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Interbranch Parametric Oscillation in the Weak Coupling Regime for Semiconductor
Vertical Multimicrocavities

D. Taj,∗ T. Lecomte, C. Diederichs, Ph. Roussignol, C. Delalande, and J. Tignon
Laboratoire Pierre Aigrain, Ecole Normale Suprieure,

UMR 8551 CNRS, UPMC Univ. Paris 6 75005 Paris, France

We develop a model able to properly describe a new variety of Optical Parametric Oscillations
(OPO’s) in some recently realized vertical semiconductor multimicrocavities. Our model shows
that, contrary to the case of a conventional single microcavity, the OPO can take place even when
the system is brought in the weak light-matter coupling. Our predictions agree qualitatively with
experiments, they show some OPO configurations which are peculiar of the weak-coupling and
suggest some new experiment. The model clearly shows the need to have a better understanding of
Optical Parametric Oscillations in this regime.

PACS numbers: 42.65.Yj, 71.36.+c, 05.30.Jp

Optical Parametric Oscillation (OPO) is a nonlinear
process that involves coherent oscillations among an ex-
cited pump mode and two other modes called signal and
idler, generally shifted in energy with respect to the
pump [1, 2], thus allowing generation of new frequen-
cies, as well as of twin or entangled pairs of photons for
quantum information applications such as quantum cryp-
tography [3, 4]. Up to now, OPO has been studied in
semiconductors microcavities only in the strong coupling
regime, as the S-shaped lower polariton branch can al-
low for the phase matching conditions (ph.m.c.), which
are energy and momentum conservation, when the pump
is placed at the so called magic angle [5–8]. However,
this has several important drawbacks, as discussed in [9].
One of them is for example that the ph.m.c. cannot be
satisfied when the system is brought in the weak exciton-
photon coupling by say, increasing temperature or pump
excitation power: this is at variance with the need of fi-
nally realizing an all-semiconductor oscillator able to in-
tegrate into nowadays technologies and at the same time
to operate at room temperature.

To overcome these intrinsic limitations, some new
monolithic structures, called vertical multimicrocavities,
have been recently designed [9]. Within these structures,
two new types of OPO can be in principle investigated
(see Figure 1): thanks to the degeneracy splitting of the
coupled cavity modes, a possibility arises to obtain three
polaritonic modes at normal incidence, splitted in en-
ergy, that can parametrically oscillate, once the ph.m.c.
are reached by suitable tuning of the polariton energies
(vertical OPO). Another setup can be obtain by exciting
a pump polariton at normal incidence in the second po-
lariton branch, which in turn oscillates with signal and
idler polaritons at pump energy and opposite angle in the
first branch (horizontal OPO).

Both types of OPO’s could in principle occur also in
the weak-coupling between cavity photons and excitons,
as the ph.m.c. could well be satisfied. However, no study
has been made theoretically up to now, to understand the
OPO’s in the foretold regime.
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FIG. 1: Typical energy dispersions for a realistic triple mi-
crocavity in the weak (thick lines) and strong (thin dashed
lines) coupling regime. In this example, all the three excitons
are resonant with the third cavity mode at normal incidence,
while degeneracy is removed at strong coupling. The arrows
represent the two types of OPO studied in this work, in the
weak regime: horizontal arrows (signal and idler beams la-
belled as ”sh” and ”ih”) refer to the horizontal OPO, whereas
vertical arrows (signal and idler beams labelled as ”sv” and
”iv”) refer to the vertical OPO.

In this paper we present a theoretical framework able
to show an OPO onset in the weak coupling regime, as
was indeed observed with considerable amount of evi-
dence in [10] for the case of vertical OPO in triple mi-
crocavities. Moreover, our model provides some means
for a careful design of the microcavity in the weak cou-
pling, and predicts some phenomena peculiar of the weak-
coupling, like resonances in the vertical OPO and pump
density dependent photon lifetimes renormalization.

We start considering the usual form of the Hamilto-
nian that models polariton parametric interactions (see
for example [5, 11]), and generalize it to the case of a
vertical multimicrocavity with n cavities and m quan-
tum wells (m ≤ n) embedded in the cavities. Although,
accordingly, we will start from a quantum setting, also
for formal simplicity and convenience, our results will be
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classical in nature, and could well be restated in terms
of the classical field theory approach in [12]. The main
difference with the usual model is a cavity-cavity inter-
action term, which couples consecutive cavities in the
vertical structure and is physically implemented by the
cavity coupling Bragg reflectors. The strong coupling
between two consecutive cavities is simply modelled by
HCC =

