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3

Laboratories

Laboratoire Pierre Aigrain, CNRS UMR 8551, Ecole Normale Supérieure, 24, rue
Lhomond, 75231 Paris Cedex 05, France.

Institut for Experimental and Applied Physics, University of Regensburg, Univer-
sitätstraße 31, 93040 Regensburg, Germany.

Abstract

We report on conductance measurements in carbon nanotube based double quan-
tum dots connected to two normal electrodes and a central superconducting finger.
By operating our devices as Cooper pair beam splitters, we provide evidence for
Crossed Andreev Reflection (CAR). We inject Cooper pairs in the superconducting
electrode and measure the differential conductance at both left and right arm. The
contacts split the device into two coupled quantum dots. Each of the quantum dots
can be tuned by a lateral sidegate. If the two sidegates are tuned such that both
quantum dots are at a transmission resonance, a considerable part of the injected
Cooper pairs splits into different normal contacts. On the contrary, if only one of
the two dots is at resonance, nearly all pairs tunnel to the same normal contact.
By comparing different triple points in the double dot stability diagram, we demon-
strate the contribution of split Cooper pairs to the total current. In this manner, we
are able to extract a splitting efficiency of up to 50% in the resonant case. Carbon
Nanotubes ensure ballistic transport and long spin-flip scattering lengths. Due to
these properties they are promising candidates to investigate EPR-type correlations
in solid state systems.

Zusammenfassung

Diese Doktorarbeit beschäftigt sich mit auf Kohlenstoffnanoröhren basierenden Dop-
pelquantenpunkten, welche mit zwei normalleitenden und einem supraleitenden Kon-
takt verbunden sind. Indem wir unsere Proben als Cooper Paar Strahlteiler ver-
wenden, können wir Nonlokale Andreev-Reflektion nachweisen. Wir injezieren dazu
Cooper-Paare in den supraleitenden Kontakt und messen den differentiellen Leitwert
an den beiden Normalkontakten. Die drei Kontakte unterteilen unsere Proben in
einen Doppelquantenpunkt. Jeder Quantenpunkt wird von einer lateralen Gat-
terspannung gesteuert. Falls beide Quantenpunkte in Resonanz mit dem chemischen
Potential der Kontakte sind, trennt sich ein beträchtlicher Teil der injizierten Cooper
Paare in verschiedene Normalkontakte auf. Falls, im Gegensatz dazu, nur einer der
beiden Quantenpunkte in Resoanz ist, tunneln nahezu alle Cooper-Paare über eben
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diesen Quantenpunkt zum entsprechenden Normalkontakt. Indem wir verschiedene
Triple-Punkte aus dem Stabilitätsdiagram des Doppelquantenpunkts vergleichen,
demonstrieren wir, dass Nonlokale Andreev Reflektion zum Gesamtstrom beiträgt.
Mit dieser Methode extrahieren wir außerdem eine Splitting-Effizienz, die bis zu 50%
betragen kann. Der ballistische Transport und die großen Spin-Kohärenzlängen in
Kohlenstoffnanoröhren predestinieren dieses Materialsystem für Korrelationsexperi-
mente im Sinne von Einstein-Podolsky-Rosen im Festkörper.

Resumé

Cette thèse a pour objet des mésures de conductance dans des double bôıtes quan-
tiques basées sur des nanotubes de carbone monoparois qui sont connectés à deux
contacts normaux et un contact supraconduteur dans une géométrie du type Einstein-
Podolsky-Rosen. Nous injectons des pairs de Cooper dans le contact supraconduc-
teur et nous mésurons simultanément la conductance différentielle aux deux contacts
normaux. Avec ce type de mésure nous séparons les pairs de Cooper dans deux con-
tacts différents. Ce processus est équivalent aux réflexions d’Andreev croisées. En
déposant les trois contacts sur le nanotube de carbone, nous créons une double bôıte
quantique. Chacune des bôıtes quantiques est contrôlée par une grille latérale. Si
toutes les deux bôıtes sont en résonance, une partie considérable des pairs de Cooper
se sépare dans différents contacts normaux. En contraire, si seulement une des bôıtes
est en résonance, presque tous les pairs sont transmis au même contact normal. En
comparisant des différents points triple dans le diagramme de stabilité de la double
bôıte quantique, nous démontrons la contribution des réflexions d’Andreev croisées
au courant total. Par ce méthode nous pouvons extraire une efficacité du processus
de séparation qui s’éleve jusqu’à 50% dans le cas résonant. Le transport électronique
dans des nanotubes de carbone est ballistique. En plus des nanotubes de carbone
possède une longue cohérence du spin. A cause de ces propriétés, des nanotubes de
carbone sont un matériel favorable pour effectuer des expériences des correlations
du type EPR dans la physique des solides.

Keywords

Mesoscopic physics, Single-Walled Carbon Nanotubes, Electronic transport, Super-
conductivity, Beamsplitter, Coulomb blockade, Double quantum dots, Hanbury-
Brown-Twiss, Einstein-Podolsky-Rosen, Crossed Andreev Reflection
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Mesoskopische Physik, Kohlenstoffnanoröhren, Elektronischer Transport, Supraleitung,
Beamsplitter, Coulomb Blockade, Doppelquantenpunkt, Hanbury-Brown-Twiss, Einstein-
Podolsky-Rosen, Nonlokale Andreev Reflektion

Mots Clés

Physique mésoscopique, Nanotube de Carbone Monoparois (SWNT), Transport
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Chapter 1

Introduction

1.1 Artificial Atoms and Molecules

Artificial atoms are objects which have bound, discrete electronic states, just like
naturally occuring atoms. The big difference is, however, that artificial atoms are
tunable. That is to say that the energy level separation as well as the number of
electrons on the atom can be tailored such that a wide parameter range becomes
accessible, whereas in natural atoms these parameters are fixed by the fundamental
laws of nature.

Artificial atoms are small particles which are only a few hundred nanometers in
size [1]. They can be coupled to electrical leads through tunnel junctions, as depicted
in figure (1.1(a)). Like natural atoms, artificial atoms display a discrete spectrum.
In the literature, artificial atoms are often called quantum dots, pin-pointing their
small dimensions and their quantum physical character.
Notably, metallic islands are not the only possibility to form artificial atoms: As
shown in figure (1.1(b)), the artificial atom can also consist of a nanowire [2], [3], [4]
or a Carbon Nanotube [5]. Furthermore artificial atoms have been fabricated out of
single molecules [6], nanocrystals [7], [8] and two dimensional electron gases [9] (see
also figure 1.1(c)). All these methods have in common that the electrons are confined
in a small region. In the case of two-dimensional electron gases, this confinement is
not ensured by material boundaries but by lateral confining electrodes: By applying
a negative potential to the electrodes, they deplete the region lying underneath in
the 2DEG and hence define an island in the middle. The electrons thus face the
potential illustrated in figure (1.1(d)). The big well in the middle thereby illustrates
the artificial atom. The two boundaries constitute the tunnel couplings to the leads.
If the barriers are sufficiently high, electrons can tunnel one by one to the quantum

9



10 CHAPTER 1. INTRODUCTION

dot, by means of gate voltage sweeps. Therefore this device is often referred to as
Single Electron Transistor (SET).

Figure 1.1: (a) An artificial atom in its simplest form: A small metallic island is
connected to source and drain metallic leads by two tunnel barriers. (b) Alternatively,
the metallic island can be replaced by a quantum wire, e.g. a nanowire or a Carbon
Nanotube. (c) A further possibility is to define an artificial atom in a two-dimensional
electron gas. A negative potential applied to the confinement electrodes depletes the
region underneath and forms an isolated island which is weakly connected to source
and drain contacts (taken from reference [10]). (d) Here, the potential created in this
way is illustrated. The figure is taken from reference [10].

The biggest advantage of artificial atoms in comparison with natural atoms is their
tunability. In natural atoms we normally perform photoelectron spectroscopy to
determine the minimum energy to remove an electron (=ionization energy), and the
maximal energy of emitted photons when an atom captures an electron (electron
affinity). In artificial atoms we can also measure the energy which is needed to add
or remove electrons, using a slightly different method. Normally we measure the
differential conductance through the quantum dot and extract the energy which is
needed to add/remove an electron. The energy which is needed to add an electron
to the artificial atom is called the addition energy. The addition energy is composed
of the quantum mechanical level separation and the charging energy, whereby the
latter contribution is due to Coulomb interaction .
In artificial atoms we have possibilities to tune the addition energy and the number
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of electrons on the dot. For instance we can modify the quantum mechanical level
separation. To illustrate the mechanism we consider the ’particle in a box’ prob-
lem in quantum mechanics. There, the energy level separation can be written as
ΔE ∼ �

2

ma2 , where a is the size of the box. Using standard lithography techniques,
a can be varied over a large parameter range and hence the quantum mechanical
energy level separation within an artificial atom can be tailored. Furthermore, by
putting a gate electrode near to the artificial atom, one obtains a significant advan-
tage compared to natural atoms: If the artificial atom is sufficiently small, the gate
can be used to change the number of electrons on the artificial atom one by one.
That means that we can use the gate electrode to align the quantized energy levels
with the chemical potential of the leads and add/remove electrons in a controlled
and reversible way. In the picture of natural atoms the gate is thus a possibility
which ’moves’ the atom through the periodic table. This is a further possibility
which is not present in natural atoms. Finally we state that in suitable circuit and
sample designs, a single charge more or less on the quantum dot can vary the capac-
itance of the artificial atom or the current between source and drain by many orders
of magnitude. Hence a single charge can be detected with modern measurement
techniques.
In the case of heterostructure artificial atoms, the tunnel coupling can be controlled
by the value of the negative voltage which is applied to the confining electrodes.
This is a further advantage of artificial atoms with respect to natural atoms.
Artificial atoms open a new parameter range to a variety of fundamental effects in
physics. One example particularly important for this thesis is Coulomb-blockade
(see section 2.2). Another example is the Kondo effect which is explained by the
antiferromagnetic coupling between a magnetic impurity and the spin of the host’s
conduction electrons [11]. The possibility to design artificial atoms has opened
avenues to study this many-body problem in a controlled way [12], [13], [14], [6].
The same applies to optics, where artificial atoms can be used as quantum emit-
ters [15], [16], [17].

Nature puts natural atoms together to form a molecule. The same applies to artificial
atoms. Putting artificial atoms together forms artificial molecules. The simplest case
of an artificial molecule is two artificial atoms in series, or one artificial atom in a
magnetic field. In both cases the electrons can be localized at different sites of
the artificial molecules [18], [19], [20]. This thesis is set in the context of a device
consisting of two artificial atoms in series which is called a double quantum dot. In
our experiment we use Single-Walled Carbon nanotubes [21], [22]. Double quantum
dots based on different materials, such as two-dimensional electron gases [23], [24]
and nanowires [25], [26], are described in the literature.
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1.2 EPR-experiments in solid state

Entangled states play an important role in quantum mechanics since the original
work of Einstein, Podolsky and Rosen (EPR) [27] in 1935. Their reasoning is exem-
plified by the following Gedankenexperiment [28]:
Two spin-1/2 particles are prepared in a quantum mechanical state which can be
written as

Ψ =| S,M〉 =| 0, 0〉 = 1√
2

[|↑, ↓〉− |↓, ↑〉] (1.1)

In this example, the observable is not momentum or space but spin, i.e. only the
spin part of the wave-function is considered. If two spins are prepared in a common
state, quantum mechanical selection rules describe how this can be done [29]: The
two particles have spin quantum numbers s1 = s2 = 1

2 which act like angular mo-
menta. The total spin of the two-particle state can either be S = 0 (singlet state) or
S = 1 (triplet state). Whereas the triplet state is three-fold degenerate (M consist-
ing of 2S+1 values, running from -S to S in integer numbers), the singlet state can
only be expressed as given in equation (1.1). This state is a two-particle state which
cannot be factorized. In quantum mechanics this characterizes a bipartite state.

Imagine that the two spins of the singlet state are spatially separated in an experi-
mental arrangement as illustrated in figure (1.2). Due to entanglement, a detection
of the spin state of one of the two spins would give a result which predicts the
outcome of the detection of the spin state of the second spin with certainty and
instantaneously. This is paradoxical because there is no classical explanation for
this effect. Historically, it took quite a time before entanglement was accepted as
an inherent property of quantum mechanics [30].

Entanglement and EPR-pairs play an important role in quantum computers. In a
recent publication [32], the author asks where the research fields of quantum com-
puting and quantum information, which became highly fashionable in the early
nineties [33], [34], [35], [36], [37], [38], are standing after 20 years of research. The
surprising answer is that quantum computers are already there. However, these
systems are still working at a very rudimentary level and cannot be considered as
computers in our everyday’s sense of the word. They rather deal with issues like
ultrasecure information processing [39], which is an application that is more at hand
than ultrafast calculations. Here, we give a short overview of how this is possible.
In quantum computing, the classical bit is replaced by the quantum bit. The quan-
tum bit is a two-level quantum system, e.g. |↑〉, |↓〉, replacing boolean 0,1. The big
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Figure 1.2: Setup to illustrate the Einstein-Podolsky-Rosen Gedankenexperiment,
taken from Clauser and Horne [31].

difference in comparison with classical bits is that quantum bits cannot just be in
configuration |↑〉 or |↓〉, but in any superposition of its two levels: | Ψ〉 = α |↑〉+β |↓〉.
If one measures the state, however, only the two results |↑〉 or |↓〉 can occur.
The EPR pair is an example of a two qubit state. If we take again the state |↑↓〉−|↓↑〉√

2
and measure the first qubit, we find it with probability 1/2 in level |↑〉 and with
probabiltiy 1/2 in level |↓〉. After the first measurement, however, the state of the
two qubit system is either |↑↓〉 or |↓↑〉 and hence we can predict the outcome of
the measurement of particle two with certainty. That means that the measurement
outcomes are correlated.
Rather than classical gates, quantum computing uses quantum gates. These gates
are used to manipulate the qubits. The only constraint in quantum gates is that the
matrices describing the gates must be unitary. The quantum gates for single qubit
manipulations are represented by 2x2 matrices whereas two-qubit manipulations are
carried out by 4x4 matrices.
An example how qubits and gates can be used in a quantum computation process
is illustrated in reference [40] by the so-called quantum teleportation.
In this process, a qubit |Ψ〉 is transferred from Alice to Bob with the help of an
EPR-pair. That means that each person possesses one qubit of the EPR pair as a
point of departure. Alice then interacts the qubit |Ψ〉 with her part of the EPR-pair
and then performs a measurement. She obtains one of the following results: ↓↓, ↓↑,
↑↓, ↑↑. Alice then sends the result of her measurement in a classical way to Bob.
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Surprisingly it shows out that Bob can find an appropriate quantum gate operation
for each of the possible results of Alice’s measurement to reconstruct the original
qubit Ψ out of his half of the EPR pair.
The next question is how quantum-computer-like operations could be implemented.
First results have been obtained using nuclear magnetic resonance [41], [42], [43],
cold ion trap [44], [45] and optical methods [46], [47], as was nearest at hand con-
sidering the original EPR-experiment.
A different approach has been suggested in the late nineties [48], [49]. The authors
point out that it is unclear whether atomic physics-implementations are suitable to
be scaled up to large-scale quantum computation. Instead, the authors suggest to
use the solid state for quantum computing. Unlike atoms, solid state devices can
be tailored as described in section (1.1) and hence allow the adjustment of various
parameters of solid state based quantum bits [50]. It is pointed out [51] that super-
conducting quantum bits are gaining more and more importance. The advantage is
that Cooper-pairs are natural EPR-pairs.
Quantum computing with superconducting qubits involves quantum circuits and
quantum gates. An important question to ask is how mesoscopic circuits, which
are typically hundreds of nanometers wide and contain trillions of electrons, can
show their quantum character and house quantum bits and even entangled quantum
states. The answer proceeds along similar lines as given in section (1.1): The quan-
tum nature of these circuits can be observed because they can be engineered such
that they are isolated enough from their environment. Significant coupling to the
environment, in turn, causes rapid decoherence, destroying the quantum state of the
circuit and makes its behavior classical. The exclusion of decoherence is thus one
of the basic challenges in quantum circuits. Decoherent elements can originate from
radio and television transmitters. These can be eliminiated by using shielding and
broadband filters. Furthermore it must be ensured that the complex impedances
seen by the qubit are high over a broad bandwidth. The main intrinsic limitation
on the coherence of superconducting qubits results from 1/f noise.
Despite these difficulties, various experiments in the past years provided evidence
that mesoscopic (and even macroscopic) electrical circuits can behave as quantum
systems [52], [53], [54], [55]. Recently, superconducting qubits have furthermore been
prepared in Bell states [56] and a violation of Bell’s inequality was demonstrated for
the first time within a solid state device [57]. Till to date, three fundamental types of
superconducting qubits are experimentally explored: flux [58], [59], charge [60] and
phase [61]. Additionally, the spin of the electron was pointed out to be a candidate
for a quantum bit [48], [62]. This idea was supported by experiments which showed
that dephasing times approaching microseconds and phase-coherent transport up to
100 μm are possible. [63], [64], [65]. Metallic carbon nanotubes are predicted to
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exhibit ballistic transport and long spin-flip scattering lengths, both relevant to the
coherent transport of EPR pairs [66]. Hence Cooper pairs are supposed to have a
long superconducting coherence length within these quasi-one dimensional conduc-
tors.
Efficient quantum gates are a further challenge. After theoretical suggestions based
on virtual photons, real excitation of the resonator and geometric phase [67], first
quantum-processor like implementations are visible in the literature [68]. Neverthe-
less it is pointed out that qubit coherence length is still one of the most demanding
issues [56].
About 10 years ago it was suggested that Coulomb blockade in quantum dots could
be used to implement quantum gates on electron-spin based qubits [48], [49]. As
Single-Walled Carbon nanotubes can be used as quantum dots (compare section 1.1),
a Single-Walled Carbon nanotube with a central superconducting electrode and two
normal leads could act as a nanotube-superconductor entangler [69], [70], [71]. In
this thesis we pick up the idea to create EPR-pairs in a Single-Walled Carbon nan-
otube beamsplitter. We show experimentally that within an EPR-type geometry,
a Cooper-pair coming from a superconducting source contact can be split into two
normal metal leads.
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Chapter 2

