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The prismoid of resources

Delia Kesner and Fabien Renaud

PPS, CNRS and Université Paris Diderot

Abstract. We define a framework called the prismoid of resources where
each vertex is a λ-calculus with the possibility of having different explicit
resources and/or explicit cut elimination based on a different choice to
make explicit or implicit (meta-level) the definition of the contraction,
weakening, substitution operations. For all the calculi in the prismoid
we show simulation of β-reduction, confluence, preservation of β-strong
normalisation and strong normalisation for typed terms. Full compo-
sition also holds for the prismoid base handling explicit substitutions.
The whole development of the prismoid is done by making the set of re-
sources a parameter, so that the properties for each vertex are obtained
as a particular case of the general abstract proofs.

1 Introduction

Linear Logic [5] gives a logical framework to formalise the notion of control
of resources by means of weakening, contraction and linear substitution. MELL
Proof-Nets [5] are often used as the semantical support for various λ-calculi with
explicit control operators [20, 19, 9, 7].

In this paper we develop an homogeneous framework called the prismoid of
resources. Each vertex is a λ-calculus parametrized by a set of sorts wich are
of two kinds : resources w (weakening) and c (contraction), and cut-elimination
operation s (substitution). Having one of them in a language means its manage-
ment is explicit. Resources will make easier choices for cut-elimination procedure.
Each edge is an operation to simulate and/or project one vertex into the other
one. The eight calculi of the prismoid correspond to 23 different ways to combine
sorts by means of explicit or implicit (meta-level) operations.

The asymmetry between different sorts will be reflected in the prismoid by
means of its two bases. They are distinguished by the presence or the absence
of explicit substitution. Some theorems will only hold for one base.

λsw λcsw

λw λcw

λs λcs

λ∅ λc

explicit base

implicit base



Thus for example, the λcs-calculus has only explicit control of contraction
and substitution, the λ-calculus has no explicit control at all, and the λcsw-
calculus – a slight variation of λlxr [9] – has explicit control of everything.

For all calculi of the prismoid we show simulation of β-reduction, confluence,
preservation of β-strong normalisation (PSN) and strong normalisation (SN)
for typed terms. Thus in particular, none of the calculi suffers from Mellies’
counter-example [15]. Full composition, stating that explicit substitution is able
to implement the underlying notion of higher-order substitution, is also shown
for all calculi with sort s, ie. those included in the explicit substitution base.
Each property is stated and proved by making the set of sorts a parameter, so
that the properties for each vertex of the prismoid turn out to be a particular
case of some general abstract proof, which can be for the whole prismoid or for
one base.

While both implicit and explicit substitutions are usually [1, 6, 14] defined
by means of the propagation of an operator through the structure of terms, the
behaviour of calculi of the prismoid can be understood as a mechanism to de-
crease the multiplicity of variables that are affected by substitutions. This notion
is close in spirit to MELL Proof-Nets, and shares common ideas with Milner’s
Lambda Calculus [16], and the computational behaviour of Nets sketched out
by Accattoli and Guerrini [2]. However these two last formalisms only handle
substitution as explicit operation.

Road Map: Section 2 introduces syntax for all the terms of the prismoid as
well as reduction rules and equations. Section 3 explores how to enrich the λ-
calculus by adding more explicit control of resources, while Section 4 deals with
the dual operation which forgets rich information given by explicit weakening and
contraction. Sections 5 and 6 are, respectively, devoted to PSN and confluence
on untyped terms. Finally, typed terms are introduced in Section 7 together with
a SN proof for them. We conclude and give future directions of work in Section 8.

Full details of the proofs can be found in [10].

2 Terms and Rules of the Prismoid

We assume a denumerable set of variable symbols x, y, z, . . .. Lists and sets of
variables are denoted by capital Greek letters Γ, ∆,Π, . . .. We write Γ ; y for
Γ ∪{y} when y /∈ Γ . We use Γ \∆ for set difference and Γ \\ ∆ for obligation
set difference which is only defined if ∆ ⊆ Γ . Terms are given by the following

grammar: t, u ::= x | λx.t | tu | t[x/u] | Wx(t) | C
y|z
x (t)

The terms x, λx.t, tu, t[x/u], Wx(t) and C
y|z
x (t) are respectively called term

variable, abstraction, application, closure, weakening and contraction.
Free and bound variables of t, respectively written fv(t) and bv(t), are defined

as usual: λx.u and u[x/v] bind x in u and C
y|z
x (u) binds y and z in u. y is free

in Wy(t).