∑n−1
j=1 gj

∑
k(âj

k)†âj+1
k + h.c., where any of the

two consecutive cavity couplings gj is assumed to be
real, and âj

k destroys a photon of planar wavevector k.
For simplicity will only look at polarization indepen-
dent processes, although polarization is known to play
potentially crucial roles in exciton-polariton microcavi-
ties (see for example [13]). Since photons in consecutive
cavities are optically coupled, and each of them is only
weakly coupled with its cavity embedded 1s-exciton, we
can split the full hamiltonian as H = H0 + Hint. Here
H0 = HC

free+HX
free+HCC is a sum of the free cavity and

1s-exciton term, plus the foretold cavity-cavity coupling
contribution. Hint = HXC + HXX + HXC

sat contains the
following interaction terms: HXC is the exciton-photon
coupling, with coupling constants ωj between each cav-
ity photon and its embedded exciton; HXX is the two-
body exciton-exciton interaction, with coupling constant
V0
2 (V0 = 6e2λX

Sε , e being the electric charge, λX the two-
dimensional exciton radius, ε the static dielectric con-
stant of the quantum well and S is the macroscopic quan-
tisation area); HXC

sat is the hanarmonic exciton saturation
term (coupling nsat = 7

16πλ2
X

).

Stating that consecutive cavities are strongly coupled
amounts to say that there are stable modes among the
cavities that diagonalize the free cavity term together
with the cavity-cavity coupling HC

free+HCC : if the diag-

onalising unitary matrix is U j′
j (k), then we can interpret

the new operators Âj
k = U j

j′(k) âj′

k as destruction oper-
ators of collective cavity photon modes which are delo-
calised over the entire multimicrocavity structure. Then
each mode Âj

k, with bare energy Ej
C(k), will be coupled to

every 1s-exciton mode through the exciton-photon cou-
pling term HXC =

∑n
j=1

∑m
j′=1

∑
k Ωj′

j (k)(Âj
k)†b̂j′

k +h.c.,

where we have defined Ωj′
j (k) ≡ ωj′U

j′
j (k) and b̂j′

k is the
exciton destruction operator. Similar ”non-locality” in
the interaction mechanism between excitons and collec-
tive photon modes also appears for saturation term HXC

sat .
Despite the fact that the exciton-photon coupling has be-
come complex and wavevector dependent, it still conserve
the planar wavevector. We note that the light-matter
coupling now involves two basic quantities, the exciton-
cavity photon coupling ω and the matrix element U j′

j (k),
which represents the amplitude of the j-th photon collec-
tive mode at the j′-th cavity. This implies that the ef-
ficiency of the OPO among collective photon modes will
depend upon both such parameters, whom optimization

would then become important for a good design of the
structure.

In what follows we will focus on the case of the so
called horizontal OPO, a priori possible when m ≥ 1
and n ≥ 2, while keeping in mind that the treatment of
the vertical OPO follows exactly the same lines. To sim-
plify notation we will take m = 1 quantum well (so we
will drop the exciton index j′), embedded say in the first
cavity, and n = 2 cavities, thus linked by only one cavity
coupling Bragg mirror. To further simplify, in dealing
with the excitonic modes we will only consider exciton-
exciton interaction brought by HXX , and just mention
that the treatment of the saturation term HXC

sat is com-
pletely analogous.

As stated in the introduction for the horizontal process,
we now select the basic interaction process as given by
the channel {0, 0} → {κ,−κ}. Actually, the ph.m.c.’s
would still only fix the norm of the wavevector κ, so that
in principle the horizontal OPO could take place among
any two opposite beams in the ring of planar wavevectors
of norm ‖κ‖. However, as shown experimentally in [14],
because of elastic strain relaxation in the DBR’s only
few discrete modes in the ring will be involved in the
process, often only two, so that from now we will be
safely consider a given, fixed wavevector κ.

First, we add a damping/dephasing process governed
by damping constant γX and γi

C , for the excitonic and
the i-th cavity modes respectively; we also add a pump
excitation driving field fp, resonant with the second cav-
ity mode at normal incidence. Then, by denoting mean
field expectations with x = 〈x̂〉, where x̂ can be Â or
b̂, we easily write down the mean field equations for the
cavity modes:

{
ih̄∂tA

2
0 = (E2

C(0)− iγ2
C)A2

0 + Ω2(0)b0 + fp
ih̄∂tA

1
±κ = (E1

C(±κ)− iγ1
C)A1

±κ + Ω1(±κ)b±κ.
(1)

At this point, we formally solve the mean field equa-
tions of the exciton modes by recursion. That is, we say
that the solutions are fixed points of the converging se-
quence of the complex-valued l-th iterate {b(l)

