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We report experiments on gravity-capillary wave turbulence on the surface of a fluid. The wave
amplitudes are measured simultaneously in time and space using an optical method. The full
space-time power spectrum shows that the wave energy is localized on several branches in the wave-
vector-frequency space. The number of branches depend on the power injected within the waves. The
measurement of the nonlinear dispersion relation is found to be well described by a law suggesting
that the energy transfer mechanisms involved in wave turbulence are not only restricted to purely
resonant interaction between nonlinear waves. The power-law scaling of the spatial spectrum and
the probability distribution of the wave amplitudes at a given wave number are also measured and
compared to the theoretical predictions.

PACS numbers: 47.35.-i,05.45.-a,47.52.+j

Wave turbulence concerns the study of the statistical
and dynamical properties of a set of numerous nonlin-
ear interacting waves. It is an ubiquitous phenomenon
observed in various situations from spin waves in solids,
internal or surface waves in oceanography up to plasma
waves in astrophysics (for recent reviews see [1, 2]). Wave
turbulence theory, also called weak turbulence, predicts
a wave energy cascade through the scales that can be
derived analytically in nearly all fields of physics involv-
ing weakly nonlinear interacting waves in infinite systems
[3]. However, few well-controled laboratory experiments
have been performed so far, and show partial agreement
with the theory [1, 2]. While most in situ or laboratory
measurements involve time signals at a fixed location,
theoretical predictions often concern the Fourier space.
An important challenge is thus to get a space-time mea-
surement of the turbulent wave amplitudes (as recently
achieved for elastic wave turbulence [4]), and thus to have
a better understanding of the elementary dynamical pro-
cesses involved in the energy cascade. Concerning wave
turbulence on a fluid, previous results involve either 2D
spatial measurements but not resolved in time (oceanog-
raphy [5] and laboratory experiments [8]) or resolved
in time but restricted to 1D space [6, 7]. Here, we inves-
tigate 2D spatial and temporal statistics of wave turbu-
lence on the surface of a fluid by using an optical pro-
filometry technique. We perform a Fourier analysis of
movies of the free-surface deformation and focus notably
on the nonlinear dispersion relation.

The experimental setup consists of a tank (46 cm ×
36 cm) filled with water (7 cm deep). Surface waves are
generated by the horizontal motion of two plunging rect-
angular wave makers (19 cm in width and 2 cm in depth).
They are located at two corners of the same longest side
of the tank, the vibration directions being perpendicular
to each other [11]. The wave makers are driven by two
electromagnetic shakers submitted to a random forcing

within a narrow low-frequency band (typically from 1 to
4 Hz). Typical maximal crest-to-trough wave amplitude
ranges from 1 mm to 1.5 cm, and the wave mean steep-
ness (ratio of crest-to-trough amplitude to its duration)
ranges from 0.2 up to 3.3 cm/s. This latter value corre-
sponds to an injected power, P , 600 times greater than
its value at the minimum forcing amplitude. This en-
ables to access to linear, weakly and strongly nonlinear
wave regimes. A Fourier transform profilometry method
[9, 10] provides the temporal evolution of the vertical
deformation of the free-surface of the fluid over a signif-
icant spatial zone of the tank. Namely, a fringe pattern
(wavelength λf = 2.6 or 5.2mm) is projected on the fluid
surface by a video projector. When waves are generated,
the vertical displacement of the free-surface leads to a
phase shift of the pattern that is recorded by a camera.
The deformation of the fluid surface η(x, y, t) is then re-
covered by a 2D phase demodulation of each image of
the recorded movie [9, 10]. Movies are recorded with
1600 by 1200 pixels at facq = 50 or 60 Hz during roughly
1 minute. The size of the recorded image is 25× 19 cm2.
To improve the contrast of the projected fringes on the
fluid surface, a high concentrated white dye is added to
the water bulk at an optimum concentration of 0.5%v/v
[10]. The surface tension of this dyed water is measured
to be γ = 32±1mN/m. Spatial and temporal resolutions
of the measurement are 3λf and 2/facq, its linearity being
insured for waves with sharp slopes up to 10 [10]. Pos-
sible underneath hydrodynamic turbulence generated in
the bulk by the wave makers does not play a significant
role on wave turbulence (similar results are found when
the immersed length of the wave maker is changed).