Basics

2.1 Single-Walled Carbon Nanotubes

Discovered in 1991 by Iĳima [72], Single-Walled Carbon nanotubes have been an
extensive source of research. This is due to outstanding properties, both in mechan-
ical and electrical respect. Carbon Nanotubes are very light, yet much stronger than
stainless steel. This makes them interesting for applications, e.g. in glues. In this
thesis, we focus on electronic properties of Carbon Nanotubes. A first remarkable
fact is that Carbon Nanotubes can carry extremely high current densities, exceeding
normal metals by far. Moreover, due to their tininess, they can be used in a large
variety of experiments where quantum phenomena appear.

2.1.1 Band structure

The calculation of the band structure of Single-Walled Carbon nanotubes proceeds
in two steps. First, the band structure of graphene is calculated in a tight-binding
model [73]. As Single-Walled Carbon nanotubes can be understood as rolled-up
graphene sheets, a process called zone-folding is used to take into account the chiral
structure of the nanotube.
Graphene consists of a hexagonal lattice (see figure (2.1)). The lattice is defined by
two primitive lattice vectors �a1 and �a2. The chirality vector �Ch is defined by a linear
combination of the primitive lattice vectors.

�Ch = n�a1 +m�a2 (2.1)

The index numbers n and m are the chiral indices which contain all the informa-
tion about diameter and the roll-up direction. A second vector is important: The
translational vector �a is perpendicular to the circumferential vector. Together with

17



18 CHAPTER 2. BASICS

�Ch it defines the unit cell of the Carbon Nanotube. When going to reciprocal space,
the lattice vectors �Ch and �a are replaced by �k⊥ and �kz. Thereby �k⊥ is associated
with the circumference of the nanotube whereas �kz refers to the axis along the tube.
Compared to its diameter, the nanotube can be considered as infinitely long. Hence
kz = 2π/a is continuous. Around the circumference, however, the situation is differ-
ent. A wave travelling around the nanotube must have the same value at its point
of departure. Therefore we find:

ei
�k⊥�r = ei�k⊥( �Ch+�r) (2.2)

This leads to the boundary condition for k⊥:

�k⊥ �Ch = 2πj (2.3)

where j is an integer number. Zone folding thus imposes a boundary condition on
the energy dispersion of Graphene.

Figure 2.1: (Left) The lattice of graphene is spanned by two primitive lattice vectors
�a1 and �a2. The index numbers n and m define the chirality of a tube which contains
information on diameter and material properties. (Right) The chirality vector �Ch
describes the axis along which the graphene sheet is rolled up to form a nanotube.

The band structure of graphene is shown in the left part of figure (2.2). It can be
seen that there are six points where conduction and valence band touch each other.



2.1. SINGLE-WALLED CARBON NANOTUBES 19

Within these six points, only two points are linearly independent, namely K and
K ′. As stated above, zone folding imposes a boundary condition on the dispersion
relation of graphene which yields to cuts within the dispersion relation.
To simplify the picture we assume that k⊥ is identical with ky in figure (2.2 (Left)).
Figure (2.2 (Right)) is a zoom on the red hexagon within figure (2.2 (Left)). Ad-
ditionally, the line-cuts resulting from zone folding are shown. Only states where
the Graphene hexagon and the quantized lines intersect are allowed states in Single-
Walled Carbon nanotubes. Depending on the chirality vector �Ch, K and K ′ either
intersect with the line-cuts or not. In the latter case there is no connection between
conduction and valence band, a gap forms, and the nanotube is semiconducting.
Otherwise the nanotube is metallic. Metallic nanotubes occur, if (n−m)/3 ∈ Z.

Figure 2.2: (Left) The tight binding calculation of the bandstructure of graphene.
(Taken from http : //www.als.lbl.gov/pics/154graphene01.png and modified).
(Right) Zone folding leads to an additional quantization in k⊥ direction. Only if
the line-cuts intersect with K and K ′ the nanotube is metallic. Otherwise a gap
develops and the tube is semiconducting.

2.1.2 Electron transport in Single-Walled Nanotubes

At the macroscopic scale, electron transport within a conductor is diffusive and the
conductance is given by the ohmic relation G = σW/L. In this expression W and L
are width and length, respectively, and σ is a material parameter. When dimensions
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become much smaller than the mean free path of an electron, however, another
phenomenon called ballistic transport occurs. In this regime, the conductance is
given by the Landauer-Büttiker formalism [74], [75], [76]. The result for the cur-
rent through a mesoscopic conductor connected to two electron reservoirs, i.e. the
contacts, is given by

I = e
h

∫
dε(fL(ε)− fR(ε))T (ε) (2.4)

where T (ε) is the transmission probability through the conductor and f is the Fermi-
Dirac distribution:

fL,R(E) = 1
1 + e(E−μL,R)/kBT

(2.5)

The conductance is defined by the following equation

G(ε′) = e
2

h

∫
dεT (ε)FT (ε− ε′) (2.6)

where FT (ε−ε′) is the thermal broadening function FT (ε−ε′) = − d
dε

( 1
exp((ε−ε′)/kBT )+1))

which can be approximated as a Dirac δ-function in the zero temperature limit.
Calculating the integral we obtain:

G(ε′) = e
2

h
T (ε′) (2.7)

Now it is evident that even for maximal transmission T = 1 the conductance cannot
exceed e2

h
.

This result was derived for one transport mode. In Single-Walled Carbon Nanotubes
there are two spin-degenerate and thus four transport modes. Therefore the maximal
conductance is:

Gmax = 4e
2

h
(2.8)

Consequently, the minimal contact resistance can be calculated as:

Rmin = 1
Gmax

� 6, 4kΩ (2.9)

In real samples, the transmission probability T is reduced by impurity scattering.
Impurities can be formed inherently in carbon nanotubes during the growth process.
We use Chemical Vapor Deposition because this is a process that reliably produces
regular shaped Single-Walled Carbon Nanotubes with a low number of defects (see
chapter [3]). The most important scatterers develop at the interface between Single-
Walled Nanotube and the two contacts. The so-called contact resistance is thus a
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crucial point for the electronic behavior of Single-Walled Carbon Nanotubes.
If contact resistances are low and the transmission approaches unity, a Single-Walled
Carbon Nanotube between two contacts behaves like a Fabry-Perot interferome-
ter [77]. Its behavior is explicitly dependent on quantum interference between prop-
agating electron waves. In these devices, the nanotubes act as coherent electron
waveguides with the resonant cavity formed between the two nanotube electrode
interfaces. The number of electrons on the resonator is not fixed.
The situation is different if the contact resistance is higher, i.e. ≥ 20kΩ. Then
transport is governed by a phenomenon named Coulomb blockade, a phenomenon
which is explained in the next section.

2.2 Quantum dots and Coulomb blockade

A quantum dot develops if an artificial atom is weakly connected to the electron
reservoirs (see section 1.1). This weak connection is described by quantum me-
chanical tunneling matrix elements. If temperature and coupling between leads and
quantum dot are sufficiently low, a phenomenon called Coulomb blockade [78], [79],
[80], [81] becomes important. In order to understand Coulomb-blockade, electron-
electron interaction must be taken into account, which was not considered yet in the
derivation given in subsection 2.1.2.
In our experiment, we use Single-Walled Carbon Nanotubes to implement quantum
dots. If two contacts are evaporated on a Single-Walled Carbon Nanotube, tunnel
barriers form between the nanotube and the metallic leads. In the following we
describe how electronic transport is possible through such a structure.

2.2.1 Coulomb blockade at zero bias

If a quantum dot is in the Coulomb blockade regime and if we assume that the
quantum mechanical level separation is negligible, an energy EC is needed to add a
supplementary charge to the dot.

kBTel << EC = e2/CΣ (2.10)

The energy EC is called charging energy and CΣ is the sum of all capacitances of the
dot to leads, gates and ground. It is important that the energy to add an electron
to the dot is bigger than the thermal energy kBTel. Therefore many experiments
are carried out at low cryogenic temperatures, though room temperature devices are
described in the literature [5] .
In a simplified picture, the situation is as illustrated in figure (2.3 (a)). The chemical
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potential of the leads is μL and μR for left and right lead, respectively. In between
the leads, the quantum dot has quantized energy levels. In the general case, this
quantization is a sum of the electrostatic part EC and a contribution coming from
single particle quantization. The classical part is due to the Coulomb repulsion
between single electrons, the quantum mechanical part is due to the small length
of the nanotube between the two leads which results in an energy quantization
ΔE = hvF

2L . Here, h is Planck’s constant and vF is the Fermi velocity in the nanotube.
Additionally, a gate electrode acts on the dot which shifts the energy levels as a
function of gate voltage. That is to say that the gate voltage alters the total charge
on the dot. As E = Q2/2C, the energy levels shift as a function of the gate voltage.
The gate voltage can thus be used as a switch which moves the dot either in the
Coulomb blockade regime (see figure 2.3(a)) or drives the dot into resonance (see
figure 2.3(b)) by aligning the dot energy level with the chemical potential of the
leads. By sweeping the gate voltage, one can therefore drive the quantum dot
through a sequence of resonance peaks and blockaded regions. This leads to so-
called Coulomb-peaks if the conductance is plotted as a function of gate voltage (see
figure 2.3(c)).
In the next step the gate voltage difference between two adjacent levels on the
quantum dot will be calculated. We start with the expression for the electrostatic
energy difference 
E = E(N + 1) − E(N), where N is the number of electrons on
the dot.

E(N) ≡ Eelectrostatic(N, Vg) = 1
2CΣ

(eN + CgVg)2 (2.11)

Transport through the dot can occur only if the probabilty of finding N elctrons
on the dot is equal to the probability of finding N+1 electrons on the dot. From
figure (2.11(d)) it is obvious that these points occur only if neighboring energy
curves for N and N+1 particles intersect. Transport is possible if and only if this
condition is met (compare figures 2.11(c) and 2.11(d)). Coming back to the required
potential difference, it is obvious from equation (2.11) that a gate voltage change of
ΔV = e/Cg moves the system from energy level E(N) to E(N+1).
In reality, the gate voltage change must also account for the quantum mechanical
level spacing Δε/e. Additionally, one has to take into account the finite coupling of
the gate by means of the factor

1/αg = CΣ/Cg (2.12)
We thus find:

ΔUg(N) = CΣ

eCg
(ε(N + 1)− ε(N)) + e

Cg
= ε(N + 1)− ε(N)

eαg
+ e
Cg

(2.13)
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Figure 2.3: Coulomblockade in the zero bias regime: In figure (a) transport between
the leads is not possible. The quantum dot is Coulomb blockaded because no energy
level within the dot is aligned with the chemical potential of the leads. In figure (b) the
gate voltage is modified such that an energy level of the dot is available for transport.
(c) If the gate voltage is swept, energy levels are aligned with the chemical potential of
the leads in regular gate voltage intervals. Hence a structure of regular conductance
peaks develops. (d) In a slightly different picture, transport through the dot is possible
if the energy for N particles on the dot equals the energy of N+1 particles. As the
energy of the dot is a parabola as a function of gate voltage, transfer occurs at the
points where the parabola for N charges intersects with the parabola for N+1 charges.

Within the Coulomb blockade regime, higher order tunneling processes can occur
and contribute to the measured current [82], [83]. These processes can be elastic or
inelastic.
Elastic cotunneling involves virtual states which are unoccupied and energetically
above the chemical potential of the leads. The process is shown in figure (2.4(a)).
The energy difference which is required to reach the virtual state defines the life-
time of the virtual state by means of the uncertainty relation: Δt ∼ �

ΔE . In figure
(2.4(b)), the ”inverse” process is depicted which is described by the cotunneling of
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a hole. This process is a two-electron process. That means that an electron trapped
in the dot potential tunnels to the drain contact and simultaneously it is replaced
by an electron coming from the source contact.
Figure (2.4(c)) shows an inelastic process: A ground state electron leaves the quan-
tum dot by tunneling to the drain contact. At the same time, another electron
tunnels into an excited state of the dot. This process becomes more frequent if the
applied bias voltage eVsd exceeds the energy difference Δε between ground state and
excited state. Inelastic cotunneling does not conserve energy.

Figure 2.4: Elastic cotunneling of (a) electrons and (b) holes: Energy is conserved
as the final state has the same energy as the initial state. In (c) an inelastic process is
depicted: Whereas an electron leaves the quantum dot from its ground state, another
electron tunnels into an excited state. Hence energy is not conserved.

2.2.2 Coulomb blockade at finite bias

At finite bias, the chemical potential of the leads is changed. Single electron tun-
neling occurs if either the chemical potential of the source contact or the chemical
potential of the drain contact are aligned with the chemical potential of the dot.
As the energy change needed for tunneling depends strongly on the position of the
energy levels in the dot, single electron tunneling at finite bias is strongly dependent
on the gate voltage. If one plots the differential conductance as a function of both
gate voltage and source-drain voltage, the so-called Coulomb-diamonds become vis-
ible in a 2D-plot. A typical Coulomb-diamond can be seen in figure (2.5(Left)). For
each of the four corner points a sketch illustrating how tunneling works, is provided.
Generally it can be said that tunneling occurs only if the condition

μDrain ≤ μDot ≤ μSource (2.14)

is fulfilled. Otherwise the dot is Coulomb-blockaded.
Carbon Nanotube quantum dots which are weakly coupled to the leads show Coulomb-
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blockade behavior [84], [85]. In figure (2.5(Right)), a typical Coulomb diamonds
measurement as observed in our devices is shown.

Figure 2.5: (Left) Schematical explanation of 2-dimensional diamond plots. De-
pending on the mutual positions of the chemical potential, the dot is either transpar-
ent or Coulomb-blockaded. The dark region within the Coulomb diamond signifies the
area in which Coulomb-blockade dominates. Within white areas, a finite conductance
between left and right reservoir is possible. (Right) Typical measurement of the differ-
ential conductance of our Single-Walled Carbon Nanotubes in the Coulomb-blockade
regime (T=300mK). The regular spacing of the diamonds suggests that our nanotubes
have a small number of defects.

