
A class of multilevel parallel preconditioning strategies

Laura Grigori, Pawan Kumar, Frédéric Nataf, Ke Wang

To cite this version:

Laura Grigori, Pawan Kumar, Frédéric Nataf, Ke Wang. A class of multilevel parallel precon-
ditioning strategies. [Research Report] RR-7410, INRIA. 2010. <inria-00524110>

HAL Id: inria-00524110

https://hal.inria.fr/inria-00524110

Submitted on 6 Oct 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

https://hal.archives-ouvertes.fr
https://hal.inria.fr/inria-00524110

appor t

de r ech er ch e

IS
S

N
0

2
4

9
-6

3
9

9
IS

R
N

IN
R

IA
/R

R
--

7
4

1
0

--
F

R
+

E
N

G

Thème NUM

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

A class of multilevel parallel preconditioning

strategies

Laura Grigori — Pawan Kumar — Frederic Nataf — Ke Wang

N° 7410

Octobre 2010

Centre de recherche INRIA Saclay – Île-de-France
Parc Orsay Université

4, rue Jacques Monod, 91893 ORSAY Cedex
Téléphone : +33 1 72 92 59 00

A class of multilevel parallel preconditioning strategies

Laura Grigori∗ , Pawan Kumar† , Frederic Nataf‡ , Ke Wang§

Thème NUM — Systèmes numériques
Équipe-Projet Grand-large

Rapport de recherche n° 7410 — Octobre 2010 — 25 pages

Abstract: In this paper, we introduce a class of recursive multilevel preconditioning strategies suited for
solving large sparse linear systems of equations on modern day architectures. They are based on a reordering
of the input matrix into a nested bordered block diagonal form, which allows a nested formulation of the
preconditioners. The first one, which we refer to as nested SSOR (NSSOR), requires only the factorization of
diagonal blocks at the innermost level of the recursive formulation. Hence, its construction is embarassingly
parallel, and the memory requirements are very limited. Next two are nested versions of Modified ILU
preconditioner with row sum (NMILUR) and colsum (NMILUC) property. We compare these methods in
terms of iteration number, memory requirements, and overall solve time, with ILU(0) with natural ordering
and nested dissection ordering, and MILU. We find that NSSOR compares favorably with ILU(0) with nested
dissection ordering, while NMILUR and NMILUC outperform the other methods for certain matrices in our
test set.

It is proved that the NSSOR method is convergent when the input matrix is SPD. The preconditioners
are designed to be suitable for parallel computing.

Key-words: preconditioner, linear system, GMRES, nested structure, incomplete LU

∗ INRIA Saclay - Ile de France, Laboratoire de Recherche en Informatique, Université Paris-Sud 11, France (Email:
Laura.grigori@inria.fr). Part of the work of this author has been supported by French National Research Agency (ANR)
through COSINUS program (project PETAL no ANR-08-COSI-009).

† INRIA Saclay - Ile de France, Laboratoire de Recherche en Informatique, Université Paris-Sud 11, France (Email:
pawan.kumar@lri.fr)

‡ Laboratoire J. L. Lions, CNRS UMR7598, Université Paris 6, France, (Email: nataf@ann.jussieu.fr). Part of the work
of this author has been supported by French National Research Agency (ANR) through COSINUS program (project PETAL
no ANR-08-COSI-009).

§ Department of Mathematics, College of Sciences, Shanghai University, Shanghai 200444, P.R. China (Email:
kwang@shu.edu.cn). The work of this author was performed as a postdoctoral researcher at INRIA Saclay, funded by French
National Research Agency (ANR) through COSINUS program (project PETAL no ANR-08-COSI-009

Une classe de préconditionneurs parallèles multiniveaux

Résumé : Dans ce papier nous décrivons une classe de préconditionneurs multiniveaux parallèles pour
résoudre des systèmes linéaires de grande taille. Ils se basent sur une renumérotation de la matrice d’entrée
en forme block diagonale bornée et emboîtée, qui permet une définition emboîtée des préconditionneurs.

Nous prouvons qu’un des préconditionneurs, NSSOR, converge quand la matrice d’entrée est sym-
métrique et définie positive. Les préconditionneurs sont adaptés au calcul parallèle.

Mots-clés : système linéaire, préconditionneur, GMRES, factorisation LU incomplète

A class of multilevel parallel preconditioning strategies 3

1 Introduction

The problem of finding an approximate solution of a large sparse linear system of the form

Ax = b (1)

is an important operation in many scientific applications. Consequently, a considerable amount of research
focuses on iterative methods, in particular on Krylov subspace type methods [15]. The convergence of these
methods mainly depends on how well the given problem is preconditioned. Given a linear system of the
form (1) above, we seek an approximation B to A and consider the following preconditioned problem

B−1Ax = B−1b, (2)

where B is chosen such that the spectrum of B−1A is “favorable” for the Krylov subspace type methods
[15].

A particular class of methods for solving sparse linear systems of equations are the algebraic multigrid
methods [14, 18, 20]. They have proved to be successful for certain classes of problems as for example elliptic
type PDEs. However, they can involve a high setup cost and hence other alternatives can be sometimes
more efficient. Preconditioned Krylov subspace methods with incomplete LU (ILU) (see for example [2, 15])
as preconditioner are designed to be general purpose methods for solving arbitrary sparse linear systems
of equations. They tend to work on problems where the above methods fail. However, the main drawback
of ILU type preconditioners are their poor convergence rate with increasing problem size. Moreover, they
usually need tuning of parameters for different problem types. Recently, several multilevel methods based on
ILU have been designed, that use a combination of techniques from direct and iterative methods [6, 9, 16].
Another unique approach is based on a direct approximation of the error propagation matrix, namely
I − B−1A. This method commonly known as SPAI (see for example [3, 4]) is very promising.

In this work we introduce and compare three recursive multilevel parallel preconditioners, which are
shown to be efficient for a range of problems. The new preconditioners are the following:

• NSSOR : nested SSOR

• NMILUR : nested MILU with rowsum constraint

• NMILUC : nested MILU with colsum constraint

The methods consider that the input matrix has a nested bordered block diagonal structure, which allows
a nested definition of the preconditioner. In addition it is suitable for parallel computation. The methods
can be seen as a multilevel extension of classical preconditioners as SSOR and modified ILU (MILU) (see
for example [2, 15]).

The method of NSSOR is built by approximating the Schur complements simply by the diagonal blocks of
the original matrix. This preconditioner is attractive because the construction cost and storage requirements
are relatively minimal. Moreover its construction is embarassingly parallel.

The methods NMILUR and NMILUC can be seen as nested extensions of the classic MILU method
with a rowsum or a colsum property. They can also be seen as an extension of the Nested Factorization
preconditioner introduced in [1] for matrices arising from the discretization of PDEs on structured grids. A
relaxed version of Nested Factorization is presented in [12]. The NMILUR and NMILUC preconditioners
satisfy the rowsum and colsum property respectively. We say that a preconditioner B satisfies rowsum
filtering property for a given vector 1 = [1, 1, . . . , 1] if the following holds:

A1
T = B1

T (3)

On the other hand, colsum property is defined as follows

1A = 1B (4)

It is proved that the NSSOR method is convergent for a given SPD problem. We also show that NMILUR
and NMILUC satisfy the respective filtering properties.

The nested bordered block diagonal form can be obtained by k-way partitioning techniques, as for exam-
ple implemented in Metis graph partitionning package [10]. In addition of allowing a recursive formulation
of the preconditioner, this form has several advantages. First, it allows for a parallel construction and
application of the preconditioner in the iterative process. Second, such reordering creates a structure which
itself presents several advantages. One of the key steps in solving linear systems of the form (1) via iterative

RR n° 7410

4 Laura Grigori , Pawan Kumar , Frederic Nataf , Ke Wang

0

1

2

3

4 56

0 1 2 3

4 5

6 0

1

2

3

4

5

6

Figure 1: Graph partitioned into 4 parts, its corresponding separator tree and matrix obtained after re-
ordering.

methods is the multiplication of a sparse matrix with a dense vector. The reordering based on k-way parti-
tioning helps in minimizing communication for this critical matrix vector operation for distributed memory
model [8]. It also creates data locality, which is important for exploiting well the memory hierarchy and for
shared memory machines. Third, the ordering reduces the fill incured by the factorization of the diagonal
blocks, and hence it is important as in the case of direct methods.