We use the following abbreviations: t1t2 . . . tn means ((t1t2) . . .)tn, t[x/v]
means t[x1/v1] . . . [xn/vn] when n is clear from the context. A closure t[x/u] has



independent substitutions [x/u] iff xi ∩ fv(uj) = ∅ for all i, j. For example
the substitutions are independent in x[x/y][x/z], but not in x[x/y][y/z].

Given three lists of variables Γ = x1, . . . , xn, ∆ = y1, . . . , yn and Π =

z1, . . . , zn of same length, the notations WΓ (t) and C
∆|Π
Γ (t) mean, respectively,

Wx1
(. . .Wxn

(t)) and C
y1|z1

x1
(. . . C

yn|zn

xn
(t)). These notations will extend naturally

to sets of variables of same size thanks to the equivalence relation in Figure 1.

The particular cases C
∅|∅
∅ (t) and W∅(t) mean simply t.

Given lists Γ = x1, . . . , xn and ∆ = y1, . . . , yn, the renaming of Γ by ∆
in t, written RΓ

∆(t), is the capture-avoiding simultaneous substitution of yi for

every free occurrence of xi in t. For example Rx1x2

y1y2
(C

y|z
x1

(x2yz)) = C
y|z
y1

(y2yz).
Alpha-conversion is the (standard) congruence generated by renaming of

bound variables. For example, λx1.x1C
y1|z1

x (y1z1) ≡α λx2.x2C
y2|z2

x (y2z2). We
may, without loss of generality, assume that bound and free variables are disjoint.

The set of positive free variables of a term t, written fv+(t), denotes the
free variables of t that represent term variables, ie. variables which are not only
weakened or absent at the end of a contraction chain. Formally,

fv+(y) = {y}
fv+(λy.u) = fv+(u) \ {y}
fv+(uv) = fv+(u) ∪ fv+(v)
fv+(u[y/v]) = (fv+(u) \ {y}) ∪ fv+(v)
fv+(Wy(u)) = fv+(u)

fv+(C
z|w
y (u)) = (fv+(u) \ {z, w}) ∪ {y} if z ∈ fv+(u) or w ∈ fv+(u)

fv+(C
z|w
y (u)) = fv+(u) \ {z, w} otherwise

The number of occurrences of the positive free variable x in the term t is
written |fv+(t)|x. We extend this definition to sets by |fv+(t)|Γ = Σx∈Γ |fv

+(t)|x
Thus for example, given t = Wx1

(xx) Wx(y) C
z1|z2

z (z2), we have x, y, z ∈ fv+(t)
with |fv+(t)|x = 2, |fv+(t)|y = |fv+(t)|z = 1 but x1 /∈ fv+(t).

We write t[y]x for the non-deterministic replacement of one positive oc-
currence of x in t by a fresh variable y. Thus for example, (Wx(t) x x)[y]x may
denote either Wx(t) y x or Wx(t) x y, but neither Wy(t) x x nor Wx(t) y y.

The deletion function removes a free non-positive variable x from t and is
defined as follows :

delx(y) = y
delx(u v) = delx(u) delx(v)
delx(λy.u) = λy.delx(u)
delx(u[y/v]) = delx(u)[y/delx(v)]

delx(Wy(u)) =

{

u
Wy(delx(u))

if x = y
otherwise

delx(C
y1|y2

y (u)) =

{

dely1
(dely2

(u))

C
y1|y2

y (delx(u))
if x = y and x /∈ fv+(C

y1|y2

y (u))
otherwise

This operation does not increase the size of the term. Moreover, if x ∈ fv(t)\
fv+(t), then size(delx(t)) < size(t).



Now, let us consider a set of sorts S = {c, s, w} and a set of resources
R = {c, w}. For every subset B ⊆ S, we define a calculus λB in the prismoid
of resources which is equipped with a set TB of well-formed terms, called B-
terms, together with a reduction relation →B given by a subset of the reduction
system described in Figure 1. Each calculus belongs to a base : BI (implicit
substitution base) if s /∈ B, BE (explicit substitution base) otherwise. A term t
is in TB iff ∃ Γ s.t. Γ B t is derivable in the following system :

x B x

Γ B u ∆ B v

Γ ⊎B ∆ B uv

Γ B u

Γ )B x B λx.u

Γ B u
(w ∈ B)

Γ ;x B Wx(u)

Γ B v ∆ B u
(s ∈ B)

Γ ⊎B (∆ )B x) B u[x/v]

Γ B u
(c ∈ B)

x; (Γ )B {y, z}) B Cy|z
x (u)

In the previous rules, ⊎B means standard union if c /∈ B and disjoint union
if c ∈ B. Similarly, Γ )B ∆ is used for Γ \ ∆ if w /∈ B and for Γ \\ ∆ if w ∈ B.