2.3 Double Quantum dots

When two quantum dots are coupled in series, a double quantum dot develops [86],
[23], [87]. The system is a network of capacitors and resistors as illustrated in
figure (2.6). A gate voltage Vg1(2) is coupled to each of the dots through a capacitor
Cg1(2). Furthermore the dots are coupled to source and drain, respectively, by tunnel
resistors RL(R) and capacitors CL(R). Moreover CΣ1, CΣ2 are the total capacitances
of 1st and 2nd dot to gates, leads and ground.
The most important element of the circuit diagram is the coupling between the
two dots. The coupling is represented by CM accounting for capacitive coupling
between the dots and RM standing for the tunnel coupling. Depending on these
two parameters, one can distinguish between two regimes. First, we will discuss
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Figure 2.6: Electrical circuit representation of a double quantum dot: The coupling
capacitance CM and the coupling resistance RM are the decisive elements for the
electronic behavior of the dot.

the regime in which electrostatic coupling dominates and tunnel coupling is small.
In this parameter range, electrostatic effects outweigh quantum mechanical effects
by large. Therefore a classical description of the system is appropriate. Second,
we will discuss the case of high interdot tunnel coupling. In this case, the electron
wavefunction is delocalized over both dots and hence the electrons on the dot form
a molecular state.

2.3.1 Capacitive coupling: The electrostatic model

Throughout this subsection, we assume that the intermediate tunnel coupling is
very small and the intermediate capacitive coupling dominates. At the end of the
subsection, we treat the two boundary cases for very low and very large intermediate
capacitive coupling.
In a double dot system, transport is only possible at certain gate voltages. Measuring
the conductance at zero bias through the whole system as a function of the two gate
voltages Vg1 and Vg2, one obtains the so-called honeycomb pattern (see figure 2.7(a)).
Electron transport is only possible along the black lines. Within each hexagon, the
number of charges on the double dot is fixed and transport is not possible, as illus-
trated in figure (2.7(b)). Concerning the lines of conductance within the stability
diagram, one can discriminate 3 different situations, labeled (c) to (e). Each sit-
uation is explained by the mutual position of the energy levels of dots and leads,
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Figure 2.7: (a) A typical honeycomb stability diagram is shown here. Each hon-
eycomb cell has a fixed number of electrons on left and right dot. (c)-(f) The corre-
sponding energy level diagrams for the different transport configurations of the double
dot. (g) Stability diagram of the double dot for CM → 0. (f) Stability diagram for
very high capacitive interdot coupling.

as illustrated in the corresponding sketch at the up right side of figure (2.7). If
cotunneling is negligible, transport in the double dot is only possible at the so-called
triple points. An example of a triple point is labeled by (e). As can be seen in the
sketch, all energy levels of dots and leads are aligned and hence transport is possible.
In situations (c) and (d) only one dot level is aligned with the leads. At very small
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but finite interdot tunnel coupling, electrons can nevertheless tunnel from source to
drain by means of cotunneling [86], as is explained above for a single quantum dot.
In figure (2.7(f)) it is shown how the stability diagram changes in the case CM �→ 0.
The degeneracy of the triple points, which is due to the capacitive coupling of the
two dots, vanishes. In the other boundary case, if the capacitive coupling between
the two dots becomes very high, the double dot effectively behaves like one big dot.
Within the stability diagram this would mean that the hexagonal structure vanishes
and only straight lines remain (see figure 2.7(g)).

Applying a finite bias to the double dot, the triple points enlarge to triangular
regions. This is visible in figure (2.8(a)). In black solid lines, the original position
of two adjacent honeycomb-cells including two triple points is depicted. Due to the
applied bias voltage Vsd both vertical and horizontal lines shift by δVg1 and δVg2.
With the prefactors

αg1 = Cg1
CΣ1

(2.15)

and

αg2 = Cg2
CΣ2

(2.16)

which take into account the different coupling of each gate to its corresponding dot,
we can write for the relation between δVg1(g2) and Vsd:

|e|αg1δVg1 = Cg1
CΣ1
|e|δVg1 = |eVsd| (2.17)

|e|αg2δVg2 = Cg2
CΣ2
|e|δVg2 = |eVsd| (2.18)

Figures (2.8(b)) ,(d) and (e) show how the applied bias voltage enlarges the triple
points to triangular regions. In contrast to the zero bias case, where transport is
only possible if all energy levels of dots and leads are aligned, a transport window
is opened at finite bias. In figure (2.8(d)), a triple point of the zero bias stability
diagram is treated. Imagine that the energy level of the source contact is lifted by a
constant bias voltage. On the one hand, by modifying both gate voltages such that
the dot energy levels are in-between the energy levels of source and drain, one can
move from situation (2.8(d)) to (2.8(e)) within the stability diagram. For gate con-
figurations in-between the two points, transport is possible. On the other hand one
can also go from situation (2.8(d)) to siutation (2.8(b)) by sweeping only one gate.
That means that transport is possible within the triangular region in the stability
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diagram defined by the three points labeled (d),(e) and (b). At the corner points
of the triangular regions, a further sweep of the gate voltages drives the double dot
into the Coulomb blockade regime, as at least one of the two dot-levels exceeds the
energy level of the source contact.
In (2.8(c)) a further phenomenon occurring within the triangular regions is explained
figuratively: At sufficiently large bias, there is enough energy to populate excited
states which can thus contribute to transport. This explains additional line struc-
tures within the triangular regions.

Figure 2.8: (a) At finite bias triple points split into triangular regions . (b),(d),(e)
A detailed analysis of the mutual position of the energy levels explains how these en-
larged resonances are possible. (c) If bias is sufficiently high, excited states contribute
to transport.

2.3.2 High interdot tunnel coupling: The molecular state

If the interdot tunnel coupling is high, the purely electrostatic model is not sufficient
to describe the double dot. In our case of two coupled quantum dots which are occu-
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pied by one electron each, we hence deal a priori with a two-electron molecular state.
The state forms because the finite tunnel coupling allows each electron to penetrate
into the adjacent quantum dot. Hence the two electrons are not distinguishable and
a two particle-state is formed. The result is illustrated in figure (2.9(Right)). The
square of the wave-function gives the probability distribution of where the electrons
are located across the whole double dot.

Figure 2.9: (Left) When tunnel coupling between the two dots of a double quantum
dot is introduced, the single dot energies E1, E2 repel each other and form an anti-
crossing with energies E+, E−. (Right) The new energy levels, referring to bonding
and antibonding wave-function of a molecular state, are delocalized over the quantum
dot. The square of the wave-functions describing the molecular state is the probability
distribution where to find an electron.

The enhanced tunnel coupling also has an effect on the stability diagram. We assume
that the electrostatic coupling is such that the stability diagram, when switching off
the tunnel coupling, would look like figure (2.7(a)). In order to understand the
effect of the tunnel coupling, we start the discussion with the textbook example of
two tunnel-coupled energy levels. This is justified because in a simplified picture
the discussion of the molecular state in a double quantum dot can be based on the
elementary case of a quantum mechanical two-level system [86]. That means that we
take into account only the topmost occupied level of each dot and neglect electrons
in lower energy levels. Furthermore we do not consider excited states and assume
that the electrostatic coupling of the quantum dots is zero. Only if transport occurs



2.3. DOUBLE QUANTUM DOTS 31

in the two ground states of the dots, the picture is justified. The basic discussion of
two tunnel-coupled energy-levels is presented e.g. in reference [88].
The uncoupled quantum dots have eigenstates |Φ1〉, |Φ2〉 and eigenvalues E1, E2.
The two energies are illustrated on the energy axis E in figure (2.9(Left)) as a
function of the energy difference

ε = E1 − E2 (2.19)

This energy difference between the levels of the two different dots is often called the
axis of ”detuning”. The uncoupled system is described by a Hamiltonian Ĥ0:

Ĥ0 =
(
E1 0
0 E2

)
(2.20)

If we switch on tunnel-coupling between the two dots, we introduce a tunnel matrix
T̂ . The total Hamiltonian of the system thus reads:

Ĥ = Ĥ0 + T̂ =
(
E1 0
0 E2

)
+
(

0 t
t 0

)
=
(
E1 t

t E2

)
(2.21)

The eigenstates of Ĥ are the delocalized molecular states |Ψ+〉, |Ψ−〉, corresponding
to antibonding and bonding state, respectively. As can be seen in figure (2.9(Left)),
the eigenenergies E+, E− of the total Hamiltonian seem to repel each other forming
a so-called ”anticrossing”. The eigenvalues of Ĥ are:

E± = E1 + E2

2 ±
√

1
4(E1 − E2)2 + t2 (2.22)

The energy difference EΔ between bonding and anti-bonding state is a measurable
quantity which can be used to determine the tunnel coupling between the two dots
of a double quantum dot. Within this simplified picture, the energy difference is

EΔ = E+ − E− =
√

(E1 − E2)2 + 4t2 =
√
ε2 + 4t2 (2.23)

At ε = 0, we obtain the minimal bonding-antibonding energy difference EΔ = 2t.
Hence the tunnel coupling is responsible for a level repulsion of 2t.

In a more realistic picture, the energy levels E1 and E2 are embedded in a double-well
potential as given in figure (2.10).
As before, the interdot tunnel coupling is responsible for the formation of a molecular
state, which is represented by bonding and antibonding state E∓. Moreover we
identify the detuning ε as given in equation 2.19 as the energy difference between
the single-dot energy levels E1 and E2. If we assume that the point E = 0 is equal
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Figure 2.10: Double-well potential of a double quantum dot. At high interdot tunnel
coupling, the two single-dot energy levels E1 and E2 form bonding and antibonding
state E∓.

to the chemical potential of the leads at zero bias, the parameter Δ is defined as the
energy shift of the whole double-well potential with respect to the chemical potential
of the leads.
With these preliminaries we consider the stability diagram of a double quantum dot
with strong tunnel-coupling depicted in figure (2.11(a)). We consider two adjacent
triple points in the Vg1(2) plane. In black solid lines, we illustrate the stability
diagram without tunnel coupling. The separation of the two triple points is due to
the electrostatic coupling U ′ of the two dots. Due to the tunnel coupling and the
formation of a molecular state, the triple points split further and fall onto the two
anticrossing lines illustrated in red colour. The anticrossing lines refer to bonding
and anti-bonding state E∓ treated in figures (2.9) and (2.10). This time, however,
E+ and E− are not only separated by the contribution 2t coming from the tunnel
coupling but also by the contribution U ′ from the electrostatic coupling.
In figure (2.11(a)) the anticrossing is treated in the coordinate system (ε,Δ). The
two parameters were defined in figure (2.10). The parameter ε is defined as the axis
of detuning. If we walk along the axis labeled by this parameter in figure (2.11(a)),
we decrease Vg2 and increase Vg1. That means that we indeed move the energy lev-
els of the two dots of the double quantum dot further apart and thus increase the
detuning. If we increase Vg2 and Vg1 simultaneously, we increase the energy levels
of both dots in the same way and thus move the whole double well potential with
respect to the chemical potential of the leads. This refers again to the definition of
Δ in figure (2.10) and thus it is justified to label the axis which runs perpendicular
to the anticrossing lines in the stability diagram in figure (2.11(a)) with the very
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Figure 2.11: In real double quantum dots, the separation of the anticrossing lines
has two reasons: Electrostatic coupling and tunnel coupling.

same symbol.
In order to understand in some more detail why the triple points move to the anti-
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crossing lines, we consider the energy diagrams presented in figures (2.11(b)-(e)): In
situation (b) the energy level corresponding to the antibonding state of the molec-
ular state is aligned with the chemical potential of the leads. In situation (c) the
single-dot energy levels would be aligned with the leads. As they do not exist any
more in the case of high tunnel coupling, no transport is possible at this energy. If
we continue along the axis Δ to point (d), we would have already paid the necessary
energy to overcome U ′. Though transport is not possible because once again, the
single dot levels are not existent any more. The next accesible level is the bonding
state E− of the molecular state shown in figure (e). As a result we obtain the two
anticrossing lines indicated by red colour in figure (2.11(a)).
The exact determination of the splitting and the identification of electrostatic and
tunneling contribution is more complicated. In order to treat a real two-particle
state, it is inevitable to take Coulomb repulsion and exchange interaction into ac-
count [49]. This leads to the exact expression of the separation EΔ of the wings in
the Δ-direction as a function of the detuning ε [22]:

EΔ =
√

2U ′ +
√

4ε2 + 8t2 (2.24)

Again, U ′ is the electrostatic coupling and t is the tunnel coupling.

2.4 BCS-theory and the spin singlet state

2.4.1 The BCS ground state

In a very basic approach, a metal can be described as a free electron gas. In the
ground state (meaning at T=0), all levels of the Fermi sphere EF = �

2k2
F

2m are oc-
cupied. States above EF are empty. In 1957, Bardeen, Cooper and Schrieffer [89]
showed that in the presence of an attractive interaction, the free electron gas ground
state becomes unstable. That means that the total energy of the system is lower
than the ground state energy without interaction. As summarized e.g. in refer-
ence [90], the prove is straight forward.
Taking an electron pair outside the Fermi sea and furthermore assuming that its
center of mass is at rest, the wave-function of the pair can be expanded in plane
waves.

Ψ(�r1 − �r2) =
∑
k

g(k)ei�k(�r1−�r2) (2.25)

Thereby g(k) is the probability of finding electron 1 in state ��k and electron 2 in
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state −��k. Next, the eigenvalues of Ψ are calculated using Schrödinger’s equation
for the problem:

− �
2

2m(∇2
1 +∇2

2)Ψ(�r1�r2) + V (�r1�r2)Ψ = (E + �
2k2
F

2m )Ψ (2.26)

The question is if there are solutions with E < 0. Therefore we assume attractive
interaction between two electrons with wavevectors �k, −�k, which only exists in a
small sphere of width �ωD around EF and has a constant value Vk,−k = − V

L3 . The
parameter ωD is named the Debye frequency and has to do with the nature of the
assumed attractive potential. The physical idea of the attraction is that the electron
going in direction �k attracts positive ions of the solid. This creates an excess positive
charge coming from the induced ions which attracts the electron with wave-vector
−�k. Thus this effect results in a net attractive potential between the two electrons,
given that the attractive interaction exceeds Coulomb repulsion. This is the case as
long as the energy is smaller than the Debye energy �ωD, which is the cutoff of the
phonon spectrum.
Using this positive interactions, one can indeed find negative eigenvalues, where N(0)
is the density of states at EF .

E = −2�ωDe
−2/N(0)V (2.27)

Thus we can conclude that the Fermi sea is not stable if we turn on a positive
interaction at T �→ 0. That means that in superconductivity we obtain a new
ground state, which is called the BCS-ground state. We are looking for a wave
function of N electrons which are organized in pairs of two. Hence we are looking
for a function of the form:

ΦN(�r1, �r2, ..., �rN) = Φ(�r1 − �r2)Φ(�r1 − �r2)...Φ( �rN−1 − �rN) (2.28)

We have to minimize the energy to find the BCS-ground state, look out that the
wave function is antisymmetrized and introduce the spin part of the wave-function.
Thereby electrons of the same pair have opposite spin. If we use a second quantiza-
tion technique we can find the BCS-ground state in this way:

Φ̃ = Πk(uk + vka†k↑a
†
−k↓)Φ0 (2.29)

with vk
uk

= gk and u2
k + v2k = 1.

Note that gk is the probability of finding a pair of electrons in state k ↑, −k ↓. Such
a pair is called a Cooper pair. The two operators a†k↑a

†
−k↓ signify the creation of a

Cooper pair.
Two electron spins forming Cooper pairs in an s-wave superconductor are entangled.
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This can be shown from the two-electron space-spin density matrix which can be
obtained from the BCS ground state using a two-particle Green’s function [91]. In a
simplified picture, Cooper pairs can be thought of spin singlet states (see equation
(1.1)). Furthermore, in reference [92], the authors show that the entanglement of the
spin-singlet state is conserved when the entangled state is injected into two adjacent
quantum dots within a beamsplitter geometry.