The methods are compared with ILU using natural ordering, ILU using 2-way nested dissection ordering,
and MILU preconditioners. Our test matrices include matrices arising from convection-diffusion problems
on structured grids, finite element problems generated by FreeFEM++ package [13] on unstructured meshes,
and several problems from University of Florida Sparse Matrix Collection [5]. We find that NSSOR compares
favorably with ILU based on nested dissection. When applied to matrices arising from problems with smooth
coefficients (see the results for matrices airfoil2d, chipcool1, Lap1, Lap2, mat_mem, and mat_heat in Tables
4, 5), the NMLIUR/C methods perform very well. They are strongly scalable and this is most probably
due to the filtering property.

We note that domain decomposition methods are also well suited for parallelism and are very efficient
for many classes of problems. The methods discussed in this paper have the same level of parallelism. In
addition, the methods NMILUR and NMILUC are relatively stable with respect to the number of domains,
similar to scalable domain decomposition methods. While in our case this is due to satisfying a filtering
property, in domain decomposition this is ensured by using a coarse grid correction [19, 17].

The paper is organized as follows. In section 2, we explain the partitioning and reordering used to define
the methods proposed. We focus on the usage of 2-way nested dissection. In section 3, we discuss and
explain the methods in detail. In section 4, we prove some results for these methods. Finally, in section 5
a comparison is done for all the methods discussed.

2 Partitioning, reordering, and associated notations

The multilevel preconditioners presented in this paper consider that the input matrix has a structure referred
to as nested bordered block diagonal form. This structure can be obtained by reordering the matrix based
on nested k-way partitioning (see for example [11]), that we present briefly in this section.

The undirected graph G(V,E) of a symmetric matrix A of size n × n is formed by a set of n vertices V
and a set of edges E. There is a vertex vi ∈ V for each row/column i of A and an edge (vi, vj) for each
nonzero element Aij . A subset S of V is called a vertex separator of G, if the removal of all the nodes of
S from the graph leaves the graph disconnected into two or more components. In k-way partitioning, a
separator S is found that separates the graph into k disconnected components. Each of these components

INRIA

A class of multilevel parallel preconditioning strategies 5

can be further divided into k disconnected components, and this process can be repeated for desired number
of times. In this paper we consider the case when k = 2, and this partitioning technique is referred to as
nested dissection. It is implemented for example in Metis graph partitioning library [10].

Figure (1) shows a pictorial representation of a graph corresponding to nested dissection ordering and its
associated separator tree. On the right, the matrix corresponding to the graph is shown. In the separator
tree, the nodes numbered 6, 5, and 4 correspond to separators. Once a separator is found we would like to
group them together by renumbering the nodes. For our purpose, we are concerned only with the undirected
graph or symmetric matrices and the actual weights (values in the matrix) are irrelevant. Renumbering
the nodes in a matrix means a symmetric permutation of the rows and columns such that the resulting
adjacency graph remains isomorphic to the original one i.e., no new nodes or edges are created or destroyed.
In figure 1, the separator block number 6 is numbered last after the left subtree of nodes in {4, 0, 1} and
right subtree made up of {5, 2, 3 } are numbered. This process of finding the separator nodes and later
renumbering them last after the two disconnected components have been numbered leads to the matrix with
special structure as shown in the Figure (1) on the left.

We now introduce a general convenient notation. After obtaining a suitable separator and renumbering
the child nodes and subsequently renumbering the separator nodes we obtain a bordered block diagonal
matrix

PT AP =

T 1

1 U1
1

T 2
1 U2

1

L1
1 L2

1 S1
1

 . (5)

Here P is the symmetric permutation matrix that renumbers the nodes. The interior nodes of the separator
tree obtained after nested dissetion have two children, namely, left and right child. The block S1

1 corresponds
to the vertices of the separator associated with the root node. Here the subscript refers to the level
of dissection 1 in the separator tree, and 1 refers to the number of the node at this level. The blocks
corresponding to the two independent partitions obtained after one dissection are T 1

1 and T 1
2 respectively.

These blocks are associated with the two children nodes of the root node. Each of these children nodes are
connected via lower blocks L1

1 and L1
2 and upper blocks U1

1 and U1
2 to the root separator. In the notation

of T, L, and U , the subscript correspnds to the level of dissection in the separator tree, and the superscript
refers to the number of the child node, that is the number of the node in the next level of the separator
tree.

For a matrix with nested bordered block diagonal form, the blocks T 1
1 and T 2

1 have recursively a bordered
block diagonal form. The matrix is denoted recursively in a similar fashion for each node and their children.

For K levels of nested dissection, that is a separator tree of height K, we denote by Lk, Uk, 1 ≤ k ≤ K
the lower and upper matrices of same size as original matrix A, where only those blocks which represent
the connection between the separators of level k and k + 1 are present. Also, we denote by D the block
diagonal part of A. The additive decomposition of A can be written as

PT AP = D +

K∑

k=1

(Lk + Uk).

If we consider two levels of nested dissection, the permuted matrix has the following structure

PT AP = D +

2∑

k=1

(Lk + Uk) =

T 1
2 U1

2

U1
1T 2

2 U2
2

L1
2 L2

2 S1
2

T 3
2 U3

2

U2
1T 4

2 U4
2

L3
2 L4

2 S2
2

L1
1 L2

1 S1
1

, (6)

RR n° 7410

6 Laura Grigori , Pawan Kumar , Frederic Nataf , Ke Wang

where

D =

T 1
2

T 2
2

S1
2

T 3
2

T 4
2

S2
2

S1
1

,

L1 =

0
0

0
0

0
0

L1
1 L2

1 0

, L2 =

0
0

L1
2 L2

2 0
0

0
L3

2 L4
2 0

0

,

and U1, U2 are defined in a similar way to L1, L2 respectively.

3 Nested preconditioners

In this section we present the nested preconditioners in detail. They are based on a nested bordered block
diagonal form of the input matrix A. This form can be obtained by partitionning and reordering techniques
presented in section 2, which are for example implemented in the Metis graph partitioner [10]. We first
describe the algebra of an exact decomposition of the input matrix A, on which our preconditioners are
based. For the ease of understanding, we condiser that the input matrix has 2 independent domains, a form
that can be obtained by 2-way nested dissection partitionning and reordering. However the methods are
easily generalized to a nested bordered block diagonal form with any number of diagonal blocks at each
level of the partitioning.

3.1 Nested exact factorization

We consider first a matrix that has a bordered block diagonal form obtained after applying one level of
nested dissection, as follows:

A = L1 + D + U1 =

T 1

1 U1
1

T 2
1 U2

1

L1
1 L2

1 S1
1

 .

where

D =

T 1

1

T 2
1

S1
1

 , L1 =

0

0
L1

1 L2
1 0

 , U1 =

0 U1

1

0 U2
1

0

 .

An exact factorization of A can be written as

A = (L1 + F1)F
−1
1 (F1 + U1) − L1F

−1
1 U1,

F1 = D.

Note that due to the bordered structure of A, the Schur complement L1F
−1
1 U1 uses the first two diagonal

blocks of F1 and modifies the third diagonal block of F1. Hence, the exact factorization of A can also be
written as

A = (L1 + F1)F
−1
1 (F1 + U1), (7)

F1 = D − L1F
−1
1 U1, (8)

where F1 has the following block diagonal structure:

F1 =

T 1

1

T 2
1

S1
1 − L1

1(T
1
1)−1U1

1 − L2
1(T

2
1)−1U2

1

INRIA

A class of multilevel parallel preconditioning strategies 7

The latter decomposition in equations (7) (8) makes more apparent the factored form of A, which is usefull
in solving equations of the form Ax = b, and this approach will be used in the rest of the paper.

Consider that the matrix A has a nested bordered block diagonal structure, that is the submatrices
T 1

1 and T 2
1 have themselves a nested bordered block diagonal structure. With the notation introduced in

section 2, the additive decomposition of A is given as A = D +
∑K

k=1
(Lk + Uk), and its exact factorization

can be written in a nested way as following:

A = F0, (9)

Fk = (Lk+1 + Fk+1)F
−1

k+1
(Fk+1 + Uk+1), for k = 0 . . . K − 1 (10)

FK = D −

K∑

k=1

LkF−1

k Uk. (11)

This recursive procedure can start from a certain level (k ≥ 1). Once all the Schur complements are
computed in the expression of FK , we get a factorization of A in terms of block lower and block upper
factors.

We note that the expression of FK involves terms of the recurrence Fk for k = 1 . . . K. The computation
is possible due to the structure of Lk, Fk, and Uk matrices. The factored form of Fk+1 gives to each of the
subdomains Tk a factored form in terms of block lower triangular and block upper triangular factors. Then
the Schur complement LkF−1

k Uk can be computed, it uses the factored forms of the blocks corresponding
to Tk, and modifies the blocks corresponding to the separator Sk. The computation will become more clear
shortly, when it will be illustrated in the context of the proposed preconditioners.