Notice that variables, applications and abstractions belong to all calculi of the
prismoid while weakening, contraction and substitutions only appear in calculi
having the correspondent sort. If t is a B-term, then w ∈ B implies that bound
variables of t cannot be useless, and c ∈ B implies that no free variable of t has
more than one free occurrence. Thus for example the term λz.xy belongs to the
calculus λB only if w /∈ B (thus it belongs to λ∅, λc, λs, λcs), and (xz)[z/yx]
belongs to λB only if s ∈ B and c /∈ B (thus it belongs to λs and λsw). A useful
property is that Γ B t implies Γ = fv(t).

In order to introduce the reduction rules of the prismoid we need a meta-
level notion of substitution; it is the one implemented by the explicit control
of resources. A B-substitution is a pair of the form {x/v} with v ∈ TB. The
application of a B-substitution {x/u} to a B-term t is defined as follows: if
|fv+(t)|x = 0 we have to check if x occurs negatively. If |fv(t)|x = 0 or w /∈ B then
t{x/u} = delx(t). Otherwise, t{x/u} = Wfv(u)\fv(t)(delx(t)). If |fv+(t)|x =
n + 1 ≥ 2, then t{x/u} = t[y1...yn]x{y1/u} . . . {yn/u}{x/u}. If |fv+(t)|x = 1,
t{x/u} = delx(t){{x/u}} where {{x/u}} is defined as follows :

x{{x/u}} = u y{{x/u}} = y
(λy.v){{x/u}} = (λy.v{{x/u}}) (s v){{x/u}} = s{{x/u}} v{{x/u}}
(s[y/v]){{x/u}} = s{{x/u}}[y/v{{x/u}}] Wy(v){{x/u}} = Wy\fv(u)(v{{x/u}})

C
z|w
y (v){{x/u}} =

{

C
∆|Π
Γ (v{z/RΓ

∆(u)}{w/RΓ
Π(u)})

C
z|w
y (v{{x/u}})

if x = y
otherwise

This definition looks complex, this is because it is covering all the calculi of
the prismoid by a unique homogeneous specification. The restriction of this op-
eration to particular subsets of resources results in simplified notions of substitu-
tions. As a typical example, the previous definition can be shown to be equivalent
to the well-known notion of higher-order substitution on s-terms given by

y{x/u} = y (y 6= x) x{x/u} = u
(λy.v){x/u} = λy.v{x/u} (y 6= x & y /∈ fv(u)) (sv){x/u} = s{x/u}v{x/u}
s[y/v]{x/u} = s{x/u}[y/v{x/u}] (y 6= x & y /∈ fv(u))



We write t{x/u} for t{x1/u1} . . . {xn/un} when n is clear from the context.

Lemma 1. Definitions of t{x/u} and t{{x/u}} are well-founded.

We now introduce the reduction system of the prismoid. In the last column
of Figure 1 we use the notation A+ (resp. A−) to specify that the equation/rule
belongs to the calculus λB iff A ⊆ B (resp. A ∩ B = ∅). Thus, each calculus λB

contains only a strict subset of the reduction rules and equations in Figure 1.
All these equations and rules can be understood by means of MELL Proof-

Nets reduction (see for example [9]). Most of the equations deal with associativity
and commutativity of weakenings and contractions, so both left-hand and right-
hand side projections to Proof-Nets are the same, as those last ones tend to get
rid of bureaucracy. The reduction rules can be split into four groups: the first
one fires implicit/explicit substitution, the second one implements substitution
by decrementing multiplicity of variables and/or performing propagation, the
third one pulls weakening operators as close to the top as possible and the
fourth one pushes contractions as deep as possible. The use of positive conditions
(conditions on positive free variables) in some of the rules will become clear when
discussing projection at the end of Section 4.

The notations ⇒R, ≡E and →R∪E , mean, respectively, the rewriting (resp.
equivalence and rewriting modulo) relation generated by the rules R (resp. equa-
tions E and rules R modulo equations E). Similarly, ⇒B, ≡B and →B mean, re-
spectively, the rewriting (resp. equivalence and rewriting modulo) relation gener-
ated by the rules (resp. the equations and rules modulo equations) of the calculus
λB. Thus for example →∅ is the relation →β , well-known as beta-reduction. An-
other example is →c which can also be written →{β,CL,CAL,CAR,CGc} ∪ ≡{CCA,CC,CCC}.
Sometimes we mix both notations to denote particular subrelations, thus for ex-
ample →c\β means →{CL,CAL,CAR,CGc} ∪ ≡{CCA,CC,CCC}.