2.4.2 Quasiparticles and the density of states

Excitations in a superconductor are mediated by fermion quasiparticles. It turns
out, however, that excitations need to have a minimal energy above EF in order
to arise. This minimal energy defines the superconducting gap ΔS. The gap is
strongly temperature-dependent. As the derivation of the BCS ground state relies
on the premise that T �→ 0, it is not astonishing that the superconducting gap
vanishes at a critical temperature TC . Superconducting gap and critical temperature
are related by ΔS(0)

kBTC
= 1, 764, where kB is Boltzmann’s constant and ΔS(0) is the

superconducting gap at zero temperature. Furthermore the superconducting gap
is a function of temperature. This function follows from BCS theory and can be
computed numerically. The result is visible in figure (2.12(a)).
An arbitrary excitation in the superconductor has energy E2

k = Δ2
S + ζ2, where ζ is

the single particle energy relative to the Fermi-level. Equating

NS(E)dE = Nn(ζ)dζ (2.30)

and assuming Nn(ζ) as constant, we obtain:

NS(E)
N(0) =

⎧⎪⎪⎨
⎪⎪⎩

E

(E2 −Δ2
S)1/2 (E > Δ)

0 (E < Δ)
(2.31)

We can thus plot the superconducting density of states (see figure 2.12(b)) as a
function of energy. Clearly we observe the superconducting gap ΔS.

2.4.3 Tunneling processes involving superconductors

An important issue in our beamsplitter experiment is the tunneling from the super-
conducting electrode into the normal lead. The situation can be understood visualiz-
ing sketch (2.12(c)) which shows the so-called Semiconductor model of N-S junctions.
The normal metal is represented by a continuous distribution of independent-particle
energy states. The superconductor is represented by an ordinary semiconductor
with an independent-particle density of states given by equation 2.31. If no external
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potential is applied, the Fermi-level of the normal metal lies in-between the super-
conducting gap. Only if an external potential is applied, electrons in the normal
state can populate levels which are sufficiently high to overcome the gap and then
tunnel into the superconductor.

Figure 2.12: (a) Behavior of the superconducting gap if T �→ TC (taken from [93]).
(b) The BCS density of states. The sharp peak at the gap edge is washed out for finite
temperature. (c) Schematical illustration of tunneling processes at N-S junctions: The
potential difference applied at the leads has to exceed the superconducting gap ΔS. (d)
I-V characteristic for a NS tunnel junction.

The expression for the tunnel current in a single particle picture thus reads:

Ins = A | T |2 Nn(0)
∫ ∞
−∞
Ns(E)

[
f(E)− f(E + eV )

]
dE (2.32)

where A is constant, | T |2 is the tunnel probability, Nn and Ns are the densities of
states in normal and superconducting region and f(E) is the Fermi-Dirac distribu-
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tion. The result is plotted in figure (2.12(d)). The subgap current becomes finite as
soon as we leave the zero temperature limit.

2.5 Injecting superconducting correlations in a nor-
mal conductor: Andreev Reflection

The picture of an NS junction given in the last section is simplified. The model
used in figure (2.12(c)) to explain tunneling through an NS junction is called the
semiconductor model. The model only treats quasiparticle excitations. If, however,
the potential barrier between normal metal and superconductor is not too high,
electrons coming from the normal metal can indeed enter the condensate of the
superconductor. This process is known as Andreev Reflection [94] and is the only
subgap transport that can occur at NS-junctions.

2.5.1 Andreev Reflection at an NS interface

The microscopic process which occurs at an NS boundary is sketched in figure
(2.13(a)). An incoming electron with spin up and an energy Ei < ΔS approaches
the interface in the normal metal. In order to enter the Cooper pair condensate, it
needs a second electron of opposite spin. This process is maintained by the reflection
of a hole into the normal metal. Note that spin, momentum, energy and charge are
conserved. Therefore a hole with spin down traces back the time-reversed path of
the incoming electron.

As depicted in figure (2.13(b)), Andreev Reflection at the NS-interface can be de-
scribed by a scattering matrix approach [95]. At the interface, normal scattering as
well as Andreev Reflection occurs. Owing to an idea of Beenakker [80], the problem
can be separated into two parts: the normal scattering is thought of as slightly dis-
placed from the junction into the normal metal. The Andreev Reflection is assumed
to take place at the interface. Therefore one can write two scattering matrices. The
first matrix ŜN connects the ingoing (Ie1 , Ih1 , Ie2 , Ih2 ) and outgoing (Oe1, Oh1 , Oe2, Oh2 )
states from the ”normal” scattering, for both electrons and holes:

⎛
⎜⎜⎜⎜⎝
Oe1
Oh1
Oe2
Oh2

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
r11(E) 0 t12(E) 0

0 r∗11(−E) 0 t∗12(−E)
t21(E) 0 r22(E) 0

0 t∗21(−E) 0 r∗22(−E)

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
Ie1
Ih1
Ie2
Ih2

⎞
⎟⎟⎟⎟⎠ (2.33)
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Figure 2.13: In figure (a) an incoming electron from the normal metal side at
energy ε is converted into a Cooper pair in the superconductor. The missing electron
of opposite spin is symbolized by a retroreflected hole at energy −ε. Thus charge,
momentum, energy and total spin are conserved. In figure (b) the same situation is
shown within a scattering matrix approach. Owing to the idea in reference [80] the
normal region is divided into three regions: Normal scattering takes place in the shaded
region which is slightly removed from the NS-interface. Thus, at the NS-interface,
Andreev-reflection is the only scattering mechanism. In this way the scattering matrix
can be divided into two separate parts.

The parameters r11(E), t12(E), r∗11(−E), t∗12(−E), t21(E), r22(E), t∗21(−E), r∗22(−E) are
transmission and reflection amplitudes of incoming and outgoing particles. (For sim-
plicity, we assume to have only one conduction channel: N = 1).
In a similar way we can construct a matrix ŜI for the Andreev Reflection at the
NS-Interface:

⎛
⎜⎜⎜⎜⎝
Ie2
Ih2
OeS
OhS

⎞
⎟⎟⎟⎟⎠ =

(
r̂I(E) t̂′I(E)
t̂I(E) r̂′I(E)

)⎛⎜⎜⎜⎜⎝
Oe2
Oh2
IeS
IhS

⎞
⎟⎟⎟⎟⎠ (2.34)

The matrices r̂I(E), t̂′I(E), t̂I(E), r̂′I(E) are 2× 2 scattering matrices which connect
ingoing and outgoing states from the Andreev Reflection process.
In order to calculate the full current-voltage characteristic of the junction, the ma-
trices ŜN and ŜI have to be combined. From this we obtain the total conductance
GS across the junction which can then be inserted into the relation for the current:

I =
∫
dE

1
e

[f(E)− f(E + eV )]GS(E, V ) (2.35)

where f(E) is the Fermi-Dirac distribution.
In the linear response limit (E → 0) of the Andreev Approximation [95], the total
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conductance GS for a single channel simplifies to:

GS = 4e2
h

T (0)2

[2− T (0)]2 (2.36)

Here, T (0) is the transmission probability through the whole system at E = 0.
The full derivation to obtain this result would exceed the scope of this thesis. The
interested reader is referred to reference [80].

2.5.2 Crossed Andreev Reflection

In the last subsection the Andreev Reflection process was introduced. Next we con-
sider a special type of Andreev Reflection which is called Crossed Andreev Reflection
(CAR). In this process an incoming electron in normal lead 1 groups together with
a second electron from normal lead 2 to travel as a Cooper pair in the supercon-
ductor. Thus a hole is reflected in normal lead 2. The incoming electron and the
reflected hole are spatially separated and hence the phenomenon is often called non
local Andreev Reflection [96], [97]. The process is illustrated e.g. in figure (2.14(a)).
In order to make Crossed Andreev Reflection possible, different sample designs have
been implemented (see figures 2.14(a)-(c)). In figure (2.14(a)) and figure (2.14(c))
the three terminal structure connecting two normal conductors to a superconductor
is defined by a lithographical process. The CAR process happens in the surface plane
of the device. In figure (2.14(b)) the situation is different: The superconductor is
sandwiched in z-direction between two normal metal layers. The latter process re-
quires only optical lithography. An important choice is the material which is used as
superconductor. Straight forward candidates are Aluminum and Niobium. Niobium
has a critical temperature of 9,2K and a critical field of 195mT. Aluminium has a
critical field of 10mT and a critical temperature of 1,2K. The given values apply to
bulk materials and can vary drastically if thin films are considered [98]. The values
are taken from reference [99].
The idea of measuring non local Andreev Reflection works as follows (see for in-
stance figure 2.14(b)): A bias current is maintained between normal lead N1 and
the superconductor. As can be seen in figure (2.15 (up right)) the hole which is
reflected into normal lead N2 has exactly the same energy as the incoming electron,
however with opposite sign. Thus a negative non local voltage is detected if non
local Andreev Reflection takes place.
The problem is that CAR is not the only process that is possible. A second process
called Elastic Cotunneling is illustrated in figure (2.15(up left)). In this process
the incoming electron from normal lead N1 crosses the superconductor via a virtual
state and impinges into the second normal metal N2, creating thus a positive non
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local voltage.
When injecting electrons in the normal lead and measuring the non local voltage
between the second normal lead and the superconductor (as is illustrated in figures
2.14(a)-(c)), CAR and Elastic Cotunneling are always in competition. Only if one
obtains a negative signal, one can be sure that CAR exceed Elastic Cotunneling.
The ratio between the two, however, can hardly be determined. In order to find
a configuration in which CAR dominate, different approaches have been made: In
reference [100] the authors make the superconducting sandwich layer between the
two normal metals as small as possible. Kleine et al. [101] study the strength of
the tunnel barriers between normal leads and the superconductor and finally find a
regime where negative non local voltage is observed. In references [102], [103], [104]
the authors use ferromagnetic normal leads to favor CAR. Using one of these meth-
ods, one can find results as illustrated in figure (2.15(down)) which corresponds once
again to sample design (2.14(b)). Whereas Elastic Cotunneling dominates at zero
bias, the authors find a bias window around 0.4mV , in which CAR clearly dominate
Elastic Cotunneling.
In the final analysis it can be concluded that within the experiments presented in
this subsection, the equilibration of CAR and Elastic Cotunneling is not yet un-
derstood. The influence of electron-electron interaction [105], for example, is not
explained to a great extent.

2.6 Putting the puzzle together: Theoretical de-
scription of the beamsplitter

The last sections gave an overview over the theoretical concepts necessary to under-
stand the Carbon Nanotube beamsplitter as presented in this work. Now we apply
the concept of CAR to our sample. As explained above, CAR consist of an incoming
electron in one normal lead, a reflected hole in the second normal lead and a Cooper
pair traveling out of the structure via a superconducting electrode (see for instance
2.14(a)). The outgoing hole in the right arm of figure (2.14(a)) can also be repre-
sented by an incoming electron, as done in figure (2.16(a)). Hence two incoming
electrons from different leads unite to form a Cooper pair in the superconductor. If
the situation is time-inversed, i.e. a Cooper pair is injected in the superconducting
electrode, the beamsplitter idea becomes visible (see figure 2.16 (b)). An incoming
Cooper pair from a superconducting electrode is split in two different normal leads.
Thus the CAR process is equivalent to our beamsplitter.
However, when injecting a Cooper pair, electrons do not split automatically in two
different leads. As can be seen in figure (2.17), the two electrons either split into
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Figure 2.14: Crossed Andreev Reflection illustrated in three different sample ge-
ometries. Sample (a) describes the beamsplitter setup (topview), sample (b) describes
the sample used by Russo et al. [100](crosssection) and sample (c) describes the sam-
ple of Eichler et al. [101] (topview).

two different leads (Process 2) or they tunnel to the same lead (Process 1). This
fact defines two major tasks of our experiment: First we have to find a method
how to favor Processes 2 and suppress Process 1. Furthermore we have to find a
method to show that CAR do indeed contribute to transport in our device. Second,
Local and Crossed Andreev Reflection will always superimpose. Thus we have to
look for a way to extract and evaluate the contribution of CAR to the total transport.

Concerning the first task, i.e. the effective splitting of the pair, different sugges-
tions have been made. The use of ferromagnetic normal leads [102], energy filtering
with a single quantum dot [106], and the coupling of the superconductor to two
Luttinger liquid leads [62], [107] are pointed out promising candidates. We follow
a proposal by Recher et al. [108] and Bouchiat et al. [70], where a double quantum
dot is used to effectively split the pair. That means that the normal metal within
the proposal given in figure (2.14(a)) is disrupted by a quantum dot on each side.
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Figure 2.15: The figure is taken from reference [100]. The two energy diagrams
on top illustrate the two competing processes found in Crossed Andreev samples as
illustrated in figure (2.14). Cotunneling leads to a positive non local voltage whereas
Crossed Andreev Reflection produces a negative non local voltage. The experimental
task is to find a configuration in which CAR exceeds Cotunneling. In the measurement
by Russo et al. [100], Cotunneling dominates at zero bias. Increasing the source-drain
voltage, one can find symmetric dips of negative non local voltage signifying Crossed
Andreev Reflections.

The corresponding sketch is depicted for instance in figure (2.17). We expect that
the contribution from Elastic Cotunneling, (i.e. the tunneling from left to right
normal lead via a virtual state) is less important here, as we apply positive bias
to the superconducting contact whereas both normal leads are grounded. Electrons
traveling between normal leads would henceforth have to overcome the potential
difference between normal reservoir and superconductor which makes this process
less probable. In order to give evidence for split Cooper pairs, we introduce an anal-
ysis tool in subsection 2.6.1. In a second step we will deal with the second task, i.e
the quantitative evaluation of CAR contribution to the total conductance. We will
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Figure 2.16: (a) An outgoing Cooper pair is created by two incoming electrons
from different normal leads. (b) By time-inversion the outgoing Cooper pair becomes
an incoming Cooper pair: The Crossed Andreev Reflection can thus be interpreted as
the splitting of the electrons of the Cooper pair in two different normal leads.

Figure 2.17: The figure illustrates the competing processes in our double dot beam-
splitter. Process 1 shows how both electrons of an incoming Cooper pair tunnel to
the same normal contact. Process 2, on the contrary, illustrates Crossed-Andreev
Reflection.

present the basic results of the corresponding theory in subsection 2.6.2.



