in 

synaptic maturation as well as deficit in synaptic transmission.40 In addition, over expression of 

SNAP25 in cultured hippocampal neurons resulted also in impaired synaptic transmission.41 

Altogether, these results suggest that an increased SNAP25b level might impair synaptic 

maturation or neurotransmission, which in turns might influence either the risk of developing BD 

or the age at onset in vulnerable individuals. This increase might also reflect an abnormal switch 

of SNAP25a to SNAP25b during adolescence, consistent with the well-documented increase of 

the susceptibility to BD during and after puberty. 

There is compelling evidence demonstrating abnormal serotonergic, dopaminergic and 

noradrenergic neurotransmission in BD.42 Theses abnormal patterns of neurotransmission may 

be underpinned by abnormal exocytosis phenomena and thus linked to SNAP25 dysfunction, 

since this protein play a crucial role in vesicle docking and exocytosis. Interestingly, coloboma 

mice have a 2 cM deletion on chromosome 2, including the SNAP25 gene.32 Raber et al. 

studied the release of several neurotransmitters in heterozygous mice (Cm/+), expressing 50% 

of the SNAP25 protein level, and showed that depolarisation failed to induce dopamine release 

and induced significantly lower than normal amounts of serotonin from the dorsal striatum.12 
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These results were recently confirmed by Fortin et al., who showed that SNAP25 was required 

for dopamine release from rat neurons in culture.43 Therefore, polymorphisms in the SNAP25 

gene may influence the susceptibility to BD through the modification of one or several 

monoaminergic neurotransmission systems in specific brain areas. Further experiments are 

required to determine which neurotransmission systems are specifically altered in early-onset 

BD patients, carrying the SNAP25 susceptibility allele. 

Polymorphisms in the SNAP25 gene have been shown to be associated with ADHD.16, 44-46 A 

high comorbidity has been reported between ADHD and BD, more specifically with early-onset 

BD.47 Therefore, our results suggest that SNAP25 might be a common susceptibility factors for 

these psychiatric disorders. These data are strengthened by the recent results obtained by Kim 

et al., showing that comorbidity with major depressive disorder may enhance detection of the 

association between SNAP25 and ADHD.48 Further association studies on clinically well-defined 

populations will be necessary to determine how these different phenotypes are influenced by 

the same gene.  

 

In conclusion, we report here an association between early-onset BD and the -523C/A variant of 

the SNAP25 gene promoter, as well as an association between this polymorphism and the 

expression level of SNAP25b isoform in human prefrontal cortex. This raises the hypothesis that 

the SNAP25b expression level in prefrontal cortex, which strongly influences neurotransmitter 

release, might modify the risk to develop an early-onset BD. These results require confirmation 

in larger samples to identify more functional variants accounting for the pathophysiology of BD. 

Furthermore, functional explorations of SNAP25 in bipolar patients and animal models will be 

necessary to explore, in more details, the role of variations in this gene in bipolar disorder and 

other psychiatric disorders.  
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TABLES 

 

Table 1 Association study between subjects affected with early-onset bipolar disorder (N=197) and 

healthy controls (N=136) 

SNP Minor allele 

Allele frequency 

in affected 

individuals 

Allele frequency 

in unaffected 

controls 

χ2 p value Odds ratio

SNP1 T 0.12 0.11 0.09 0.767 1.08 

SNP4 A 0.29 0.39 7.96 0.005 0.62 

SNP6 T 0.06 0.04 1.20 0.274 1.50 

SNP8 C 0.52 0.47 1.46 0.226 1.21 

SNP12 A 0.19 0.13 4.22 0.040 1.57 

SNP14 C 0.25 0.21 1.36 0.244 1.25 

SNP15 T 0.37 0.38 0.05 0.817 0.96 
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 Table 2 SNP at-risk haplotypes in early-onset BD as compared to healthy controls 
S

N
P

1 

S
N

P
4 

S
N

P
6 

S
N

P
8 

S
N

P
12
 

S
N

P
14
 

S
N

P
15
 

Allele frequency 

in affected 

individuals 

Allele frequency in 

unaffected 

controls 

p value 

G A A A    0.19 0.30 0.002 

 A A A G   0.16 0.24 0.004 

  A C A C  0.07 0.04 0.06 

   C A C C 0.07 0.03 0.04 
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 FIGURE LEGENDS 

 

Figure 1. Genomic structure of the SNAP25 gene and localisation of SNPs identified by 

sequence analysis. Grey arrows correspond to SNPs with MAF<0.05. Black arrows 

correspond to SNPs with MAF>0.05. Two blocks of linkage disequilibrium (r2>0.8, black 

squares) were identified with Haploview v3.32 software, defining 7 htSNPs (underlined). 

 

Figure 2. Mean age of first mood episode according to SNP4 genotype in the affected 

population. (ANOVA, F=3.371; Df=2; p=0.035). Error bars correspond to ±1 standard error. 

AAO, age at onset. ** p<0.01. 

 

Figure 3. Average level of SNAP25 isoform mRNA expression in prefrontal cortex of 

individuals affected with bipolar disorder and unaffected controls, according to SNP4 

genotypes. Data are expressed as a mean value of relative mRNA expression level of 

SNAP25a (A), SNAP25b (B) and SNAP25b:SNAP25a ratio (C). AA and AC genotypes were 

pooled and compared to CC genotype in respect to genotypic data observed in the association 

study. No significant difference was observed between bipolar patients (black bars) and 

unaffected controls (white bars) for none of the SNAP25 isoforms. A significant difference was 

observed for SNAP25b between individuals homozygous for the C allele as compared to those 

carrying allele A (ANOVA, F=4.61; Df=1; p=0.04). Error bars correspond to ±1 standard error. * 

p<0.05. 
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