Among the eight calculi of the prismoid we can distinguish the λ∅-calculus,
known as λ-calculus, and the λcsw-calculus, a variation of λlxr [9]. Another
example is λw that can be used to keep track of all variables lost during β-
reduction :

(β) (λx.t) u → t{x/u} (LW) λx.Wy(t) → Wy(λx.t)
(AWl) Wy(u)v → Wy\fv(v)(uv) (AWr) uWy(v) → Wy\fv(u)(uv)
(WWC) Wx(Wy(t)) ≡ Wy(Wx(t))

A B-term t is in B-normal form is there is no u s.t. t →B u. A B-term t
is said to be B-strongly normalising, written t ∈ SNB, iff there is no infinite
B-reduction sequence starting at t.

We now state some important properties of the system, which can be shown
by induction. The last one, known as full composition, relates explicit to implicit
substitution in the substitution base.

Lemma 2 (Preservation of Well-Formed Terms by Substitution). If
Γ B t and ∆ B u and x /∈ ∆, then (Γ ) x) ⊎B ∆ B t{x/u} if x ∈ fv(t)
and Γ B t{x/u} otherwise.



Equations :

(CCA) C
x|z
w (C

y|p
x (t)) ≡ C

x|y
w (C

z|p
x (t)) c+

(CC) C
y|z
x (t) ≡ C

z|y
x (t) c+

(CCC) C
y′|z′

x′ (C
y|z
x (t)) ≡ C

y|z
x (C

y′|z′

x′ (t)) x 6= y′, z′ & x′ 6= y, z c+

(WWC) Wx(Wy(t)) ≡ Wy(Wx(t)) w+

(SSC) t[x/u][y/v] ≡ t[y/v][x/u] y /∈ fv(u) & x /∈ fv(v) s+

Rules :
(β) (λx.t) u → t{x/u} s−

(B) (λx.t) u → t[x/u] s+

(V) x[x/u] → u s+

(SGc) t[x/u] → t x /∈ fv(t) s+ & w−

(SDup) t[x/u] → t[y]x [x/u][y/u] |fv+(t)|x > 1 & y fresh s+ & c−

(SL) (λy.t)[x/u] → λy.t[x/u] s+

(SAL) (t v)[x/u] → t[x/u] v x /∈ fv(v) s+

(SAR) (t v)[x/u] → t v[x/u] x /∈ fv(t) s+

(SS) t[x/u][y/v] → t[x/u[y/v]] y ∈ fv+(u) \ fv(t) s+

(SW1) Wx(t)[x/u] → Wfv(u)\fv(t)(t) (sw)+

(SW2) Wy(t)[x/u] → Wy\fv(u)(t[x/u]) x 6= y (sw)+

(LW) λx.Wy(t) → Wy(λx.t) x 6= y w+

(AWl) Wy(u) v → Wy\fv(v)(u v) w+

(AWr) u Wy(v) → Wy\fv(u)(u v) w+

(SW) t[x/Wy(u)] → Wy\fv(t)(t[x/u]) (sw)+

(SCa) C
y|z
x (t)[x/u] → C

∆|Π
Γ (t[y/RΓ

∆(u)][z/RΓ
Π(u)])

8

<

:

y, z ∈ fv+(t)
Γ = fv(u)
∆ and Π are fresh

(cs)+

(CL) C
y|z
w (λx.t) → λx.C

y|z
w (t) c+

(CAL) C
y|z
w (t u) → C

y|z
w (t) u y, z /∈ fv(u) c+

(CAR) C
y|z
w (t u) → t C

y|z
w (u) y, z /∈ fv(t) c+

(CS) C
y|z
w (t[x/u]) → t[x/C

y|z
w (u)] y, z ∈ fv+(u) (cs)+

(SCb) C
y|z
w (t)[x/u] → C

y|z
w (t[x/u]) x 6= w & y, z /∈ fv(u) (cs)+

(CW1) C
y|z
w (Wy(t)) → Rz

w(t) (cw)+

(CW2) C
y|z
w (Wx(t)) → Wx(C

y|z
w (t)) x 6= y, z (cw)+

(CGc) C
y|z
w (t) → Rz

w(t) y /∈ fv(t) c+& w−

Fig. 1. The reduction rules and equations of the prismoid

Lemma 3 (Preservation of Well-Formed Terms by Reduction). If Γ B

t and t →B u, then ∃ ∆ ⊆ Γ s.t. ∆ B u. Moreover w ∈ B implies ∆ = Γ .