2.6. PUTTING THE PUZZLE TOGETHER: THEORETICAL DESCRIPTION
OF THE BEAMSPLITTER 45

2.6.1 Qualitative Theory and Splitting argument

The basic ingredient for the argument is the conductance ratio between left and
right normal lead while injecting in the middle contact of our beamsplitter device.
It turns out that this ratio is highly sensitive with respect to magnetic field and gate
voltages:
The magnetic field is used to switch the superconducting middle contact into the
normal state. Hence charge transport is changed from Andreev Reflection to regular
transmission. This has an important effect on the conductance ratio between left
and right lead as will be explained below.
Furthermore we can tune the two sidegates attached to the double dot such that
either no, one or two quantum dots are at resonance. In the superconducting case,
this makes a decisive difference for the conductance ratio between left and right dot.
Below, we explain the reason for this behavior.
In figure (2.18) we show the transport mechanisms in our CNT-beamsplitter device
at finite magnetic field (B = 89mT ).
This magnetic field is higher than the critical field of aluminum and thus the alu-
minum contact is in the normal state. Transport is mediated by single particle
tunneling. In figure (2.18(left)), the side gate voltages are such that the beam-
splitter is on a single resonance (see figure (2.18top)). In the illustrated case, the
left quantum dot is at resonance whereas the right dot is off resonance. Injecting
electrons in the middle contact, the particles can only tunnel to the left lead. The
coupling energy between left quantum dot and left lead is defined as ΓL. Hence the
conductance GL measured at the left lead can be written as: GL ∼ ΓL. If the right
dot is at resonance and the left dot off resonance (not shown in the figure), we can
write analogously: GR ∼ ΓR.
If both dots are at resonance (see figure 2.18(right)), i.e. we measure on a triple
point within the stability diagram (see figure (2.18top)), we obtain the same ex-
pressions for the conductance at left and right lead: GL,R ∼ ΓL,R. The reason is
that tunneling to the left lead is independent from tunneling to the right lead. Both
processes are single particle processes.
If we define the conductance ratio in the normal state between left and right lead as
αN , we obtain for both single resonances and triple points:

αN = GR
GL

= ΓR
ΓL

(2.37)

In the superconducting state at zero magnetic field, the situation changes as depicted
in figure (2.19). In this case, a fundamental difference between single resonances and
triple points can be predicted:
At the NS-interface, transport is possible via Andreev Reflection which is essentially
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Figure 2.18: At B = 89mT , the Aluminum contact is in the normal state. Hence
only single particle tunneling contributes to transport and the conductance measured
at the left lead is proportional to the coupling energy of the left lead. Therefore it
makes no difference if we measure the conductance at a single resonance or at a
triple point.

a two-particle process. At a single resonance (2.19(left)), only local Andreev Re-
flection is possible. Hence the conductance at left lead and right lead (not shown)
are

GL ∼ Γ2
L (2.38)

GR ∼ Γ2
R (2.39)

If we define the conductance ratio αS in the superconducting case between left and
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right lead, we obtain:

αS = GR
GL

= Γ2
R

Γ2
L

= α2
N (2.40)

Figure 2.19: At zero magnetic field, the aluminum contact is superconducting.
Hence we can only inject Cooper pairs which can tunnel to the normal leads via
the Andreev Reflection process. In contrast to the normal case, charge transport
is mediated by a two-particle tunneling process. That means that the conductance
measured at the left lead is proportional to the square of the involved tunnel rates. In
this case we observe a fundamental difference between the single resonances and the
triple points. At the triple points we expect an additional term in the conductance
which comes from CAR processes.

At the triple points (see figure 2.19(right)), local Andreev Reflection (red arrows) is
not the only possible charge transport. Here, Crossed Andreev Reflection is possible,
too (blue arrows). To simplify the argument, we assume that the two normal leads
have the same coupling ΓS to the superconducting electrode. The CAR process is
responsible for an additional term in the conductance expression for the conductance
at left and right lead, respectively. As CAR can be interpreted as the tunneling of
the two electrons of the same Cooper pair to two different leads, this adds a crossed
term ∼ ΓRΓL to the conductance. Thus we obtain for the conductance at left and
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right lead, respectively:

GL,R ∼ ΓLΓR + Γ2
L,R (2.41)

If we compute the conductance ratio αS between left and right lead in the super-
conducting case at the triple points, we obtain:

αS = Γ2
R + ΓLΓR

Γ2
L + ΓLΓR

= αN (2.42)

That means that αS as a function of αN is sensitive to the fact whether CAR
contribute to the total transport or not. If CAR do contribute, αS as a function
of αN defines a linear function. If CAR do not contribute and only local Andreev
Reflection is present, αS as a function of αN is a parabola.
That means that the basic analysis tool introduced in this subsection works as
follows: We have to determine the ratios αS and αN for a large number of triple
points. If CAR contribute to the charge transport, αS as a function of αN for all
these points will describe a linear function.
In a second step we carry out the same analysis for several single resonances: Here,
as only local Andreev Reflection is possible, αS as a function of αN must define a
parabola.

2.6.2 Methods to obtain the Γ’s

In the paper resulting from this thesis [109], our measurement data is not only ana-
lyzed qualitatively as described in the last subsection, but also fitted quantitatively
by a model developed by our co-worker Alfredo Levy-Yeyati (see reference [110]
and Supplementary Information of reference [109]). In this subsection we give an
overview over the underlying physical concept and comment on the procedure which
extends the concept to model the differential conductance in our beamsplitter in the
middle-injection setup.
As was pointed out in subsection 2.1.2, the differential conductance across a quan-
tum conductor is proportional to the transmission probability T . Hence we have to
look at the transmission probability in some more detail. The transmission probabil-
ity depends on the potential landscape which an incident particle faces while passing
through the conductor. Starting from textbook knowledge [111], a noninteracting
quantum dot can be seen as a potential well as illustrated in figure (2.20(b)).
We are interested in the transmission probability T(E) for a particle incident from
region I. The transmission probability defines the probability with which the inci-
dent particle tunnels through the potential and arrives at region III.
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Figure 2.20: (a) The line shape of the transmission probability around a resonance
ER is given by the so-called Lorentzian or Breit-Wigner function. (b) In a very basic
approach, a quantum dot can be modeled as a potential well.

In textbooks [111] one obtains the so-called Lorentzian or Breit-Wigner function as
an approximation in the vicinity of a transmission resonance:

T (E) = (Γ/2)2

(E − ER)2 + (Γ/2)2 (2.43)

As can be seen in figure (2.20(a)), the parameter Γ/2 describes half of the width of
the resonance at T (E) = 1/2. For V0 � ER the parameter Γ is given by :

2
Γ �
√

2mV0a

2�

1√
V0ER

. (2.44)

Hence Γ = Γ(ER, V0, a) is a function depending on the resonant energies and on
the width and height of the potential well. As Γ is the decisive parameter of the
transmission probability, it can be understood as the coupling energy of regions I
and III.
In figure (2.21), the carbon nanotube quantum dot is modeled by a more realistic
potential which takes into account that the nanotube is coupled to the leads via two
different tunnel barriers. To simplify the calculation, the two tunnel barriers are
approximated by two Dirac δ-functions. The left tunnel barrier is situated at x = 0
and the right barrier at x = L. Schrödinger’s equation for the problem thus reads:

− �
2

2m∇
2Ψ(x) + VLδ(x)Ψ(x) + VRδ(x− L)Ψ(x) = EΨ(x) (2.45)
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Figure 2.21: Our Carbon nanotube quantum dot is modeled by two potential barri-
ers which can be approximated as Dirac δ-functions. We calculate the transmission
probability for incoming particles with an energy E > 0.

We make a similar Ansatz as before for the wavefunction Ψ(x) in the three regions
defined in figure (2.21). The boundary conditions deliver 4 equations which allow
to determine the transmission probability T (E). The result has a Breit-Wigner like
shape:

T (E) = ΓLΓR
(E − ER)2 + (ΓL+ΓR

2 )2 (2.46)

The only difference to equation 2.43 is that two coupling energies ΓL,ΓR are involved
which describe the coupling to left and right lead, respectively.
Next these basic considerations have to be extended to a three terminal situation.
Furthermore scattering at normal-superconductor junctions, as introduced in sub-
section 2.5.1, has to be taken into account. Finally, Coulomb interaction has to be
considered. This last ingredient allows only numerical solutions for the full problem.
However, as described in the qualitative argument given in the last subsection, our
main argument is based on the peak values of the zero bias conductance resonances.
Our co-worker Alfredo Levy-Yeyati could extract the expressions for the peak values
of the zero bias differential conductance in both normal and superconducting state.
The relevant parameters are the coupling energies of left and right dot to left and
right lead (ΓL,ΓR), the coupling energies of left and right dot to the superconducing
lead (ΓSL,ΓSR) and the intermediate coupling of the two dots Γ12. The results are
summarized below.

In the superconducting state, the peak values for the zero bias differential conduc-
tance at left and right lead (GL, GR) can be evaluated in the middle-injection setup.
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To obtain this result, it is assumed that ΓSL = ΓSR = ΓS. Furthermore the coupling
to the superconductor is renormalized with respect to the induced gap in the dots
by Γ̃S = ΓS − Δinduced. The result is valid for Γ12 � ΓL,R � ΓS. In this case the
peak values of GL(R) read:

GL(R) = 4e2
h

16Γ̃2
S

(ΓL + ΓR)4 (Γ2
L(R) + ΓLΓR) (2.47)

Furthermore the peak values of the transmission coefficients to left and right lead
can be dissociated into the contribution of local Andreev Reflection (ARL,R) and
Crossed Andreev Reflection (TCAR):

ARL,R =
4Γ̃2
SΓ2
L,R

[ΓL + ΓR]4
[Γ2
L,R + ΓLΓR + 2Γ2

12]2

[Γ2
12 + ΓLΓR]2 (2.48)

TCAR = 4Γ2
12Γ̃2
SΓLΓR

[ΓL + ΓR]4
[(ΓL + ΓR)2 + 4Γ2

12]
[Γ2

12 + ΓLΓR]2 (2.49)

Within these expressions, we can identify terms ∼ ΓLΓR
(ΓL+ΓR)2 which, according to

equation 2.46, are typcial for Breit-Wigner behavior.

In the normal state, in the limit Γ12 � ΓL,R � ΓS, Alfredo Levy-Yeyati obtains for
the peak values of the zero bias differential conductance at left and right lead:

GL(R) = 2e2
h

4ΓL(R)ΓS
(ΓL + ΓR + 2ΓS)2 (2.50)

The peak values of GL(R) in normal and superconducting state as well as the peak
values for TCAR and ARL,R are of high importance.
From the expressions for the differential conductance, it can be confirmed for Γ2

12 �
ΓLΓR that αS as a function of αN is a linear function at the triple points and a
parabola at single resonances.
The expressions which quantify the contribution of Local and Crossed Andreev Re-
flection allow to define an efficiency of the beamsplitter in the superconducting state
at the resonances: The contribution of CAR to the total transmission is divided by
the total transmission. Due to the expressions 2.48 and 2.49, the efficiency of the
beamsplitter at the zero bias resonances of the differential conductance is:

Efficiency ≡ 2TCAR/(ARL + ARR + 2TCAR) � 2/(2 + 1/αS + αS) (2.51)

In this way we can define a splitting efficiency at each triple point. This is an
important tool because high splitting efficiencies are highly desirable. The reason is
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that in future experiments only split pairs are of interest. If we assume that we find a
way to separate the split pairs from the rest of the current, we still face the following
problem: As the total current through the Carbon nanotube beamsplitter is expected
to be very low, i.e. on the order of 0, 5nA for an excitation of Vac = 10μeV , a low
splitting efficiency would leave a very small signal with a very bad signal to noise
ratio. Hence further analysis of the split pairs would be very difficult.



Chapter 3

Sample preparation and
Measurement environment

We use Carbon nanotubes synthesized on a SiO2 wafer by Chemical Vapor Deposi-
tion (CVD) [112] . Next we pattern alignment marks and detect the Single-Walled
Carbon nanotubes with respect to the marks with a Scanning Electron microscope.
In a further step we use electron beam lithography and evaporation techniques to
contact our three terminal Single-Walled Carbon nanotube devices. A picture in
false colours is shown in figure (3.1). The following sections give some more detailed
insight in the different steps of the fabrication process.

Figure 3.1: A typical Single-Walled Carbon nanotube beamsplitter sample. The
different parts of the sample are illustrated by false colours. The picture was taken
with a standard Scanning Electron Microscope.
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3.1 CVD growth
We use doped Si wafers with a 300− 500nm oxide layer on top. The oxide layer is
a gate dielectric which isolates the contacts from the silicon bulk. Hence the doped
silicon can be used as a backgate.
As a first step we cut the wafer into small pieces which fit into our chip-carrier.
Next we exhaustively clean the surface by using oxygen plasma (5 minutes) as well
as sonication in both acetone and propanol (10 minutes each). Once the surface is
clean we deposit catalyst particles which stimulate the growth of our tubes. The
recipe of the catalyst is given in appendix A. Before depositing the catalyst on the
lithographically designed pattern (see next section), the catalyst is put in ultrasonics
for at least 30 minutes. Moreover the catalyst should be either changed regularly
(every two months) or kept on a permanent stirring machine.
After the catalyst deposition the sample is baked 5 minutes at 150 degrees Celsius.
Then we carry out the lift-off (see next section). Only at the predefined spots, where
there is no PMMA, the catalyst sticks to the surface. Everywhere else the catalyst
is washed away again. We use an acetone-spray-bottle in the beginning and then
toss the sample in hot acetone for 3 minutes. It turned out that the lift-off works
better if the used PMMA-layer (see next section) is very thick. The use of a double
PMMA layer is thus recommended.
Prepared in this way, the sample is put in the CVD-furnace. The cylindrical oven
heats up the sample to 900 degrees Celsius. Thereby it is important that the sample
is inside a quartz tube under a closed atmosphere of flowing gas. To heat up the
sample, argon is used to ensure an inert atmosphere. Then methane is used as a
carbon feedstock for the nanotubes during the growth process. Additionally, a slow
flow rate of hydrogen is added which is supposed to favor growth conditions. Its
role, however, is not entirely clear. After the growth process the sample is cooled
down in argon atmosphere. The detailed growth recipe is given in the appendix.
Note that parameters in the Paris lab differed from the parameters in Regensburg.
Therefore two recipes are given in appendix A. Typical results are shown in figure
(3.2).

3.2 Lithographical patterning
Electron beam lithography is a basic tool in state-of-the art nanofabrication. The
principle is to locally expose a layer of resist with an electron beam. The standard
resist is PMMA which consists of long, chain-like hydrocarbon molecules. The in-
cident electron beam cuts the molecule chains in small pieces and hence the resist
looses its stability in the exposed regions. The exposed regions can be washed out by
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Figure 3.2: A typical Single-Walled Carbon nanotube as grown in our systems.
It has a length of roughly 14μm and grows from a catalyst spot. Catalyst spots are
typically around 1− 2μm in size.

a developer (often MIBK). In this way microscopic structures down to about 20nm
can be defined. The developed structures are then put into an evaporator (see next
section). The whole surface is covered with a metal, for instance gold. Afterwards,
in a process called lift-off, the resist is dissolved and the metal is washed away. Only
at the exposed regions, where there is no PMMA in-between the metal and the wafer
surface, the metal sticks to the wafer. In our sample fabrication process we carry
out several electron beam lithography steps. We use it to deposit the catalyst before
CVD growth and then to deposit alignment marks after CVD growth. In the last
step of the fabrication process we use lithography again to put the contacts on the
nanotube. In figure (3.3), a typical lithography is illustrated.

3.3 Evaporation

The evaporation of alignment marks is straight forward. We use a Ti/Au bilayer
(5nm/50nm). The titanium is used as undercoating to increase the adhesive forces
to the substrate. The more important and also more difficult part is the evaporation
of the contacts. Here, two different methods have been tried out: The first method
is a shadow-evaporation technique in which superconducting and normal leads are
evaporated in the same evaporation step. The second technique is a two-step process,
in which the normal leads are nanostructured in a first step and the aluminium
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Figure 3.3: The four-step lithographical process which we use for nanofabricating
our devices. As an example, the last lithography step is illustrated. In this step the
Single-Walled Carbon Nanotube is contacted and connected to metallic leads.

contact in a second step. In both techniques, the aluminium contact is undercoated
with 2,5 nm of palladium to increase the coupling between the nanotube and the
metallic leads. When the Pd buffer layer was omitted, the tunnel barriers were
too resistive. The width of the aluminum contact was around 80nm in order to be
smaller than the superconducting coherence length ξS.