The vertical velocity of the fluid surface v(x, y, t) is
obtained by differentiating the wave height movie in
time. The full space-time power spectrum of the veloc-
ity E(k, f) (a function of both the wave vector k and
the frequency f) is then computed from multidimen-
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FIG. 1: (Color online) Space-time spectrum E(k, f) of the
vertical velocity of surface waves: moderate (a) and strong

(b) injected powers [P 1/2 = 5.2 (a) and 24.7 (b) in arb. units].
Forcing: 1 - 4 Hz. Colors are log scaled. Solid white lines are
ΩN (k) with N = 1, 2, and 3 (see text). Slope of the dotted
line corresponds to a constant phase velocity ω(k)/k.

sional Fourier transform. By integrating E(k, f) over
all directions of k, one obtains the velocity spectrum
E(k = ||k||, f) displayed in Fig. 1 for moderate and
strong forcings. We observe that the energy injected at
low frequencies cascades through the scales and is mainly
localized on several branches in the (ω ≡ 2πf , k ≡ 2π/λ)
space. At low forcing amplitude (not shown here), only
one branch occurs that corresponds to the linear gravity-
capillary relation dispersion ω(k) =

√

gk + (γ/ρ)k3, with
g = 9.81 m/s2 the acceleration of gravity, ρ = 1000
kg/m3 the fluid density. When the forcing is increased
(see Fig. 1a), a secondary branch appears below the lin-
ear dispersion relation (LDR). This branch is found to
be well described by ΩN (k) ≡

√

gNk + (γ/ρ)k3/N with
N = 2 with no adjustable parameter (see solid line). At
higher forcing (see Fig. 1b), a third branch appears fol-
lowing Ω3(k). Thus, as the power injected in the wave
system increases, the nonlinear wave interactions redis-
tribute the wave energy on N branches govern by ΩN (k),
the nonlinear dispersion relation (NLDR). These sec-
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FIG. 2: (Color online) Nonlinear dispersion relation k(f) com-
puted from the lines of maximum energy of E(k, f) for differ-

ent forcings [P 1/2 = 1 (+), 5.2, (◦), 10.5 (×), 24.7 (∗)]. Solid
thick lines around each branch correspond to the branch width
averaged for all forcings. Solid lines are ΩN (k) with N = 1,
2, and 3 (see text - same as in Fig. 1). Inset: snapshot of the

wave amplitudes at strong forcing (P 1/2 = 24.7).

ondary branches arise from the propagation of harmonics
(Nω,Nk) superimposed on a carrier long wave (ω,k) and
propagating with the phase velocity of the carrier (see be-
low and Fig. 1b). Note also that ΩN(k) = Nωk/N . Thus,
at a fixed k⋆ corresponds N peaks (ωk⋆ , 2ωk⋆/2, 3ωk⋆/3,
· · · ) in a frequency Fourier spectrum, i.e. a horizontal
slice of Fig. 1. This is consistent with a two-peak fre-
quency spectrum reported in a numerical simulation [12].

At weak forcing, one observes linear gravity-capillary
waves of gentle amplitudes that mix together. At strong
forcing, steep long waves occur with sharp crest-ridges
(see inset of Fig. 2). Near the crests of these waves, high
order harmonics are generated: small gravity-capillary
waves superimposed on the long wave are observed (see
also [14]). These harmonics are called bound waves since
they do not propagate with their own phase velocity but
with the one of the carrier long wave [13], and thus leads
to harmonics ΩN (K) of velocity ΩN (K)/K = ω(k)/k
where K ≡ Nk. They thus do not obey the linear dis-
persion relation which is consistent with the observation
of secondary branches of the NLDR. This shows that
other mechanisms than purely resonant wave interaction
should be taken into account to describe the energy trans-
fer across scales in wave turbulence.