3.2 Preconditioners

We introduce now two types of preconditioners, that we refer to as NSSOR and NMILU. In an exact
factorization, the blocks Fk need to be inverted to compute the Schur complements in equation (11).
These inversions introduce fill in the matrix Fk, and are costly in terms of both storage requirements and
computation time. Hence the goal of a nested preconditioner is to find suitable approximations to the
inverse of matrices Fk in equations (10) and (11).

Definition 3.1 Let A be a matrix of size n × n which has a nested bordered block diagonal structure and
whose additive decomposition can be written as A = D +

∑K
k=1

(Lk + Uk). A nested SSOR preconditioner
BNSSOR is defined as

BNSSOR = G0, (12)

Gk = (Lk+1 + Gk+1)G
−1

k+1
(Gk+1 + Uk+1), for k = 0 . . . K − 1 (13)

GK = D, (14)

where we suppose that the matrices Gk for k = 1, . . . ,K are invertible.

In the NSSOR preconditioner, the Schur complements which appear in an exact factorization in equation
(11) are simply dropped. That is, there is no explicit coupling term in between the different partitions Tk

at different levels k of the nested factorization. We note that NSSOR is relatively cheap to compute, and
highly parallel. In fact, once the diagonal blocks D are factored, the preconditioner is ready to be applied in
the iterative solver. We describe later in Algorithm (1) the details of the construction of the preconditioner.

We now introduce two variants of a nested modified ILU preconditioner. The first variant, NMILUR,
ensures that the rowsum property is satisfied, that is 1A = 1BNMILUR. The second variant, NMILUC,
ensures that the colsum property is satisfied, that is A1

T = BNMILUC1
T . We give formal proofs for these

properties in the analysis section 4. In the following, Diag(v) is the diagonal matrix formed from vector v.

Definition 3.2 Let A be a matrix of size n × n which has a nested bordered block diagonal structure and
whose additive decomposition is written as A = D +

∑K
k=1

(Lk + Uk). An NMILU preconditioner BNMILU

is defined as

BNMILU = G0, (15)

Gk = (Lk+1 + Gk+1)G
−1

k+1
(Gk+1 + Uk+1), for k = 0 . . . K − 1 (16)

GK = D −
K∑

k=1

Hk (17)

RR n° 7410

8 Laura Grigori , Pawan Kumar , Frederic Nataf , Ke Wang

where we suppose that the matrices Gk, for k = 1, . . . ,K, are invertible. For NMILUR preconditioner, the
matrices Hk are defined as

Hk = rowsum(LkG−1

k Uk) = Diag(LkG−1

k Uk1), for k = 1, . . . ,K, (18)

while for NMILUC preconditioner, the matrices Hk are defined as

Hk = colsum(LkG−1

k Uk) = Diag(1T LkG−1

k Uk), for k = 1, . . . ,K (19)

where 1 = [1, 1, . . . , 1] is a vector of appropriate dimension.

Consider a level k ≥ 1 of the computation of NMILU preconditioner. Two approximations are used.
The approximation of the factorization of the blocks correspoding to different parts of Tk is given by the
expression of Gk+1. The Schur complements involved in the computation of the blocks of Sk that couple
the domains of Tk are approximated by the formulas (18), (19).

In this paper, we use the same approach as in modified ILU preconditioner, in which the terms dropped
are added to the diagonal of the preconditioner, such that the rowsum or the colsum property is satisfied.
However, other approximations can be used for the inverse of Gk matrices, as for example the approximation
presented in [7].

3.3 Algorithms for nested preconditioners

We present algorithms to compute the NSSOR and NMILU preconditioners and to apply them during the
iterative process. Although they are sequential, we also outline the parallelism available in this computation.

Algorithm 1 BuildNSSOR(T, level, K): recursive procedure to build BNSSOR preconditioner for a matrix
A.

Input: K is the height of the separator tree obtained from nested dissection, level is the current level of
computation in the separator tree. If level ≤ K, then T is partitioned as

T =

0

@

T 1 U1

T 2 U2

L1 L2 S1

1

A

Output: Updated factored form of GK

if level > K then

Factor(T)
else

BuildNSSOR(T 1, level + 1, K)
BuildNSSOR(T 2, level + 1, K)
Factor(S1)

end if

Algorithms 1 and 2 present the construction of NSSOR and NMILUR preconditioners in a recursive
manner, as a postorder traversal of the separator tree. The construction of NMILUC is similar to NMILUR.
In both algorithms, Factor stands for exact factorization, but in practice an incomplete factorization can
be used.

NSSOR preconditioner is build by a call to BuildNSSOR(A, 1, K) in algorithm 1, where K is the height
of the separator tree obtained from nested dissection. Once the diagonal blocks corresponding to GK = D
matrix (equation (14)) are factored, the preconditioner is ready to be applied in the iterative solver. Since
the factorizations of the diagonal blocks are independent computations, this algorithm is embarassingly
parallel.

NMILUR preconditioner is computed through a call to BuildNMILUR(A, 1, K) in Algorithm 2, where
K is the height of the separator tree obtained from nested dissection. At each level k of the recursion, the
input matrix T has a bordered block diagonal form. The goal is to compute an approximate factorization
T̃ of T . This is achieved by computing approximate factorizations of the two subdomains T 1, T 2 through
recursive calls to BuildNMILUR. Then the approximate Schur complement for matrix S1 is computed,
which corresponds to a diagonal block of matrix GK .

The solution procedure for solving with these nested preconditioners is the same, once the factored form
of matrix GK in equations 14 and 17 is computed. The solve will involve calling recursively the forward
and backward sweep routines shown in Algorithms (3) and (4) respectively.

INRIA

A class of multilevel parallel preconditioning strategies 9

Algorithm 2 BuildNMILUR(T, level, K): recursive procedure to build BNMILUR preconditioner for a
matrix A.

Input: K is the height of the separator tree obtained from nested dissection, level is the current level of
computation in the separator tree. If level ≤ K, then T is partitioned as

T =

0

@

T 1 U1

T 2 U2

L1 L2 S1

1

A

Output: Updated factored form of GK , approximate factorization T̃ of T
if level > K then

T̃ = Factor(T)
else

Call BuildNMILUR(T 1, level − 1, K) to compute the factored form T̃ 1

Call BuildNMILUR(T 2, level − 1, K) to compute the factored form T̃ 2

Compute Schur complement

S̃1 = S1 − rowsum(L1(T̃ 1)−1U1) − rowsum(L2(T̃ 2)−1U2)

Let T̃ be formed as

T̃ =

0

@

T̃ 1

T̃ 2

L1 L2 S̃1

1

A

·

0

@

T̃ 1

T̃ 2

S̃1

1

A

−1

·

0

@

T̃ 1 U1

T̃ 2 U2

S̃1

1

A

end if

We describe more in detail the solution procedure for NSSOR preconditioner. Recall that BNSSOR =
(L1 + G1)(I + G−1

1 U1) = BLBU , where G1 has recursively a similar factored form until some level.
The solve BNSSORx = b is computed by a call to ForwardSweep (BL, b, 1, K), followed by a call to
BackwardSeep(BU , y, 1, K), where K is the height of the separator tree. We notice here that for both
forward and backward sweep, the solve with the subdomains T̃ 1 and T̃ 2 involve a recursive call to forward
and backward sweeps within these subdomains. The recursion stops when the last level of the multilevel
factorization of BNSSOR is attained. At each level of the factorization, the solves within the two subdomains
T̃ 1 and T̃ 2 can be performed in parallel.

Algorithm 3 ForwardSweep(T̃L, b̄, level, K): recursive procedure to solve T̃Lȳ = b̄ using nested precondi-
tioner B = BLBU . This routine is used when solving the equation BLBUx = b, where BUx = y.

Input: K is the height of the separator tree obtained from nested dissection, level is the current level of
computation in the separator tree. If level ≤ K, then the procedure solves the system

T̃Lȳ = b̄, that is

0

@

T̃ 1

T̃ 2

L1 L2 S̃1

1

A

·

0

@

ȳ1

ȳ2

ȳ3

1

A =

0

@

b̄1

b̄2

b̄3

1

A .

