
The structural lambda-calculus

Beniamino Accattoli, Delia Kesner

To cite this version:

Beniamino Accattoli, Delia Kesner. The structural lambda-calculus. 2010. <hal-00528228>

HAL Id: hal-00528228

https://hal.archives-ouvertes.fr/hal-00528228

Submitted on 21 Oct 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Hal-Diderot

https://core.ac.uk/display/47108356?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr
https://hal.archives-ouvertes.fr/hal-00528228

The structural λ-calculus

Beniamino Accattoli and Delia Kesner

PPS (CNRS and Université Paris Diderot)

June 2010

Abstract. Inspired by a recent graphical formalism for λ-calculus based
on Linear Logic technology, we introduce an untyped structural λ-calculus,
called λj, which combines action at a distance with exponential rules de-
composing the substitution by means of weakening, contraction and dere-
liction. Firstly, we prove fundamental properties such as confluence and
preservation of β-strong normalisation. Secondly, we use λj to describe
known notions of developments and superdevelopments, and introduce
a more general one called XL-development. Then we show how to refor-
mulate Regnier’s σ-equivalence in λj so that it becomes a strong bisim-
ulation. Finally, we prove that explicit composition or de-composition of
substitutions can be added to λj while still preserving β-strong normal-
isation.

1 Introduction

Computer science has been greatly influenced by Linear Logic [8], especially
because it provides a mechanism to explicitly control the use of resources by
limiting the liberal use of the structural rules of weakening and contraction.
Erasure and duplication are restricted to formulas marked with an exponential
modality ?, and can only act on non-linear proofs marked with a bang modality !.
Intuitionistic and Classical Logic can thus be encoded by a fragment containing
such modalities, notably Multiplicative Exponential Linear Logic (MELL).

MELL proofs can be represented by sequent trees, but MELL Proof-Nets [8]
provide a better-suited geometrical representation of proofs that eliminates ir-
relevant syntactical details. They have been extensively used to develop different
encodings of intuitionistic logic/λ-calculus, giving rise to the geometry of inter-
action [9].

Normalisation of proofs (i.e. cut elimination) in MELL Proof-Nets is per-
formed using three groups of rules, multiplicative, exponential and commutative.
Non-linear proofs are distinguished by surrounding boxes which are handled by
exponential rules: erasure, duplication and linear use correspond respectively to
a cut elimination step involving a box and either a weakening, a contraction or
a dereliction. The commutative rule allows to compose non-linear resources.

Different cut elimination systems [6, 15, 13], called explicit substitution (ES)
calculi, were explained in terms of, or inspired by, the notion of reduction of
MELL Proof-Nets. All of them use the idea that the content of a substitution/cut
is a non-linear resource, i.e. a box that can be composed with another one by
means of commutative rules. They also have in common an operational semantics

defined in terms of a propagation system in which a substitution traverses a term
to reach the variable occurrences.

A graph formalism for λ-terms inspired by Intuitionistic MELL has recently
been proposed [1]. It avoids boxes by representing them through additional edges
called jumps, and has no commutative reduction rule. This paper studies the
term formalism, called λj-calculus, resulting from the reading back of the graphs
λj-dags (and their reductions) by means of their sequentialisation theorem [1].

No rule of λj propagates cuts, as the constructors in a term interact at a
distance, i.e. they work modulo positions of cuts. Action at a distance is not
a complete novelty [21, 4, 22], but none of the previous approaches faithfully
reflect resource control as suggested by Linear Logic. We propose to recognise
such behaviour as a new paradigm, more primitive than ES, particularly because
propagations can be added on top of action at a distance (as we shall show).
Despite the absence of commutative rules in λj, cuts can be composed, but in a
different (more natural) way.

Similarly to formalisms [16] inspired by Proof-Nets, cut elimination is defined
in terms of the number of free occurrences of variables in a term, here called
multiplicities. More precisely, the weakening-box rule (resp. dereliction-box and
contraction-box) applies to terms that are of the form t[x/u] when |t|x = 0
(resp. |t|x = 1 and |t|x > 1). The computation is, however, performed without
propagating [x/u], which we call a jump to stress that such action at a distance is
really different from propagation in ES calculi. The rules of λj therefore combine
action at a distance, due to the tight correspondance with a graphical formalism,
with exponential rules, due to the strong affinity with Linear Logic. Because
of the weakening and contraction rules we call our language the structural λ-
calculus.

Some calculi using either distance or multiplicities already exist, but without
combining the two: only together those concepts unleash their full expressive
power. Indeed, [4, 22] use distance rules to refine β-reduction, but add ES to the
syntax without distinguishing between dereliction and contraction. This causes
the formalism to be less expressive than λj as discussed in Sections 4 and 6.
Milner defines a λ-calculus with ES inspired by another graphical formalism,
Bigraphs [21], where cuts also act at a distance. Again, he neither distinguishes
between dereliction and contraction, nor does his β-rule exploit distance. The
same goes for [29, 23].

This paper studies the λj-calculus focusing on four different aspects:

– Basic properties: Section 2 presents the calculus while Section 3 shows
full composition, simulation of one-step β-reduction, confluence, and preser-
vation of β-strong normalisation (PSN). Particularly, we prove PSN using a
modular technique [14], which results in an extremely short formal argument
thanks to the absence of propagations.

– Developments: The λj-calculus is a powerful, elegant and concise tool for
studying β-reduction. As an example, in Section 4 we analyse the redex cre-
ation mechanism of λ-calculus, using normal forms of certain subsystems of
λj to characterise the result of full developments [12, 31] and full superde-
velopments [17]. By adding more distance to the previous subsystems, we
characterise the result of a new, more powerful notion of development, which
we call XL-development.

– Operational equivalence: Section 5 studies an operational equivalence
≡o which equates λj-terms behaving the same way but differing only in
the positioning of their jumps. The relation ≡o includes a reformulation of
Regnier’s σ-equivalence [26], but also contains commutation for independent
jumps. We show that ≡o is a strong bisimulation on λj-terms. Interestingly,
this result holds only because of distance.

– (De)composition of jumps: In Section 6 we consider two further exten-
sions of the system devised in Section 5, including, respectively, explicit com-
position and decomposition of jumps. We prove both new reduction relations
to be confluent modulo ≡o and to enjoy PSN. The two systems, reintroduc-
ing some propagation rules, bridge the gap with traditional ES calculi and
implementations. The PSN proofs in this section are the more technically
demanding proofs of this paper, and a non-trivial contribution to the theory
of termination proofs of ES calculi.

2 The Calculus

The set T of terms is defined by the following grammar:

t ::= x (variable) | λx.t (abstraction) | t t (application) | t[x/t] (closure)

The object [x/t], which is not a term itself, is called a jump. A term without
jumps is a λ-term. We use the notation v1n for a list of terms v1 . . . vn, t v

1
n for

(. . . (t v1) . . . vn) and t[xi/ui]
1
n for t[x1/u1] . . . [xn/un] (n ≥ 0).

Free and bound variables of t, respectively written fv(t) and bv(t), are
defined as usual. The constructors λx.u and u[x/v] bind the free occurrences
of x in u. The congruence generated by renaming of bound variables is called
α-conversion. Thus for example (λy.x)[x/y] =α (λy′.x′)[x′/y].

The multiplicity of the variable x in the term t is defined as the number
of free occurrences of x in t, written |t|x. We use |t|Γ for Σx∈Γ |t|x. When |t|x =
n ≥ 2, we write t[y]x for the non-deterministic replacement of i (1 ≤ i ≤
n−1) occurrences of x in t by a fresh variable y. Thus, (x z)[z/x][y]x may denote
either (y z)[z/x] or (x z)[z/y] but not (y z)[z/y].

A (meta-level) substitution is a finite function from variables to terms.
We use var(σ) to denote the variables of the domain and the codomain of the
substitution σ. We denote by id the empty substitution. Substitution is
defined, as usual, modulo α-conversion so that the capture of variables is avoided.
The application of a substitution σ to a term t is defined by induction on the
structure of t as follows:

xσ := σ(x) if x ∈ dom(σ)
yσ := y if x /∈ dom(σ)
(λy.u)σ := λy.uσ if y /∈ var(σ)
u1[y/u2]σ := u1σ[y/u2σ] if y /∈ var(σ)
(u1 u2)σ := (u1σ)(u2σ)

Lemma 1. Let t be a term such that |t|x = n. Then t{x/v} satisfies the follow-
ing properties.

– If n = 0, then t{x/v} = t.
– If n > 1, then t{x/v} = t[y]x{x/v}{y/v}.
– If n = 1, then
• t = x implies x{x/v} = v,
• t = λy.u & x 6= y & y /∈ fv(v) implies t{x/v} = λy.u{x/v},
• t = u1 u2 & x ∈ fv(u1) implies t{x/v} = u1{x/v}u2,
• t = u1 u2 & x ∈ fv(u2) implies t{x/v} = u1u2{x/v},
• t = u1[y/u2] & x ∈ fv(u1) implies t{x/v} = u1{x/v}[y/u2],
• t = u1[y/u2] & x ∈ fv(u2) implies t{x/v} = u1[y/u2{x/v}].

We use juxtaposition of substitutions to denote composition so that τσ is
the substitution given by x(τσ) := (xτ)σ. Composition enjoys the following
well-known property.

Lemma 2 (Composition). Let t, u, v be terms such that x /∈ fv(v). Then
t{x/u}{y/v} = t{y/v}{x/u{y/v}}.

Proof. By induction on t.

Besides α-conversion, we consider the following rewriting rules:

(dB) (λx.t)L u→ t[x/u]L
(w) t[x/u] → t if |t|x = 0
(d) t[x/u] → t{x/u} if |t|x = 1
(c) t[x/u] → t[y]x [x/u][y/u] if |t|x ≥ 2

where we use the (meta)notation L for a list [xi/ui]
1
n with n ≥ 0.

Note that dB reformulates the classical B-rule of ES calculi as a distance rule
which skips the jumps affecting the abstraction of the redex. This same rule no-
tably appears in weak ES calculi [19] to avoid the the β-redexes that are hidden
by blocked substitutions. Here, the dB-rule is the natural term counterpart of a
graphical and local rule in proof-nets and λj-dags. Section 4 puts the expres-
siveness of this concept in evidence. The rules w, d and c are to be understood
as the weakening, dereliction and contraction rules in λj-dags.

It is worth noting that λj allows to compose jumps, as for example reduction
from t = y[x/zy][y/v] computes the (simultaneous) jumps in y[x/zv][y/v]. Usu-
ally, the so-called composition of the two jumps of t rather yields y[y/v][x/zy[y/v]].
We will study this more structural notion in Section 6.

The rewriting relation→λj (resp.→j) is generated by all (resp. all expect
dB) the previous rewriting rules modulo α-conversion. The j-rewriting rules are
based on global side conditions, which may seem difficult to implement. However,
if implementation is done via graphical formalisms (such as proof-nets, bigraphs,
λj-dags), these conditions become local and completely harmless.

Now consider any reduction relation R. A term t is said to be in R-normal
form, written R-nf, if there is no u so that t →R u. We use R(t) to denote
the unique R-nf of t, when it exists. A term t is R-strongly normalising
or R-terminating, written t ∈ SNR, if there is no infinite R-reduction se-
quence starting at t, in which case ηR(t) denotes the maximal length of a
R-reduction sequence starting at t. The relation R is called complete if it
is strongly normalising and confluent. For a sequence of R-strongly normalising

terms t
1
n we write ηR(t

1
n) for Σn

i=1 ηR(ti). An inductive definition of SNR is
usually given by:

t ∈ SNR iff ∀s (t→R s implies s ∈ SNR)

Define R-reduction of meta-level substitutions by γ →∗
R γ′ iff dom(γ) =

dom(γ′) and ∀ x ∈ dom(γ) : γ(x)→∗
R γ′(x).

The following properties hold for all the reduction relations in this paper.

Lemma 3 (Stability of Reduction by Substitution).

– If t →R t′, then tσ →R t′σ. So that tσ ∈ SNR implies t′σ ∈ SNR and
ηR(t′σ) < ηR(tσ).

– If γ →R γ′, then tγ →∗
R tγ′. So that tγ ∈ SNR implies tγ′ ∈ SNR and

ηR(tγ′) ≤ ηR(tγ).

3 Main Properties

In this section we prove some sanity properties of the calculus: full composition,
simulation of one-step β-reduction, confluence and PSN. Since the first three can
easily be shown using standard rewriting technology, we concentrate on proving
PSN, which usually is tricky, but turns out to be surprisingly simple in our case.

Lemma 4 (Full Composition (FC)). Let t, u ∈ T . Then t[x/u]→+
j t{x/u}.

Moreover, |t|x ≥ 1 implies t[x/u]→+
d,c t{x/u}.

Proof. By induction on |t|x.

– If |t|x = 0, then t[x/u]→w t = t{x/u}.
– If |t|x = 1, then t[x/u]→d t{x/u}.
– If |t|x ≥ 2, then

t[x/u]→c t[y]x [y/u][x/u]→
+
j (i.h.)

t[y]x{y/u}[x/u]→
+
j (i.h.) t[y]x{y/u}{x/u} = t{x/u}

Corollary 1 (Simulation). Let t ∈ λ-term. If t→β t′, then t→+
λj t

′.

The following notion, which counts the maximal number of free occurrences
of a variable x that may appear during a j-reduction sequence from a term t,
will be useful for various proofs. The potential multiplicity of the variable
x in the term t, written Mx(t), is defined for α-equivalence classes as follows: if
x /∈ fv(t), then Mx(t) := 0; otherwise:

Mx(x) := 1
Mx(λy.u) := Mx(u)
Mx(u v) := Mx(u) + Mx(v)
Mx(u[y/v]) := Mx(u) + max(1, My(u)) · Mx(v)

Potential multiplicities enjoy the following properties.

Lemma 5. Let t ∈ T .

1. If u ∈ T and y /∈ fv(u), then My(t) = My(t{x/u}).
2. If |t|x ≥ 2, then Mz(t) = Mz(t[y]x) and Mx(t) = Mx(t[y]x) + My(t[y]x).
3. If t→j t

′, then My(t) ≥ My(t
′).

Proof. By induction on t.

We consider multisets of integers. We use [] to denote the empty multiset,
⊔ to denote multiset union and n · [a1, . . . , an] to denote [n · a1, . . . , n · an].

The j-measure of t ∈ T , written jm(t), is given by:

jm(x) := []
jm(λx.t) := jm(t)
jm(tu) := jm(t) ⊔ jm(u)
jm(t[x/u]) := [Mx(t)] ⊔ jm(t) ⊔ max(1, Mx(t)) · jm(u)

Lemma 6. Let t ∈ T . Then,

1. jm(t) = jm(t[y]x).
2. If u ∈ T , then jm(t) ⊔ jm(u) ≥ jm(t{x/u}).

Proof. By induction on t. The first property is straightforward so that we only
show the second one.

– t = x. Then jm(x) ⊔ jm(u) = [] ⊔ jm(u) = jm(x{x/u}).
– t = y 6= x. Then jm(y) ⊔ jm(u) = [] ⊔ jm(u) ≥ [] = jm(y{x/u}).
– t = t1[y/t2]. W.l.g we assume y /∈ fv(u). Then,

jm(t1[y/t2]) ⊔ jm(u) =
[My(t1)] ⊔ jm(t1) ⊔ max(1, My(t1)) · jm(t2) ⊔ jm(u) ≥i.h. & L.5:1

[My(t1{x/u})] ⊔ jm(t1{x/u}) ⊔ max(1, My(t1{x/u})) · jm(t2{x/u}) =
jm(t1{x/u}[y/t2{x/u}])

– All the other cases are straightforward.

Lemma 7. Let t ∈ T .

1. t0 ≡α t1 implies jm(t0) = jm(t1).
2. t0 →j t1 implies jm(t0) > jm(t1).

Proof. By induction on the relations. The first point is straightforward, so that
we only show the second one.

– t0 = t[x/u]→w t = t1, with |t|x = 0. Then jm(t0) = jm(t) ⊔ 1 · jm(u) ⊔ [0] >
jm(t) = jm(t1).

– t0 = t[x/u]→d t{x/u} = t1, with |t|x = 1.
Then jm(t0) = jm(t) ⊔ 1 · jm(u) ⊔ [1] > jm(t) ⊔ jm(u) ≥L. 6:2 jm(t{x/u}) =
jm(t1).