Let us now focus on the effect of the injected power P
on the location and the width of branches ΩN (k). The
maximum amplitude of each branch of the velocity spec-
trum E(k, f) is extracted using the maximum of a Gaus-
sian fit with respect to k at a fixed f . For different P ,
the lines of maximum energy of each branch are shown
in Fig. 2 (symbols). Whatever the branch, the localized
energy line is found to be independent of P : no measur-
able shift of these lines occurs in the (k,ω) space. This
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FIG. 3: (Color online) Space-time spectrum E(kx, f) of veloc-

ity at P 1/2 = 10.5 located at ky = 0. Same forcing bandwidth
as in Fig. 1. Inset: space spectrum E(kx, ky) located at f =5
Hz (a) and 9 Hz (b). Dashed lines: forcing directions. Log
scaled colors are different for each plot.

differs from recent observation reported in elastic wave
turbulence [4] or in simulation [12]. The widths of these
branches are also plotted in Fig. 2. The width is de-
fined by the rms value of the Gaussian fit. Whatever
the branch, no significant evolution of the width is found
when P is increased. The width is also independent of the
branch number within our experimental accuracy. The
typical width [∆(λ−1),∆f ] centered on a point (λ−1,f)
of the NLDR is roughly (8 m−1, 1.5 Hz), and could be
ascribed to the typical nonlinear scale of wave mixing.
However, one should be careful since ∆(λ−1) is close to
the resolution of the discrete Fourier Transform (∼ in-
verse of the image size ∼ 5 m−1). To sum up, the wave
energy is redistributed on different branches of the NLDR
of width that is independent of P and of N .

Figure 3 shows different views of the full space-time
Fourier spectrum of the velocity E(k, f). Main figure is
E(kx, f), a slice at ky = 0 of the spectrum along the
x-axis. Figures 3a and 3b show E(k) at two fixed fre-
quencies (5 and 9Hz). In Fig. 3a, the forcing reminisence
appears as strong peaks in the direction of the wave mak-
ers (see dashed lines). Due to wave turbulence, energy
cascades across scales as can be seen in the two con-
tinuous branches in the main Fig. 3. Simultaneously, a
spread of energy across angles is responsible for the con-
tinuous circles observed in the insets: the two concentric
circles in Fig. 3b correspond to two wave numbers given
by both branches of the NLDR, whereas in Fig. 3a one
rather observes a single disc due to the overlapping of
both branches of non-zero width (see above). Although
not fully isotropic, this angular redistribution of energy is
due to wave turbulence and is also visible as the symme-
try between positive and negative kx in the main Fig. 3.
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FIG. 4: (Color online) Spatial power spectrum E(k) of the

velocity for P 1/2 =1, 5.2, 10.5, 24.7 (from bottom to top).
Dashed lines have slopes −4.6, −4.5 and −4.2 (from bottom
to top). Dot-dashed line: λ−1

⋆ = 25.2m−1 (see Fig. 5).

The space spectrum E(k ≡ ||k||) of the velocity is then
computed by summing the 3D space-time spectrum of
E(k, f) over all the directions of k and over f . Figure 4
showsE(k) when the forcing is increased. At high enough
forcing, E(k) is found to be scale invariant as expected
for wave turbulence. The inertial range increases with
the forcing, and E(k) ∼ k−n with n ≃ 4.2 over almost
one decade in k corresponding to λ ∼ few cm. Note that
n does not depend strongly on the forcing. Since one
cannot compute E(f) from E(k, f) in a wide range of f
due to the strong steepness of the spectrum, one per-
forms single point temporal measurements that shows
a strong dependence of the power-law frequency expo-
nent of the velocity spectrum on the forcing as already
reported (typically from f−5 to f−2) [11, 15]. These
scalings suggest that the change of variable k ↔ f us-
ing the LDR to estimate E(k) from E(f) is not valid in
temporal measurements in hydrodynamics wave turbu-
lence when strong nonlinear waves are involved. Indeed,
this would lead to an estimated velocity spectrum from
k−3 to k−3/2. Moreover, our velocity spectrum scaling,
E(k) ∼ k−4.2, cannot be described by any of existing
theories of wave turbulence taking into account either
the presence of random-phased weakly nonlinear waves
[Etheo(k) ∼ P 1/2k−1/2] [16] or the dominance of coher-
ent sharp wave crests [Etheo(k) ∼ k−1 to k−3] [7]. It is
known numerically that the spatial spectrum exponent
can change in case of anisotropy [17]. To confirm that
our results do not depend on anisotropy, one computes
E(k) by summing E(k, f) over different (kx , ky) space
regions: (i) over (kx , ky > 0) where isotropy is observed,
(ii) over (kx , ky < 0) where anisotropy occurs due to the
forcing (see insets of Fig. 3), and (iii) all over (kx , ky)
space. The spatial spectrum E(k) ∼ k−z computed over
these different regions leads to z = 4.3 (i), 3.8 (ii) and
4.2 (iii). Thus, the anisotropy does not play a significant
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FIG. 5: (Color online) PDF of the Fourier wave amplitude,
|η̂k⋆