Output: ȳ
if level > K then

Solve T̃Lȳ = b̄
else

Solve T̃ 1ȳ1 = b̄1 by calling ForwardSweep(T̃ 1, b̄1, level + 1, K)
Solve T̃ 2ȳ2 = b̄2 by calling ForwardSweep(T̃ 2, b̄2, level + 1, K)
Solve S̃1ȳ3 = b̄3 − L1ȳ1 − L2ȳ2

end if

4 Analysis

In this section, we collect some of the results on the methods presented in section 3. By SPD we shall mean
symmetric positive definite matrix. The input matrix A is reordered using techniques described in section

RR n° 7410

10 Laura Grigori , Pawan Kumar , Frederic Nataf , Ke Wang

Algorithm 4 BackwardSweep(T̃U , ȳ, level,K): recursive procedure to solve T̃U x̄ = ȳ using nested precon-
ditioner B = BLBU . This routine is used when solving the equation BLBUx = b, where BUx = y.

Input: K is the height of the separator tree obtained from nested dissection, level is the current level of
computation in the separator tree. If level ≤ K, then the procedure solves the system

T̃U x̄ = ȳ, that is

0

@

I (T̃ 1)−1U1

I (T̃ 2)−1U2

I

1

A

·

0

@

x̄1

x̄2

x̄3

1

A =

0

@

ȳ1

ȳ2

ȳ3

1

A .

Output: x̄
if level > K then

Solve T̃U x̄ = ȳ
else

Set x̄3 = ȳ3

Find x̄1 = ȳ1 − (T̃ 1)−1U1x̄3.
Find x̄2 = ȳ2 − (T̃ 2)−1U2x̄2.

end if

2 into a nested bordered block diagonal form. Let K be the height of the separator tree of nested dissection
ordering. For example in Figure (1), K is equal to 2. The node {6} is situated at level 1, the nodes {4,5} are
at level 2 and subsequently the leaf nodes {0,1,2,3} are at level 3 in the separator tree. Using the notations
introduced in section 2, PT AP has the following additive decomposition

PT AP = D +

K∑

k=1

(Lk + Uk).

Further, recall that 1 denotes [1,1,. . . ,1].

Theorem 4.1 For a given SPD matrix A, the NSSOR preconditioner BNSSOR is SPD and ρ(B−1

NSSORPT AP) <
1.

Proof: The preconditioner BNSSOR can be seen as a multilevel preconditioner as in definition 3.1. If the
original matrix A is SPD, then PT AP is SPD. The proof of the theorem follows from definition, i.e., we
have (PT APx, Px) = (APx, Px) > 0, for x 6= 0. Notice that P 2 = I since P is a permutation matrix, and
hence P is non-singular thus Px 6= 0, for x 6= 0.

Consequently, GK = D is SPD. We have

Gk = (Lk+1 + Gk+1)G
−1

k+1
(Gk+1 + LT

k+1),

It is easy to see that Gk+1 is symmetric if A is symmetric. Also, Gk+1 is a block diagonal matrix and
Gk+1 + Lk+1 is a lower block triangular matrix with the same diagonal blocks as that of Gk+1. Thus
the eigenvalues of Gk+1 + Lk+1 counting multiplicities are same as the eigenvalues of Gk+1 and hence
Gk+1 + Lk+1 is non-singular, since Gk+1 is SPD. Thus it follows that

((Gk+1 + Lk+1)G
−1

k+1
(Gk+1 + LT

k+1)x, x) = (G−1

k+1
(Gk+1 + LT

k+1)x, (Gk+1 + LT
k+1)x) > 0, for x 6= 0

Thus we have proved that Gk is SPD given that Gk+1 is SPD and hence BNSSOR is SPD. Also, we have

BNSSOR = PT AP +

K∑

k=1

LkG−1

k LT
k ,

(BNSSORx, x) = (PT APx, x) +

K∑

k=1

(G−1

k LT
k x, LT

k x),

≥ (PT APx, x),

> 0,∀x 6= 0.

Thus λi(B
−1

NSSORPT AP) ∈ (0, 1]. �

The following theorem shows that NMILUR preconditioners satisfy a particular filtering property.

INRIA

A class of multilevel parallel preconditioning strategies 11

Theorem 4.2 For a given matrix A for which NMILUR (NMILUC) as defined in definition 3.2 exists,
NMILUR (NMILUC) satisfies the following right (left) filtering property

BNMILUR1
T = PT AP1

T (rowsum property)

1BNMILUC = 1PT AP (colsum property)

Proof: The preconditioners BNMILUR and BNMILUC can be seen as multilevel preconditioners as in
Definition 3.2. For NMILUR we have,

GK = D −
K∑

k=1

rowsum(LkG−1

k Uk),

while for NMILUC we have,

GK = D −

K∑

k=1

colsum(LkG−1

k Uk).

Recall that rowsum(G) = Diag(G1
T) and colsum(G) = Diag(1G), where Diag(v) is the diagonal matrix

formed from vector v. We shall prove the row sum property for BNMILUR and the colsum property can be
proved in a similar way for BNMILUC . Writing

BNMILUR − PT AP =

K∑

k=1

(LkG−1

k Uk − rowsum(LkG−1

k Uk))

and observing the fact that rowsum(LiG
−1

i LT
i)1T = (LiG

−1

i LT
i)1T , the proof follows. �

5 Numerical Results with Matlab

This section presents numerical results for the three nested preconditioners when applied to several real
world problems. The numerical results were performed in MATLAB 7.7 in double precision arithmetic on a
dual core intel processor with multi-threading enabled. The iterative scheme used is restarted GMRES(60).
The algorithm is stopped whenever the relative norm ‖b − Axk‖/‖b‖ is less than 10−8. The exact solution
is generated randomly. The maximum Krylov subspace dimension allowed is 1000. For all our experiments
in MATLAB, we equilibrate the matrix by scaling the rows and columns by their respective norms. From
our experience, we find that this is important for several problems. We refer to this equilibration routine
as unsymmetric equilibration (UE), since it can destroy the symmetry of the input matrix. We also discuss
results obtained with an equilibration that preserves symmetry. Given a symmetric matrix A, we use a
symmetric equilibration (SE) Â = RAR, where R is a diagonal matrix such that

Rii = 1/sqrt(max(abs(ai1, ai1, . . . , ain))).

Here ai,j is the (i, j)th entry of A and n is the size of the square matrix A.
The input matrix is reordered using the nested dissection routine from the Metis graph partitioner [10],

which is called inside MATLAB via a mex interface. The local sub-domain solver is built using LU routine of
MATLAB, while the GMRES routine is the one available at http://www-users.cs.umn.edu/ saad/software/.

The methods are denoted in the tables as following:

• MILU: modified ILU, with colsum constraint

• NMILUR: nested MILU with rowsum constraint

• NMILUC: nested MILU with colsum constraint

• NSSOR: nested SSOR

• ILUND: ILU(0) after the input matrix is reordered using 2-way nested dissection

• ILUNO: ILU(0) with natural ordering of the input matrix

RR n° 7410

12 Laura Grigori , Pawan Kumar , Frederic Nataf , Ke Wang

Table 1: Test matrices.
MATRICES STANDS FOR Size Non-zeros Symmetric

2DNHm 2-dimensional non-
homogenous problem
discretized on m × m grid

m2 ≈ 5(m2) Yes

2DADm 2-dimensional advec-
tion diffusion problem
discretized on m × m grid

m2 ≈ 5(m2) No

2DSKYm 2-dimensional sky scrap-
per problem discretized on
m × m grid

m2 ≈ 5(m2) Yes

2DCSm 2-dimensional convective
skyscrapper discretized on
m × m grid

m2 ≈ 5(m2) No

3DSKYm 3-dimensional skyscrap-
per problem discretized
on m × m × m grid

m3 ≈ 7(m3) Yes

3DCONSKYm 3-dimensional convective
skyscrapper discretized on
m × m × m grid

m3 ≈ 7(m3) No

3DANIm 3-dimensional anisotropic
problem discretized on
m × m × m grid

m3 ≈ 7(m3) No

mat_heat Heat equation on unstruc-
tured mesh

19770 136152 Yes

mat_mem Equilibrium of a mem-
brane under load

31365 358431 Yes

crystm03 matrices from crystal sim-
ulation

24696 583770 Yes

chipcool1 convective thermal flow 20082 281150 No
airfoil_2d Unstructured 2D mesh

(airfoil)
14214 259688 No

Lap1 Laplace 3D unstructured 26082 362328 Yes
Lap2 Laplace 3D unstructured 34960 501394 Yes
bodyy4 Structural problem,

Florida matrix market
17546 121550 Yes

bodyy5 Structural problem,
Florida matrix market

18589 128853 Yes

INRIA

A class of multilevel parallel preconditioning strategies 13

5.1 Test matrices

We test the efficiency of our preconditioners on several matrices, ranging from convection-diffusion problems
for 2D and 3D case, finite element problems on unstructured meshes, and some miscellaneous problems from
Florida matrix market collection [5]. Table 1 displays for each matrix its application domain, its size and
number of nonzeros and its numerical symmetry. In the following we describe more in detail the convection-
diffusion problems and the finite element problems on unstructured meshed.