– t0 = t[x/u]→c t[y]x [x/u][y/u] = t1, with |t|x ≥ 2 and y fresh. Then,

jm(t0) =
jm(t) ⊔ max(1, Mx(t)) · jm(u) ⊔ [Mx(t)] =
jm(t) ⊔ Mx(t) · jm(u) ⊔ [Mx(t)] =
jm(t) ⊔ (Mx(t[y]x) + My(t[y]x)) · jm(u) ⊔ [Mx(t)] =L.6:1

jm(t[y]x) ⊔ (Mx(t[y]x) + My(t[y]x)) · jm(u) ⊔ [Mx(t)] >
jm(t[y]x) ⊔ Mx(t[y]x) · jm(u) ⊔ [Mx(t[y]x)] ⊔ My(t[y]x) · jm(u) ⊔ [My(t[y]x)] =
jm(t[y]x) ⊔ Mx(t[y]x) · jm(u) ⊔ [Mx(t[y]x)] ⊔ My(t[y]x [x/u]) · jm(u) ⊔ [My(t[y]x [x/u])] =
jm(t[y]x [x/u]) ⊔ My(t[y]x [x/u]) · jm(u) ⊔ [My(t[y]x [x/u])] =
jm(t1)

– t0 = t[x/u]→ t′[x/u] = t1, where t→ t′. Then

jm(t0) =
jm(t) ⊔ max(1, Mx(t)) · jm(u) ⊔ [Mx(t)] >i.h.

jm(t′) ⊔ max(1, Mx(t)) · jm(u) ⊔ [Mx(t)] ≥L. 5:3

jm(t′) ⊔ max(1, Mx(t′)) · jm(u) ⊔ [Mx(t
′)] =

jm(t1)

– t0 = t[x/u]→ t[x/u′] = t1, where u→ u′. Then

jm(t0) =
jm(t) ⊔ max(1, Mx(t)) · jm(u) ⊔ [Mx(t)] >i.h.

jm(t) ⊔ max(1, Mx(t)) · jm(u′) ⊔ [Mx(t)] =
jm(t1)

– All the other cases are straightforward

Lemma 8. The j-reduction relation is complete.

Proof. Using the Modular Abstract Theorem 5.

Confluence of calculi with ES can be easily proved by using Tait and Martin
Löf’s technique (see for example the case of λes [13]). This technique is based
on the definition of a simultaneous reduction relation ⇛λj which enjoys the
diamond property.

The simultaneous reduction relation ⇛λj is defined on terms in j-normal
form as follows:

– x ⇛λj x
– If t ⇛λj t

′, then λx.t ⇛λj λx.t
′

– If t ⇛λj t
′ & u ⇛λj u

′, then t u ⇛λj t
′ u′

– If t ⇛λj t
′ and u ⇛λj u

′, then (λx.t) u ⇛λj j(t
′[x/u′])

Lemma 9. If t ⇛λj t
′, then t→∗

λj t
′.

Proof. By induction on t ⇛λj t
′.

Lemma 10. If t→λj t
′, then j(t) ⇛λj j(t

′).

Proof. By induction on t→λj t
′.

Lemma 11. The relation ⇛λj enjoys the diamond property.

Proof. By induction on ⇛λj and case analysis.

Theorem 1 (Confluence). For all t, u1, u2 ∈ T , if t →∗
λj ui (i = 1, 2), then

∃v s.t. ui →∗
λj v (i = 1, 2).

Proof. Let t →∗
λj ti for i = 1, 2. Lemma 10 gives j(t) ⇛

∗
λj j(ti) for i = 1, 2.

Lemma 11 implies ⇛λj is confluent so that ∃s such that j(ti) ⇛
∗
λj s for i = 1, 2.

We can then close the diagram with ti →
∗
j j(ti)→

∗
λj s by Lemma 9.

Remark that confluence does not use termination of the j-(sub)calculus. To
give a formal termination proof for it we introduce the following notions.

We now discuss PSN. A reduction system R is said to enjoy the PSN prop-
erty w.r.t. another system S iff every term which is S-strongly normalising is
also R-strongly normalising. Here PSN will mean PSN w.r.t. β-reduction.

The proof of PSN can be stated in terms of the IE property which relates
termination of Implicit substitution to termination of Explicit substitution. A
reduction system R enjoys the IE property iff for n ≥ 0 and for all t, u, v1n ∈ λ-
terms: u ∈ SNR and t{x/u}v1n ∈ SNR imply t[x/u]v1n ∈ SNR.

Theorem 2 (IE implies PSN). A reduction relation R enjoys PSN if R ver-
ifies the IE-property and the following:

(F0) If t
1
n ∈ λ-terms in SNR, then xt

1
n ∈ SNR.

(F1) If u ∈ λ-term in SNR, then λx.u ∈ SNR.

(F2) The only R-reducts of a λ-term (λx.u)vt
1
n are u[x/v]t

1
n and those coming

from internal reduction on u, v, t
1
n.

Intuitively, the first two requirements (F0) and (F1) mean that head-normal
forms are stable under R. The last requirement (F2) means that the head-redex
can only be refined by R, but nothing else.

Proof. We show t ∈ SNR by induction on the definition of t ∈ SN β (as in [30]):

– If t = xt
1
n with ti ∈ SN β , then (i.h.) ti ∈ SNR and thus (F0) xt

1
n ∈ SNR.

– If t = λx.u with u ∈ SN β , then (i.h.) u ∈ SNR and thus (F1) λx.u ∈ SNR.

– If t = (λx.u)vt
1
n, with u{x/v}t

1
n ∈ SN β and v ∈ SN β , then (i.h.) both terms

are in SNR, IE gives U = u[x/v]t
1
n ∈ SNR, so in particular u, v, t

1
n ∈ SNR.

We show t ∈ SNR by induction on ηR(u)+ ηR(v) +Σi ηR(ti). For that, we
show that every R-reduct of t is in SNR.
Now, if t→R t′ is an internal reduction, apply the i.h. Otherwise, F2 gives
t→R u[x/v]t1 . . . tn = U which is in SNR.

Theorem 3 (IE for λj). λj enjoys the IE property.

Proof. We show the following more general statement. For all terms t, u1
m (m ≥

1), v1n (n ≥ 0), if u1
m ∈ SN λj & t{xi/ui}1mv1n ∈ SN λj, then t[xi/ui]

1
mv1n ∈ SN λj,

where xi 6= xj for i, j = 1 . . .m and xi /∈ fv(uj) for i, j = 1 . . .m. The IE
property then holds by taking m = 1.

Suppose u1
m ∈ SN λj & t{xi/ui}1mv1n ∈ SN λj. We show T = t[xi/ui]

1
mv1n ∈

SN λj by induction on 〈ηλj(t{xi/ui}1mv1n), ox1
m
(t), ηλj(u

1
m)〉 where oxi

(t) = 3|t|xi

and ox1
m
(t) = Σi∈moxi

(t).
To show T ∈ SN λj it is sufficient to show that every λj-reduct of T is in

SN λj. Since m ≥ 1, then we can write [xi/ui]
1
m = [xi/ui]

1
j−1[xj/uj][xi/ui]

j+1
m .

– T →λj t[xi/ui]
1
j−1[xj/u

′
j][xi/ui]

j+1
m v1n = T ′ with uj →λj u′

j . Then we have

that ηλj(t{xi/ui}1j−1{xj/u
′
j}{xi/ui}j+1

m v1n) ≤ ηλj(t{xi/ui}1mv1n) and ox1
m
(t) =

ox1
j−1

xjx
j+1
m

(t), and ηλj(u
1
j−1u

′
1u

j+1
m) < ηλj(u1, u

2
m). Since u1

j−1u
′
1u

j+1
m ∈

SN λj and t{xi/ui}1j−1{xj/u
′
j}{xi/ui}j+1

m v1n ∈ SN λj by Lemma 3, then we
conclude by the i.h..

– T →λj t
′[xi/ui]

1
mv1n = T ′ with t→λj t

′. Then we have that
ηλj(t

′{xi/ui}1mv1n) < ηλj(t{xi/ui}1mv1n). We conclude by the i.h. since
t′{xi/ui}1mv1n ∈ SN λj by Lemma 3.

– T →λj t[xi/ui]
1
mv1 . . . v

′
i . . . vn = T ′ with vi →λj v

′
i. We have that

ηλj(t{xi/ui}1mv1 . . . v
′
i . . . vn) < ηλj(t{xi/ui}1mv1n). We conclude by the i.h.

since t{xi/ui}1mv1 . . . v
′
i . . . vn ∈ SN λj.

– T →w t[xi/ui]
1
j−1[xi/ui]

j+1
m v1n, with |t|xj

= 0.We have that the measure

ηλj(t{xi/ui}1j−1{xi/ui}j+1
m v1n) is equal to ηλj(t{xi/ui}1mv1n), but o (t) de-

creases since ox1
j−1

xj+1
m

(t) < ox1
m
(t). We can conclude by the i.h. since by

hypothesis t{xi/ui}1j−1{xi/ui}j+1
m v1n = t{xi/ui}1mv1n ∈ SN λj.

– T →d t[xi/ui]
1
j−1{xj/uj}[xi/ui]

j+1
m v1n with |t|xj

= 1. Then we have that

ηλj(t{xi/ui}1j−1{xj/uj}{xi/ui}j+1
m v1n) = ηλj(t{xi/ui}1mv1n). Also, the jumps

are independent, so that x1
j−1x

j+1
m ∩fv(uj) = ∅ implies ox1

j−1
xj+1
m

(t{xj/uj}) <

ox1
m
(t).

We conclude since t{xi/ui}1j−1{xj/uj}{xi/ui}j+1
m v1n = t{xi/ui}1mv1n ∈ SN λj

by hypothesis.
– T →c t[y]xj

[xi/ui]
1
j−1[xj/uj][y/uj][xi/ui]

j+1
m v1n with |t|xj

≥ 2 and y fresh.

Then,
ηλj(t[y]xj

{xi/ui}1j−1{xj/uj}{y/uj}{xi/ui}j+1
m v1n) = ηλj(t{xi/ui}1mv1n)) and

ox1
j−1

xjyx
j+1
m

(t[y]xj
) < ox1

m
(t). In order to apply the i.h. to t[y]xj

we need.

• u1
j−1, uj, uj , u

j+1
m ∈ SN λj. This holds by hypothesis.

• t[y]x1
{xi/ui}1j−1{xj/uj}{y/uj}{xi/ui}j+1

m v1n ∈ SN λj. This holds since

the term is equal to t{xi/ui}1mv1n which is SN λj by hypothesis.
– T = (λx.t′)[xi/ui]

1
mv1v

2
n →dB t

′[x/v1][xi/ui]
1
mv2n = T ′. By hypothesis

U = (λx.t′){xi/ui}1mv1v
2
n ∈ SN λj. Using full composition we obtain

U →dB t
′{xi/ui}1m[x/v1]v

2
n →

+
λj

t′{xi/ui}1m{x/v1}v
2
n = t′{x/v1}{xi/ui}1mv2n = U ′

Thus ηλj(U
′) < ηλj(U). To conclude T ′ ∈ SN λj by the i.h. we then need

• v1, u
1
m ∈ SN λj. But u

1
m ∈ SN λj holds by hypothesis and t{xi/ui}1mv1n ∈

SN λj implies v1 ∈ SN λj.
• U ′ = t′{x/v1}{xi/ui}1mv2n ∈ SN λj which holds since ηλj(U

′) < ηλj(U).

In contrast to known PSN proofs for calculi with ES and composition of
substitutions [3, 13, 15], we get a very concise and simple proof of the IE property,
and thus of PSN, due to the fact that λj has no propagation rule. Indeed, since
λj-reduction enjoys the IE-property and F0, F1 and F2 in Theorem 2 are
straightforward for the λj-calculus, we get:

Corollary 2 (PSN for λj). Let t ∈ λ-term. If t ∈ SN β, then t ∈ SN λj.

4 Developments and All That

In λ-calculus creation of redexes can be classified in three types [18]:

(Type 1) ((λx.λy.t) u) v →β (λy.t{x/u}) v.
(Type 2) (λx.x) (λy.t) u→β (λy.t) u.
(Type 3) (λx.C[x v]) (λy.u)→β C{x/λy.u}[(λy.u) v{x/λy.u}]

When λ-terms are considered as trees, the first and second type create a redex
upward, while the third creates it downward, which is the dangerous kind of
creation since it may lead to divergence.

According to the previous classification, different ways to compute a term
can be defined. A reduction sequence starting at t is a development [12] (resp.
a full development) if only (resp. all the) residuals of redexes (resp. all the
redexes) of t are contracted. A more liberal notion, called L-development here,
and known as superdevelopment [17], allows to also reduce created redexes of
type 1 and 2. A major result states that all developments (resp. L-developments)
of a λ-term are finite, and that the results of all full developments (resp. full L-
developments) coincide.

Note that reductions of type 1 and 2 are acceptable because the created redex
is hidden in the initial term, so that non-termination only happens when creating
redexes of type 3. However, linear creations of type 3 - i.e. creations which do not
involve duplications - are also safe, and infinite reductions only happen if redexes
created after duplication are reduced - we call such cases non-linear creations of
type 3. As an example, consider Ω = (λx.x x) (λx.x x) whose infinite reduction
involves only non-linear creations of the third type. These observations suggest
that banning the third type of creation is excessive: it is sufficient to avoid non-
linear ones. This extended form of L-development needs a language capable of
distinguishing between the different linear/erasing/duplicating nature of redexes.
This section extends the notion of L-development to that of XL-development,
which also reduces linearly created redexes of type 3, and provides a finiteness
result.

The following table summarises the behaviour of each computational notion
studied in this section on the λ-term u0 = (I I) ((λz.z y) I), where I = λx.x.

full development of u0 = I (I y)
full L-development of u0 = I y
full XL-development of u0 = y

(1)

The specification of all the reduction subsystems used in this section exploits
the idea of multiplicity. Thus, the λj-calculus provides a uniform and expressive
framework to reason about creation of redexes in λ-calculus.

A development (resp. full development) of a term t is a reduction sequence
in which only (resp. all the) residuals of redex occurrences (resp. all the redex
occurrences) that already exist in t are contracted. There are many proofs of
finiteness of developments, like [27, 31, 12, 30]. The result of a full develop-
ment of a λ-term is unique and can simply be defined by induction on the
structure of terms as follows:

x◦ := x
(λx.t)◦ := λx.t◦

((λx.t) u)◦ := t◦{x/u◦}
(t u)◦ := t◦ u◦ if t 6= λ

Remark that t◦ 6= λ implies t 6= λ. This notion can be extended to jumps in
two different ways. The first way inductive definition can be given by

x• := x
(λy.t)• := λy.t•

((λx.t) u)• := t•[x/u•]
(t u)• := t• u• if t 6= λ
(t[x/u])• := t•{x/u•}

For a λ-term t we have t◦ 6= t•; in particular t• →+
j t◦.

The second way consists in taking the opposite view, with the purpose to
simulate developments of λ-calculus. This can be obtained with a function ••

which is exactly as • except for:

((λx.t) u)•• := t••{x/u••}

Developments are thus defined by induction on terms, but it is well-known
that the function •• can also be defined in a more operational way. Let B be
the rewriting rule (λx.t)u→B t[x/u], which is the restriction of our dB-rule to a
proximity action. This relation is trivially complete so that we use B(t) for the
(unique) B-nf of the term t.

Corollary 3. Let t ∈ λ-term. Then t◦ = j(B(t)).

Proof. By induction on t.

– Case t = x. Then x◦ = x = x•• = j(B(x)).
– Case t = λx.u. Then (λx.u)◦ = λx.u◦ =i.h. λx.u

•• = λx.j(B(u)).
– Case T = u v, where t 6= λ. We then have (u v)◦ = u◦ v◦ =i.h. u

•• v•• =
(u v)••. Similarly as u v is not a redex j(B(u v)) = j(B(u)) j(B(v)) and we
conclude using the i.h.

– Case t = (λx.u)v. We have t◦ = u◦{x/v◦} =i.h. u
••{x/v••} = ((λx.u)v)•• =

t••. Similarly u◦{x/v◦} =i.h. j(B(u)){x/j(B(v))} = j(B(u)[x/B(v)]) = j(B(u v)).