3.3.1 Shadow Evaporation

Shadow evaporation is a technique in which different materials can be deposited
at different positions on a sample within the same pump-down. In our case the
middle contact of our device has to be aluminium (with 2,5 nm Pd undercoating)
whereas the normal leads are made out of palladium because of its excellent contact
properties. Figure (3.4) illustrates how this process works. In figure (3.4(a)) our
beamsplitter structure is shown. The sample is supposed to be lithographically
structured and is sketched from plain view. In figure (b) the sample is put on a
sample holder within a coating system. (Note that the 2,5 nm undercoating is not
illustrated here. However it works similar as the aluminium coating.) In figure (b)
we look at the sample from side view. In this cross section we cannot see the vertical
lithography result as the borders are completely covered by PMMA. To see where
this region is, it is highlighted by transparent colour. The sample is mounted such,
that the 35◦ tilt of the sample is carried out in the direction of the superconducting
finger. If one starts evaporating in this configuration, the material is deposited along
the axis of the superconducting finger. Concerning the normal leads, however, their
vertical orientation with respect to the evaporated material ensures that no material
is deposited there. Therefore the tilt has to be big enough that the deposited material
does not reach the base area of the normal leads but is blocked by the PMMA edges.
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Therefore the technique is called shadow evaporation. For shadow evaporation it is
important that the evaporated material beam has a specified direction. Electron-
beam and thermal evaporation are techniques which meet this constraint.
In figure (3.4(c)) the sample is tilted back to zero angle. In this configuration we
deposit Pd and thus create the normal leads. If we now perform the lift-off (3.4(d)),
we obtain normal leads out of palladium and a superconducting aluminum lead in
perpendicular direction.
The big advantage of shadow evaporation is that the superconducting contact is
always perfectly aligned with respect to the normal leads. Also, a one step-process
is in principle faster than carrying out two lithographical steps. Most measurements
which we present in this work are carried out with a sample fabricated in this way.
However the technique has also disadvantages. As material is deposited on the
PMMA edges, lift-off is quite critical and the yield of working samples is low.
We used different evaporators at different sites. Surprisingly, the technique does
not work, if UHV-evaporators are used. The reason is that the palladium is not
only deposited at the normal leads but also on top of the aluminium. Although
we already use 100nm of aluminium and 40nm of palladium, the superconducting
gap of the aluminium can vanish entirely if the palladium contains a small amount
of magnetic impurities. At higher evaporation pressures, enough oxygen is in the
chamber to build up a small Al2O3 layer which shields the palladium. In this case
the aluminium contact remains superconducting but shows a reduced gap [113].

3.3.2 Two-step Process

If either the lift off does not work properly or the gap is not visible any more in
the transport spectroscopy, a two-step lithography and evaporation process is the
method of choice. In a first lithography step, the normal contacts and leads are
structured and evaporated. In a second step the aluminium contact connecting the
nanotube with the respective lead is lithographically defined and evaporated with
the Pd-undercoated aluminium. The problem of this process is to realign the second
lithography in-between the normal leads with an error less than 100nm. This is very
demanding and often fails.

3.4 Measurement setup
We need two ingredients to carry out our measurements. The first is an electronic
measurement environment, which is sensitive enough to detect several pA. The
second is a dilution cryostat which cools the sample to 80mK. The low temperatures
are necessary for several reasons: The sample has to be cooled below TC of aluminium
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Figure 3.4: Simplified figure to illustrate our shadow evaporation technique: (a)
Both normal and superconducting leads are patterned in the same lithography step.(b)
Then the sample is put in the evaporator. First, aluminium (with a small Pd un-
dercoating, as described in the text) is deposited at an angle of 35-40 degrees . The
material is evaporated along the superconducting finger. Because of the tilting, no
material is deposited at the normal leads. (c) In the second evaporation step , Pd is
evaporated at zero angle. (d) After the lift off, the superconducting contact is made
out of aluminium (with Pd on top) and the normal leads consist of pure palladium.

which is around 1,2K. Furthermore the low temperatures are necessary to observe
Coulomb blockade, as explained in section 2.2. Last but not least thermal noise has
to be excluded to perform sensitive measurements.
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3.4.1 Electronics

The electronic setup is depicted in figure (3.5). Two biasing schemes are used. In the
so-called middle-injection, denoted by VM and red coloured lines, a bias voltage is
applied at the superconducting contact. Current is sent into the nanotube and splits
into a left (IL) and a right (IR) component. Both branches are grounded by 2kΩ
resistors. IL and IR are converted to voltages, amplified by low-noise amplifiers of
type SA-220F5 and detected with standard Lock-In technique. The second injection
possibility is called side-injection (VS) and is highlighted by green lines in the circuit
diagram. Here, we inject at one of the normal leads and measure the transmission
at the other normal lead, in the same way as described above. The measurement of
the current going to the superconducting lead is not possible within our circuit. The
reason is that the superconducting lead is designed as injection line with a 200kΩ
resistor mounted in series. This resistance together with a grounded 2kΩ resistor
is used to divide the injected voltage on chip at base temperature. Hence thermal
noise injected into the system is low. Additionally we use standard RC-filters for
the gates and special microcoax cables for the measurement lines in order filter out
parasite signals coming from the outside world.
The side-injection setup gives us the possibility to operate our device as a standard
double quantum dot. It is used to find a regular honeycomb stability diagram. Here,
the small current going to the superconductor, mediated by Andreev Reflection, is
neglected.
We use voltage amplifiers instead of I-V converters because our electronic envi-
ronment is designed for future noise measurements. Therefore the sample is not
mounted on a standard chip carrier but on a PCB. Furthermore we minimize ca-
pacitances to ground and install high-frequency suitable measurement lines at the
normal contacts. The goal is to carry out shot noise cross-correlation measurements
in the MHz-regime between the two normal leads in a future experiment. The mea-
surements are supposed to be taken at frequencies between 100kHz and 5MHz in
order to avoid 1/f -noise. A picture of the PCB is available in appendix B.

3.4.2 Cryogenics

We use a home made dilution-fridge from Patrick Pari at CEA Saclay, with a base
temperature of 30mK. Due to unknown reasons (probably a slightly detuned mix-
ture) we reach a base temperature of 80mK. For our purpose, however, this is low
enough. The cooling process is mediated by a phase transition between He3 and
He4 in the mixing chamber of the device which is thermally coupled to our sample.
Measurements show that we reach an electronic temperature of about 100 mK in
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Figure 3.5: Our two different injection schemes are illustrated in this figure. We
either inject at one of the side normal contacts (VS) or at the superconducting contact
in the middle (VM ). In both cases we apply a voltage which induces a current through
the nanotube. The current is changed into voltage by the two grounded resistors
mounted adjacent to the normal leads. We then amplify the voltage and measure it
with standard Lock-In technique.

this way. In the context of this work, the operating principle of a dilution-fridge
will not be discussed in detail. The reader is referred to the corresponding litera-
ture [114], [115].



Chapter 4

Transport in a double quantum
dot connected to a
superconducting lead

The data presented in this chapter was obtained almost entirely from one particularly
successful sample named S3LC4. The sample was cooled down three times. When
data from other samples is presented, this is indicated in the text.
In this chapter we present the results of our experiment. We quickly summarize
the point of departure which was explained in previous chapters. Our goal is to
split a Cooper pair injected by a superconducting electrode into a normal metal
fork. In order to favor the splitting process we design the normal metal fork such
that it acts as a double quantum dot. Furthermore the normal metal fork must be
combinable with superconductors. All the requirements are met by Single-Walled
Carbon Nanotubes. Hence we design the carbon nanotube beamsplitter, as depicted
in figure (4.1).
Within this chapter, we will answer three questions. The last and most important
one is if we can split a Cooper pair with the suggested setup. In order to get to this
final point we have to do two preliminary checks in the next section: First we have
to show that our sample acts as a double quantum dot and second we must ensure
that we inject Cooper pairs into our system.

4.1 Spectroscopy of the double dot

We measure the differential conductance in two measurement setups labeled side-
injection and middle-injection, respectively (see figures (3.5) and (4.2)). The mea-
surements are carried out at T = 80mK and an ac-excitation voltage of Vac = 1.8μV .
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Figure 4.1: The Carbon Nanotube beamsplitter: A Single-Walled Carbon Nanotube
is connected to two normal metal leads (Pd or Ti/Au) and a third, superconduct-
ing electrode in the middle (Al). The nanotube parts in-between two contacts act
as a quantum dot. Hence the whole system is a double quantum dot attached to a
superconducting reservoir.

In order to characterize our sample as a double dot we use the side-injection setup.
Later on we switch to middle-injection to show the injection of Cooper pairs.

4.1.1 Stability diagram of the sample

We use the side-injection setup to measure the stability diagram because in this
way, we can find the points where both dots are at resonance within one measure-
ment. In the middle-injection setup we would have to carry out two measurements
simultaneously to get the same information. Further technical details are given in
appendix (C). The result is depicted in figure (4.3) at a constant backgate voltage
of Vbg = −2, 543V .
The honeycombs are regularly spaced. Moreover the sample is in the tunnel cou-
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1µm
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Figure 4.2: In this figure, our two different injection schemes are illustrated.
We either inject at one of the side normal contacts (VS) or at the superconducting
contact in the middle (VM ). We use side-injection to characterize our sample as a
double quantum dot. In the middle-injection setup we show the injection and splitting
of Cooper pairs.

pling regime, where the excess electrons delocalize over the double dot and form
a molecular state (see subsection 2.3.2). The yellow number insets in figure (4.3)
define the fixed number of electrons on left and right dot, respectively.
In this context we assume that the superconducting contact which is in the middle
of our nanotube creates a potential barrier between the two dots by mechanical de-
formation. The difference in comparison with previous devices (see figure (2.14)) is
that the contact splitting the nanotube into two dots has always been an electro-
statically coupled gate [22], and not a tunnel coupled contact. For further details
see subsection 3.4.1. Despite the fact that we inject within the superconducting gap,
we have a small leakage current mediated by Andreev Reflection going to the su-
perconductor. We assume that Andreev Reflection makes a smaller contribution to
the current than highly transmissive tunnel barriers at the normal contacts. Hence
this leakage current is assumed to be unimportant for the electrostatic coupling pa-
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Figure 4.3: Typical stability diagram of our samples. The yellow number insets
define the number of electrons on 1st and 2nd dot, respectively.

rameters of the whole system.
Next we give experimental evidence that the current to the superconducting lead is
low:
First, we use an argument based on current conservation. The situation is explained
in figure (4.4(a)).
The total injected current Itot splits into three different current branches:

Itot = I1 + I2 + I3 (4.1)

The current flowing to the superconductor is hence

I2 = Itot − I1 − I3 = Uac
Rtot
− I1 − I3 (4.2)

and can be compared to the current I3 going to the second normal contact. Our
point is that I2 < I3 and can be neglected. From figure (4.4(b)), we can calculate
Rtot:

Rtot = 1
1

2kΩ + 1
RRS+2kΩ + 1

RLS+2kΩ
(4.3)
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Figure 4.4: (a) In the side-injection setup, the total injected current splits into
three branches. (b) Equivalent circuit scheme of the side-injection setup.

The values for the resistances RLS and RRS which connect left and right normal
contact to the superconducting contact can be measured within the middle-injection
setup. We simply measure the conductances GL,R to left and right normal lead.
Hence the current going to the superconductor is given by:

I2 = Uac[
1

2kΩ + 1
1/GR + 2kΩ + 1

1/GL + 2kΩ]− I1 − I3 (4.4)

If we carry out the above analysis at the triple points, we find that the current
going to the second normal lead is indeed higher than the current going to the su-
perconductor. In appendix D we illustrate an example where we obtain a factor 2,4
between the two current branches. The analysis is not very precise, however, as the
error made to determine the total current is big.
Second, the behavior I2 < I3 can also be seen directly in figure (4.5). In the middle-
injection setup (4.5(a)) we use VM = 50μV well within the gap. Clearly, the con-
ductance between superconducting lead and the left normal lead (the right normal
contact which is not shown is even less transmissive) is a factor 10 smaller than
the conductance measured across the whole dot in the side-injection setup (4.5(b)).
This result is not consistent with the factor 2,4 obtained before. The reason for this
is the big error which we have to consider when calculating I2 in equation 4.4. In
our example, the current going to left and right lead in the middle-injection setup is
around 1pA. The current I1 measured in the side-injection setup is (830± 0, 7)pA.
That means that the currents referring to GL,R are on the same order of magnitude
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as the error bar of I1. Nevertheless we use GL,R to calculate the total current from
which we subtract I1 and I3. Hence the determination of the total current is not
exact and the factor 2,4 obtained in this way as a ratio between I2 and I3 is less
reliable than the factor 10 which we obtain from the direct comparison of the stabil-
ity diagrams of middle-injection and side-injection. That means that we henceforth
rely on the second observation to claim that in the side-injection setup, the current
going to the superconducting terminal is smaller than the current going to the the
second normal terminal.
This observation gives evidence for the assumption that the superconducting ter-
minal connected to ground does not change the coupling parameters in comparison
with double dots which are split by a central gate electrode.
Further support for this claim is given by the observation of the line shapes of the
stability diagrams of middle- and side-injection. The shapes of the honeycombs com-
pared within figure (4.5) are equivalent. In the middle-injection case, the pattern is
slightly shifted down and left with respect to the side gate voltages. This happens
regularly from one measurement to the next but has no importance as long as the
dimensions of the honeycombs do not change. It thus turns out that the location
of electron injection is not relevant for our determination of electrostatic and tunnel
coupling of the two dots.

Figure 4.5: This figure shows the equivalence of the line shapes within the stability
diagram in middle- and in side-injection. In (a), the middle-injection pattern is
depicted. In comparison to the side-injection pattern (b), it is shifted a little bit down
and to the left. Otherwise it is completely equivalent.
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4.1.2 Extraction of electrostatic parameters

From the stability diagram, we can extract the coupling parameters of the double
quantum dot. For this purpose one typical honeycomb cell of the stability diagram
is considered (see figure 4.6(a)).

Figure 4.6: (a) The dimensions of the honeycomb cells define the gate capacitances.
Furthermore the charging energy can be extracted. (b) The separation of the two
anticrossing lines along the axis of detuning ε gives insight in both electrostatic and
tunnel coupling.

The following analysis is based on references [22] and [86]. First, the coupling
capacitances of the two sidegates to left and right dot are derived from the dimensions
(ΔVg1,ΔVg2) of the (regular spaced) honeycomb cells:

Cg1 = | e |ΔVg1
= | e |

0, 068V = 2, 35aF (4.5)

Cg2 = | e |ΔVg2
= | e |0, 2V = 0, 8aF (4.6)

Second, the charging energies EC1, EC2 of left and right dot are calculated. To do
so, the total capacitances of left and right dot CΣ2, CΣ1 are extracted from the finite
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bias stability diagram presented in figure (4.7). The finite bias dependence of the
stability diagram is explained in figure (2.8). The analysis follows reference [22].

Figure 4.7: The anticrossing presented in figure 4.6(b) at Vbias = 200μV . The
parameters δVg1 and δVg2 allow to calculate the charging energy of 1st and 2nd dot.

To calculate CΣ2, CΣ1, the equations 2.17 and 2.18 are used:

Cg1,2
CΣ1,Σ2

= | Vsd |
δVg1,2

With δVg1 = 0, 012V and δVg2 = 0, 085V extracted from figure (4.7), Vsd = 200μV ,
Cg1 = 2, 35aF and Cg2 = 0, 8aF , we obtain the following total capacitances for the
two dots:

CΣ1 = 141aF (4.7)
CΣ2 = 340aF (4.8)

Using equation 2.10, we obtain for the charging energy for the two dots:

EC1 = e2

CΣ1
= 1, 1meV (4.9)
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EC2 = e2

CΣ2
= 0, 5meV (4.10)

The stability diagram (4.6(a)) is presented in the voltage scale. In order to transfer
the data from the gate voltage to the energy scale we need the conversion factors
αg1 and αg2 as given in equations 2.15 and 2.16. However, we do not use the
capacitance ratios as given by the two equations but use a further method to extract
the conversion factors directly. For this method, it is necessary to measure the
stability diagram at several finite bias values and compare the observed line splittings
δ1, δ2 far away from the triple points with the corresponding gate voltage differences.
Additionally to the measurement at zero bias, we measure the stability diagram at
a bias voltage Vsd = 200μV and at Vsd = 400μV . The three measurements are
illustrated in figure (4.8).

Figure 4.8: Stability diagram of the same anticrossing at B=90mT at three different
bias voltages. The line splitting increases as a function of the bias voltage.