Convection diffusion problem We consider the following boundary value problem

η(x)u + div(a(x)u) − div(κ(x)∇u) = f in Ω
u = 0 on ∂ΩD

∂u
∂n

= 0 on ∂ΩN

(20)

where Ω = [0, 1]n (n = 2, or 3), ∂ΩN = ∂Ω \ ∂ΩD. The function η, the vector field a, and the tensor κ are
the given coefficients of the partial differential operator. In 2D case, we have ∂ΩD = [0, 1] × {0, 1}, and in
3D case, we have ∂ΩD = [0, 1] × {0, 1} × [0, 1].

The following five cases are considered:

Case 4.1: The advection-diffusion problem with a rotating velocity in two dimensions:
The tensor κ is the identity, and the velocity is a = (2π(x2 − 0.5), 2π(x1 − 0.5))T . The function η is zero.
The uniform grid with n × n nodes, n = 100, 200, 300, 400 nodes are tested respectively.

Case 4.2: Non-Homogeneous problems with large jumps in the coefficients in two dimensions:
The coefficient η and a are both zero. The tensor κ is isotropic and discontinuous. It jumps from the
constant value 103 in the ring 1

2
√

2
≤ |x − c| ≤ 1

2
, c = (1

2
, 1

2
)T , to 1 outside. We tested uniform grids with

n × n nodes, n = 100, 200, 300, 400.
Case 4.3: Skyscraper problems:

The tensor κ is isotropic and discontinuous. The domain contains many zones of high permeability which
are isolated from each other. Let [x] denote the integer value of x. In 2D, we have

κ(x) =

{
103 ∗ ([10 ∗ x2] + 1), if [10 ∗ xi] = 0 mod(2) , i = 1, 2,
1, otherwise.

and in 3D

κ(x) =

{
103 ∗ ([10 ∗ x2] + 1), if [10 ∗ xi] = 0 mod(2) , i = 1, 2, 3,
1, otherwise.

Case 4.4: Convective skyscraper problems:
The same with the Skyscraper problems except that the velocity field is changed to be a = (1000, 1000, 1000)T .

Case 4.5: Anisotropic layers:
The domain is made of 10 anisotropic layers with jumps of up to four orders of magnitude and an anisotropy
ratio of up to 103 in each layer. For 3D problem, the cube is divided into 10 layers parallel to z = 0, of
size 0.1, in which the coefficients are constant. The coefficient κx in the ith layer is given by v(i), the latter
being the ith component of the vector v = [α, β, α, β, α, β, γ, α, α], where α = 1, β = 102 and γ = 104. We
have κy = 10κx and κz = 1000κx. The velocity field is zero.

Figure 2: Mesh for heat exchanger problem

Finite element problems on unstructured mesh The Finite element problems are generated by the
package FreeFEM++ [13]. We consider the following examples for the unstructured case which are copied

RR n° 7410

14 Laura Grigori , Pawan Kumar , Frederic Nataf , Ke Wang

from the FreeFEM++ user guide.
Case A Equilibrium of a membrane under load:
The vertical displacement is assumed to satisfy a Poisson equation

− ∆φ = f in Ω. (21)

where Ω is elipse with major axis length a = 2 and minor axis length b = 1. The equation is discretized by
a P1- finite element method yielding a linear system that will be referred to as mat_mem in the tables.

Case B : Heat exchanger problem
Consider the following equation,

∇(κ∇u) = 0 in Ω, uΓ = g. (22)

where the meshed domain Ω is shown on figure 5.1 and κ is discontinuous function with a jump of size 5.
The equation is discretized by a P1- finite element method yielding a linear system that will be referred to
as mat_heat in the tables.

5.2 Discussion of numerical results

Tables 2, 4, 5, and 6 display test results for NSSOR, NMILUR, NMILUC, and ILUND respectively, with
varying number of levels of the nested preconditioners. That is, the nested dissection is stopped when 16,
32, and 64 independend domains are obtained, respectively. The unsymmetric equilibration routine is used
for these tests. We present iteration number, error, time spent in construction, time spent in solving phase,
and fill-factor (the ratio of the nonzeros in the preconditioner and non-zeros in original matrix A).

We note that the non-zero pattern of the Schur complements for the methods NMILUR, NMILUC, and
NSSOR are similar. Hence a similar fill-factor is obtained for all these methods for a given number of
domains. We also observe that in general the fill-factor decreases with increasing number of domains.

When comparing NMILUR and NMILUC in Tables 4 and 5, we find that in terms of both iteration
count and total time, NMILUR is usually far superior to NMILUC. For symmetric matrices, the NMILUR
and NMILUC approximations are same.

We also observe that NSSOR has a faster convergence than NMILUR. However, for matrices Lap1,
mat_mem, mat_heat, bodyy4, and bodyy5, NMILUR is faster than NSSOR in terms of both total time
and iteration count. For all other cases, NSSOR is superior to both NMILUR and NMILUC. Here we cannot
compare the time of ILUND with our nested preconditioners since in ILUND, for ILU(0) Matlab uses a
well optimized compiled routines for the factorization and solve with ILU(0) factors. We find a surprising
case of Lap1. For this problem, the method fails to converge for 32 domains within maximum iterations
allowed. However, it converges again for 64 domains. This is probably, due to the fact that some of the
diagonal blocks are very ill-conditioned for 32 domains. This is an aspect that requires further investigation.
Moreover, for this problem the fill factor for all the methods for all the partitions remains highest.

Table 3 shows test results for NSSOR with PCG method for symmetric matrices, equilibrated using
symmetric equilibration (SE). We observe some improvement for the skyscrapper problem and for the finite
element problems, namely, mat_mem, mat_heat. Otherwise, for our test matrices we do not observe any
significant reduction in iteration count with PCG compared to GMRES results in Table 2. We have tried
SE and PCG with other methods like NMILUR, NMILUC, NFF, ILUND, ILU(0), and MILU and compared
with GMRES with UE, we do not observe any advantage in terms of iteration count and thus we have not
included those results.

Table 7 displays the results obtained for ILU(0) and MILU for natural ordering of the unknowns. In
general ILU(0) is more stable than MILU, which in this case satisfies rowsum property. However, for some
cases, e.g. 3dCS20, 2dAD100, 2dANI100, 2dNH100, mat_mem, and airfoil_2d, MILU takes approximately
half or less than half iterations compared to ILU(0). Comparing ILU(0) and MILU with natural ordering
with NSSOR, we find that in general NSSOR takes more iterations than ILU(0). Exception being mat_mem,
where both MILU and NSSOR take less than half the number of iterations of ILU(0). For the problem
mat_heat, MILU fails to converge within 1000 iterations, and NSSOR is better than ILU(0). On the other
hand, the multilevel extension of MILU with rowsum property, namely NMILUR, performs significantly
better than ILU(0) and MILU for mat_mem, mat_heat, body4, body5, airfoil_2d, and Lap2 for matrix
partitioned into 16 domains. As mentioned before, in general, we find the performance of NMILUC to be
very poor compared to other methods. We could have chosen incomplete LU with drop tolerance but this
choice remains very problem dependent and we compare only with parameter free methods. In general, the
fill factor of NSSOR decreases very rapidly with increasing number of domains, while the iteration count
does not vary much for most of the problems.

INRIA

A class of multilevel parallel preconditioning strategies 15

Figure 3: Spectrum plot of from top to bottom : NMILUR, NMILUC, NSSOR, ILUNO, ILUND, MILU for
the matrix 2dAD30, nparts=8. Horizontal axis : real part of eigenvalues, vertical axis : imaginary part of
eigenvalues

In Figures 3 and 4, we plot the spectrum of the preconditioned matrix, with NMILUR, NMILUC,
NSSOR, and NILUND preconditioners. In Figure 3, both NMILUR and NMILUC have similar spectrum,
this is because the problem 2dAD30 is close to be symmetric. For NMILUR, there are some eigenvalues
close to zero. However, for NMILUC the real part of all the eigenvalues is greater than or equal to one. For
NSSOR, the real part of eigenvalues lies between zero and one, where most of the eigenvalues are clustered
around one, while some close to zero. The matrix 2dAD30 is SPD and hence the eigenvalues of NSSOR
lie between zero and one (see Theorem 4.1 for the proof). For both ILUND and ILUNO, the spectrum
is relatively spread out, with most of the eigenvalues clustered around one. On the other hand, in Figure
4, we plot the spectrum for the 3D problem 3dCS15. In contrast, here for NMILUR, the eigenvalues are
larger than one. On the other hand for NMILUC, there are negative eigenvalues as well, this is the reason
why NMILUC fails to converge within 1000 steps for a similar convective skyscrapper problem 3dCS20, see
Table 5. For NSSOR the eigenvalues lies between zero and one as expected since the problem 3dCS15 is
symmetric positive definite (see Theorem 4.1).