Developments can be extended to L-developments which also reduce cre-
ated redexes of type 1 and 2 and are always finite. The result of a full L-
development of a λ-term is unique and admits the following inductive defini-
tion [17]:

x◦◦ := x
(λx.t)◦◦ := λx.t◦◦

(t u)◦◦ := t◦◦ u◦◦ if t◦◦ 6= λ
(t u)◦◦ := t1{x/u◦◦} if t◦◦ = λx.t1

Remark that t◦◦ 6= λ implies t 6= λ.
Let us recover t◦◦ by means of our language λj. The key to operationally

describe the first type of creation is the distance dB-rule, whose (unique) nf will
be noted dB(t). Replacing our definition of development j(B(t)) with j(dB(t))
gives: dB(((λx.λy.t)u)v) =

dB((λy.t)[x/u] v) = dB(t[y/v][x/u]) = dB(t)[y/dB(v)][x/dB(u)]

Then, computing jumps, we get:j(dB(((λx.λy.t)u)v)):

j(dB(t)[y/dB(v)][x/dB(u)]) = j(dB(t)){x/j(dB(u))}{y/j(dB(v))}

j(M) = j(dB(t)){x/j(dB(u))}{y/j(dB(v))}

And we are done. Now, to specify L-developments within our language λj we
also need to capture the second type of creation. We would therefore need to use
dB ∪ d ∪ w instead of dB, but our (distance) d-rule turns out to be too powerful
since created redexes of type 3 would also be captured as shown by the term
(λx.x t)(λy.u), where x /∈ fv(t). Thus, the reduction d is restricted to act only
on variables, written md (for minimal dereliction), so that →md is the context
closure of the rule x[x/u]→ u. We then let A be the relation dB ∪ md ∪ w.

Lemma 12. The reduction relation →A is complete.

Proof. Termination of A is straightforward. Confluence follows from local con-
fluence (straightforward by case-analysis) and Newman’s Lemma.

Interestingly, →A cannot be weakened to →dB∪md as illustrated by the term s =
((λx.((λy.x) t)) λz.z) u. Now, to prove that j(A(·)) is an L-development some
technical lemmas are needed.

Lemma 13. A term in A-nf has either a V-Form x, an A-Form (u v)[xi/si]
1
n, or

an L-Form (λx.v)[xi/si]
1
n, where u, v, s1n (n ≥ 0) are A-nfs, u is not an L-Form,

and |M [xi/si]
1
j |xj+1

≥ 1 for j = 1, . . . , n− 1 and (M = u v or M = λx.v).

Proof. By induction on t.

– If t is a variable or an abstraction λx.u, then we are done, since u is neces-
sarily an A-nf.

– If t is an application t1 t2, then t1 and t2 are necessarily A-nfs. The subterm
t1 cannot have the shape (λy.t′1)[yi/vi]

1
k otherwise t would be dB-reducible.

– If t is a closure, it has the general form u[xi/vi]
1
n (n ≥ 1) where u, v1n are

A-nfs. We reason by induction on n.
If n = 1, then |u|x1

≥ 1 because t is in w-nf. Also, u 6= x1 because t is in md-nf.
Thus, u is an application or an abstraction. As before, if u is an application
t1 t2 the subterm t1 cannot have the shape (λy.t′1)[yi/vi]

1
k otherwise t would

be dB-reducible.
If n > 1, then U = u[xi/vi]

1
n−1 already verifies the statement by the i.h. We

still need to show that |U |xn
≥ 1, which is straightforward since |U |xn

= 0
would imply that the term is not in w-nf.

Lemma 14. If j(A(T)) = λx.t then A(T) is an L-Form .

Proof. By Lemma 13 A(T) is a V-Form, an A-Form, or an L-Form. In the two
first cases j(A(T)) cannot be a λ-abstraction, so that we trivially conclude.

Lemma 15. Let t = (λx.v)[xi/vi]
1
n (n ≥ 0) and u be A-nfs. Then the sequence

tu→+
A A(tu) can be decomposed into tu→dB v[x/u][xi/vi]

1
n →

∗
md∪w A(tu).

Proof. By Lemma 12 every term tu has a unique A-nf s.t. tu →∗
A A(tu). Then,

if tu →∗
A t′ for some t′ in A-nf, then t′ is necessarily A(tu). Thus, since tu →dB

v[x/u][xi/vi]
1
n = s, it is sufficient to show that s can be (md ∪ w)-reduced to a

A-nf. We proceed by cases.

– If x /∈ fv(v), then s→w v[xi/vi]
1
n. We show that v[xi/vi]

1
n →

∗
md∪w v

′, for some
v′ in A-nf. We proceed by induction on n.
If n = 0, then v →∗

md v, which is a A-nf.
If n > 0, then by the i.h. v[xi/vi]

1
n →

∗
md∪w v

′[xn/vn], with v′ in A-nf.
If xn /∈ fv(v′), then v′[xn/vn]→w v

′ and we are done.
If xn = v′, then v′[xn/vn]→md vn and we are also done.
If xn ∈ fv(v′) and xn 6= v′, then v′[xn/vn] is in A-nf and we are done.

– If x ∈ fv(v) and x = v, then x1 /∈ fv(λx.v) so that t is w-reducible which
leads to a contradiction with the hypothesis.

– If x ∈ fv(v) and x 6= v, then s is in A-nf.

Corollary 4. Let t be a λ-term. Then t◦◦ = j(A(t)).

Proof. By induction on t.

– Case t = x. Then x◦◦ = x = j(A(x)).
– Case t = λx.u. Then (λx.u)◦◦ = λx.u◦◦ =i.h. λx.j(A(u)) = j(A(t)).
– Case t = u v, where u◦◦ 6= λ. By the i.h. u◦◦ = j(A(u)), hence j(A(u)) 6= λ

and A(u) 6= λ. We then have (u v)◦◦ = u◦◦ v◦◦ =i.h. j(A(u)) j(A(v)) =
j(A(u) A(v)) = j(A(u v)).

– Case t = u v, where u◦◦ = λx.u1 =i.h. j(A(u)) and v◦◦ = j(A(v)). By
Lemma 14 A(u) is an L-Form (λx.u2)[xi/si]

1
n so that in particular u1 =

j(u2[xi/si]
1
n). Hence A(u) A(v) →dB u2[x/A(v)][xi/si]

1
n = s. By Lemma 15

A(u) A(v)→dB s→∗
md∪w A(A(u) A(v)) = A(u v) so that we get:

j(A(u v)) =
j((md ∪ w)(s)) =
j(s) =
j(u2[x/A(v)][xi/si]

1
n) =

j(u2){x/j(A(v))}{xi/j(s)i}1n =L. 2

j(u2){xi/j(s)i}1n{x/j(A(v))} =
j(u2[xi/si]

1
n){x/j(A(v))} =i.h.

u1{x/v◦◦} = (u v)◦◦

It is now natural to relax the previous relation A from dB ∪ md ∪ w to dB ∪
d ∪ w, in other words, to also allow unrestricted d-steps. Thus L-developments
are extended to XL-developments, which also allow linear creations of type 3.
Completeness of this extended notion is stated as follows:

Lemma 16. The reduction relation →dB∪d∪w is complete.

Proof. Since dB ∪ d ∪ w ⊆ j, which is terminating (Lemma 8), then dB∪ d ∪ w is
terminating as well. To show confluence it is sufficient to show local confluence,
which is straightforward by case-analysis, then apply Newman’s Lemma.

The result of a full XL-development of a λ-term t, noted t◦◦◦, is defined
by j((dB ∪ d ∪ w)(t)) where (dB ∪ d ∪ w)(t) denotes the (unique) (dB ∪ d ∪ w)-nf
of t. This notion extends L-developments in a deterministic way, i.e. provides a
complete reduction relation for λ-terms, more liberal than L-developments.

It is well known that every affine λ-term t (i.e. a term where no variable
has more than one occurrence in t) is β-strongly normalising (the number of
constructors strictly diminishes with each step). Moreover, β-reduction of affine
terms can be performed in λj using only dB∪d∪w, i.e. β-nf(t) = (dB∪d∪w)(t).
Thus:

Corollary 5. Let t be an affine λ-term. Then t◦◦◦ = β-nf(t).

We hope that our extended notion of XL-development can be applied to ob-
tain more expressive solutions for higher-order matching problems, which arise
for example in higher-order logic programming, logical frameworks, program
transformations, etc. Indeed, the approach of higher-order matching in untyped
frameworks [7, 5], which currently uses L-developments, may be improved using
XL-developments, as suggested by example (1) at the beginning of this section.

5 Bisimilar Terms

The simplicity of the λj-calculus naturally suggests the study of some opera-
tional equivalence which should equate terms that differ only concerning the
positioning of their jumps but behave identically. For instance, if y /∈ fv(u), then
λy.t[x/u] and (λy.t)[x/u] behave equivalently: there is a bijection between their
redexes and their reducts, i.e. they are bisimilar. This idea is reminiscent of
Regnier’s equivalence on λ-terms [25], here written σR:

(λx.λy.t) u ≡σR
1
λy.((λx.t) u) if y /∈ fv(u)

(λx.t v) u ≡σR
2
(λx.t) u v if x /∈ fv(v)

Reduction of the dB-redexes in the previous equations yields the following
σ-equivalence notion, now on λj-terms:

(λy.t)[x/u] ≡σ1
λy.t[x/u] if y /∈ fv(u)

(t v)[x/u] ≡σ2
t[x/u] v if x /∈ fv(v)

This is not very surprising since σR-equivalence was introduced by not-
ing that the two terms of each equation represent the same MELL proof-net
modulo multiplicative redexes, which correspond exactly to the dB-redexes of
the λj-calculus. Regnier proved that σR-equivalent terms have the same maxi-
mal β-reduction length. However, this does not imply that σR-equivalence is a
strong bisimilarity on λ-terms. Indeed, take λ-terms t0 = ((λx.λy.y) z) w ≡σR

1

(λy.((λx.y) z)) w = t1. Both share the same β-normal form w and ηβ(t0) =
ηβ(t1). Nevertheless, t0 has one redex, while t1 has two redexes, and the redex
of t1 involving w has no corresponding redex in t0. They also differ in terms of
creation of redexes: the result of the full development of t0 has a created redex,
while the result of the full development of t1 is the normal form of the term. Our
reformulation of σR, however, equates two λj-terms t′0 and t′1 which are strongly
bisimilar:

t0 →dB t
′
0 = (λy.y)[x/z] w ≡σ1

(λy.y[z/x]) w = t′1 dB← t1 (2)

Actually, bisimulation holds also for permutation of independent jumps [13]:

t[x/u][y/v] ≡CS t[y/v][x/u] if y /∈ fv(u) & x /∈ fv(v)

While CS should naturally remain an equivalence, σ has often been restricted
to being considered a reduction relation [26], for no good reason. Here, we add
CS and σ to λj without any trouble, in particular without loosing the PSN
property (Corollary 9). The operational equivalence relation generated by
o = {α, CS, σ1, σ2} realises a strong bisimulation, proved by

induction on ≡CS,σ1,σ2
and using the following preliminary lemma:

Lemma 17. For all t, t′ ∈ T and substitution γ

1. If t ≡o t
′, then tγ ≡o t

′γ.
2. If γ ≡o γ

′, then tγ ≡o tγ
′.

Proposition 1 (Strong Bisimulation). For all t, u, u′ ∈ T s.t. t ≡o u→λj u
′

∃t′ s.t. t→λj t
′ ≡o u

′.

Proof. Here we consider ≡CS,σ1,σ2
as an atomic step of equivalence and rephrase

the statement as: for all t0, t1, s1 ∈ T and n > 0 s.t. t0 ≡
n
CS,σ1,σ2

t1 →λj s1 there
exists s0 s.t. t0 →λj s0 ≡∗

CS,σ1,σ2
s1. The proof is by induction on n. If n = 1

then we reason by induction on t0 ≡CS,σ1,σ2
t1, considered as an atomic step of

equivalence:

– Let t0 = t[x/u][y/v] ≡CS t[y/v][x/u] = t1 with y /∈ fv(u) and x /∈ fv(v) . If
t1 →λj s1 because
• t→λj t

′ then t0 = t[x/u][y/v]→λj t
′[x/u][y/v] = s0 ≡CS s1 = t′[y/v][x/u].

• u→λj u
′ or v →λj v

′ then it is similar to the previous case.

• t[y/v][x/u]→d t{y/v}[x/u] = s1 then t0 →d t[x/u]{y/v} = s1.
• t[y/v][x/u]→c t[z]y [y/v][z/v][x/u] = s1 then t0 →c t[z]y [x/u][y/v][z/v] ≡

2
CS

s1.
• t[y/v][x/u]→w t[x/u] = s1 then t0 →d t[x/u] = s1.
• The three cases where it is [x/u] which is reduced are similar to the last
three cases.

– Let t0 = (λy.t)[x/u] ≡σ1
λy.t[x/u] = t1 with y /∈ fv(u). If t1 →λj s1 because

• t→λj t
′ then t0 = (λy.t)[x/u]→λj (λy.t

′)[x/u] = s0 ≡σ1
s1 = λy.t′[x/u].

• u→λj u
′ then it is similar to the previous case.

• λy.t[x/u]→d λy.t{x/u} = s1 then t0 →d (λy.t){x/u} = s1.
• λy.t[x/u]→c λy.t[z]x [z/u][x/u] = s1 then t0 →c (λy.t[z]x)[z/u][x/u] ≡

2
σ1

s1.
• λy.t[x/u]→w λy.t = s1 then t0 →d λy.t = s1.

– Let t0 = (t v)[x/u] ≡σ2
t[x/u] v = t1 with x /∈ fv(v). If t1 →λj s1 because

• t→λj t
′ then t0 = (t v)[x/u]→λj (t

′ v)[x/u] = s0 ≡σ2
s1 = t′[x/u] v.

• u→λj u
′ or v →λj v

′ then it is similar to the previous case.
• t[x/u] v →d t{x/u} v = s1 then t0 →d (t v){x/u} = s1.
• t[x/u] v →c t[z]x [z/u][x/u] v = s1 then t0 →d (t v)[z]x [z/u][x/u] =

(t[z]x v)[z/u][x/u] ≡2
σ2

s1.
• t[x/u] v →w t v = s1 then t0 →d t v = s1.
• t0 = ((λy.t′)L v)[x/u] and t1 = (λy.t′)L[x/u] v →dB t′[y/v]L[x/u] = s1.
Then, t0 = ((λy.t′)L v)[x/u]→dB t

′[y/v]L[x/u] = s1
– The inductive cases:
• If t0 = λx.t ≡CS,σ1,σ2

λx.t′ = t1 →λj λx.t′′ = s1 then t ≡CS,σ1,σ2
t′ →λj

t′′ and by the i.h. there exists t′′′ s.t. t →λj t′′′ ≡∗
CS,σ1,σ2

t′′. Then,
s0 = λx.t′′′ is s.t. t0 →λj s0 ≡∗

CS,σ1,σ2
s1.

• If t0 = t v ≡CS,σ1,σ2
t′ v = t1 →λj t′ v′ = s1 then t v →λj t v′ ≡CS,σ1,σ2

t′ v′. So s0 = t v′.
• The case t0 = t v ≡CS,σ1,σ2

t v′ = t1 →λj t′ v′ = s1 is analogous to the
previous one.
• If t0 = t v ≡CS,σ1,σ2

t′ v = t1 →λj t′′ v = s1 then t ≡CS,σ1,σ2
t′ →λj t′′

and by the i.h. there exists t′′′ s.t. t→λj t
′′′ ≡∗

CS,σ1,σ2
t′′. Then, s0 = t′′′ v

is s.t. t0 →λj s0 ≡∗
CS,σ1,σ2

s1.

• The case t0 = t v ≡CS,σ1,σ2
t v′ = t1 →λj t v′′ = s1 is analogous to the

previous one.
• If t0 = (λy.t)L v ≡CS,σ1,σ2

(λy.t′)L v = t1 →dB t
′[y/v]L then (λy.t)L v →dB

t[y/v]L ≡CS,σ1,σ2
t′[y/v]L.

• The cases t0 = (λy.t)L v ≡CS,σ1,σ2
(λy.t)L′ v = t1 →dB t[y/v]L′ and

t0 = (λy.t)L v ≡CS,σ1,σ2
(λy.t)L v′ = t1 →dB t[y/v

′]L are analogous to the
previous one.
• t0 = (λy.t)L v ≡σ1

(λy.t[x/u])L′ v = t1 →dB t[x/u][y/v]L′, where L =
[x/u]L′; As y /∈ fv(u) and x /∈ fv(v) does not contain any variable
bounded by L, then t0 = (λy.t)L v →dB t[y/v]L = t[y/v][x/u]L′ ≡CS

t[x/u][y/v]L′.
• The case t0 = (λy.t[x/u])L′v ≡σ1

(λy.t)L v = t1 →dB t[y/v]L′ , where
L = [x/u]L′ is analogous to the previous one.
• t0 = (λy.t)L v ≡σ2

((λy.t)L′ v)[x/u] = t1 →dB t[y/v]L′[x/u] = t[y/v]L,
where L = L′[x/u]; then, t0 = (λy.t)L v →dB t[y/v]L = s1.