Lemma 4 (Full Composition). Let t[y/v] ∈ TB be a term having independent
substitutions [y/v]. Then t[y/v] →∗

B
t{y/v}.



3 Adding Resources

This section is devoted to the simulation of the λ∅-calculus into richer calculi
having more resources. The operation is only defined in base BI . We consider
the function ARB( ) : T∅ 7→ TB for B ⊆ R which enriches a λ∅-term in order to
fulfill the constraints needed to be a B-term.

ARB(x) = x

ARB(λx.t) =

{

λx.Wx(ARB(t))
λx.ARB(t)

w ∈ B & x /∈ fv(t)
otherwise

ARB(t u) =

{

C
∆|Π
Γ (RΓ

∆(ARB(t))RΓ
Π(ARB(u)))

ARB(t) ARB(u)

c ∈ B & Γ = fv(t) ∩ fv(u) & ∆, Π fresh
otherwise

For example, adding resource c (resp. w) to t = λx.yy gives λx.C
y1|y2

y (y1y2)

(resp. λx.Wx(yy)), while adding both of them gives λx.Wx(C
y1|y2

y (y1y2)).

We now need to establish the relation between ARB() and implicit substitu-
tion.

Lemma 5. Let t, u ∈ T∅. Then

– If c /∈ B, then ARB(t){x/ARB(u)} = ARB(t{x/u}).

– If c ∈ B, then C
∆|Π
Γ (RΓ

∆(ARB(t)){x/RΓ
Π(ARB(u))}) →∗

B
ARB(t{x/u}), where

Γ = (fv(t) \ x) ∩ fv(u) and ∆, Π are fresh sets of variables.

Proof. By induction on t.

Theorem 1. Let t ∈ T∅ such that t →β t′.

– If w ∈ B, then ARB(t) →+
B
Wfv(t)\fv(t′)(ARB(t′)).

– If w /∈ B, then ARB(t) →+
B
ARB(t′).

Proof. By induction on the reduction relation →β using Lemma 5.

While Theorem 1 states that adding resources to λ∅-calculus is well behaved,
this does not necessarily hold for any arbitrary calculus of the prismoid. Thus
for example, what happens when the λs-calculus is enriched with resource w?
Is it possible to simulate each s-reduction step by a sequence of sw-reduction
steps?

Unfortunately the answer is no: we have t1 = (x y)[z/v] →s x y[z/v] = t2
but ARw(t1) = Wz(x y)[z/v] 6→sw x Wz(y)[z/v] = ARw(t2). Indeed, a reduction
step of the form Wz(x y) → x Wz(y) would be needed for that to hold, but its
MELL Proof-Nets interpretation would give a rule pushing a weakening inside
a box, which is known to be ill-typed.



4 Removing Resources

In this section we give a mechanism to remove resources, that is, to change
the status of weakening and/or contraction from explicit to implicit. This is
dual to the operation allowing to add resources to terms presented in Section 3.
Whereas adding is only defined within the resources base (and only from λ∅-
calculus), removing is defined in both bases. Notice that it does not relate them.
Removing is done not only on the level of (static) terms but also on (dynamic)
reduction. Thus for example, removing is able to translate any csw-reduction
sequence into a B-reduction sequence, for any B ∈ {s, cs, sw}.

Given two lists of variables Γ = y1 . . . yn (with all yi distinct) and ∆ =
z1 . . . zn, then Γ∆(y) is y if y /∈ Γ , or zi if y = yi for some i. The collapsing
function of a term without contractions is then defined as follows:

SΓ
∆(y) = Γ∆(y) SΓ

∆(λy.u) = λy.SΓ
∆(u) (y /∈ Γ )

SΓ
∆(uv) = SΓ

∆(u)SΓ
∆(v) SΓ

∆(u[y/v]) = SΓ
∆(u)[y/SΓ

∆(v)] (y /∈ Γ )

SΓ
∆(Wy(v)) =

{

SΓ
∆(v)

Wy(SΓ
∆(v))

if Γ (y) ∈ fv(SΓ
∆(v))

if Γ (y) /∈ fv(SΓ
∆(v))

This function renames the variables of a term in such a way that every occurrence
of Wx(t) in the term implies x /∈ fv(t). Thus for example Sy,z

x,x(Wy(Wz(x))) = x.
The function RRb( ) : TB 7→ T

B\b removes b ∈ R from a B-term .