To understand the splitting, we have to consider figure (4.9). We are interested in
the splitting far away from the triple points. In figure (4.9(a)) we illustrate an energy
diagram in this situation. As the detuning ε is large, the individual dot energy levels
E1,2 do not form a molecular state any more. If we fix the sidegate voltage Vg2 of
the second quantum dot and sweep only Vg1, we can switch to a single quantum dot
picture. The second quantum dot is traversed by means of cotunneling. In a more
simplified picture it can even be thought of being part of the drain reservoir. In
figure (4.9(b)) we plot the corresponding differential conductance as a function of
source-drain bias Vsd and Vg1. We obtain Coulomb-diamonds of zero conductance
(black regions) and regions of finite conductance (white regions). This plot is typical
for a single quantum dot and illustrated in figure (2.5). If we go to a fixed and
finite bias voltage in figure (4.9(b)) and sweep along the orange arrow, we obtain
a finite conductance region of width δ1, depending on the bias voltage. Thereby it
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is possible, that the transitions from Coulomb diamonds to the conductive region
are very pronounced. If this is the case the conductance along the orange arrow
is a double peak structure. In figure (4.8) the line cuts along constant Vsg2 which
determine δ1 correspond to the orange arrow in figure (4.9(b)). For fixed Vsd and Vg2
we sweep Vg1 and henceforth obtain a region of finite conductance of width δ1. This
width increases with increasing bias voltage. Referring back to figure (4.9(a)) we
find that conductance is possible as long as E1 is in-between the chemical potentials
μL(R) of left and right lead. This interval is given exactly by eVsd. From the plots
given in figure (4.8) we can extract the gate voltage interval δ1 which is necessary to
overcome the energy difference given by eVsd. Hence we can calculate the conversion
factor αg1 which converts gate voltage in absolute energy. In the same way we can
find αg2.

Figure 4.9: (a) If the detuning of E1 and E2 becomes big, no molecular state
develops. That means that the double quantum dot behaves like a single quantum dot
far away from the triple points. The second dot is traversed by co-tunneling. (b)We
obtain Coulomb-diamonds as a function of applied Vsd and Vg1. The second quantum
dot can be interpreted as part of the right contact.

Due to this method the two conversion factors are given by

αg1 = Vsd
δ1

(4.11)
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and

αg2 = Vsd
δ2

(4.12)

Note that the measurements are carried out at B = 90mT . The sample is thus in
the normal state and the measurement signal is much higher. This is possible as
tunnel coupling and electrostatic coupling between the normal leads are supposed to
be equal in superconducting and normal state. The stability diagrams in figure (4.8)
are measured in the middle injection configuration at three different bias voltages.
We measure at Vsd = 0μV , Vsd = 200μV , Vsd = 400μV . We carry out two finite bias
measurements to have two independent measurements of the conversion factors αg1
and αg2. The results are illustrated in figure (4.10(a)) and (4.10(b)). There, we plot
the line splitting δ1,2 as a function of the applied bias voltage Vsd. The splitting of
the lines is a linear function of the bias voltage. To minimize the error, we carry out
a linear fit of our three data points and obtain the conversion factors αg1 and αg2.

αg1 = 0, 03987 (4.13)
αg2 = 0, 00973 (4.14)

These conversion factors can be used to convert the gate voltage axes (Vg1, Vg2) of
the stability diagrams to the absolute energy axes eV1 and eV2.

eV1 = eαg1Vsg1 = 0, 03987eVsg1 (4.15)
eV2 = eαg2Vsg2 = 0, 00973eVsg2 (4.16)

Next we focus on one particular anticrossing within figure (4.6(a)) which is high-
lighted by the small dashed box in the down right corner. A zoom on this region
is available in figure (4.6(b)). The coordinate system (Vsg1, Vsg2) is converted to
absolute energy (eV1, eV2) using the conversion factors αg1 and αg2. Furthermore we
change variables in the following way:

Δ = eV1 + eV2 (4.17)
ε = eV1 − eV2 (4.18)

The new coordinate system Δ, ε is defined exactly as in the explanation given in
figure (2.11). In this way we can understand that ε is the axis of detuning and Δ
is the axis which shifts the whole double-dot potential with respect to the chemical
potential of the leads.
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If one plots the energy difference EΔ along the Δ-axis between the anticrossing lines
as a function of the detuning ε, one obtains the plot illustrated in figure (4.10(c)).
As pointed out in equation 2.24, the separation of the wings, (again neglecting the
grounded superconducting reservoir), is given by:

EΔ =
√

2U ′ +
√

4ε2 + 8t2

When we extract the separation of the anticrossing lines in figure (4.6(b)), we face
the problem that the lines have finite width. In order to account for the error which
we make by extracting the separation of the two anticrossing lines, we carry out the
analysis for an upper boundary of maximal line separation (indicated by the upper
dots in figure (4.10c)) and a lower boundary of minimal line separation (indicated
by the lower dots in figure (4.10c)). Next we fit each dataset with equation 2.24.
As a result we take the mean value of the two fits. The result for the electrostatic
coupling is U ′ = (4±2)μeV and for the tunnel coupling we obtain t = (126±9)μeV .
Thus the tunnel coupling dominates over the electrostatic coupling in our device.

Figure 4.10: (a),(b) The line splitting as a function of bias voltage defines the
conversion factors of the two gate voltages to the absolute energy scale. (c) The
separation of the two anticrossing lines allows the determination of both tunnel and
electrostatic coupling between the two dots of the double dot device.

At this point we consider the first question, namely the question whether our de-
vice acts as a double dot, as answered. We clearly observe double dot behavior
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and furthermore are able to extract all relevant coupling parameters which will be
important for modeling our system theoretically.

4.1.3 Testing the NS-junction

Now we consider the second check mentioned in the beginning of this chapter: We
have to show that we inject Cooper pairs into our double dot. At base temperature,
we test whether the aluminum contact is superconducting. To do so we adjust the
two sidegate voltages such that (Vg1, Vg2) are located within a honeycomb, away from
the resonances. In the middle injection setup, we henceforth probe the BCS-density
of states (equation 2.32) as a function of the applied source-drain voltage. The
equation is used to fit the obtained data at zero magnetic field (marked as black
dots in figure 4.11(left)). From the fit, an electron temperature of T = 100mK
and a superconducting gap of ΔS = 85μeV can be extracted. If a magnetic field
(B=44,5mT) is applied, the gap vanishes and the sample switches to its normal
state. The corresponding data is denoted by green dots within figure (4.11(left)).

Figure 4.11: (Left) In the middle-injection scheme we measure the differential
conductance at T=80mK between the superconducting contact and one of the normal
leads. Away from resonance, in the Coulomb blockade regime, we observe the super-
conducting gap (black dots) at zero magnetic field. Fitting the data with the BCS-
density of states, an electron temperature of T=100mK and a gap of ΔS = 85μeV is
extracted. If a magnetic field is applied (44,5mT), the sample switches to the normal
state and the gap vanishes.(Right) The measured conductance between middle and left
electrode at one of the triple points. Finite subgap current, which can be attributed to
Andreev Reflection, is observed.

In figure (4.11 (right)), the bias dependence of the NS junction is shown at one of
the triple points. To compare the measurement to the off-resonance case, the data
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is normalized to the off-resonance data. Clearly we observe finite subgap current
which can be attributed to Andreev Reflection.

4.2 Evidence for splitting Cooper pairs
In section (2.6) we introduced the conductance asymmetries αS, αN as a diagnostic
tool to detect the existence of CAR in our beamsplitter sample. In the following
section, this tool is applied to our measurement results.

4.2.1 Measurements along the axis of detuning at zero and
finite magnetic field

According to the strategy explained in section 2.6, we carry out conductance mea-
surements in the middle-injection setup. We measure the differential conductance at
left and right lead at zero and finite magnetic field. The measurements are carried
out at triple points and single resonances.
We zoom into the honeycomb stability diagram shown in figure (4.3) and focus on
individual honeycombs as shown in figure (4.12). If we measure along the yellow
arrow we obtain the differential conductance at two adjacent triple points which are
labeled T1 and T2. The same measurement is carried out along the green arrow to
obtain the differential conductance at the single resonances. The single resonance
in figure (4.12) is labeled S1. In total, 36 triple points and 11 single resonances were
studied.
First we discuss the measurements at the triple points. The sweep-direction as well

as starting and end-point of the sweep are indicated by the yellow arrow in figure
(4.12). The sweep direction is a superposition of gate voltages Vg1 and Vg2. Using
equations 2.15, 2.16 and 4.9, 4.10, we can define the sweep direction as the energy
axis δε

δε ≈ (Cg2EC2δ
′Vg2 + Cg1EC1δ

′Vg1)/e (4.19)

where Cg2, Cg1 are the gate capacitances of the sidegates, EC2, EC1 are the charging
energies of the dots and δ′Vg1, δ′Vg2 are the voltage differences at the sidgates which
are the parameters to drive the measurement along the yellow arrow in figure (4.12).
In figure (4.13) the obtained results for two anticrossings labeled AC1 and AC2, i.e.
4 triple points, are presented. The two anticrossings are marked within the stability
diagram presented in figure (4.6). The two triple points within each anticrossing
correspond to the two visible peaks. As described above, the measurement is taken
at both left and right lead, therefore each diagram is two-fold. GL signifies the
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Figure 4.12: Stability diagram of a typical anticrossing in the middle-injection
setup. The yellow arrow defines the scanning direction across two adjacent triple
points T1 and T2. We measure the zero bias conductance at left and right lead simul-
taneously, following the indicated direction. The same is carried out for the single
resonance S1.

conductance at the left normal lead whereas GR is standing for the conductance at
the right normal lead. The red curves are the measurements in the superconducting
state whereas the black curves are the corresponding measurements in the normal
state. Note that the black curves are scaled down to allow better comparison with
the subgap current. From the plots it is also evident, that the coupling to the left
reservoir is better than the coupling to the right reservoir. Therefore GL is higher
than GR. The most important feature of figure (4.13) is the conductance ratio
between the peak values of left and right lead in the superconducting case (αS) and
in the normal case (αN). From figure (4.13), the extracted conductance ratios are
equal in normal and superconducting state. We analyze this feature in more detail
by determining αS and αN for 36 triple points.
Second we repeat the analysis for single resonances. As opposed to equation 4.19,
we choose horizontal scanning directions in the middle of the honeycomb cells. The
energy interval δε along the sweep direction is sketched in figure (4.12) and is defined
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Figure 4.13: We measure the zero bias conductance across the anticrossings, as
shown in figure (4.12) in the middle-injection setup. Data for two different anticross-
ings is shown. Each anticrossing shows a double peak corresponding to two adjacent
triple points. The measurement is carried out in the superconducting state (red line)
and the normal state (black line). Note that the black lines represent the data multi-
plied by a factor 1/3. Most importantly, the conductance ratio between left and right
lead seems to be equivalent in normal and superconducting state.

as

δε ≈ (Cg1EC1δ
′Vg1)/e (4.20)

where Cg1 is the gate capacitance of the first sidegate, EC1 is the charging energy of
the first dot and δ′Vg1 is the voltage difference at the first sidgate which drives the
measurement along the orange arrow in figure (4.12). The equivalent plot to figure
(4.13) is given in figure (4.14). Along the defined sweep direction only one dot,
namely quantum dot 2 attached to GL, is at resonance. The second dot which is at-
tached to GR is in Coulomb blockade. Therefore we obtain hardly any signal there.
In the normal state, however, GR is not zero though. The reason is that cotunneling
makes a small contribution to transport and results in a finite conductance. In the
superconducting state, this contribution is suppressed. In figure (4.14) we analyze
again the conductance ratio between left and right lead in the superconducting case
(αS) and in the normal case (αN). From the figure it is visible that the conductance
ratios depend on the fact whether the sample is in normal or superconducting state.
The ratios are different in the two cases. In the superconducting state the current
at the right lead gets so low, that it falls into the noise of our measurement. In this
situation we simply take the value to be zero and add an error bar corresponding to
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Figure 4.14: We measure the zero bias conductance across the single resonances,
as shown in figure 4.12. Data for one typical single resonance is shown. The normal
state is represented by the black line (scaled down in the figure) whereas the data in the
superconduting state is given by the red line. Most importantly, the conductance ratio
between left and right lead changes if we switch from the normal to the superconducting
state.

the noise level of our measurement.
All in all, we determine αS and αN for 11 single resonances.

As a final step we draw all points αS as a function of αN into a common diagram
(see figure (4.15)).
Consistent with equations 2.42 and 2.40, αS[αN ] for single resonances fall onto a
parabolic function whereas αS[αN ] for triple points fall on a linear function. This
agrees with our qualitative reasoning in subsection (2.6.1) based on the presence and
absence of CAR. The data corresponding to the triple points falls on αS = αN and
thus demonstrates that CAR is present in our device.
This result means that we can indeed split Cooper pairs incident from a central
superconducting finger into two normal metal leads. To do so, we sweep Vg1 and Vg2
such that we inject Cooper pairs at the triple points of the stability diagram. We can
furthermore switch CAR off if we move the gates away from the triple points and
readjust them to measure in the middle of the vertical conductance lines, in-between
the triple points. We call these points single resonances. At these points, only local
Andreev Reflection contributes to the total transport.



78
CHAPTER 4. TRANSPORT IN A DOUBLE QUANTUM DOT CONNECTED

TO A SUPERCONDUCTING LEAD

Figure 4.15: We plot αS as a function of αN for both triple points and single
resonances. As expected, single resonances fall on a parabola whereas triple points fall
on a linear function. This proves the existence of CAR in our beamsplitter device.

4.2.2 Unbalanced Anticrossings

For 5 out of 36 anticrossings, a special situation arises. As can be seen in figure
(4.15), the red open squares do not fall on the universal linear function αS[αN ].
A typical measurement across an anticrossing of this kind is presented in figure
(4.16(a)). We call this anticrossing unbalanced because the doublets both at right
and left side differ substantially in their height. Furthermore the peaks are narrower
than usually. These effects can be attributed to shifting gate potentials at the triple
points in question. Rather than sweeping across the triple points, we accidently
sweep on a shifted axis which is shown by the yellow arrow within figure (4.16(c)).
In comparison with the original sweep direction (indicated by the dashed arrow) the
sweep is shifted on the axis of detuning. By comparing the data to the stability
diagrams of the anticrossings in question, Alfredo Levy-Yeyati can quantify this
shift and take it into account within his full theory. In this way he can theoretically
reproduce our data (compare figure 4.16(b)). This reasoning justifies that we treat
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Figure 4.16: (a) We observe 5 triple points which do not fall on the universal
linear function αS [αN ]. It turns out that the scanning direction δε of the triple points
in question is shifted on the axis of detuning. This shift is suggested by the asymmetry
between the peaks in each doublet and the small width of the resonances. (b) If we
take a small shift along the axis of detuning into account, we can reproduce our
measurement results theoretically. (c) The yellow arrow corresponds to the shifted
scanning direction. The original scanning position is illustrated by the dashed arrow.

the five triple points in question separately.

4.2.3 Quantitative comparison of theory and experiment

As explained in subsection (2.6.2), the corresponding theory can be used to model
our measurements, extract the contribution of CAR to the total conductance and
allows to define a splitting efficiency.
We apply the theory to the two anticrossings AC1 and AC2 presented in figure
(4.13). The corresponding stability diagram is depicted in figure (4.6(a)).
By using the corresponding theory (see figure 4.17), Alfredo Levy-Yeyati can nu-
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merically fit our measurement data in the normal state (black data curves) and in
the superconducting state (red data curves) along the axis δε perpendicular to the
anticrossings. As a result he obtains the orange (normal state) and green (supercon-
ducting state) curves in figure (4.17). As is visible in the plot, theory and experiment
fit together. Additionally, the contribution of CAR is denoted by the black dashed
line. Again, this is a numerical result.

Figure 4.17: We calculate the zero bias conductance at the triple points at middle-
injection in the superconducting (green curve) and normal (orange curve) state. We
compare the results to our measurements presented in figure (4.13). The dashed black
line quantifies the contribution from CAR to the total transport as extracted by Alfredo
Levy-Yeyati’s theory.