• The case t0 = ((λy.t)L v)[x/u] ≡σ2
((λy.t)L[x/u] v) = t1 has been al-

ready treated before.
• If t0 = t [x/u] ≡CS,σ1,σ2

t′ [x/u] = t1 →λj t
′ [x/u′] = s1 then t [x/u]→λj

t [x/u′] ≡CS,σ1,σ2
t′ [x/u′].

• The case t0 = t [x/u] ≡CS,σ1,σ2
t [x/u′] = t1 →λj t′ [x/u′] = s1 is

analogous to the previous one.
• If t0 = t [x/u] ≡CS,σ1,σ2

t′ [x/u] = t1 →λj t′′ [x/u] = s1 then t ≡CS,σ1,σ2

t′ →λj t
′′ and by the i.h. there exists t′′′ s.t. t→λj t

′′′ ≡∗
CS,σ1,σ2

t′′. Then,
s0 = t′′′[x/u] is s.t. t0 →λj s0 ≡∗

CS,σ1,σ2
s1.

• The case t0 = t [x/u] ≡CS,σ1,σ2
t [x/u′] = t1 →λj t [x/u′′] = s1 is

analogous to the previous one.
• If t0 = t [x/u] ≡CS,σ1,σ2

t [x/u′] = t1 →w t then t0 →w t = s1.
• If t0 = t [x/u] ≡CS,σ1,σ2

t′ [x/u] = t1 →w t then t0 →w t ≡CS,σ1,σ2
t′ = s1.

• If t0 = t [x/u] ≡CS,σ1,σ2
t [x/u′] = t1 →c t[y]x [x/u

′][y/u′] then

t0 →c t = t[y]x [x/u][y/u] ≡
2
CS,σ1,σ2

t[y]x [x/u
′][y/u′].

• If t0 = t [x/u] ≡CS,σ1,σ2
t′ [x/u] = t1 →c (t′)[y]x [x/u][y/u] observe that

the equivalences does not change the number of occurrences and the re-
naming does not change the position of substitutions so that we can write
(t′)[y]x = (t[y]x)

′ and conclude with t0 →c t = t[y]x [x/u][y/u] ≡CS,σ1,σ2

(t[y]x)
′[x/u][y/u].

• If t0 = t [x/u] ≡CS,σ1,σ2
t [x/u′] = t1 →d t{x/u′}. Then, t [x/u] →d

t{x/u} ≡∗
CS,σ1,σ2

t{x/u′} where the last equivalence is obtained by lemma
17:2.
• If t0 = t [x/u] ≡CS,σ1,σ2

t′ [x/u] = t1 →d t′{x/u}. Then, t [x/u] →d

t{x/u} ≡∗
CS,σ1,σ2

t′{x/u} where the last equivalence is obtained by lemma
17:1.

If n > 1 then we have t0 ≡CS,σ1,σ2
t′0 ≡

n−1
CS,σ1,σ2

t1 →λj s1. By the i.h. there
exists s′0 s.t. t′0 →λj s′0 ≡

∗
CS,σ1,σ2

s1. Then, applying the i.h. once more to
t0 ≡CS,σ1,σ2

t′0 →λj s′0 (where the equivalence step is atomic), we get s0 s.t.
t0 →λj s0 ≡∗

CS,σ1,σ2
s′0 ≡

∗
CS,σ1,σ2

s1.

Such bisimulation implies that two o-equivalent terms share the same maxi-
mal reduction length. Moreover, the strong bisimulation would not hold without
distance rules. Indeed, the two σ1-equivalent terms t′0 and t′1 in (2) do not have
the same B-redexes but the same dB-redexes.

6 (De)composing Substitutions

Explicit substitution (ES) calculi may or may not include rewriting rules to
explicitly compose substitutions. One often adds them to recover confluence on
terms with metavariables. However, näıve rules may break the PSN property,
so that safe composition rules are needed to recover both PSN and confluence
on terms with metavariables [13]. The λj-calculus is peculiar as it allows to
compose substitutions, but only implicitly. Indeed, a term t[x/u][y/v] s.t. y ∈
fv(u) & y ∈ fv(t) reduces in various steps to t[x/u{y/v}][y/v], but not to the
explicit composition t[x/u[y/v]][y/v]. One of the aims of this section is adding
explicit composition to λj keeping PSN and confluence.

The second aim of this section concerns explicit decomposition. Indeed, some
calculi [24, 20, 28, 11, 10] explicitly decompose substitutions, i.e. reduce t[x/u[y/v]]
to t[x/u][y/v]. We show that even in such a case PSN and confluence still hold.

Composition (boxing) and decomposition (unboxing) are dual systems:

The Boxing system b The Unboxing system u

if x /∈ fv(t) & x ∈ fv(v) : if x /∈ fv(t) & x ∈ fv(v) :
(t v)[x/u] →ab t v[x/u] t v[x/u] →au (t v)[x/u]
t[y/v][x/u]→sb t[y/v[x/u]] t[y/v[x/u]]→su t[y/v][x/u]

The boxing system reflects the commutative box-box rule of Linear Logic,
the unboxing system is obtained by reversing its rules. Moreover, we consider the
system modulo the o-equivalence. Choosing a particular orientation for σ1 and
σ2 leads to a full set of propagating rules, that is, something closer to traditional
ES calculi. We prefer, however, to work modulo an equivalence to obtain a more
general result. Remark that the constraint x /∈ fv(t) for the unboxing rules does
not limit their applicability, as it can always be satisfied through α-equivalence.

Digression. It is natural to wonder if one could also work modulo (de)composition,
i.e. adding two more general axioms:

(t v)[x/u] ≡σ3
t v[x/u] if x /∈ fv(t)

t[y/v][x/u] ≡σ4
t[y/v[x/u]] if x /∈ fv(t)

The answer is no, as these last two congruences break the PSN property, if
näıvely added. For example: let u = (z z)[z/y], then

t = u[x/u] = (z z)[z/y][x/u] ≡σ4
(z z)[z/y[x/u]] →c

(z1 z2)[z1/y[x/u]][z2/y[x/u]]→
+
d y[x/u] (y[x/u]) ≡σ2,σ3,α

(y y)[x1/u][x/u] ≡σ4
(y y)[x1/u[x/u]]

i.e. t reduces to a term containing t. Now, take (λx.((λz.zz)y)) ((λz.zz)y) ∈
SN β which reduces to t, so that it is no longer strongly normalising in the
λj-calculus extended by the five previous equations {CS, σ1, σ2, σ3, σ4}.

Such a counter-example can be avoided imposing the constraint ”x ∈ fv(v)”
to σ3 and σ4 (note that such constraint is also found in the definition of the
boxing system). Nevertheless, λj-reduction modulo the constrained equivalences
{CS, σ1, σ2, σ3, σ4} is an incredibly subtle and complex relation. For instance, w-
steps cannot be postponed, nor can the use of equivalences. Two natural canon-
ical representations of the equivalence classes are obtained by pushing jumps
towards the variables, or as far away from them as possible. None of them is
stable by reduction, so working with equivalence classes is impossible. The PSN
property for this calculus, if it holds, is very challenging.

One of the difficulties is that the equivalence {CS, σ1, σ2, σ3, σ4} is not a bisim-
ulation: observe that the reducts (xx1)[x/y[y/z]][x1/y[y/z]] of t2 = (xx)[x/y[y/z]]
and (xx1)[x/y][x1/y][y/z] of t3 = (xx)[x/y][y/z] are no longer equivalent. Nev-
ertheless, t2 and t3 share the same normal form, and thus are still operationally
equivalent, but in a weaker sense.

From here on we use the letter p to denote a parameter which represents any
of the propagation systems {b, u}. For every p ∈ {b, u} we consider its associated
structural reduction system λjp/o, written λjb/o and λju/o respectively,
defined by the reduction relation dB∪ j∪ p modulo the equivalence relation o, a
relation which is denoted by (dB ∪ j ∪ p)/o. Both structural systems have good
properties.

Theorem 4 (Confluence Modulo). For all t1, t2 ∈ T , if t1 ≡o t2 and
ti →∗

λjp/o
ui (i = 1, 2), then ∃vi (i = 1, 2) s.t. ui →∗

λj vi (i = 1, 2) and v1 ≡o v2.

Proof. Straightforward, by interpreting t into j(t) and using Theorem 1.

To prove PSN for λjb/o and λju/o it is sufficient, according to Theorem 2,
to show the IE property. However, a simple inductive argument like the one
used for λj-reduction relation does no longer work. Therefore we shall show
the IE property by adapting the technique in [13]. This has proven a challeng-
ing venture, so that this section presents the perhaps most important technical
achievement in this paper. We split the proof into the following steps:

1. Define a labelling to mark some λjp/o-strongly normalising terms used
within jumps. Thus for example t[[x/u]] means that u ∈ T and u ∈ SN λjp/o.

2. Enrich the original λjp/o-reduction system with a relation used only to
propagate terminating labelled jumps. Let Jp/O be the resulting calculus.

3. Show that u ∈ SN λjp/o and t{x/u}v1n ∈ SN λjp/o imply t[[x/u]]v1n ∈ SNJp/O.

4. Show that t[[x/u]]v1n ∈ SNJp/O implies t[x/u]v1n ∈ SN λjp/o.

In Sections 6.1 and 6.2 points 1 and 2 are developed, while Section 6.3 deals
with points 3 and 4.

6.1 The Labelled Systems

Each labelled system is defined by a set of labelled terms together with a set of
reduction rules and axioms.

Definition 1 (Labelled Terms). Let p ∈ {b, u}. The set Tp of labelled p-
terms is generated using the following grammar:

t ::= x | tt | λx.t | t[x/t] | t[[x/v]] (v ∈ T ∩ SN λjp/o)

Now consider the following reduction subsystems:

The Labelled Equations CS:
t[[x/u]][y/v] ≡CS

1
t[y/v][[x/u]] if y /∈ fv(u) & x /∈ fv(v)

t[[x/u]][[y/v]] ≡CS
2
t[[y/v]][[x/u]] if y /∈ fv(u) & x /∈ fv(v)

The Labelled Equations σ:
(λy.t)[[x/u]] ≡σ

1
λy.t[[x/u]] if y /∈ fv(u)

(tv)[[x/u]] ≡σ
2

t[[x/u]]v if x /∈ fv(v)
The Labelled Jumping system j:
t[[x/u]] →w t if |t|x = 0
t[[x/u]] →d t{x/u} if |t|x = 1
t[[x/u]] →c t[y]x [[x/u]][[y/u]] if |t|x ≥ 2
The Labelled Boxing system b:
(tv)[[x/u]] →ab tv[[x/u]] if x /∈ fv(t) & x ∈ fv(v)
t[y/v][[x/u]] →sb t[y/v[[x/u]]] if x /∈ fv(t) & x ∈ fv(v)
The Labelled Unboxing system u:
tv[[x/u]] →au (tv)[[x/u]] if x ∈ fv(v)
t[y/v[[x/u]]] →su

1
t[y/v][[x/u]] if x ∈ fv(v)

t[[y/v[x/u]]] →su
2
t[[y/v]][[x/u]] if x ∈ fv(v)

The Generalised dB rule:
(λx.t)Lu →gdB t[x/u]L

where L is a list of jumps, some of which, potentially all, may be labelled.
Note that dB-reduction on the set T just is a particular case of gdB-reduction
on Tp. The equivalence relation α (resp. o) is generated by axiom α (resp.
{α, CS, σ}) on labelled terms. The equivalence relation O is generated by o∪o.
The reduction relation Jp (resp. Jp/O) is generated by (gdB∪j∪j∪p∪p) (resp.
gdB ∪ j ∪ j ∪ p ∪ p modulo O). The relation Jp can be understood as the union
of two disjoint reduction relations, respectively called forgettable and persistent.
Forgettable reductions do not create persistent redexes, and they are strongly
normalising (Lemmas 21 and 22). These two facts imply that termination of Jp
does not depend on its forgettable subsystem.

The forgettable reduction relation →Fp:

Action on labelled jumps: If t→j,p t
′, then t→Fp t

′.

Action Inside labelled jump: If v →λjp/o v
′, then u[[x/v]]→Fp u[[x/v

′]].

Closure by non-labelling contexts: If t →Fp t′, then tu →Fp t′u, ut →Fp

ut′, λx.t →Fp λx.t′, t[x/u] →Fp t′[x/u], u[x/t] →Fp u[x/t′] and t[[x/u]] →Fp

t′[[x/u]].

The persistent reduction relation →Pp:

Root non-labelling action: If t 7→gdB,j,p t
′ (where 7→ denotes root reduction),

then t→Pp t
′.

Closure by non-labelling contexts: If t →Pp t′, then tu →Pp t′u, ut →Pp

ut′, λx.t →Pp λx.t′, t[x/u] →Pp t′[x/u], u[x/t] →Pp u[x/t′] and t[[x/u]] →Pp

t′[[x/u]].

6.2 Well-Formed Labelled Terms

In order to prove that the λjp/o-calculus enjoys PSN, according to Theorem 2
it is sufficient to show the IE-property. The reasoning for that is splitted in
two steps: we first show that u ∈ SN λjp/o and t{x/u}v1n ∈ SN λjp/o imply

t[[x/u]]v1n ∈ SNJp/O (Corollary 7), thereafter we prove that t[[x/u]]v1n ∈ SNJp/O

implies t[x/u]v1n ∈ SN λjp/o (Corollary 8).
The first implication is much more difficult to prove, particularly because

termination of the forgettable subsystem Fp, proved using a strictly decreasing
measure on labelled terms, is required. This measure is based on the assumption
that all terms inside labelled jumps are λjp/o-strongly normalising w.r.t. the
environment in which they are evaluated. Moreover, this property of labelled
jumps needs to be preserved by reduction and equivalence.

Unfortunately this is not enough, since labelled terms are not stable by reduc-
tion: the labelled term y[[y/x x]][x/λz.zz] reduces to y[[y/(λz.zz) λz.zz]] which
has a non-strongly normalising term inside a labelled jump, and thus it is not
a labelled term according to our definition. Similarly the term x[[x/y]][y/z[[z/v]]]
reduces to x[[x/z[[z/v]]]] which has a labelled jump inside another labelled jump,
and thus it is not a labelled term.

We thus need labelled terms to be stable by equivalence and reduction. This
can be done by defining a predicate of well-formedness on labelled terms such
that WF(t) and t→Jp

t′ imply WF(t′). In order to formalize such a predicate we
need some definitions. The notion of free variable contained in a labelled jump
is particularly important.

The set of labelled free variables of t ∈ Tp is given by:

Lfv(x) := ∅
Lfv(λx.u) := Lfv(u) \ {x}
Lfv(uv) := Lfv(u) ∪ Lfv(v)
Lfv(u[x/v]) := (Lfv(u) \ {x}) ∪ Lfv(v)
Lfv(u[[x/v]]) := (Lfv(u) \ {x}) ∪ fv(v)

Note that u ∈ T implies Lfv(u) = ∅. Also Lfv(t) ⊆ fv(t).
We now formalise the notion ensuring that a labelled jump is strongly nor-

malising with respect to labelled substitutions coming from the context.
A labelled term t ∈ Tp is SN-labelled for a (meta-level) substitution γ iff

SNLp(t, γ) holds:

SNLp(x, γ) := true

SNLp(λx.t, γ) := SNLp(t, γ)
SNLp(tu, γ) := SNLp(t, γ) & SNLp(u, γ)
SNLp(t[x/u], γ) := SNLp(t, γ) & SNLp(u, γ)
SNLp(t[[x/u]], γ) := SNLp(t, {x/u}γ) & uγ ∈ SN λjp/o

Finally, a p-labelled term t is p-well-formed, written t ∈WFp, iff

1. SNLp(t, id)
2. every subterm u[y/v] or λy.u in t verifies y /∈ Lfv(u)
3. p = b implies subterms u[[y/v]] ∈ t verify y /∈ Lfv(u).