0 , b
(l)
κ , b

(l)
−κ}

as l → +∞: we thus obtain an infinite set of first-order,
uncoupled in-homogeneous linear differential equations





ih̄∂tb
(l+1)
0 = (EX(0)− iγX)b(l+1)

0

+Ω2(0)A2
0 + 2V0b

(l)∗
0 b

(l)
κ b

(l)
−κ

ih̄∂tb
(l+1)
±κ = (EX(±κ)− iγX)b(l+1)

±κ

+Ω1(±κ)A1
±κ + V0b

(l)∗
∓κ

(
b
(l)
0

)2

(2)

with initial condition b
(0)
k = 0. This reads like an ex-

pansion in powers of the exciton-photon coupling con-
stant ω, and is thus describing in a perturbative fashion
a weak coupling regime between photon and exciton, as
justified by the absence of a Rabi splitting. The approach
is of course perturbative also with respect to the exciton-
exciton interaction and saturation.
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Since b
(l)
k will contain factors involving products up

to 3(l−1) photon mean field expectations, it follows that
the second iteration will suffice to grasp the χ3 physics
of the OPO in our microcavity. When we substitute the
2-nd iteration exciton operators b

(2)
k into the Heisenberg

equations for the photon modes we get a coupled set of
three integro-differential equations for the photon modes
in closed form, that is, the set of equations only involves
collective photon mean field expectation, and does not
involve exciton modes.

In order to do get rid of the memory terms and obtain
the OPO’s equation it becomes useful to turn to interac-

tion picture, Ai
k(t) ≡ e

Ei
C

(k)t

ih̄ Ãi
k(t), and make a Markov,

or slowly varying approximation, on the newly defined,
interacting operator Ãi

k(t). This amounts to say that we
neglect the time variation of Ãi

k with respect to that of
Ai

k, that is, we assume that the time variation brought
by the exciton-photon interaction is slow compared to the
free energy photons oscillations, in agreement with the
hypothesis of weak coupling regime. This approximation
allows us to evaluate at current time t each of the three
interacting photon operators Ãi

k in the integral kernel.
By doing so, and starting from (1), we find the OPO

equations for two pump photons at normal incidence in
the second photon branch that are parametrically oscil-
lating with a signal and an idler photon at opposite angles
in the first photon branch:
{

ih̄∂tA
2
0 = (E2

C(0)− iγ2
C)A2

0 + 2Eint(A
2
0)
∗A1

κA1
−κ + fp

ih̄∂tA
1
±κ = (E1

C(±κ)− iγ1
C)A1

±κ + E∗
int(A

1
∓κ)∗(A2

0)
2.

(3)

Here we have omitted for clarity energy and photon
lifetimes renormalization, together with pump blueshift,
that we’ll consider separately later. Rescaling fields for
the quantization area and taking into account also the
saturation contribution HXC

sat , we compute

Eint =
(

KXX V0

2
+ KXC

sat
ω

nsat

)
(Ω†2(0))2Ω1(κ)Ω1(−κ)

(4)
with KXX and KXC

sat suitable nonlinear constants. Ex-
tensions of this formula to the general case of n cavi-
ties and m quantum wells is straightforward. In order
to give a better physical understanding of the foretold
nonlinear constants, we define the detuning according
to δ ≡ E2

C(0) − EX(0), we make the safe approxima-
tion EX(k) ' EX(0), valid for small wavevectors k, and
chose the signal and idler mode so that the phase match-
ing conditions hold, which are known (see for example
[7]) to enhance the parametric process: this amounts to
say that the signal and idler wavevector is chosen to sat-
isfy the energy condition E1

C(κ) = E2
C(0). With this in

mind, we compute

KXX =
1
2

(
1

δ2 + γ2
X

)2

,KXC
sat =

(
1

δ2 + γ2
X

)(
1

δ + iγX

)
.

(5)
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FIG. 2: (Color online) |Eint| plotted against the detuning
δ and exciton relaxation times γX for the case of horizontal
(left) and vertical (right) OPO in the weak coupling.

Needless to say, similar expressions occur also for the
vertical OPO, with all the three beams at normal inci-
dence, signal in 1-st branch and idler in the 3-rd, with
the only difference that the photon band gap due to the
strong cavity-cavity coupling also appears along with the
detuning δ.