Figures 5 and 6 display the convergence curves for some of the problems. In the figures, we plot the
iteration count of NSSOR, NMILUR, NMILUC, and ILUND versus the norm of relative residual at each
iteration. As we see from the plots, for some cases, NMILUC does not converge. For cases where it does
not converge within 1000 steps, we have omitted the curve of NMILUC, so that we can see the convergence
curves for other methods in detail. For advection-diffusion problem, we see from the plots that ILUND
shows large plateaus, that indicate presence of very small eigenvalues. The advection-diffusion problems are
very close to be symmetric and thus the convergence behavior of NMILUC and NMILUR are close. Here
NSSOR performs better when compared to ILUNO. For a difficult skyscrapper problem namely, 2dSKY100,
which has large jumps in the coefficients, we observe that most of the methods have difficulties to converge,
see last subfigure of Figure 5, and they converge only after 400 steps. We now consider the matrices taken
from Florida matrix market collection. In the case of bodyy4, NMILUR and NMILUC performs better
compared to other methods. Here ILUND performs worse. For a problem from crystal simulation, i.e. for
crystm03, ILUNO has the best performance closely followed by NSSOR. Here both NMILUR and NMILUC
perform worse and take more than 100 steps to converge. For another problem from computational fluid
dynamics field, namely airfoil_2d, we find that NMILUR and NMILUC perform better compared to other
methods. Here ILUND performs worse.

6 Conclusions

In this paper we have presented a class of recursive multilevel preconditioners. These preconditioners are
based on a nested formulation that is enabled by a nested bordered block diagonal form of the input matrix.
In addition, this form is well suited for parallel computation.

RR n° 7410

16
L
a
u
ra

G
ri

go
ri

,
P
a
w
a
n

K
u
m

a
r

,
F
re

d
er

ic
N

a
ta

f
,
K

e
W

a
n
g

Table 2: Test Results for NSSOR with unsymmetric equil. in MATLAB, tol. = 10−8, tcon= construction time in seconds, ttot=total time. Restart parameter
for GMRES is 60 and maximum iterations allowed is 1000. Here its = number of iterations required for convergence, err = error in the solution, and mem =
nnz(B_NSSOR)/nnz(A)

16 parts 32 parts 64 parts
Mat./Resul. its err tcon ttot mem its err tcon ttot mem its err tcon ttot mem
3dCS20 88 e-7 0.03 80.5 3.79 92 e-7 0.01 158.6 2.26 96 e-7 0.01 287.0 1.6
3dANI20 46 e-7 0.03 46.3 3.5 49 e-07 0.01 85.4 2.2 51 e-7 0.01 150.4 1.6
3dSK20 165 e-5 0.04 151.0 4.0 193 e-04 0.02 312.0 2.3 215 e-5 0.01 635.8 1.6
Lap1 46 e-6 1.3 449.2 9.2 85 e-6 0.5 987.2 5.7 115 e-7 111.8 1903.8 3.8
2dAD100 53 e-7 0.03 54.3 3.7 63 e-7 0.02 125.3 2.8 69 e-6 0.01 271.4 2.1
2dANI100 191 e-5 0.03 191.8 3.9 259 e-5 0.02 497.9 2.9 304 e-5 0.01 1105.3 2.1
2dNH100 53 e-7 0.02 16.8 3.7 61 e-7 0.01 39.3 2.8 68 e-6 0.01 95.2 2.1
mat_mem 89 e-5 0.2 367.9 3.6 116 e-6 0.16 851.9 2.9 135 e-5 0.12 1803.9 2.5
mat_heat 60 e-7 0.09 125.6 4.5 79 e-6 0.07 288.7 3.6 93 e-6 0.05 668.1 2.9
bodyy4 32 e-7 0.16 100.3 5.0 38 e-7 0.1 209.2 3.9 44 e-6 0.08 454.4 3.0
bodyy5 86 e-6 0.19 290.6 5.3 77 e-6 0.1 460.7 4.1 87 e-6 0.09 939.2 3.0
crystm03 6 e-9 1.3 55.1 5.8 7 e-8 0.8 95.2 4.3 7 e-8 0.3 97.5 3.0
airfoil2d 43 e-7 0.26 140.6 3.9 52 e-7 0.17 304.4 2.9 58 e-7 0.20 962.0 2.0
Lap2 32 e-7 2.8 654.5 9.3 34 e-7 1.3 854.8 6.3 36 e-7 0.7 1220.1 4.5

IN
R

IA

A
cla

ss
o
f
m

u
ltilevel

pa
ra

llel
p
reco

n
d
itio

n
in

g
stra

tegies
17

Table 3: Test Results for NSSOR with symmetric equil. MATLAB, tol. = 10−8, tcon= construction time in seconds, ttot=total time. PCG used for symmetric
matrices which are scaled by SE. Maximum number of iterations allowed is 1000. Here its = number of iterations required for convergence, err = error in the
solution, and mem = nnz(B_NSSOR)/nnz(A)

16 parts 32 parts 64 parts
Mat./Resul. its err tcon ttot mem its err tcon ttot mem its err tcon ttot mem
3dANI20 46 e-7 0.03 87.7 3.2 49 e-07 0.02 154.7 1.8 51 e-7 0.04 286.3 1.14
3dSK20 124 e-4 0.04 229.9 3.71 135 e-04 0.02 439.0 1.9 150 e-4 0.01 897.9 1.15
Lap1 49 e-7 2.7 983.5 9.1 91 e-7 1.13 2160.9 5.4 104 e-7 0.48 3294.3 3.5
2dNH100 55 e-7 0.03 45.5 3.6 63 e-7 0.02 104.8 2.7 69 e-7 0.02 251.1 1.94
mat_mem 83 e-7 0.2 417.3 3.5 95 e-7 0.18 845.4 2.9 109 e-7 0.16 1946.1 2.3
mat_heat 61 e-7 0.1 150.9 4.47 70 e-7 0.08 301.0 3.57 81 e-7 0.07 663.5 2.7
bodyy4 34 e-7 0.24 71.8 4.8 40 e-7 0.08 179.7 3.7 44 e-6 0.08 454.4 3.0
bodyy5 95 e-6 0.14 231.4 5.2 81 e-7 0.1 356.6 4.0 91 e-6 0.07 761.5 2.9
crystm03 6 e-9 2.5 127.8 5.7 7 e-8 1.5 217.7 4.1 7 e-8 0.78 303.4 2.7
airfoil2d 43 e-7 0.26 140.6 3.9 52 e-7 0.17 304.4 2.9 58 e-7 0.20 962.0 2.0
Lap2 33 e-8 2.0 432.0 9.0 34 e-8 0.9 566.5 6.0 37 e-8 0.54 863.6 4.15

R
R

n
°

7
4
1
0

18
L
a
u
ra

G
ri

go
ri

,
P
a
w
a
n

K
u
m

a
r

,
F
re

d
er

ic
N

a
ta

f
,
K

e
W

a
n
g

Table 4: Test Results for NMILUR with unsymmetric equil. in MATLAB, tol. = 10−8, tcon= construction time in seconds, ttot=total time. Restart parameter
for GMRES is 60 and maximum iterations allowed is 1000. Here its = number of iterations required for convergence, err = error in the solution, and mem =
nnz(B_NMILUR)/nnz(A)