Thus for example t0 = (xx)[[x/y]][[y/z]] is not b-well-formed since y is not a
labelled free variable of t0, whereas t0 is u-well-formed since z ∈ SN λju/o. Also,
t1 = y[y/x][x/λz.zz] is b and u well-formed but t2 = y[[y/xx]][[x/λz.zz]] is not.
More precisely, x is a labelled free variable of y[[y/xx]] so that t2 is not b-well-
formed, and SNLu(t2, ∅) does not hold (since (λz.zz)(λz.zz) /∈ SN λju/o) hence
t2 is not u-well-formed.

In order to show that well-formed terms are stable by equivalence and reduc-
tion we need the following lemmas:

Lemma 18. Let t ∈WFp.

1. If t0 ≡O t1, then Lfv(t0) = Lfv(t1).
2. If t0 →J p t1, then Lfv(t0) ⊇ Lfv(t1).

Proof. By induction on t.

Lemma 19. Let t ∈WFp.

1. If SNLp(t, γ) and γ →∗
λjp/o

γ′, then SNLp(t, γ
′).

2. If u ∈ T , then SNLp(t{x/u}, γ) = SNLp(t, {x/u}γ).

Proof.

1. By induction on t. Let t = u[[x/v]]. We have SNLp(u, {x/v}γ) and vγ ∈
SN λjp/o. Since vγ →∗

λjp/o
vγ′, then vγ′ ∈ SN λjp/o. Also {x/v}γ →

∗
λjp/o

{x/v}γ′ so that SNLp(u, {x/v}γ
′) by the i.h. We thus conclude SNLp(t, γ

′).
All the other cases are straightforward.

2. By induction on t.
– t = x. Then SNLp(x{x/u}, γ) = SNLp(u, γ) = true = SNLp(x, {x/u}γ).
– t = y 6= x. Then SNLp(y{x/u}, γ) = SNLp(y, γ) = true = SNLp(y, {x/u}γ).
– t = t1[[y/t2]]. W.l.g. we can assume y /∈ fv(u) and y 6= x. Then,

SNLp(t1[[y/t2]]{x/u}, γ) =
SNLp(t1{x/u}[[y/t2{x/u}]], γ) =
SNLp(t1{x/u}, {y/t2{x/u}}γ) and t2{x/u}γ ∈ SN λjp/o =i.h.

SNLp(t1, {x/u}{y/t2{x/u}}γ) and t2{x/u}γ ∈ SN λjp/o =
SNLp(t1, {y/t2}{x/u}γ) and t2{x/u}γ ∈ SN λjp/o =
SNLp(t1[[y/t2]], {x/u}γ)

– All the other cases are straightforward.

Lemma 20 (Stability of SNL). Let SNLp(t0, γ). If t0 ≡O t1 or t0 →Jp
t1, then

SNLp(t1, γ).

Proof. By induction on the reduction relations.

– CS: t0 = t[x/u][y/v] ≡ t[y/v][x/u] = t1 if y /∈ fv(u) and x /∈ fv(v).
Then, SNLp(t0, γ) iff SNLp(t, γ) and SNLp(u, γ) and SNLp(v, γ) so that we
conclude SNLp(t1, γ).

– CS1: t0 = t[[x/u]][y/v] ≡ t[y/v][[x/u]] = t1 if y /∈ fv(u) and x /∈ fv(v).
Then, SNLp(t0, γ) iff SNLp(t, {x/u}γ) and SNLp(v, γ) and uγ ∈ SN λjp/o. We
also have
SNLp(v, γ) =L. 19:2 SNLp(v, {x/u}γ). We thus conclude SNLp(t1, γ).

– CS2: t0 = t[[x/u]][[y/v]] ≡ t[[y/v]][[x/u]] = t1 if y /∈ fv(u) and x /∈ fv(v).
Observe that the hypothesis implies u{y/v}γ = uγ and v{x/u}γ = vγ and
{x/u}{y/v}γ = {y/v}{x/u}γ. Then, SNLp(t0, γ) iff SNLp(t, {x/u}{y/v}γ)
and uγ, vγ ∈ SN λjp/o. Thus we conclude also SNLp(t1, γ).

– σ1: t0 = (λy.t)[x/u] ≡ λy.t[x/u] = t1 if y /∈ fv(u).
Then, SNLp(t0, γ) iff SNLp(t, γ) and SNLp(u, γ) so that SNLp(t1, γ) is imme-
diate.

– σ1: t0 = (λy.t)[[x/u]] ≡ λy.t[[x/u]] = t1 if y /∈ fv(u).
Then, SNLp(t0, γ) iff SNLp(t, {x/u}γ) and uγ ∈ SN λjp/o so that SNLp(t1, γ)
is immediate.

– σ2: t0 = (tv)[x/u] ≡ t[x/u]v = t1 if x /∈ fv(v) and x ∈ fv(t).
Then, SNLp(t0, γ) iff SNLp(t, γ) and SNLp(v, γ) and SNLp(u, γ) so that SNLp(t1, γ)
is immediate.

– σ2: t0 = t[[x/u]]v ≡ (tv)[[x/u]] = t1 if x /∈ fv(v).
Then, SNLp(t0, γ) iff SNLp(t, {x/u}γ) and SNLp(v, {x/u}γ) and uγ ∈ SN λjp/o.
We have SNLp(v, {x/u}γ) =L. 19:2 SNLp(v, γ) so that we conclude SNLp(t1, γ).

– w: t0 = t[[y/u]]→ t = t1, where |t|y = 0.
Then, SNLp(t0, γ) iff SNLp(t, {y/u}γ) and uγ ∈ SN λjp/o.

By Lemma 19:2 SNLp(t, γ) so that we conclude.
– d: t0 = t[[y/u]]→ t{y/u} = t1, where |t|y = 1.

Then, SNLp(t0, γ) iff SNLp(t, {y/u}γ) and uγ ∈ SN λjp/o.

By Lemma 19 SNLp(t{y/u}, γ) which concludes this case.
– c: t0 = t[[x/u]]→ t[y]x [[y/u]][[x/u]] = t1, where |t|x ≥ 2 and y is fresh.

Then SNLp(t0, γ) iff SNLp(t, {x/u}γ) and uγ ∈ SN λjp/o.

On the other hand SNLp(t1, γ) = SNLp(t[y]x , {y/u}{x/u}γ) and uγ ∈ SN λjp/o.

Since SNLp(t, {x/u}γ) =L 19:2 SNLp(t[y]x , {y/u}{x/u}γ) then we conclude.
– ab: t0 = (tv)[[x/u]]→ tv[[x/u]] = t1, where x ∈ fv(v) and x /∈ fv(t).

Then, SNLp(t0, γ) iff SNLb(t, {x/u}γ) =L. 19:2 SNLb(t, γ) and SNLb(v, {x/u}γ)
and uγ ∈ SN λjb/o. We thus conclude SNLb(t1, γ).

– sb: t0 = t[y/v][[x/u]]→ t[y/v[[x/u]]] = t1, where x ∈ fv(v) and x /∈ fv(t).
Then, SNLb(t0, γ) iff SNLb(t, {x/u}γ) =L. 19:2 SNLb(t, γ) and SNLb(v, {x/u}γ)
and uγ ∈ SN λju/o. We thus conclude SNLb(t1, γ).

– au: t0 = tv[[x/u]]→ (tv)[[x/u]] = t1, where x ∈ fv(v) and x /∈ fv(t).
Then, SNLu(t0, γ) iff SNLu(t, γ) =L. 19:2 SNLu(t, {x/u}γ) and SNLu(v, {x/u}γ)
and uγ ∈ SN λju/o. We thus conclude SNLu(t1, γ).

– su1: t0 = t[y/v[[x/u]]]→ t[y/v][[x/u]] = t1, where x ∈ fv(v).
Then, SNLu(t0, γ) iff SNLu(t, γ) =L. 19:2 SNLu(t, {x/u}γ) and SNLu(v, {x/u}γ)
and uγ ∈ SN λju/o. We thus conclude SNLu(t1, γ).

– su2: t0 = t[[y/v[x/u]]]→ t[[y/v]][[x/u]] = t1, where x ∈ fv(v) and x /∈ fv(t).
Then, SNLu(t0, γ) iff SNLu(t, {y/v[x/u]}γ) and v[x/u]γ ∈ SN λju/o. To show
SNLu(t1, γ) we need uγ, v{x/u}γ ∈ SN λju/o and SNLu(t, ρ), for ρ = {y/v}{x/u}γ.
Since uγ ∈ v[x/u]γ, then uγ ∈ SN λju/o. Since v[x/u]γ → v{x/u}γ, then
v{x/u}γ ∈ SN λju/o. Finally, {y/v[x/u]}γ →

∗ {y/v{x/u}}γ = ρ′ so that
SNLu(t, ρ

′) holds by Lemma 19: 1. We conclude SNLu(t1, γ).
– gdB: t0 = (λx.t)Lu→ t[x/u]L = t1. We can reason by induction on L.

If L is empty, then SNLp(t0, γ) iff SNLp(u, γ) and SNLp(t, γ), which implies
SNLp(t0, γ).

If L = [y/v], then it is straightforward. If L = [[y/v]], then SNLp(t0, γ) iff
SNLp(u, γ) and SNLp(t, {y/v}γ) and vγ ∈ SN λjp/o. Since y /∈ fv(u), then
Lemma 19:2 gives SNLp(u, {y/v}γ) so that we conclude SNLp(t1, γ).
If L has more than one substitution, the proof is straightforward by the i.h.

– The inductive cases. We only show the interesting cases. Let t0 = t[[x/u]] ≡
t′[[x/u]] = t1 (resp. t0 = t[[x/u]] → t′[[x/u]] = t1). Then, SNLp(t0, γ) iff
SNLp(t, {x/u}γ) and uγ ∈ SN λjp/o. The i.h. gives SNLp(t

′, {x/u}γ) so that
SNLp(t1, γ).
Let t0 = t[[x/u]] ≡ t[[x/u′]] = t1 or t0 = t[[x/u]] → t[[x/u′]] = t1. Then,
SNLp(t0, γ) iff SNLp(t, {x/u}γ) and uγ ∈ SN λjp/o. We have uγ ≡ u′γ (resp.
uγ →∗ u′γ) so that u′γ ∈ SN λjp/o. Lemma 19:1 gives SNLp(t, {x/u′}γ) so
that we conclude SNLp(t1, γ).
All the other cases are straightforward.

Corollary 6. Let t ∈WFp. If t ≡O t
′ or t→Jp

t′, then t′ ∈WFp.

The given corollary is essential in developing the termination proofs for the
forgettable relations Fb/O and Fu/O. More precisely, for each forgettable reduction
Fp/O, with p ∈ {b, u}, we define a measure on p-well-formed labelled terms which
strictly decreases by Fp/O-reduction.

Lemma 21. The relation →Fb/O is terminating on b well-formed labelled terms.

Lemma 22. The relation →Fu/O is terminating on u well-formed labelled terms.

We relegate the proofs of both Lemmas to the Appendix.

6.3 From Implicit to Explicit through Labelled

To show our first point, namely, that u ∈ SN λjp/o and t{x/u}v1n ∈ SN λjp/o

imply t[[x/u]]v1n ∈ SNJp/O, we now consider the following projection function
P() from labelled terms to terms, which also projects Jp/O into the reduction
λjp/o:

P(x) := x
P(λx.t) := λx.P(t)
P(tu) := P(t)P(u)
P(t[x/u]) := P(t)[x/P(u)]
P(t[[x/u]]) := P(t){x/u}

Note that u ∈ T implies P(u) = u.

Lemma 23. Let t0 ∈ Tp. Then,

1. t0 ≡O t1 implies P(t0) ≡o P(t1).
2. t0 →Fp t1 implies P(t0)→∗

λjp/o
P(t1).

3. t0 →Pp t1 implies P(t0)→
+
λjp/o

P(t1).

Proof. By induction on labelled terms. The case t0 →su
2
t1 uses Lemma 4.

Lemma 24. Let t ∈WFp. If P(t) ∈ SN λjp/o, then t ∈ SNJp/O.

Proof. Since →Jp
=→Fp ∪ →Pp we show that t ∈ SN Fp∪Pp/O by using Lemma 23

and termination of the forgettable relations (Lemmas 21 and 22).

Now let p ∈ {b, u} and consider t, u, v1n ∈ T s.t. u ∈ SN λjp/o. We immediately

get t[[x/u]]v1n ∈WFp. Using P(t[[x/u]]v1n) = t{x/u}v1n we thus conclude:

Corollary 7. Let t, u, v1n ∈ T . If u ∈ SN λjp/o & t{x/u}v1n ∈ SN λjp/o, then

t[[x/u]]v1n ∈ SNJp/O.

The last point of our proof is to show that t[[x/u]]v1n ∈ SNJp/O implies

t[x/u]v1n ∈ SN λjp/o by relating labelled terms and reductions to unlabelled
terms and reductions. To do that, let us introduce an unlabelling function on
labelled terms:

U(x) := x
U(tu) := U(t)U(u)
U(λx.t) := λx.U(t)
U(t[x/u]) := U(t)[x/U(u)]
U(t[[x/u]]) := U(t)[x/u]

Remark that u ∈ T implies U(u) = u. Also, fv(t) = fv(U(t)) and U(t{x/u}) =
U(t){x/U(u)}.

Lemma 25. If t ∈WFp and U(t)→λjp/o u, then ∃ v ∈WFp s.t. t →Jp/O v and
U(v) = u.

Proof. By induction on →λjp/o and case analysis. We only show the interesting
cases of root equivalence/reduction.

1. The congruence ≡o.
– t = u[x/v][[y/w]] with y /∈ fv(v) & x /∈ fv(w) and

U(u[x/v][[y/w]]) =
U(u)[x/U(v)][y/w] ≡CS

U(u)[y/w][x/U(v)] = U(u[[y/w]][x/v]) = t′1

We then let t1 = u[[y/w]][x/v] so that U(t1) = t′1 and t ≡CS t1.
– t = u[[x/v]][y/w] with y /∈ fv(v) & x /∈ fv(w) and

U(u[[x/v]][y/w]) =
U(u)[x/v][y/U(w)] ≡CS

U(u)[y/U(w)][x/v] = U(u[y/w][[x/v]]) = t′1

We then let t1 = u[y/w][[x/v]] so that U(t1) = t′1 and t ≡CS t1.
– t = u[[x/v]][[y/w]] with y /∈ fv(v) & x /∈ fv(w) and

U(u[[x/v]][[y/w]]) =
U(u)[x/v][y/w] ≡CS

U(u)[y/w][x/v] = U(u[[y/w]][[x/v]]) = t′1

We then let t1 = u[[y/w]][[x/v]] so that U(t1) = t′1 and t ≡CS t1.

– t = λy.u[[x/v]] with y /∈ fv(v) and

U(λy.u[[x/v]]) =
λy.U(u)[x/v] ≡SL

(λy.U(u))[x/v] = U((λy.u)[[x/v]]) = t′1

We then let t1 = (λy.u)[[x/v]] so that U(t1) = t′1 and t ≡SL t1.
– t = u[[x/v]]w and

U(u[[x/v]]w) =
U(u)[x/v]U(w) ≡SAL

(U(u)U(w))[x/v] = U((uw)[[x/v]]) = t′1

We then let t1 = (uw)[[x/v]] so that U(t1) = t′1 and t ≡SA
L
t1.

– All the other cases are straightforward.
2. The reduction relation →j.

– t = u[[x/v]] with |u|x = 0 and

U(u[[x/v]]) =
U(u)[x/v] →w U(u) = t′1

We then let t1 = u so that U(t1) = t′1 and t→w t1.
– t = u[[x/v]] with |u|x = 1 and

U(u[[x/v]]) =
U(u)[x/v] →d U(u){x/v} = U(u{x/v}) = t′1

We then let t1 = u{x/v} so that U(t1) = t′1 and t→d t1.
– t = u[[x/v]] with |u|x > 1 and

U(u[[x/v]]) =
U(u)[x/v] →c U(u)[y]x [x/v][y/v] = U(u[y]x [x/v][y/v]) = t′1

We then let t1 = u[y]x [x/v][y/v] so that U(t1) = t′1 and t→c t1.
3. The reduction relations →b and →u.

– t = uw[[x/v]] with x /∈ fv(u) & x ∈ fv(w) and

U(uw[[x/v]]) =
U(u)U(w)[x/v] →au

(U(u)U(w))[x/v] = U((uw)[[x/v]]) = t′1

We then let t1 = (uw)[[x/v]] so that U(t1) = t′1 and t→au t1.
– t = (uw)[[x/v]] with x /∈ fv(u) & x ∈ fv(w) and

U((uw)[[x/v]]) =
(U(u)U(w))[x/v] →ab

U(u)U(w)[x/v] = U(uw[[x/v]]) = t′1

We then let t1 = uw[[x/v]] so that U(t1) = t′1 and t→ab t1.