Moreover, we find energy and photon lifetimes renor-
malization for the i-th collective cavity mode,

∆Ei
C =

ω2 (Ei
C − EX)

(Ei
C − EX)2 + γ2

X

, ∆γi
C =

ω2γX

(Ei
C − EX)2 + γ2

X

,

(6)
and a pump blueshift of

[
V0 ω4

[δ2 + γ2
X ]2

+
1

nsat

ω4

δ2 + γ2
X

(
1

δ + iγX

)]
(A2

0)
†A2

0. (7)

Extension of these formulas to the case of more than one
exciton shows that each of the above factors is weighted
by (U i

j)
†U j

i , and implies that careful optical design has
an important role not only for obtaining high values for
the nonlinear OPO constant, but also for energy and
lifetimes renormalizations, and blueshift. We also see
that if the exciton-exciton interaction brings pure energy
blueshifts, the the role of the anharmonic saturation term
is to also give rise to pump density dependent photon life-
times renormalization, thanks to the imaginary term in
the above equation: we see here a rich interplay among
photon and exciton energies and lifetimes, which in turn
are known to trigger crucial effects in semiconductor mi-
crocavities [15]. Since the OPO threshold pump power is
directly linked to the nonlinear constant Eint through
the relation |Eint||Athr|2 = γ1

C , where |Athr|2 is the
threshold pump density, we plot the quantity |Eint| as
a function of detuning δ and exciton broadening γX for
the horizontal and vertical processes for the realistic case
of a vertical semiconductor triple microcavity (Figure 2).
Blueshift for the pump energy and pump lifetime is dis-
played in Figure 3 for both types of OPO, in units of
pump density.

The plots show that the optimal configuration to trig-
ger the OPO at low thresholds is achieved at nearly zero
detunings. However, for the vertical case we see a nonzero
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FIG. 3: (Color online) Pump energy and lifetime blueshift
in units of pump density plotted against the detuning δ and
exciton relaxation times γX for both horizontal and vertical
OPO’s.

nonlinear constant also when the exciton is put at reso-
nance with the the signal or the idler mode. This encour-
aging result explains the experimental observation in [10]
of a vertical OPO in the weak coupling where the exciton
line is put at resonance with the signal mode, and is pecu-
liar of the weak coupling: in the strong coupling regime,
an exciton simply cannot be put at resonance with one
polariton mode; if instead it is at resonance with a cav-
ity mode, Rabi splitting occurs that shifts all the energy
levels, thus destroying the ph.m.c.’s. The model also sug-
gests that another resonance, namely δ ' E2

C−E3
C , could

be available for observing vertical OPO, which in fact
wouldn’t suffer from the exciton continuum absorption
that so highly reduces idler lifetimes at the opposite de-
tuning: this would give hope for comparable signal and
idler lifetimes that might allow for quantum correlations
and entanglement among twin beams.

After matching our model with the experiment results
for the vertical case, we summarize in Figure 4 our pre-
dictions on experiments for horizontal OPO’s in two dif-
ferent configurations, that is for the case of a triple and
a double microcavity. We find a very low threshold for
the triple microcavity, 14KW/cm2 to be compared to
2400KW/cm2 for the vertical case, and an even smaller
one for the double microcavity, 4.4KW/cm2, due to dif-
ferent optical design, that is, different pump amplitudes
in each cavity. The factor of more than 102 between the
vertical and both the horizontal processes comes from
their different setups: putting the exciton at resonance
with the pump in the horizontal case results in a far
greater nonlinear constant. Even though we found that
the horizontal configurations enjoy ultra-low thresholds,
which are by themselves difficult to observe experimen-
tally, we are faced with the drawback of very weak signal
and idler intensities, as they are proportional to the in-
verse of the nonlinear constant. In such a configuration,
the OPO square root dependence of signal and idler beam
intensities could then be hidden by other more important
effects, like the Rayleigh scattering, which are known to
be linear in the pump excitation power. We note that
our predictions for the horizontal OPO don’t take into

account many body correlations, which could however
become important for resonant excitons [16].
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FIG. 4: Signal intensities plotted in logarithmic scale against
pump excitation power, for the vertical OPO (continuous
line), horizontal OPO in a triple (light dashing) and double
(thick dashing) microcavity.

To summarize, we have developed a model able to de-
scribe a variety of Optical Parametric Oscillations that
occur in vertical semiconductor multimicrocavities in the
weak-coupling regime. The exciton energies and life-
times, together with the detuning, are free parameters
of our model, and can be tuned for optimal design. We
have shown that within this framework we are able to
understand observed experimental data (vertical OPO)
and predict OPO’s threshold and beam intensities for a
variety of other configurations. The model also gives en-
ergy and photon lifetimes renormalization, together with
pump blueshift, predicts some phenomena peculiar of the
weak-coupling and suggests new experiments. Of course,
the model doesn’t take into account Raylegh scattering,
crystal structure, and even the possibility that the exci-
ton could bleach at high temperature and pump power.
As such, it demonstrates the urgent need of a more com-
plete formalism to study the rich variety of phenomena
occurring in weakly coupled multiple microcavities.
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