16 parts 32 parts 64 parts
Mat./Resul. its err tcon ttot mem its err tcon ttot mem its err tcon ttot mem
3dCS20 116 e-8 1.2 114.8 4.1 147 e-8 1.7 256.5 2.4 168 e-8 3.0 511.2 1.7
3dANI20 1000 e-8 1.3 1006.4 3.8 1000 e-4 4.2 1703.6 2.4 1000 e-6 3.1 2972.6 1.7
3dSK20 179 e-9 1.17 163.1 4.3 402 e-9 1.6 643.2 2.5 1000 e-8 2.9 2935.5 1.7
Lap1 20 e-7 18.6 212.5 9.6 23 e-7 15.9 281.5 6.1 23 e-7 16.9 366.7 4.0
2dAD100 95 e-8 1.1 97.6 3.8 104 e-8 2.0 207.4 2.9 119 e-8 3.8 466.6 2.2
2dANI100 402 e-8 1.1 403.4 4.0 1000 e-5 2.0 1916.3 3.0 1000 e-7 3.6 3623.8 2.2
2dNH100 102 e-8 0.36 32.1 3.8 109 e-8 0.6 70.0 2.9 122 e-8 1.3 170.6 2.2
mat_mem 45 e-8 5.8 206.5 3.7 44 e-7 8.15 328.7 3.0 53 e-8 13.6 717.7 2.5
mat_heat 50 e-7 2.4 102.0 4.6 50 e-8 3.9 188.0 3.7 56 e-8 7.0 394.9 2.9
bodyy4 10 e-8 3.9 35.9 5.1 12 e-8 5.9 71.5 4.0 11 e-8 10.3 121.4 3.0
bodyy5 10 e-7 4.3 39.6 5.3 11 e-7 6.3 71.4 4.1 18 e-7 10.8 203.3 3.0
crystm03 141 e-8 18.2 1309.0 5.9 371 e-7 17.5 5003.5 4.4 1000 e-3 15.2 13658.7 3.1
chipcool1 24 e-8 9.04 124.7 6.4 24 e-8 8.6 184.8 4.39 26 e-8 14.2 307.4 2.9
airfoil2d 15 e-8 8.4 50.0 4.0 16 e-8 6.6 96.5 3.0 17 e-8 21.2 362.2 2.1
Lap2 33 e-8 46.5 700.3 9.7 34 e-8 34.4 883.6 6.7 35 e-8 37.4 1214.3 4.7

IN
R

IA

A
cla

ss
o
f
m

u
ltilevel

pa
ra

llel
p
reco

n
d
itio

n
in

g
stra

tegies
19

Table 5: Test Results for NMILUC with unsymmetric equil. in MATLAB, tol. = 10−8, tcon= construction time in seconds, ttot= total time. Restart parameter
for GMRES is 60 and maximum iterations allowed is 1000. Here its = number of iterations reqd. for convergence, err = error in the solution, and mem =
nnz(B_NMILUC)/nnz(A)

16 parts 32 parts 64 parts
Mat./Resul. its err tcon ttot mem its err tcon ttot mem its err tcon ttot mem
3dCS20 1000 e-8 1.3 993.6 4.1 1000 e-8 1.8 1726.1 2.4 1000 e-8 3.1 3002.5 1.7
3dANI20 1000 e-8 1.3 1006.4 3.9 1000 e-4 4.2 1703.6 2.4 1000 e-6 3.2 3001 1.7
3dSK20 1000 e-9 1.2 911.0 4.3 1000 e-9 1.7 1604.5 2.5 1000 e-8 3.1 2935.6 1.7
Lap1 56 e-7 20.7 557.5 9.6 298 e-7 17.3 3454.3 6.1 237 e-7 18.5 3628.4 4.0
2dAD100 104 e-8 1.1 106.8 3.8 113 e-8 2.1 225.5 2.9 127 e-8 4.0 497.8 2.1
2dANI100 1000 e-8 1.19 1005.5 4.0 1000 e-5 2.0 1916.3 3.0 1000 e-7 3.9 3627.9 2.2
2dNH100 102 e-8 0.4 32.3 3.8 109 e-8 0.7 70.3 2.9 122 e-8 1.5 171.0 2.2
mat_mem 1000 e-8 5.7 4080.0 3.7 1000 e-7 8.8 7342.4 3.0 1000 e-8 14.7 13301.3 2.5
mat_heat 655 e-7 2.6 1359.3 4.6 1000 e-8 4.2 3660.2 3.7 1000 e-8 7.5 7090.5 2.9
bodyy4 11 e-8 4.0 38.1 5.1 15 e-8 6.2 88.2 4.0 13 e-8 10.7 141.9 3.0
bodyy5 11 e-7 4.5 43.3 5.4 13 e-7 6.7 83.7 4.2 20 e-7 11.4 225.4 3.1
crystm03 120 e-8 19.6 1102.3 6.0 473 e-7 20.7 6531.5 4.5 1000 e-3 16.9 13703.5 3.1
chipcool1 1000 e-8 9.6 4865.4 6.4 1000 e-8 9.4 7673.6 4.39 1000 e-8 14.4 10594.6 2.9
Lap2 1000 e-8 50.8 19970.6 9.7 1000 e-8 37.7 24943.6 6.7 1000 e-8 40.1 33631 4.7

R
R

n
°

7
4
1
0

20
L
a
u
ra

G
ri

go
ri

,
P
a
w
a
n

K
u
m

a
r

,
F
re

d
er

ic
N

a
ta

f
,
K

e
W

a
n
g

Table 6: Test Results for ILUND in MATLAB, tol. = 10−8, tcon= construction time in seconds, ttot=total time. Restart parameter for GMRES is 60 and maximum
iterations allowed is 1000. Here its = number of iterations reqd. for convergence, err = error in the solution, and mem = (nnz(L)+nnz(U))/nnz(A), where L, and
U are ILU(0) factors of A

16 parts 32 parts 64 parts
Mat./Resul. its err tcon ttot mem its err tcon ttot mem its err tcon ttot mem
3dCS20 103 e-7 0.002 1.08 1 104 e-7 0.002 1.08 1 104 e-7 0.003 1.03 1
3dANI20 71 e-7 0.003 0.79 1 74 e-7 0.003 0.87 1 76 e-7 0.003 0.85 1
3dSK20 162 e-05 0.002 1.5 1 172 e-5 0.002 1.5 1 176 e-4 0.002 1.6 1
Lap1 202 e-5 0.03 6.17 1 201 e-5 0.03 6.1 1 198 e-5 0.03 6.10 1
2dAD100 173 e-6 0.002 1.87 1 174 e-6 0.002 1.90 1 167 e-6 0.002 1.80 1
2dANI100 747 e-5 0.002 7.36 1 781 e-5 0.002 7.76 1 789 e-5 0.002 7.8 1
2dNH100 176 e-6 0.001 1.5 1 177 e-6 0.001 1.64 1 179 e-6 0.001 1.6 1
mat_mem 248 e-5 0.02 7.53 1 254 e-5 0.02 7.53 1 1000 e-1 0.15 25.4 1
mat_heat 233 e-5 0.007 4.44 1 240 e-5 0.007 4.3 1 238 e-5 0.008 4.87 1
bodyy4 69 e-6 0.01 2.76 1 69 e-6 0.01 2.81 1 68 e-6 0.01 2.76 1
bodyy5 143 e-5 0.01 4.82 1 140 e-5 0.01 4.75 1 142 e-6 0.013 5.07 1
crystm03 9 e-8 0.06 0.22 1 9 e-8 0.06 0.22 1 9 e-8 0.06 0.22 1
airfoil2d 69 e-6 0.02 1.66 1 70 e-6 0.02 1.61 1 70 e-6 0.02 1.60 1
Lap2 56 e-7 0.06 6.24 1 55 e-7 0.06 5.67 1 56 e-7 0.06 6.15 1

IN
R

IA

A class of multilevel parallel preconditioning strategies 21

Figure 4: Spectrum plot of from top to bottom : NMILUR, NMILUC, NSSOR, ILUNO, ILUND, and MILU
for the matrix 3dCS15, nparts=8. Horizontal axis: real part of eigenvalues, vertical axis: imaginary part of
eigenvalues

Table 7: Test results with ILU(0), MILU with natural ordering and with unsymmetric equilibration, The
iteration is stopped when the rel. res. is below 10−8, and the maximum number of iterations allowed is
1000, retart parameter for GMRES is 60.

Matrix/Method ILU(0) MILU
its err. its err.

3dCS20 49 e-6 42 e-8
3dSK20 87 e-5 206 e-8
3dANI20 26 e-7 29 e-8
Lap1 20 e-6 31 e-6
Lap2 36 e-7 38 e-8
2dAD100 80 e-6 44 e-8
2dANI100 231 e-5 63 e-8
2dNH100 77 e-6 41 e-8
mat_mem 217 e-5 84 e-8
mat_heat 138 e-5 769 e-7
bodyy4 23 e-7 30 e-7
bodyy5 39 e-6 35 e-7
crystm03 2 e-9 2 e-8
airfoil_2d 46 e-7 27 e-7

RR n° 7410

22 Laura Grigori , Pawan Kumar , Frederic Nataf , Ke Wang

Figure 5: Convergence curves for three test matrices, from top to bottom: 2dAD100, 2dANI100, 2dSKY100.