|2/σ|η̂k⋆ |2 , at k⋆ ≡ 2π/λ⋆ with λ−1

⋆ = 25.2 ± 0.6m−1

(see Fig. 4) for two forcings P 1/2 = 5.2 (◦) and 10.5 (∗).
〈|η̂k⋆

|2〉 = 1.1 (◦) and 1.3 (∗). Solid lines have slopes −0.46
and −0.58. Curves have been shifted vertically for clarity.
Inset: |η̂k⋆

|2 vs. time. λ−1

⋆ = 25.2 ± 0.6m−1. P 1/2 = 24.7.

role on the estimation of the spatial spectrum exponent.
Finally, the probability density function (PDF) of the

wave amplitude η(x, y) is found to be roughly Gaussian
whatever the forcing. One also computes the PDF of
the Fourier amplitude |η̂k⋆

|2 of a wave component at a
given wave number k⋆. As shown in Fig. 4, we choose
k⋆ ≡ 2π/λ⋆ in the gravity regime with λ−1

⋆ = 25.2± 0.6
m−1 corresponding (using the LDR) to a frequency of 6.5
Hz above the forcing ones. For each image, the value of
|η̂k⋆

|2 is extracted by averaging on 42 amplitudes found
on a k-space ring of radius k⋆. Iterating for all images
leads to the temporal evolution of the Fourier ampli-
tude of the mode k⋆ as shown in Fig. 5. This signal
is strongly erratic and bursts of random large-amplitude
occurs. Similar random bursts of Fourier amplitude has
been reported in simulations [12], these bursts being cor-
related with phase jumps underlying strong nonlinear ef-
fects [12]. Although we are not able to measure the phase,
this similarity is consistent with our above results under-
lying strong nonlinear effect. The PDF of the Fourier
amplitude |η̂k⋆

|2, rescaled to its rms value σ|η̂k⋆
|2 , is then

plotted in Fig. 5 for two forcings. At low forcing, the
PDF is roughly exponential as expected for random and
uncorrelated waves. At higher forcing, the PDF remains
Gaussian up to three standard deviations, whereas its
tail shows a slight departure from this Gaussian. Al-
though more statistics are needed to characterize more
deeply the PDF tail, this anomalously large probability

of high Fourier mode amplitude is consistent with 1D spa-
tial measurements [7], simulations [12] and theory [18].

In conclusion, we have reported 2D spatial statis-
tics of wave turbulence on the surface of a fluid. The
power spectrum, the nonlinear dispersion relation and
the PDF of the Fourier modes show strong effects of non-
linear waves involved in wave turbulence. This suggests
that energy transfer mechanisms are not only restricted
to resonant interactions between nonlinear waves, but
also involve the formation of localized nonlinear struc-
tures (sharp-crested gravity waves) and of bound gravity-
capillary waves. The wave spectrum scalings emphasize
that the transition from k-space to ω-space cannot be
done according to the linear dispersion relation as usu-
ally performed in wave turbulence experiments.
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