RRb(x) = x RRb(t[x/u]) = RRb(t)[x/RRb(u)]

RRb(λx.t) = λx.RRb(t) RRb(Wx(t)) =

{

RRb(t)
Wx(RRb(t))

if b = w

if b 6= w

RRb(t u) = RRb(t) RRb(u) RRb(C
y|z
x (t)) =

{

Sy,z
x,x(RRb(t))

C
y|z
x (RRb(t))

if b = c

if b 6= c

Let A range over P(R) , then RRA(t) is RRb(t) if A = {b} , the identity if
A = ∅, and RRc(RRw(t)) = RRw(RRc(t)) otherwise.

Lemma 6. Let t, u ∈ TB. Let b ∈ R. Then RRb(t{x/u}) = RRb(t){x/RRb(u)}.

Calculi of the prismoid include rules/equations to handle substitution but
also other rules/equations to handle resources {c, w}. Moreover, implicit (resp.
explicit) substitution is managed by the β-rule (resp. the whole system s). We
can then split any reduction step →B in two different parts: one for (implicit or
explicit) substitution, which can be strictly projected into itself, and another one
for weakening and contraction, which can also be projected into a more subtle
way given by the following statement.

Theorem 2. Let A ⊆ R such that A ⊆ B and let t ∈ TB. If t ≡B u, then
RRA(t) ≡B\A RRA(u). Otherwise, we sum up in the following array :

s
/∈

B t ⇒β u RRA(t) →+
β RRA(u)

s
∈

B t ⇒s u RRA(t) →+
s RRA(u)

t ⇒B\β u
RRA(t) →∗

B\β\A
RRA(u)

t ⇒B\s u
RRA(t) →∗

B\s\A
RRA(u)

RRB(t) = RRB(u) RRB(t) = RRB(u)



Proof. By induction on the reduction relation using Lemma 6. For the points
involving RRA( ), one can first consider the case where A = {b}, with b ∈ R.
Then the general result follows from two successive applications of the simpler
property.

It is now time to discuss the need of positive conditions (conditions involving
positive free variables) in the specification of the reduction rules of the prismoid.
For that, let us consider a relaxed form of SS1 :t[x/u][y/v] → t[x/u[y/v]] if y ∈
fv(u) \ fv(t) (instead of y ∈ fv+(u) \ fv(t))

The need of the condition y ∈ fv(u) is well-known [4], otherwise PSN does
not hold. The need of the condition y /∈ fv(t) is also natural if one wants to
preserve well-formed terms. Now, the reduction step t1 = x[x/Wy(z)][y/y′] →SS1

x[x/Wy(z)[y/y′]] = t2 in the calculus with resources {s, w} cannot be projected
into RRw(t1) = x[x/z][y/y′] →SS1

x[x/z[y/y′]] = RRw(t2) since y /∈ fv(z). Similar
examples can be given to justify positive conditions in rules SDup, SCa and CS.

Lemma 7. Let t ∈ T∅ and let A ⊆ R. Then RRA(ARA(t)) = t.

Proof. By induction on t.

The following property states that administration of weakening and/or con-
traction is terminating in any calculus. The proof can be done by interpreting
reduction steps by a strictly decreasing arithmetical measure.

Lemma 8. If s /∈ B, then the reduction relation →B\β is terminating. If s ∈ B,
then the reduction relation →B\s is terminating.

We conclude this section by relating adding and removing resources :

Corollary 1. Let ∅ 6= A ⊆ R. The unique A-normal form of t ∈ TA is ARA(RRA(t))
if w /∈ A, and Wfv(t)\fv(RRA(t))(ARA(RRA(t))) if w ∈ A.

Proof. – Suppose w ∈ A. Termination of →A (Lemma 8) implies that there
is t′ in A-normal form such that t →∗

A
t′. We have fv(t) = fv(t′) by

Lemma 3 and RRA(t) = RRA(t′) by Theorem 2. For t′ in A-normal form,
t′ ≡A Wfv(t′)\fv(RRA(t′))(ARA(RRA(t′))) holds (a simple induction). Hence,
t′ ≡A Wfv(t)\fv(RRA(t))(ARA(RRA(t))). To show uniqueness, let us consider
two A-normal forms t′1 and t′2 of t. By the previous remark, both t′1 and t′2
are congruent to Wfv(t)\fv(RRA(t))(ARA(RRA(t))) which concludes the proof.

– The case w /∈ A is very similar.

5 Preservation of β-Strong Normalisation

We now show PSN for all the calculi of the prismoid. The proof will be split
in two different subcases, one for each base. This dissociation comes from the
fact that redexes are erased by β-reduction in base BI while they are erased by
SGc and/or SW1-reduction in base BE . To achieve this, we relate the two bases
with a function which add sorts ASB( ) : T∅ 7→ TB with B ⊆ S and defined as
ASB(t) = ARB\s(t). Adding sort s to a term does not change it but only the
rules and equations which are associated to it.