INRIA

A class of multilevel parallel preconditioning strategies 23

Figure 6: Convergence curves for three test matrices, from top to bottom: bodyy4, crystm03, airfoil2d

RR n° 7410

24
L
a
u
ra

G
ri

go
ri

,
P
a
w
a
n

K
u
m

a
r

,
F
re

d
er

ic
N

a
ta

f
,
K

e
W

a
n
g

Table 8: Test Results for pARMS in C with GMRES, tol. = 10−8, tcon= construction time in seconds, ttot=total time. Restart parameter for GMRES is 60 and
maximum number of iterations allowed is 1000. Here its = number of iterations reqd. for convergence, err = error in the solution, and mem = nnz(B_pARMS)/nnz(A)

16 parts 32 parts 64 parts
Mat./Resul. its err tcon ttot mem its err tcon ttot mem its err tcon ttot mem
3dCS20 13 e-4 0.01 0.29 2.9 15 e-4 0.00 0.63 2.48 16 e-5 0.00 1.41 2.31
3dANI20 2 e-1 0.0 0.06 1.94 2 e-1 0.00 0.10 1.81 3 e-2 0.0 0.29 1.7
3dSK20 44 e-3 0.01 0.71 3.72 39 e-3 0.0 1.21 3.08 56 e-3 0.0 3.59 2.71
2dAD100 15 e-7 0.01 0.31 3.9 14 e-8 0.0 0.51 3.85 14 e-7 0.00 1.09 3.19
2dANI100 2 e-1 0.0 0.06 1.94 2 e-1 0.0 0.10 1.81 3 e-2 0.0 0.29 1.72
2dNH100 15 e-8 0.01 0.29 3.9 14 e-8 0.0 0.5 3.85 14 e-7 0.0 1.03 3.19
mat_mem 34 e-7 0.16 2.18 2.36 34 e-6 0.02 2.73 2.35 32 e-7 0.01 4.03 2.34
mat_heat 20 e-8 2.5 44.0 4.5 22 e-7 0.14 0.80 3.61 21 e-7 0.01 1.04 3.51
bodyy4 2 e-7 0.00 0.13 1.29 2 e-7 0.0 0.24 1.36 2 e-7 0.00 0.29 1.39
IFP1 28 e-11 0.09 0.99 3.63 36 e-11 0.01 1.98 3.63 32 e-11 0.00 3.32 3.09
crystm03 62 e-16 0.48 5.60 1.6 62 e-16 0.75 7.8 1.71 62 e-16 0.51 8.57 1.83
airfoil2d 26 e-11 0.06 1.0 1.9 24 e-11 0.01 1.28 1.93 24 e-11 0.00 2.57 1.81
Lap2 1 e-1 0.28 0.59 2.26 1 e-1 0.17 0.56 2.23 1 e-1 0.01 0.53 2.19

IN
R

IA

A class of multilevel parallel preconditioning strategies 25

As future work, we are interested in developing parallel codes for these preconditioners and compare
them with other state-of-art preconditioners [6, 9, 16].

References

[1] J.R Appleyard and I.M. Cheshire. Nested factorization. In Seventh SPE Symposium on Reservoir
Simulation, pages 315–324, 1983. paper number 12264.

[2] O. Axelsson. Iterative solution methods. Cambridge University Press, Cambridge, 1994.

[3] M. Benzi, C. D. Meyer, and M. Tuma. A sparse approximate preconditioner for the conjugate gradient
method. SIAM J. Sci. Comput., 17(5):1135–1149, 1996.

[4] M. Benzi and A. M. Tuma. A comparative study of sparse approximate inverse preconditioners. Appl.
Numer. Math., 30:305–340, 1999.

[5] T. Davis. University of Florida Sparse Matrix Collection. NA Digest, vol. 92, no. 42, October 16,
1994, NA Digest, vol. 96, no. 28, July 23, 1996, and NA Dige st, vol. 97, no. 23, June 7, 1997.
http://www.cise.ufl.edu/research/sparse/matrices.

[6] L. Giraud and A. Haidar. Parallel algebraic hybrid solvers for large 3d convection-diffusion problems.
Numerical Algorithms, 51(2):151–177, 2009.

[7] L. Grigori, P. Kumar, and F. Nataf. Nested filtering factorization. In preparation, 2010.

[8] A. Gupta, G. Karypis, and V. Kumar. Highly scalable parallel algorithms for sparse matrix factoriza-
tion. IEEE Transactions on Parallel and Distributed Systems, 8(5):502–520, 1997.

[9] P. Henon and Y. Saad. A Parallel Multilevel ILU Factorization based on a Hierarchical Graph Decom-
position. SIAM J. on Sci. Comp., 28(6):2266–2293, 2006.

[10] G. Karypis and V. Kumar. Metis: A software package for partitioning unstructured graphs, partitioning
meshes and computing fill-reducing orderings of sparse matrices - verstion 4.0, 1998. See http://www-
users.cs.umn.edu/karypis/metis.

[11] G. Karypis and V. Kumar. A fast and high quality multilevel scheme for partitioning irregular graphs.
SIAM Journal on Scientific Computing, 20(1):359 – 392, 1999.

[12] P. Kumar, L. Grigori, F. Nataf, and Q. Niu. Combinative preconditioning based on relaxed
nested factorization and tangential filtering preconditioner. INRIA report-6955, 2009. available at
http://hal.inria.fr.

[13] O. Pironneau, F. Hecht, A. Le Hyari, and J. Morice. FreeFEM++. Universite Pierre et Marie Curie.
available at www.freefem.org.

[14] J. W. Ruge and K. Stüben. Algebraic multigrid. In Multigrid methods, volume 3 of Frontiers Appl.
Math., pages 73–130. SIAM, Philadelphia, PA, 1987.

[15] Y. Saad. Iterative Methods for Sparse Linear Systems. PWS publishing company, Boston, MA, 1996.

[16] Y. Saad and B. Suchomel. Arms: an algebraic recursive multilevel solver for general sparse linear
systems. Numerical Linear Algebra with Applications, 9(5):359–378, 2002.

[17] B. F. Smith, P. E. Bjørstad, and W. Gropp. Domain Decomposition: Parallel Multilevel Methods for
Elliptic Partial Differential Equations. Cambridge University Press, 1996.

[18] K. Stüben. A review of algebraic multigrid. J. Comput. Appl. Math., 128(1-2):281–309, 2001. Numerical
analysis 2000, Vol. VII, Partial differential equations.

[19] Andrea Toselli and Olof Widlund. Domain Decomposition Methods - Algorithms and Theory, volume 34
of Springer Series in Computational Mathematics. Springer, 2004.

[20] U. Trottenberg, C. W. Oosterlee, and A. Schüller. Multigrid. Academic Press Inc., San Diego, CA,
2001. With contributions by A. Brandt, P. Oswald and K. Stüben.

RR n° 7410

Centre de recherche INRIA Saclay – Île-de-France
Parc Orsay Université - ZAC des Vignes

4, rue Jacques Monod - 91893 Orsay Cedex (France)

Centre de recherche INRIA Bordeaux – Sud Ouest : Domaine Universitaire - 351, cours de la Libération - 33405 Talence Cedex
Centre de recherche INRIA Grenoble – Rhône-Alpes : 655, avenue de l’Europe - 38334 Montbonnot Saint-Ismier

Centre de recherche INRIA Lille – Nord Europe : Parc Scientifique de la Haute Borne - 40, avenue Halley - 59650 Villeneuve d’Ascq
Centre de recherche INRIA Nancy – Grand Est : LORIA, Technopôle de Nancy-Brabois - Campus scientifique

615, rue du Jardin Botanique - BP 101 - 54602 Villers-lès-Nancy Cedex
Centre de recherche INRIA Paris – Rocquencourt : Domaine de Voluceau - Rocquencourt - BP 105 - 78153 Le Chesnay Cedex
Centre de recherche INRIA Rennes – Bretagne Atlantique : IRISA, Campus universitaire de Beaulieu - 35042 Rennes Cedex

Centre de recherche INRIA Sophia Antipolis – Méditerranée : 2004, route des Lucioles - BP 93 - 06902 Sophia Antipolis Cedex

Éditeur
INRIA - Domaine de Voluceau - Rocquencourt, BP 105 - 78153 Le Chesnay Cedex (France)

http://www.inria.fr

ISSN 0249-6399

	Introduction
	Partitioning, reordering, and associated notations
	Nested preconditioners
	Nested exact factorization
	Preconditioners
	Algorithms for nested preconditioners

	Analysis
	Numerical Results with Matlab
	Test matrices
	Discussion of numerical results

	Conclusions