– t = u[y/w[[x/v]]] with x /∈ fv(u) & x ∈ fv(w) and

U(u[y/w[[x/v]]]) =
U(u)[y/U(w)[x/v]]→su

U(u)[y/U(w)][x/v] = U(u[y/w][[x/v]]) = t′1

We then let t1 = u[y/w][[x/v]] so that U(t1) = t′1 and t→su
1
t1.

– t = u[[y/w[x/v]]] with x /∈ fv(u) & x ∈ fv(w) and .

U(u[[y/w[x/v]]]) =
U(u)[y/w[x/v]] →su

U(u)[y/w][x/v] = U(u[[y/w]][[x/v]]) = t′1

We then let t1 = u[[y/w]][[x/v]] so that U(t1) = t′1 and t→su
2
t1.

– t = u[[y/w[[x/v]]]] with x /∈ fv(u) & x ∈ fv(w).
Since t ∈WFp, this case is not possible since w[[x/v]] is not a term.

– t = u[y/w][[x/v]] with x /∈ fv(u) & x ∈ fv(w) and

U(u[y/w][[x/v]]) =
U(u)[y/U(w)][x/v]→sb

U(u)[y/U(w)[x/v]] = U(u[y/w[[x/v]]]) = t′1

We then let t1 = u[y/w[[x/v]]] so that U(t1) = t′1 and t→sb t1.
– t = u[[y/w]][x/v] with x /∈ fv(u) & x ∈ fv(w). But t ∈ WFp, so that

x /∈ Lfv(u[[y/w]]), which implies in particular x /∈ fv(w). This case is
not then possible.

– t = u[[y/w]][[x/v]] with x /∈ fv(u) & x ∈ fv(w). If t ∈ WFb, then x /∈
fv(w) as before. This case is not then possible.
If t ∈WFu, then →sb does not hold in the u-system.

4. The reduction relation →gdB.
Consider t = (λx.u)Lv. Let L be the list containing all the unlabelling sub-
stitutions of the list L. Then,

U(t) =
(λx.U(u))LU(v) →dB

U(u)[x/U(v)]L = U(u[x/v]L) = t′1

We then let t1 = u[x/v]L so that U(t1) = t′1 and t→gdB t1.
5. All the other cases are straightforward.

Lemma 26. Let t ∈WFp. If t ∈ SNJp/O, then U(t) ∈ SN λjp/o.

Proof. We prove U(t) ∈ SN λjp/o by induction on ηJp/O(t). This is done by con-
sidering all the λjp/o-reducts of U(t) and using Lemma 25.

Now let p ∈ {b, u} and consider t, u, v1n ∈ T s.t. u ∈ SN λjp/o. We immediately

get t[[x/u]]v1n ∈WFp. Using U(t[[x/u]]v1n) = t[x/u]v1n we thus conclude:

Corollary 8. Let t, u, v1n ∈ T . If t[[x/u]]v
1
n ∈ WFp ∩ SNJp/O, then t[x/u]v1n ∈

SN λjp/o.

From Corollaries 7 and 8 we get:

Lemma 27 (IE for λjp/o). For p ∈ {b, u}, λjp/o enjoys the IE property.

Theorem 2 thus allows us to conclude with the main result of this section:

Corollary 9 (PSN for λjp/o). For p ∈ {b, u}, λjp/o enjoys PSN.

7 Conclusions

We have introduced the structural λj-calculus, a concise but expressive λ-calculus
with jumps. No prior knowledge of Linear Logic is necessary to understand λj,
despite their strong connection. We have established many different sanity prop-
erties for λj such as confluence and PSN. We have used λj as an operational
framework to elaborate new characterisations of the well-known notions of full
developments and L-developments, and to obtain the new, more powerful notion
of XL-development. Finally, we have modularly added commutation of indepen-
dent jumps, σ-equivalence and two kinds of propagations of jumps, while showing
that PSN still holds.

As noted in Section 6, PSN for the λj-calculus plus the constrained equiva-
lences {CS, σ1, σ2, σ3, σ4} is - at present - a challenging conjecture. Indeed, the
merging of the two similar, yet different uses of {σ3, σ4} that we study in this pa-
per presents several non-trivial difficulties. A further in-depth re-elaboration of
the labelling technique would be necessary, perhaps even the use of a completely
different technique dealing with reduction modulo a set of equations.

An interesting research direction is the study of linear head reduction [2] for
λ-calculus - which is closely connected to game semantics and abstract machines
- whose formulation is not a strategy in the usual sense. Indeed, jumps and
distance permit to reformulate linear head reduction as a strategy of λj.

It would also be interesting to exploit distance and multiplicities in other
frameworks for example when dealing with pattern matching, continuations or
differential features.

References

1. B. Accattoli and S. Guerrini. Jumping boxes. representing lambda-calculus boxes
by jumps. In Proc. of 18th CSL, volume 5771 of LNCS. SV, Sept. 2009.

2. V. Danos and L. Regnier. Reversible, irreversible and optimal lambda-machines.
TCS, 227(1):79–97, 1999.

3. R. David and B. Guillaume. A λ-calculus with explicit weakening and explicit
substitution. MSCS, 11:169–206, 2001.

4. N. G. de Bruijn. Generalizing Automath by Means of a Lambda-Typed Lambda
Calculus. In Mathematical Logic and Theoretical Computer Science, number 106
in Lecture Notes in Pure and Applied Mathematics, pages 71–92. Marcel Dekker,
1987.

5. O. de Moor and G. Sittampalam. Higher-order matching for program transforma-
tion. TCS, 269(1-2):135–162, 2001.

6. R. Di Cosmo, D. Kesner, and E. Polonovski. Proof nets and explicit substitutions.
MSCS, 13(3):409–450, 2003.

7. G. Faure. Matching modulo superdevelopments application to second-order match-
ing. In Proc. of 13th LPAR, LNCS, pages 60–74. SV, Nov. 2006.

8. J.-Y. Girard. Linear logic. TCS, 50, 1987.
9. J.-Y. Girard. Geometry of interaction i: an interpretation of system f. Proc. of the

Logic Colloquim, 88:221–260, 1989.
10. M. Hasegawa. Models of Sharing Graphs: A Categorical Semantics of let and letrec,

volume Distinguished Dissertation Series. SV, 1999.
11. H. Herbelin and S. Zimmermann. An operational account of call-by-value minimal

and classical lambda-calculus in ”natural deduction” form. In TLCA, volume 5608
of LNCS. SV, 2009.

12. J. R. Hindley. Reductions of residuals are finite. Transactions of the American
Mathematical Society, 240:345–361, 1978.

13. D. Kesner. The theory of calculi with explicit substitutions revisited. In Proc. of
16th CSL, volume 4646 of LNCS, pages 238–252. SV, Sept. 2007.

14. D. Kesner. A theory of explicit substitutions with safe and full composition. LMCS,
5(3:1):1–29, 2009.

15. D. Kesner and S. Lengrand. Resource operators for lambda-calculus. I & C, 205
(4):419–473, 2007.

16. D. Kesner and F. Renaud. The prismoid of resources. In Proc. of the 34th MFCS,
LNCS. SV, Aug. 2009.

17. J.-W. Klop, V. van Oostrom, and F. van Raamsdonk. Combinatory reduction
systems: introduction and survey. TCS, 121(1/2):279–308, 1993.

18. J.-J. Lévy. Réductions correctes et optimales dans le lambda-calcul. PhD thesis,
Univ. Paris VII, France, 1978.

19. J.-J. Lévy and L. Maranget. Explicit substitutions and programming languages.
In FSTTCS, volume 1738 of LNCS, pages 181–200. SV, 1999.

20. J. Maraist, M. Odersky, D. N. Turner, and P. Wadler. Call-by-name, call-by-value,
call-by-need and the linear lambda calculus. TCS, 228(1-2):175–210, 1999.

21. R. Milner. Local bigraphs and confluence: two conjectures. In Proc. of 13th EX-
PRESS, volume 175 of ENTCS. Elsevier, 2006.

22. R. P. Nederpelt. The fine-structure of lambda calculus. Technical Report CSN
92/07, Eindhoven Univ. of Technology, 1992.

23. S. Ó Conchúir. Proving PSN by simulating non-local substitutions with local
substitution. In Proceedings of the 3rd HOR, pages 37–42, Aug. 2006.

24. Y. Ohta and M. Hasegawa. A terminating and confluent linear lambda calculus.
In RTA, volume 4098 of LNCS, pages 166–180. SV, 2006.

25. L. Regnier. Lambda-calcul et réseaux. Thèse de doctorat, Univ. Paris VII, 1992.
26. L. Regnier. Une équivalence sur les lambda-termes. TCS, 2(126):281–292, 1994.
27. D. E. Schroer. The Church-Rosser Theorem. PhD thesis, Cornell Univ., 1965.
28. H. Schwichtenberg. Termination of permutative conversions in intuitionistic

Gentzen calculi. TCS, 212(1-2):247–260, 99.
29. P. Severi and E. Poll. Pure type systems with definitions. In LFCS, volume 813

of LNCS, pages 316–328. SV, 1994.
30. F. van Raamsdonk. Confluence and Normalization for Higher-Order Rewriting.

PhD thesis, Amsterdam Univ., Netherlands, 1996.
31. R. D. Vrijer. A direct proof of the finite developments theorem. JSL, 50(2):339–343,

1985.

8 Appendix

Theorem 5 (Modular Abstract Strong Normalisation). Let A1 and A2
(resp. E) be two reduction (resp. equivalence) relations on s. Let A be a reduction
relation on S and let consider a relation R ⊆ s× S. Suppose that forall u, v, U

(P0) u R U & u E v imply ∃V s.t. v R V & U = V .
(P1) u R U & u A1 v imply ∃V s.t. v R V & U A∗ V .
(P2) u R U & u A2 v imply ∃V s.t. v R V & U A+ V .
(P3) The relation A1 modulo E is well-founded.

Then, t R T & T ∈ SN A imply t ∈ SN (A1∪A2)/E .

8.1 The Forgettable System Terminates

The termination proofs for→Fb and→Fu are not really parametric in p, nonethe-
less they both make use of potential multiplicities, which are extended to
labelled jumps by adding the following case to the notion given in Section 3.

Mx(u[[y/v]]) := Mx(u) + max(1, My(u)) · Mx(v)

We first prove that the equivalence O and the propagations p preserve poten-
tial multiplicities.

Lemma 28. Let p ∈ {b, u}. Let t0 ∈ Tp. Then,

– t0 ≡o,o t1 implies Mw(t) = Mw(t
′).

– t0 →p t1 implies Mw(t) = Mw(t
′).

Proof. As Mw(t) is defined in the same way for labelled and unlabelled substi-
tutions it is sufficient to check just one of them. Moreover, we just show the
property for two p-steps, the other cases being similar.

– t[[x/u]][[y/v]] ≡CS t[[y/v]][[x/u]], with y /∈ fv(u) & x /∈ fv(v).
Observe that Mw(t[[x/u]]) = Mw(t) if w /∈ fv(u).

Mw(t[[x/u]][[y/v]]) =
Mw(t[[x/u]]) + max(1, My(t[[x/u]])) · Mw(v) =
Mw(t[[x/u]]) + max(1, My(t)) · Mw(v) =
Mw(t) + max(1, Mw(t)) · Mw(u) + max(1, My(t)) · Mw(v) =
Mw(t) + max(1, Mw(t[[y/v]])) · Mw(u) + max(1, My(t)) · Mw(v) =
Mw(t[[y/v]]) + max(1, Mw(t[[y/v]])) · Mw(u) =
Mw(t[[y/v]][[x/u]])

– (λy.t)[[x/u]] ≡σ
1
λy.t[[x/u]], with y /∈ fv(u).

Mw((λy.t)[[x/u]]) =
Mw(λy.t) + max(1, Mx(λy.t)) · Mw(u) =
Mw(t) + max(1, Mx(t)) · Mw(u) =
Mw(t[[x/u]]) =
Mw(λy.t[[x/u]])

– (t v)[[x/u]] ≡σ
2
t[[x/u]] v, with x /∈ fv(v).

Mw((t v)[[x/u]]) =
Mw(t v) + max(1, Mx(t v)) · Mw(u) =
Mw(t v) + max(1, Mx(t)) · Mw(u) =
Mw(t) + Mw(v) + max(1, Mx(t)) · Mw(u) =
Mw(t[[x/u]]) + Mw(v) =
Mw(t[[x/u]] v)

– (t v)[[x/u]]→ab t v[[x/u]], with x /∈ fv(t) and x ∈ fv(v).

Mw((t v)[[x/u]]) =
Mw(t v) + max(1, Mx(t v)) · Mw(u) =
Mw(t v) + max(1, Mx(v)) · Mw(u) =
Mw(t) + Mw(v) + max(1, Mx(v)) · Mw(u) =
Mw(t) + Mw(v[[x/u]]) = Mw(t v[[x/u]])

– t[[y/v[x/u]]] →su
2
t[[y/v]][[x/u]], where x ∈ fv(v). First, let us show that

max(1, My(t)) · Mx(v) = max(1, max(1, My(t)) · Mx(v)). If y ∈ fv(t) then both
expression are equal to My(t) · Mx(v), as x ∈ fv(v), otherwise are both equal
to Mx(v). Then,

Mw(t[[y/v[x/u]]]) =
Mw(t) + max(1, My(t)) · Mw(v[x/u]) =
Mw(t) + max(1, My(t)) · (Mw(v) + max(1, Mx(v)) · Mw(u)) =
Mw(t) + max(1, My(t)) · (Mw(v) + Mx(v) · Mw(u)) =
Mw(t) + max(1, My(t)) · Mw(v) + max(1, My(t)) · Mx(v) · Mw(u) =
Mw(t[[y/v]]) + max(1, My(t)) · Mx(v) · Mw(u) =
Mw(t[[y/v]]) + max(1, max(1, My(t)) · Mx(v)) · Mw(u) =
Mw(t[[y/v]]) + max(1, Mx(t) + max(1, My(t)) · Mx(v)) · Mw(u) =
Mw(t[[y/v]]) + max(1, Mx(t[[y/v]])) · Mw(u) =
Mw(t[[y/v]][[x/u]])

– The inductive cases are all straightforward.

To relate potential multiplicities and reductions we need two lemmas. The
first is used for →c-steps and the second for →w,d-steps.

Lemma 29. Let t ∈ Tp s.t. |t|x ≥ 2. Let w 6= x, y and x 6= y. Then,

1. Mw(t) = Mw(t[y]x)
2. My(t) = Mx(t[x]y) + My(t[x]y).

Proof. We first enrich the notation by writing t[x]ky if t[x]y renames k of occur-

rences of y as x. We also admit (only for this proof) that k = 0 causes the renam-
ing to be the identity. The statement now becomes: My(t) = Mx(t[x]ky) + My(t[x]ky)

for 0 ≤ k ≤ |t|y. The proof now proceeds by induction on t.

– For t = z the statement is trivial.
– If t = u v then there exist k1, k2 s. t. t[x]ky = u

[x]
k1
y

v
[x]

k2
y

and k1, k2 ≥ 0,

k1 + k2 = k, k1 ≤ |u|y and k2 ≤ |v|y. We get

Mx(t[x]ky) + My(t[x]ky) =

Mx(u[x]
k1
y

v
[x]

k2
y
) + My(u[x]

k1
y

v
[x]

k2
y
) =

Mx(u[x]
k1
y
) + Mx(v[x]k2y

) + My(u[x]
k1
y
) + My(v[x]k2y

) =

Mx(u[x]
k1
y
) + My(u[x]

k1
y
) + Mx(v[x]k2y

) + My(v[x]k2y
) =i.h.

My(u) + My(v) = My(u v)

– If t = λx.u the i.h. is enough.
– If t = u[z/v] then t[x]ky = u

[x]
k1
y
[z/v

[x]
k2
y
] for k1, k2 ≥ 0, k1+k2 = k, k1 ≤ |u|y

and k2 ≤ |v|y. Then,

Mx(t[x]y) + My(t[x]y) =
Mx(u[x]

k1
y
[z/v

[x]
k2
y
]) + My(u[x]

k1
y
[z/v

[x]
k2
y
]) =

Mx(u[x]
k1
y
) + max(1, Mz(u[x]

k1
y
)) · Mx(v[x]k2y]) + My(u[x]

k1
y
) + max(1, Mz(u[x]

k1
y
)) · My(v[x]k2y) =i.h.