Theorem 3 (PSN for the prismoid). Let B ⊆ S. If t ∈ T∅ & t ∈ SN ∅, then
ASB(t) ∈ SNB.

Proof. There are tree cases, one for BI and two subcases for BE .

– Suppose s /∈ B. We first show that u ∈ TB & RRB(u) ∈ SN ∅ imply u ∈ SNB.
For that we apply Theorem 6 in the appendix with A1 =→β , A2 =→B\β ,
A =→β and R = RRB( ), using Theorem 2 and Lemma 8.
Now, take u = ARB(t). Then RRB(ARB(t)) =L.7 t ∈ SN ∅ by hypothesis. We
thus conclude ARB(t) ∈ SNB as desired.

– Suppose B = {s}. The proof of ARs(t) = t ∈ SNs follows a modular proof
technique to show PSN of calculi with full composition which is completely
developed in [8]. Details concerning the s-calculus can be found in [18].

– Suppose s ∈ B. Then B = {s} ∪A. We show that u ∈ TB & RRA(u) ∈ SNs
imply u ∈ SNB. For that we apply Theorem 6 in the appendix with A1 =→s,
A2 =→B\s, A =→s and R = RRA( ), using Theorem 2 and Lemma 8.
Now, take u = ASB(t). We have RRA(ASB(t)) = RRA(ARA(t)) =L.7 t ∈
SN ∅ by hypothesis and t ∈ SNs by the previous point. We thus conclude
ASB(t) ∈ SNB as desired.

6 Confluence

Confluence of each calculus of the prismoid is based on that of the λ∅-calculus [3].
Thus, for any A ⊆ R, consider xc : T{s}∪A 7→ TA which replaces explicit by
implicit substitution.

xc(y) = y xc(Wy(t)) = Wy(xc(t))

xc(t u) = xc(t) xc(u) xc(C
y1|y2

y (t)) = C
y1|y2

y (xc(t))
xc(λy.t) = λy.xc(t) xc(t[y/u]) = xc(t){y/xc(u)}

RRB(xc(t)) would be the dual of ASB(t) if properties similar to Lemma 7 and
Corollary 1 were true which is not the case.

Lemma 9. Let t ∈ TB. Then a) t →∗
B
xc(t), b) RRB\s(xc(t)) = xc(RRB\s(t)).

c) if t →s u, then xc(t) →∗
β xc(u).

Proof. The first and the second property are shown by induction on t using,
respectively, Lemmas 4 and 6. The third property is shown by induction on
t →s u using the simplified (but equivalent) notion of substitution on s-terms
given in Section 2.

Theorem 4. All the languages of the prismoid are confluent.

Proof. Let t →B t1 and t →B t2. We remark that B = A or B = {s} ∪ A, with
A ⊆ R. We have RRA(t) →∗

B\A
RRA(ti) (i=1,2) by Theorem 2; xc(RRA(t)) →∗

β

xc(RRA(ti)) (i=1,2) by Lemma 9; and xc(RRA(ti)) →∗
β t3 (i=1,2) for some

t3 ∈ T∅ by confluence of the λ-calculus [3]. Also, ARA(RRA(xc(ti))) =L. 9

ARA(xc(RRA(ti))) →
∗
A
W∆i

(ARA(t3)) for some ∆i (i=1,2) by Theorem 1.



But ti →∗
B

(L. 9) xc(ti) →∗
A

(C. 1) WΓi
(ARA(RRA(xc(ti)))) for some Γi

(i=1,2). Then WΓi
(ARA(RRA(xc(ti)))) →∗

A
WΓi∪∆i

(ARA(t3)) (i=1,2). Now, →∗
A

⊆ →∗
B

so in order to close the diagram we reason as follows.
If w /∈ B, then Γ1∪∆1 = Γ2∪∆2 = ∅ and we are done. If w ∈ B, then →B pre-

serves free variables by Lemma 3 so that fv(t) = fv(ti) = fv(WΓi∪∆i
(ARA(t3)))

(i=1,2) which gives Γ1 ∪ ∆1 = Γ2 ∪ ∆2

7 Typing

We now introduce simply typed terms for all the calculi of the prismoid, and
show that they all enjoy strong normalisation. Types are built over a countable
set of atomic symbols as follows: T ::= σ (atomic) | T → T

An environment is a finite set of pairs of the form x : T If Γ = {x1 :
T1, ..., xn : Tn} is an environment then dom(Γ ) = {x1, ..., xn} Two environments
Γ and ∆ are said to be compatible if x : T ∈ Γ and x : U ∈ ∆ imply T = U .
Two environments Γ and ∆ are said to be disjoint if there is no common variable
between them. Compatible union (resp. disjoint union) is defined to be the union
of compatible (resp. disjoint) environments only.