Mx(u[x]
k1
y
) + max(1, Mz(u)) · Mx(v[x]k2y]) + My(u[x]

k1
y
) + max(1, Mz(u)) · My(v[x]k2y) =

Mx(u[x]
k1
y
) + My(u[x]

k1
y
) + max(1, Mz(u)) · (Mx(v[x]k2y]) + My(v[x]k2y

)) =

My(u) + max(1, Mz(u)) · My(v) =
My(u[z/v]) = My(t)

– If t = u[[z/v]] then it is identical to the previous case.

Lemma 30. Let t ∈ Tp and u ∈ T . Then,

1. If |u|w = 0, then Mw(t{x/u}) = Mw(t).
2. If |t|x = 1, then Mw(t{x/u}) = Mw(t) + max(1, Mx(t)) · Mw(u)

Proof. The first statement follows from a straightforward induction on t. The
second point follows by showing that Mw(t[[x/u]]) = Mw(t{x/u}) if |t|x = 1. We
show this property by induction on t.

– If t = x
Mw(x[[x/u]]) =
Mw(x) + max(1, Mx(x)) · Mw(u) =
Mw(u) = Mw(x{x/u})

– If t = λy.t′

Mw((λy.t
′)[[x/u]]) =L.28

Mw(λy.t
′[[x/u]]) =

Mw(t
′[[x/u]]) =i.h.

Mw(t
′{x/u}) = Mw((λy.t

′){x/u})

– If t = v s with x /∈ s and x ∈ v.

Mw((v s)[[x/u]]) =L.28

Mw((v[[x/u]]) s) =
Mw(v[[x/u]]) + Mw(s) =i.h.

Mw(v{x/u}) + Mw(s) =
Mw((v{x/u}) s) = Mw((v s){x/u})

– If t = v s with x ∈ s and x /∈ v.

Mw((v s)[[x/u]]) =L.28

Mw(v (s[[x/u]])) =
Mw(v) + Mw(s[[x/u]]) =i.h.

Mw(v) + Mw(s{x/u}) =
Mw(v (s{x/u})) = Mw((v s){x/u})

– If t = v[y/s] then if x ∈ fv(v) we have

Mw(v[y/s][[x/u]]) =L.28

Mw(v[[x/u]][y/s]) =
Mw(v[[x/u]]) + max(1, My(v[[x/u]])) · Mw(s) =i.h.

Mw(v{x/u}) + max(1, My(v{x/u})) · Mw(s) =
Mw(v{x/u}[y/s]) = Mw(v[y/s]{x/u})

Instead, if x ∈ fv(s) we have

Mw(v[y/s][[x/u]]) =L.28

Mw(v[y/s[[x/u]]]) =
Mw(v) + max(1, My(v)) · Mw(s[[x/u]]) =i.h.

Mw(v) + max(1, My(v)) · Mw(s{x/u}) =i.h.

Mw(v[y/s{x/u}]) = Mw(v[y/s]{x/u})

– If t = v[[y/s]] then the proof is similar to the case t = v[y/s].

The next lemmas show that potential multiplicities are not increased by→j-
steps.

Lemma 31. Let t0 ∈ Tp. Then, t0 →j t1 implies Mw(t) ≥ Mw(t
′).

Proof. By induction on →j.

– t0 = t[[x/u]]→w t = t1 with |t|x = 0. Then, Mw(t0) = Mw(t) = Mw(t1).
– t0 = t[[x/u]]→d t{x/u} = t1 with |t|x = 1. W.l.g. x 6= w. Then

Mw(t0) =
Mw(t) + max(1, Mx(t)) · Mw(u) =L. 30:2

Mw(t{x/u}) = Mw(t1)

– t0 = t[[x/u]]→c t[y]x [[x/u]][[y/u]] = t1 with |t|x > 1. If w ∈ fv(u), then

Mw(t0) =
Mw(t) + max(1, Mx(t)) · Mw(u) =
Mw(t) + Mx(t) · Mw(u) =L. 29

Mw(t[y]x) + Mx(t[y]x) · Mw(u) + My(t[y]x) · Mw(u) =
Mw(t[y]x) + max(1, Mx(t[y]x)) · Mw(u) + My(t[y]x) · Mw(u) =
Mw(t[y]x [[x/u]]) + My(t[y]x) · Mw(u) =L. 30:1

Mw(t[y]x [[x/u]]) + My(t[y]x [[x/u]]) · Mw(u) =
Mw(t[y]x [[x/u]]) + max(1, My(t[y]x [[x/u]])) · Mw(u) =
Mw(t1) =

– For the inductive cases, let t0 = t[[x/u]] →j t′[[x/u]] = t1 where t →j t′. The
only interesting case is when x ∈ fv(t) and x /∈ fv(t′). Then

Mw(t0) =
Mw(t) + max(1, Mx(t)) · Mw(u) ≥
Mw(t) + Mw(u) ≥i.h.

Mw(t
′) + Mw(u) =

Mw(t
′) + max(1, Mx(t

′)) · Mw(u) =
Mw(t1)

The cases for t0 = t[x/u] is similar to the previous one when t0 →j t1 because
t →j t′. Suppose instead that t0 = t[x/u] →j t[x/u′] = t1 where u →j u′.
Then,

Mw(t0) =
Mw(t) + max(1, Mx(t)) · Mw(u) ≥i.h.

Mw(t) + max(1, Mx(t)) · Mw(u′) =
Mw(t1)

The other cases are straightforward.

Lemma 32. Let t0 ∈ WFp s.t. w /∈ Lfv(t0). If t0 →Fp:i t1, then Mw(t0) =
Mw(t1).

Proof. By induction on t0 →b t1. If t0 = t[[x/u]] →Fp:i t[[x/u′]] then w /∈ u by
hypothesis so that also w /∈ fv(u′). Then, we get Mw(u) = Mw(u

′) = 0 and

Mw(t[[x/u]]) =
Mw(t) + max(1, Mx(t)) · Mw(u) =
Mw(t) + max(1, Mx(t)) · Mw(u′) =
Mw(t[[x/u

′]])

The inductive cases are all straightforward, using the i.h.

Potential multiplicities can be altered only by w, w and gdB-steps. In the
first two cases they can decrease, in the last one they can be both increased or
decreased. Consider t0 = (λy.x)z[z/w]→gdB x[y/z[z/w]] = t1. Then Mw(t0) = 1,
while Mw(t1) = 0. Instead for t2 = (λy.yy)z[z/w]→gdB yy[y/z[z/w]] = t3 we get
Mw(t2) = 1 and Mw(t3) = 2.

Termination of →Fb

We now consider multisets of pairs of integers. We use n ·〈x, y〉 to denote the pair
〈x, n·y〉. The operation n·〈x, y〉 is extended to multisets in the following way: ifM
is a multiset of pairs of integers then n ·M is the multiset [n · 〈x, y〉 | 〈x, y〉 ∈M].
Moreover, to improve readability, we write M ⊔ 〈x, y〉 rather than M ⊔ [〈x, y〉].

The boxing measure of t ∈ WFb is a multiset of pairs of integers, written
dep(t), and given by:

dep(x) := []
dep(λx.t) := dep(t)
dep(tu) := dep(t) ⊔ dep(u)
dep(t[x/u]) := dep(t) ⊔ max(1, Mx(t)) · dep(u)
dep(t[[x/u]]) := dep(t) ⊔ 〈ηλjb/o(u), Mx(t)〉

Remark that for every u ∈ T we have dep(u) = [].

Lemma 33. Let u ∈ T , t ∈WFb and x /∈ Lfv(t). Then dep(t) = dep(t{x/u}).

Proof. By induction on t.

– t = x. Then, dep(x) = [] = dep(u) = dep(x{x/u}).

– t = y 6= x. Then, dep(y) = [] = dep(y{x/u}).
– t = t1[y/t2]. W.l.g. we assume y 6= x and y /∈ fv(u). Then,

dep(t) =
dep(t1) ⊔ max(1, My(t1)) · dep(t2) =i.h.

dep(t1{x/u}) ⊔ max(1, My(t1)) · dep(t2{x/u}) =L. 30:1

dep(t1{x/u}) ⊔ max(1, My(t1{x/u})) · dep(t2{x/u}) =
dep(t{x/u})

– t = t1[[y/t2]]. W.l.g. we assume y 6= x and y /∈ fv(u). By hypothesis we have
x /∈ fv(t2). Then

dep(t) =
dep(t1) ⊔ 〈η(t2), My(t1)〉 =i.h.

dep(t1{x/u}) ⊔ 〈η(t2), My(t1)〉 =L. 30:1

dep(t1{x/u}) + 〈η(t2), My(t1{x/u})〉 =
dep(t1{x/u}[[y/t2]]) =
dep(t{x/u})

– All the other cases are straightforward by the i.h.

Lemma 34. If |t|x ≥ 2, then dep(t) = dep(t[y]x).

Proof. By induction on t.

The next lemma give the exact relation between the boxing measure, the
reductions and the equivalences.

Lemma 35. Let t0 ∈WFb. Then,

1. If t0 ≡o,o t1 , then dep(t0) = dep(t1).
2. If t0 →p t1 , then dep(t0) = dep(t1).

3. If t0 →j t1, then dep(t0) > dep(t1).

4. If t0 →Fp:i t1, then dep(t0) > dep(t1).

Proof. By induction on the relations. We only show the the interesting cases.

– t0 = (tv)[[x/u]]→au tv[[x/u]] = t1 with x /∈ fv(t) and x ∈ fv(v). Then

dep((tv)[[x/u]]) =
dep(t) ⊔ dep(v) ⊔ 〈η(u), Mx(v)〉 =
dep(tv[[x/u]])

– t0 = t[y/v][[x/u]]→Comp t[y/v[[x/u]]] = t1 with x /∈ fv(t) and x ∈ fv(v). Then

dep(t[y/v][[x/u]]) =
dep(t) ⊔ max(1, My(t)) · dep(v) ⊔ 〈η(u), Mx(t[y/v])〉 =
dep(t) ⊔ max(1, My(t)) · dep(v) ⊔ max(1, My(t)) · 〈η(u), Mx(v)〉 =
dep(t) ⊔ max(1, My(t)) · (dep(v) ⊔ 〈η(u), Mx(v)〉) =
dep(t) ⊔ max(1, My(t)) · dep(v[[x/u]]) =
dep(t[y/v[[x/u]]])

– t0 = t[[x/u]]→w t = t1 with |t|x = 0. Then

dep(t[[x/u]]) =
dep(t) ⊔ 〈η(u), Mx(t)〉 >
dep(t)

– t0 = t[[x/u]]→d t{x/u} = t1 with |t|x = 1.

dep(t[[x/u]]) =
dep(t) ⊔ 〈η(u), Mx(t)〉 >
dep(t) =L. 33

dep(t{x/u})

– t0 = t[[x/u]]→c t[y]x [[x/u]][[y/u]] = t1 with |t|x > 1.

dep(t[[x/u]]) =
dep(t) ⊔ 〈η(u), Mx(t)〉 >L. 29

dep(t[y]x) ⊔ 〈η(u), Mx(t[y]x)〉 ⊔ 〈η(u), My(t[y]x)〉 =L. 34

dep(t[y]x [[x/u]][[y/u]])

– t0 = t[[x/u]] →Fp:i t[[x/u′]] = t1. We have dep(t0) = dep(t) ⊔ 〈η(u), Mx(t)〉 >
dep(t) ⊔ 〈η(u′), Mx(t)〉.

– t0 = t[[x/u]] →j,p,Fp:i t′[[x/u]] = t1, where t →j,p,Fp:i t′. Since t0 ∈ WFFp:i,

then the hypothesis gives x /∈ Lfv(t). Lemmas 28, 31 and 32 then gives
Mx(t) ≥ Mx(t

′). Since dep(t0) = dep(t)⊔〈η(u), Mx(t)〉 and dep(t1) = dep(t′)⊔
〈η(u), Mx(t′)〉, then the property holds by the i.h.

– All the other cases are straightforward.

Now, we conclude with the main statement.

Lemma 21. The relation→Fb modulo O is terminating on b well-formed labelled
terms.

Proof. Using the Modular Abstract Theorem 5, where A1 is {ab, sb}, A2 is {j, Fp :

i}, E is O, A is the relation > on N and R is given by t R T iff dep(t) = T .
Properties P0, P1 and P2 of the Theorem 5 are guaranteed by Lemma 35,
Property P3 (termination of A1/O) is straightforward.

Termination of →Fu

To prove termination in the →Fu case one hopes that the reasoning done for the
→Fb case may be somehow re-used. However, reduction inside labelled jumps and
reduction out of labelled jumps are independent in Fb but not in Fu. Consider
the rule su2, the source of all complications:

t0 = t[[y/v[x/u]]]→su
2
t[[y/v]][[x/u]] = t1 if x ∈ fv(v)

The status of the jump [x/u] is changed by this rule, so that the possible
j-reductions involving [x/u] from t0 become labelled j-reductions from t1. Thus,

inside and out of labelled reductions are no longer independent and need to be
treated together. As in the Fb case, one observes that length of reductions inside
labelled jumps decrease. Thus for example we have η(v[x/u]) > η(u), η(v) in the
previous rule su2. This needs also to be combined with the multiplicity of the
jump in order to handle the duplicating rule. However, the situation is not so
simple: the d-rule, whose target can now be a variable inside a labelled jump,
introduces a (new) problematic case. Let us see an example:

t[[x/uy]][[y/v]]→d t[[x/uv]]

In general η(uv) is not smaller than η(uy), and can be even greater. Hence,
the natural idea is to compose labelled jumps before the computation of its
measure. Thus, coming back to the previous example, the weight of the left-
hand side term is determined by η(uy{x/v}) and η(v), while the weight of the
right-hand side term is only given by η(v).

Therefore, we define a measure which composes labelled jumps to compute
η, it is defined using an environment which stores the composition of all the
labelled jumps appearing in the context.

The unboxing measure of t ∈ WFu, is given by D(t, id), where for any
meta-level substitution γ, D(t, γ) is defined as follows:

D(x, γ) := []
D(λy.t, γ) := D(t, γ)
D(tu, γ) := D(t, γ) ⊔ D(u, γ)
D(t[y/u], γ) := D(t, γ) ⊔ max(1, My(t)) · D(u, γ)
D(t[[y/u]], γ) := D(t, {y/u}γ)⊔ 〈ηλju/o(uγ), My(t)〉

Note that u ∈ T implies D(u, γ) = []. Some preliminaries are needed in order
to relate the measure, the equivalence and the reductions.

Lemma 36. Let t ∈WFu.

1. If γ →∗
λju/o

γ′, then D(t, γ) ≥ D(t, γ′).

2. If u ∈ T , then D(t{x/u}, γ) = D(t, {x/u}γ).

Proof. By induction on t.

1. Let t = u[[x/v]]. Then

D(u[[x/v]], γ) =
D(u, {x/u}γ)⊔ 〈η(vγ), Mx(u)〉 ≥i.h.

D(u, {x/u}γ′) ⊔ 〈η(vγ′), Mx(u)〉 =
D(u[[x/v]], γ′)

All the other cases are straightforward.
2. – t = x. Then D(x{x/u}, γ) = D(u, γ) = D(x, {x/u}γ) = [].

– t = y 6= x. Then D(y{x/u}, γ) = D(y, γ) = D(y, {x/u}γ) = [].
– t = t1[y/t2]. W.l.g. we can assume y /∈ fv(u) and y 6= x. Then,

D(t1[y/t2]{x/u}, γ) =
D(t1{x/u}[y/t2{x/u}], γ) =
D(t1{x/u}, γ) + max(1, My(t1{x/u})) · D(t2{x/u}, γ) =
D(t1{x/u}, γ) + max(1, My(t1{x/u})) · D(t2{x/u}, γ) =i.h.

D(t1, {x/u}γ) + max(1, My(t1{x/u})) · D(t2, {x/u}γ) =L. 30:1

D(t1, {x/u}γ) + max(1, My(t1)) · D(t2, {x/u}γ) =
D(t1[y/t2], {x/u}γ)

– t = t1[[y/t2]]. W.l.g. we can assume y /∈ fv(u) and y 6= x. Then,

D(t1[[y/t2]]{x/u}, γ) =
D(t1{x/u}[[y/t2{x/u}]], γ) =
D(t1{x/u}, {y/t2{x/u}}γ)⊔ 〈η(t2{x/u}γ), My(t1{x/u})〉 =i.h.