Typing judgements have the form Γ ⊢ t : T for t a term, T a type and Γ
an environment. Typing rules extend the inductive rules for well-formed terms
(Section 2) with type annotations. Thus, typed terms are necessarily well-formed
and each set of resources B has its own set of typing rules.

x : T ⊢B x : T

Γ ⊢B t : T
(c ∈ B)

x : U ; (Γ )B {y : U, z : U}) ⊢B Cy|z
x (t) : T

Γ ⊢B t : T
(w ∈ B)

Γ ; x : U ⊢B Wx(t) : T

Γ ⊢B u : U ∆ ⊢B t : T
(s ∈ B)

Γ ⊎B (∆ )B x : U) ⊢B t[x/u] : T

Γ ⊢B t : U

Γ )B x : T ⊢B λx.t : T → U

Γ ⊢B t : T → U ∆ ⊢B u : T

Γ ⊎B ∆ ⊢B tu : U

A term t ∈ TB is said to have type T (written t ∈ T T
B

) iff there is Γ s.t.
Γ ⊢B t : T . A term t ∈ TB is said to be well-typed iff there is T s.t. t ∈ T T

B
.

Remark that every well-typed B-term has a unique type.

Lemma 10. If Γ ⊢B t : T , then

1. fv(t) = dom(Γ ).
2. Γ \ Π;∆ ⊢B RΠ

∆(t) : T , for every Π ⊆ Γ and fresh ∆.
3. RRA(t) ∈ T T

B\A
, for every A ⊆ {c, w}.

Proof. By induction on Γ ⊢B t : T .

Theorem 5 (Subject Reduction). If t ∈ T T
B

& t →B u, then u ∈ T T
B

.



Proof. By induction on the reduction relation using Lemma 10. The proof is
very similar to that of Lemma 3.

Corollary 2. Let t ∈ T T
B

, then t ∈ SNB.

Proof. Let A ⊆ R so that B = A or B = A∪{s}. It is well-known that (simply)
typed λ∅-calculus is strongly normalising (see for example [3]). It is also straight-
forward to show that PSN for the λs-calculus implies strong normalisation for
well-typed s-terms (see for example [7]).

By Theorem 2 any infinite B-reduction sequence starting at t can be projected
into an infinite (B \ A)-reduction sequence starting at RRA(t). By Lemma 10
RRA(t) is a well-typed (B \A)-term, that is, a well-typed term in λ∅ or λs. This
leads to a contradiction with the previous sentence.

8 Conclusion and Future Work

The prismoid of resources is proposed as an homogeneous framework to define λ-
calculi being able to control weakening, contraction and linear substitution. The
formalism is based on MELL Proof-Nets so that the computational behaviour
of substitution is not only based on the propagation of substitution through
terms but also on the decreasingness of the multiplicity of variables that are
affected by substitutions. All calculi of the prismoid enjoy sanity properties such
as simulation of β-reduction, confluence, preservation of β-strong normalisation
and strong normalisation for typed terms.

The technology used in the prismoid could also be applied to implement
higher-order rewriting systems. Indeed, it seems possible to extend these ideas
to different frameworks such as CRSs [12], ERSs [11] or HRSs [17].

Another open problem concerns meta-confluence, that is, confluence for terms
with meta-variables. This could be useful in the framework of Proof Assistants.

Finally, a more technical question is related to the operational semantics
of the calculi of the prismoid. It seems possible to extend the ideas in [2] to
our framework in order to identify those reduction rules of the prismoid that
could be transformed into equations. Equivalence classes will be bigger, but
reduction rules will coincide exactly with those of Nets [2]. While the operational
semantics proposed in this paper is more adapted to implementation issues, the
opposite direction would give a more abstract and flexible framework to study
denotational properties.
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A Appendix

Theorem 6 ([13]). Let A1 and A2 be two reduction relations on the set k and
let A be a reduction relation on the set K. Let R ⊆ k× K. Suppose

– For every u, v, U (u R U & u A1 v imply ∃V s.t. v R V and U A+ V ).
– For every u, v, U (u R U & u A2 v imply ∃V s.t. v R V and U A∗ V ).
– The relation A2 is well-founded.

Then, t R T & T ∈ SN A imply t ∈ SN A1∪A2 .