D(t1, {x/u}{y/t2{x/u}}γ)⊔ 〈η(t2{x/u}γ), My(t1{x/u})〉 =L. 30

D(t1, {y/t2}{x/u}γ)⊔ 〈η(t2{x/u}γ), My(t1)〉 =
D(t1[[y/t2]], {x/u}γ)

– All the other cases are straightforward.

Lemma 37. Let t ∈WFu.

1. t0 ≡O t1 implies D(t0, γ) = D(t1, γ).
2. t0 →au,su

1
t1 implies D(t0, γ) = D(t1, γ).

3. t0 →j,su
2
t1 implies D(t0, γ) > D(t1, γ).

Proof. By induction on the relations.

1. The equivalence O.
– CS: t0 = t[x/u][y/v] ≡ t[y/v][x/u] = t1 if y /∈ fv(u) and x /∈ fv(v).

Observe that y /∈ fv(u) implies My(t[x/u]) = My(t)+max(1, Mx(t))·My(u) =
My(t). Then,

D(t0, γ) =
D(t[x/u], γ) ⊔ max(1, My(t[x/u])) · D(v, γ) =
D(t, γ) ⊔ max(1, Mx(t)) · D(u, γ) ⊔ max(1, My(t[x/u])) · D(v, γ) =
D(t, γ) ⊔ max(1, Mx(t)) · D(u, γ) ⊔ max(1, My(t)) · D(v, γ) =
D(t[y/v], γ) ⊔ max(1, Mx(t)) · D(u, γ) =
D(t[y/v], γ) ⊔ max(1, Mx(t[y/v])) · D(u, γ) =
D(t1, γ)

– CS1: t0 = t[[x/u]][y/v] ≡ t[y/v][[x/u]] = t1 if y /∈ fv(u) and x /∈ fv(v).
As in the previous case we have y /∈ fv(u) implies My(t[[x/u]]) = My(t) +
max(1, Mx(t)) · My(u) = My(t). Then,

D(t0, γ) =
D(t[[x/u]], γ) ⊔ max(1, My(t[[x/u]])) · D(v, γ) =
D(t[[x/u]], γ) ⊔ max(1, My(t)) · D(v, γ) =
D(t, {x/u}γ) ⊔ 〈η(uγ), Mx(t)〉 ⊔ max(1, My(t)) · D(v, γ) =
D(t, {x/u}γ) ⊔ 〈η(uγ), Mx(t[y/v])〉 ⊔ max(1, My(t)) · D(v, γ) =
D(t, {x/u}γ) ⊔ max(1, My(t)) · D(v, γ) ⊔ 〈η(uγ), Mx(t[y/v])〉 =L.36

D(t, {x/u}γ) ⊔ max(1, My(t)) · D(v, {x/u}γ) ⊔ 〈η(uγ), Mx(t[y/v])〉 =
D(t[y/v], {x/u}γ)⊔ 〈η(uγ), Mx(t[y/v])〉 =
D(t1, γ)

– CS2: t0 = t[[x/u]][[y/v]] ≡ t[[y/v]][[x/u]] = t1 if y /∈ fv(u) and x /∈ fv(v).
Observe that the hypotesis imply u({y/v}γ) = uγ and v({x/u}γ) = vγ.
Then,

D(t0, γ) =
D(t[[x/u]], {y/v}γ) ⊔ 〈η(vγ), My(t[[x/u]])〉 =
D(t, {x/u}{y/v}γ)⊔ 〈η(uγ), Mx(t)〉 ⊔ 〈η(vγ), My(t[[x/u]])〉 =
D(t, {x/u}{y/v}γ)⊔ 〈η(uγ), Mx(t)〉 ⊔ 〈η(vγ), My(t)〉 =
D(t, {y/v}{x/u}γ)⊔ 〈η(vγ), My(t)〉 ⊔ 〈η(uγ), Mx(t)〉 =
D(t[[y/v]], {x/u}γ) ⊔ 〈η(uγ), Mx(t)〉 =
D(t[[y/v]], {x/u}γ) ⊔ 〈η(uγ), Mx(t[[y/v]])〉 =
D(t1, γ)

– σ1: t0 = (λy.t)[x/u] ≡ λy.t[x/u] = t1 if y /∈ fv(u). Then,

D(t0, γ) =
D(λy.t, γ) ⊔ max(1, Mx(λy.t)) · D(u, γ) =
D(t, γ) ⊔ max(1, Mx(λy.t)) · D(u, γ) =
D(t, γ) ⊔ max(1, Mx(t)) · D(u, γ) =
D(t[x/u], γ) =
D(t1, γ)

– σ1: t0 = (λy.t)[[x/u]] ≡ λy.t[[x/u]] = t1 if y /∈ fv(u).

D(t0, γ) =
D(λy.t, {x/u}γ) ⊔ 〈η(uγ), Mx(λy.t)〉 =
D(t, {x/u}γ) ⊔ 〈η(uγ), Mx(λy.t)〉 =
D(t, {x/u}γ) ⊔ 〈η(uγ), Mx(t)〉 =
D(t[[x/u]], γ) =
D(t1, γ)

– σ2: t0 = (tv)[x/u] ≡ t[x/u]v = t1 if x /∈ fv(v). Then,

D(t0, γ) =
D(tv, γ) ⊔ max(1, Mx(tv)) · D(u, γ) =
D(tv, γ) ⊔ max(1, Mx(t)) · D(u, γ) =
D(t, γ) ⊔ D(v, γ) ⊔ max(1, Mx(t)) · D(u, γ) =
D(t, γ) ⊔ max(1, Mx(t)) · D(u, γ) ⊔ D(v, γ) =
D(t[x/u], γ) ⊔ D(v, γ) =
D(t1, γ)

– σ2: t0 = t[[x/u]]v ≡ (tv)[[x/u]] = t1 if x /∈ fv(v). Then,

D(t0, γ) =
D(tv, {x/u}γ) ⊔ 〈η(uγ), Mx(tv)〉 =
D(t, {x/u}γ) ⊔ D(v, {x/u}γ) ⊔ 〈η(uγ), Mx(tv)〉 =
D(t, {x/u}γ) ⊔ D(v, {x/u}γ) ⊔ 〈η(uγ), Mx(t)〉 =
D(t, {x/u}γ) ⊔ 〈η(uγ), Mx(t)〉 ⊔ D(v, {x/u}γ) =
D(t[[x/u]], γ) ⊔ D(v, {x/u}γ) =
D(t[[x/u]], γ) ⊔ D(v, γ) =
D(t1, γ)

2. The reductions au and su1.

– au: t0 = tv[[x/u]] → (tv)[[x/u]] = t1, where x ∈ fv(v) and x /∈ fv(t).
Then

D(t0, γ) =
D(t, γ) ⊔ D(v, γ) ⊔ 〈η(uγ), Mx(v)〉 =
D(t, γ) ⊔ D(v, γ) ⊔ 〈η(uγ), Mx(tv)〉 =
D(t1, γ)

– su1: t0 = t[y/v[[x/u]]] → t[y/v][[x/u]] = t1, where x ∈ fv(v) and x /∈
fv(t). Then

D(t0, γ) =
D(t, γ) ⊔ max(1, My(t)) · D(v[[x/u]], γ) =
D(t, γ) ⊔ max(1, My(t)) · (D(v, {x/u}γ) ⊔ 〈η(uγ), Mx(v)〉) =
D(t, γ) ⊔ max(1, My(t)) · D(v, {x/u}γ)⊔ max(1, My(t)) · 〈η(uγ), Mx(v)〉 =
D(t, γ) ⊔ max(1, My(t)) · D(v, {x/u}γ)⊔ 〈η(uγ), max(1, My(t)) · Mx(v)〉 =
D(t, γ) ⊔ max(1, My(t)) · D(v, {x/u}γ)⊔ 〈η(uγ), Mx(t) + max(1, My(t)) · Mx(v)〉 =
D(t, γ) ⊔ max(1, My(t)) · D(v, {x/u}γ)⊔ 〈η(uγ), Mx(t[y/v])〉 =L. 36

D(t, {x/u}γ) ⊔ max(1, My(t)) · D(v, {x/u}γ) ⊔ 〈η(uγ), Mx(t[y/v])〉 =
D(t[y/v], {x/u}γ)⊔ 〈η(uγ), Mx(t[y/v])〉 =
D(t1, γ)

3. The reductions j and su2.

– w: t0 = t[[y/u]]→ t = t1, with |t|y = 0.

D(t[[x/u]], γ) =
D(t, {x/u}γ) ⊔ 〈η(uγ), Mx(t)〉 >
D(t, {x/u}γ) =L. 36:2 D(t, γ)

– d: t0 = t[[x/u]]→ t{x/u} = t1, with |t|x = 1.

D(t, {x/u}γ) ⊔ 〈η(uγ), Mx(t)〉 >
D(t, {x/u}γ) =L. 36:2 D(t{x/u}, γ)

– c: t0 = t[[x/u]]→ t[y]x [[y/u]][[x/u]] = t1, with |t|x ≥ 2 and y fresh. Then,

D(t0, γ) =
D(t, {x/u}γ)⊔ 〈η(uγ), Mx(t)〉 =L. 36:2

D(t{x/u}, γ)⊔ 〈η(uγ), Mx(t)〉 =
D(t[y]x{y/u}{x/u}, γ)⊔ 〈η(uγ), Mx(t)〉 =L. 36:2

D(t[y]x , {y/u}{x/u}γ)⊔ 〈η(uγ), Mx(t)〉 > (1)
D(t[y]x , {y/u}{x/u}γ)⊔ 〈η(uγ), Mx(t[y]x)〉 ⊔ 〈η(uγ), My(t[y]x)〉
D(t[y]x [[y/u]], {x/u}γ)⊔ 〈η(uγ), Mx(t[y]x)〉 = D(t1, γ)

Remark that (1) holds since Mx(t[y]x), My(t[y]x) > 0 by hypothesis and
Mx(t[y]x) + My(t[y]x) = Mx(t).

– su2: t0 = t[[y/v[x/u]]]→ t[[y/v]][[x/u]] = t1, with x ∈ fv(v) and x /∈ fv(t).
Then,

D(t0, γ) =
D(t, {y/v[x/u]}γ)⊔ 〈η(v[x/u]γ), My(t)〉 >(1)

D(t, {y/v[x/u]}γ)⊔ 〈η(v{x/u}γ), My(t)〉 ⊔ 〈η(uγ), Mx(t[[y/v]])〉 ≥L. 36:1

D(t, {y/v{x/u}}γ)⊔ 〈η(v{x/u}γ), My(t)〉 ⊔ 〈η(uγ), Mx(t[[y/v]])〉 =L. 36:2

D(t, {y/v}{x/u}γ)⊔ 〈η(v{x/u}γ), My(t)〉 ⊔ 〈η(uγ), Mx(t[[y/v]])〉 =
D(t[[y/v]], {x/u}γ) ⊔ 〈η(uγ), Mx(t[[y/v]])〉 = D(t1, γ)

Step (1) holds since η(v[x/u]γ) > η(v{x/u}γ) and η(v[x/u]γ) > η(uγ).

Now, for the inductive cases the only interesting case is when t0 = t[[x/u]] ≡
(resp.→) t′[[x/u]] = t1, where t ≡ (resp.→) t′.
If t ≡ (resp.→au,su

1
) t′, we have

D(t0, γ) =
D(t, {x/u}γ) ⊔ 〈η(uγ), Mx(t)〉 =i.h.

D(t′, {x/u}γ) ⊔ 〈η(uγ), Mx(t)〉 =L. 28

D(t′, {x/u}γ) ⊔ 〈η(uγ), Mx(t′)〉 = D(t1, γ)

If t→j,su
2
t′, we have

D(t0, γ) =
D(t, {x/u}γ) ⊔ 〈η(uγ), Mx(t)〉 >i.h.

D(t′, {x/u}γ) ⊔ 〈η(uγ), Mx(t)〉 ≥L. 37

D(t′, {x/u}γ) ⊔ 〈η(uγ), Mx(t′)〉 = D(t1, γ)

All the other cases are straightforward.

The next and last lemma proves that the measure with store decreases by
→gdB-steps. The second point of the lemma is technical, used to prove the first
one.

Lemma 38. Let t0 ∈WFu s.t. t0 →Fp:i t1. Then

1. D(t0, γ) > D(t1, γ).
2. D(t0, ρ ∪ {x/uγ}) > 〈η(uγ),K〉 ∀K and ∀x s.t. Mx(t0) < Mx(t1).

Proof. By induction on t0. Let us note γ′ = ρ ∪ {x/uγ}.

– t0 = z is not possible.
– t0 = v0 v1. Suppose t0 = v0 v1 →Fp:i v

′
0 v1 = t1, where v0 →Fp:i v

′
0. (the case

t = v0 v1 →Fp:i v0 v′1 = t′, where v1 →Fp:i v
′
1 being similar).

1. We have

D(t0, γ) = D(v0, γ) ⊔ D(v1, γ) >i.h. D(v
′
0, γ) ⊔ D(v1, γ) = D(t1, γ)

2. We have D(t0, γ
′) = D(v0, γ

′) ⊔ D(v1, γ′). Also Mx(t0) < Mx(t1) implies in
particular Mx(v0) < Mx(v

′
0). The i.h. then states that D(v0, γ

′) verifies the
property, and so does also D(t0, γ

′).

– t0 = v0[y/v1]. Suppose t0 = v0[y/v1]→Fp:i v
′
0[y/v1] = t1, where v0 →Fp:i v

′
0..

1. We have
D(v0[y/v1], γ) =
D(v0, γ) ⊔ max(1, My(v0)) · D(v1, γ) >i.h.

D(v′0, γ) ⊔ max(1, My(v0)) · D(v1, γ) =
D(v0[y/v

′
1], γ)

2. As for the preceding case.
The case t0 = v0[y/v1]→Fp:i v0[y/v

′
1] = t1, where v1 →Fp:i v

′
1 is similar.

– t0 = v0[[y/v1]].
Suppose t0 = v0[[y/v1]]→Fp:i v0[[y/v

′
1]] = t1, where v1 →λju/o v

′
1.

1. We have

D(v0[[y/v1]], γ) =
D(v0, {y/v1}γ) ⊔ 〈η(v1γ), My(v0)〉 ≥L. 36:1

D(v0, {y/v′1}γ) ⊔ 〈η(v1γ), My(v0)〉 >
D(v0, {y/v′1}γ) ⊔ 〈η(v

′
1γ), My(v0)〉 = D(v0[[y/v

′
1]], γ)

2. Let Mx(t0) < Mx(t1). Then necessarily 0 6= Mx(v1) < Mx(v
′
1). We have

D(v0[[y/v1]], γ
′) = D(v0, {y/v1}γ′) ⊔ 〈η(v1γ′), My(v0)〉.

Since x ∈ fv(v1), then v1γ
′ contains uγ and thus η(v1γ

′) ≥ η(uγ).
Moreover, v1 is λju/o-reducible so that η(v1γ

′) ≥ η(uγ) + 1 and thus
η(v1γ

′) > η(uγ). We thus conclude.

Suppose t0 = v0[[y/v1]]→Fp:i v
′
0[[y/v1]] = t1, where v0 →Fp:i v

′
0.

1. We have D(v0[[y/v1]], γ) = D(v0, {y/v1}γ) ⊔ 〈η(v1γ), My(v0)〉 and
D(v′0[[y/v1]], γ) = D(v′0, {y/v1}γ) ⊔ 〈η(v1γ), My(v

′
0)〉. Also,

D(v0, {y/v1}γ) >i.h. (1) D(v
′
0, {y/v1}γ).

If My(v0) ≥ My(v
′
0), then 〈η(v1γ), My(v0)〉 ≥ 〈η(v1γ), My(v

′
0)〉 and we con-

clude.
If My(v0) < My(v

′
0), then D(v0, {y/v1}γ) >i.h. (2) 〈η(v1γ), My(v

′
0)〉 and we

also conclude.

– All the other cases are straightforward.

Lemma 22. The relation→Fu modulo O is terminating on u well-formed labelled
terms.

Proof. Using the Modular Abstract Theorem 5, where A1 is {au, su1}, A2 is
{j, su2, Fp : i}, E is O, A is the relation > on N and R is given by t R T iff

D(t, []) = T . Properties P0, P1 and P2 of the Theorem 5 are guaranteed by
Lemmas 37 and 38 , Property P3 (termination of A1/O) is straightforward.