The numerical reproduction of our data is based on the coupling parameters EC1,
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EC2 and Γ12 of the double dot beamsplitter. These parameters can be extracted
from the stability diagram as illustrated in subsection 4.1.2. Another possibility is
to measure the finite bias Coulombdiamonds as illustrated in figure (2.5) for both
1st and 2nd quantum dot. The maximal extension of the diamonds on the Vsd scale
are exactly equal to EC , as illustrated in figure (4.18). Concerning the interdot
coupling energy of our double quantum dot device, it turned out in subsection 4.1.2
that the coupling energy is nearly entirely composed of the tunnel coupling t. The
electrostatic coupling energy U ′ can therefore be neglected and we assume for the
total coupling energy Γ12:

Γ12 = t

Due to this fact, we have another possibility to extract the tunnel coupling directly
from the plots given in figure (4.13). Consistently with figure (2.11(a)), we simply
take half of the separation of the two peaks. This corresponds to the total coupling
energy of the two dots.
We discuss in detail the set of parameters of the second anticrossing (AC2), shown
in figure (4.17). This anticrossing corresponds to the one which was analyzed in
subsection 4.1.2. The set of fitting parameters for AC2 is given by:

EC2 = 0.595meV
EC1 = 0.85meV

Γ12 = t = 170μeV
ΓL = 77μeV

ΓR = 110μeV
ΓSL = 21μeV
ΓSR = 4μeV

Although the values for EC1, EC2 slightly differ (around 20%) from the values ex-
tracted in subsection 4.1.2, they are on the same order of magnitude. In subsection
4.1.2 we found EC1 = 1, 1meV and EC2 = 0.5meV . Here, we extract the data from
the finite bias Coulomb diamonds which were measured during the same cool-down
as the stability diagram shown in figure (4.6(a)). We measure the finite bias Coulomb
diamonds at B = 63mT in the middle-injection setup at left and right normal lead
along the gate trajectory of AC2. The result is shown in figure (4.18(a)). As the
Coulombdiamonds are not entirely visible in the plots, we interpolate the boundaries
of the diamonds to obtain EC1 = 0.85meV and EC2 = 0.595meV . As the Coulomb
diamonds are a direct method to determine EC1, EC2, the values EC1 = 0.85meV
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and EC2 = 0.595meV are considered more reliable as the values obtained in subsec-
tion 4.1.2. Hence it is justified to claim that the parameters used for the numerical
fit are consistent with our measurements.

Figure 4.18: (a) The finite bias Coulomb diamonds in the middle-injection setup
along AC2 for both dots of the double quantum dot are depicted here. (b) Similar
measurement as above along AC1.

Concerning the interdot tunnel coupling, we extract half of the separation of the two
peaks of AC2 in figure (4.17(b)). The coupling energy, which is only due to tunnel
coupling, is Γ12 = t = 170μeV . This result differs from the value for AC2 which was
derived in subsection 4.1.2. There we found Γ12 = t = (126 ± 9)μeV . Nevertheless
the two values are consistent. This can be explained as follows:
The right peak of AC2 in figure (4.17(b)) has a larger width than the left peak.
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We attribute this behavior to a slight tilting of the gate voltage trajectory as il-
lustrated in figure (4.19). The trajectory with the slight mismatch (solid line) is
longer than the direct trajectory (dashed line). Hence the energy difference between
the peaks of AC2 in figure (4.17(b)) is stretched from Γ12 = t = (126 ± 9)μeV to
Γ12 = t = 170μeV .

Figure 4.19: In case of the measurement of AC2 presented in figure (4.13), the gate
trajectory illustrated by the yellow solid line is slightly tilted. The direct trajectory
would correspond to the dashed line.

The parameters used to model the anticrossing AC1 are given by:

UL = 0.72meV
UR = 1.06meV
Γ12 = 140μeV

ΓL = 68μeV
ΓR = 93μeV
ΓSL = 9μeV

ΓSR = 13μeV

The charging energies are consistent with the values extracted from the Coulomb
diamonds measured at middle-injection along the gate trajectory of AC1. The re-
sult is illustrated in figure (4.18(b)). Again the data is limited in range and the
size of the Coulomb diamonds has to be interpolated. We obtain EC1 = 1, 06meV



84
CHAPTER 4. TRANSPORT IN A DOUBLE QUANTUM DOT CONNECTED

TO A SUPERCONDUCTING LEAD

and EC2 = 0.72meV . These values are also consistent with the values extracted
in subsection 4.1.2. The same refers to the tunnel coupling. From figure (4.17(a))
we obtain Γ12 = 140μeV . As the anticrossings AC1 and AC2 in figure (4.6) look
similar, we assume that the coupling energy is the same in the two cases. We can
thus compare the value Γ12 = 140μeV obtained for AC1 to the tunnel coupling of
AC2 as extracted in subsection 4.1.2 (Γ12 = t = (126 ± 9)μeV ). We find that the
two values are consistent.

In the superconducting state, we can define a splitting efficiency of our beamsplitter.
At the triple points, Cooper pairs either split in a CAR process or tunnel to right or
left lead by means of local Andreev Reflection. In subsection (2.6.2), the efficiency
is thus defined as the ratio between the CAR contribution to the conductance and
the total conductance. As only peak values are considered, we obtain an analytic
expression for the splitting efficiency as given by equation 2.51. For each datapoint in
figure (4.15) we calculate the splitting efficiency and plot the efficiency as a function
of αN in figure (4.20).

Figure 4.20: We show the splitting efficiency of our Carbon Nanotube beamsplitter
for every triple point presented in figure (4.15). Splitting efficiencies up to 50 per
cent are reached.

We obtain splitting efficiencies up to 50 per cent. This is the central result of
this thesis which shows that we do split Cooper pairs in our Carbon Nanotube
beamsplitters.
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4.3 Nonlinear transport at triple points
In this section we report on preliminary results on the differential conductance which
we obtained at finite bias in the middle-injection setup. At the moment, however,
a quantitative theory to gain insight in the charge transport processes is not yet
available.

Again we focus on anticrossing AC2 as illustrated in figure (4.6(a)). We choose a
gate trajectory δε across the triple points as illustrated in figure (4.21(a)). For each
point on the trajectory, we sweep the source-drain voltage Vsd. We measure the
differential conductance GL at the left normal lead. The differential conductance at
the right normal lead is measured simultaneously but not shown in this figure. It
looks very similar to the result for the left lead, only the signal is smaller.
We obtain two-dimensional plots as illustrated in figures (4.21(b)) and (4.21(c)). In
figure (4.21(b)) we show the result for zero magnetic field whereas figure (4.21(c))
shows the result for B = 63mT .
When we sweep the gates such that we move along the axis δε, we intersect the triple
points. In figures (4.21(b)) and (4.21(c)) the triple points are labeled by T1, T2. In
the superconducting case (figure 4.21(b)), the effect of the gap ΔS is very pronounced
at the triple points. We observe a gap of ΔS ∼ 85μeV (see figure 4.21(b)), which
corresponds to the minigap of the Pd/Al-bilayer [113]. At the triple points, the
conductance resonances penetrate into the gap. The current is due to local and
Crossed Andreev Reflection. By applying a magnetic field of B = 63mT (compare
figure 4.21(c)), the superconducting gap vanishes. This effect is very pronounced at
the triple points.
We make a further observation concerning the interdot tunnel coupling Γ12. The
tunnel coupling is given by the distance of the resonance lines as illustrated in figure
(4.21(b)). For zero bias this distance corresponds exactly to Γ12 ∼ 170μeV as derived
in the last section from figure (4.17) for anticrossing AC2. When we go to finite
bias, however, we can see in figures (4.21(b)) and (4.21(c)) that the distance of the
resonance lines varies as a function of bias. As the interdot coupling energy is a very
important parameter for quantitative fits in the finite bias regime, the dependence
of Γ12 as a function of the applied bias voltage Vsd has to be investigated in more
detail in future experiments.
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Figure 4.21: (a) The scanning direction is defined as the trajectory across the
anticrossing AC2. (b) Finite bias dependence of the differential conductance measured
at the left normal lead in the middle injection setup in the superconducting state. (c)
The measurement is repeated in the normal state, at B = 63mT .



Chapter 5

Discussion and Outlook

In subsection 4.2.1, we show experimentally that CAR are present in our Carbon
Nanotube Beamsplitter. We proceed in subsection 4.2.3 with the quantitative eval-
uation of the contribution of CAR to the total current.
Although we could show the existence of CAR, our method to do so is indirect and
based on the qualitative reasoning given in subsection 2.6.1. The indirectness is
even more pronounced when we fit our data numerically. Although several input
parameters in subsection 4.2.3 are extracted from our measurements, we still have
free fitting parameters and small inconsistencies concerning the determination of the
input parameters EC1, EC2 and Γ12 within different methods. This makes us infer
that the splitting efficiency which we obtain in subsection 2.6.1 has considerable
error bars which are difficult to evaluate.
Concerning the directness to show the inset of CAR at the triple points, the com-
peting experiment by Hofstetter et al. [116] has an advantage compared to our ex-
periment. The authors use the middle-injection setup and measure the differential
conductance at first and second lead, simultaneously. As depicted in figure (5.1(a)),
they adjust the first quantum dot on a resonant level and only sweep the gate voltage
attached to the second dot. They sweep the second quantum dot through a con-
ductance resonance and perform this measurement in the normal as well as in the
superconducting state. Special attention is paid to the conductance G1 measured at
the first quantum dot. In the normal state, the sweep of the second dot through a
conductance resonance has no effect on the conductance G1 of the first dot. In the
superconducting case, however, the conductance G1 at the first dot increases once
the second dot is swept in a conductance resonance. This additional contribution to
the current is attributed to CAR, as no other transport mechanism can account for
this correlated particle effect.
Concerning the splitting efficiency, however, Hofstetter et al. attain lower values
than we do. From figure (5.1(b)) we can extract a splitting efficiency around 1%.
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Figure 5.1: (a) The measurement method of the Basel group: In the middle-
injection setup, the differential conductance is measured at 1st and 2nd lead. The
1st quantum dot is held at resonance while the 2nd dot is swept through a conduc-
tance resonance. (b) The additional conductance measured at the 1st lead is attributed
to CAR. (Figures taken from reference [116])

We wonder why the two experiments lead to such a big difference concerning the
splitting efficiency. We assume that the sample used by Hofstetter et al. possesses
low interdot coupling Γ12. Hence we also suppose that tunnel coupling is low in
their sample, which could be responsible for the low splitting efficiency. In their
publication, the interdot coupling regime is not entirely investigated, as the authors
do not show a stability diagram of their sample. In contrast to Hofstetter et al.,
our device is measured in the regime of strong interdot coupling. Furthermore tun-
nel coupling outweighs electrostatic coupling which allows the two electrons of an
incoming Cooper pair to form a molecular state on the double dot. As we obtain
much higher splitting efficiencies than Hofstetter et al., high tunnel coupling seems
to be more favorable for the splitting process than low tunnel coupling.
In a recent article [66], it is pointed out that the experiment presented in this thesis
may help to pave the way to further explore nonlocal effects in solid state systems.
The author also speaks about possible applications such as teleportation or ultrase-
cure communication (see section 1.2). We think that applications are not close at
hand at the moment, but a greater understanding of the possibility to create en-
tangled states in solid state devices is very important from a merely scientific point
of view. This absolutely justifies further investigations: Tests of nonlocality in a
solid state system would be a scientific breakthrough. Together with the work by
Hofstetter et al. [116], our work opens a new research field in this context.
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This brings us to the question how the research field will develop and what experi-
ments are next at hand. To give a judgement it is necessary to define the ultimate
goal and identify a series of intermediate steps.
The ultimate goal is to test Bell’s inequalities and thus prove that the split Cooper
pairs are still entangled. In order to come to this point, one has to achieve three
intermediate goals: The first thing is to find a tool to detect the entangled state.
In solid state physics an appropriate method to do so is to measure shot noise cross
correlations. Hence one milestone is to design a sensitive noise measurement setup.
Electrical current is the consequence of a potential difference applied across a resis-
tor. As a function of time, current is not constant but rather shows tiny stochastic
oscillations (see figure 5.2(a)). What is typically measured in a standard resistance
measurement is the average value of the current, named I0. The statistical oscilla-
tions, however, are very sensitive to electronic interactions within a conductor.
This can be used to probe the simultaneous arrival of charge carriers at left and
right contact of our beamsplitter device. The point of departure are spectra as illus-
trated in figure (5.2(a)), for both left and right lead. If we calculate the correlation
function of the two spectra, the so-called cross-correlations, we have a tool to make
a statement concerning the simultaneous arrival of particles.
The experiment to measure shot noise cross correlations between the normal contacts
of a beamsplitter geometry involving a superconducting source contact is suggested
in several publications [70], [69], [71], [117], [62]. Furthermore it is pointed out,
that entangled electrons would lead to positive cross correlations (see figure 5.2(b)),
given that the superconductor-nanotube junction is in an intermediate transparency
regime. The cross-correlation noise spectral density is given by:

S12(f) = 2
∫ ∞
−∞
dτ〈δI1(t)δI2(t+ τ)〉e2iπfτ (5.1)

However, positive cross-correlations alone do not prove entanglement yet. Strictly
speaking positive correlations are only a proof of charge correlation, not of spin.
That means that the second milestone is to realize a sample with ferromagnetic
contacts to allow spin-filtering. In order to prove the entanglement of the particles,
one has to be sure that only particles of a predefined spin orientation enter left and
right lead, respectively. This is very important and is the analogon to the polarizers
in the optical experiment (see figure 1.2). Finally, one has to investigate the finite
bias conductance regime of the structure. Shot noise always is a function of the
current passing through the conductor and hence a finite bias effect. Therefore
it is inevitable to study the finite bias conductance of our double quantum dot
beamsplitter device in the middle-injection setup.
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Figure 5.2: (a) Typical current noise spectrum as a function of time (taken from
[118]). (b) Current-current noise correlations at both ends of the nanotube as a
function of the transparency ε between superconductor and nanotube (taken from [70]).



Chapter 6

Conclusion

In this work, we have made a first step towards a solid-state entangler which could
be used as a basic building block in quantum-computation like devices. We showed
that Cooper pairs coming from the central electrode of a Y-structured beamsplitter
geometry can be split into two normal leads. In some more detail our results can be
described as follows:

First, we showed by means of transport measurements that our carbon nanotubes are
of sufficiently high quality to deliver regular spaced Coulomb diamonds. Another
achievement is the control of contact resistances: We reliably fabricated contact
resistances leading to Coulomb-blockade behavior. The control of the contact resis-
tance of the superconducting contact was the most difficult part in this context: The
contact between the nanotube and pure aluminum turned out to be too resistive.
To solve this problem we replaced the pure aluminum by an aluminium/Pd bilayer
which was adjusted such that our device had a room temperature contact resistance
around 30kΩ and a superconducting gap around 100μeV at low temperature.

Second, the experimentally observed stability diagram confirmed the non trivial fact
that our samples act as double dots. This is non-trivial because we do not have a
topgate in the middle of our nanotube which defines two separate dots, as was done
in previous devices. Instead, we deposit our superconducting electrode in the middle
of the tube which fulfils a double function: It serves as a Cooper pair injector and
at the same time it creates a potential barrier which separates the Single-Walled
nanotube in two quantum dots. Another very important observation is that the sta-
bility diagram does not depend on the fact whether we inject at one of the normal
contacts and measure at the other normal contact or if we inject at the supercon-
ducting contact and measure at one or both normal contacts. It looks the same in
all cases.
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Third, we developed a method how to show, by means of simultaneous conductance
measurements at left and right lead, that we split the Cooper pairs. We present
a slightly simplified but very intuitive argument how the ratio GR/GL at triple
points and single resonances gives insight into the microscopic nature of transport:
Taking resonances within the stability diagram, GR/GL in the superconducting state
plotted againstGR/GL in the normal state depend drastically on the fact whether the
resonances are triple points or single resonances. For the triple points, αS[αN ] shows
a linear behavior, whereas the ensemble of analysed single resonances describes a
parabola. Furthermore we present a fully interacting theory implemented by Alfredo
Levy Yeyati, whose results only show small deviations from the qualitative argument.
Theory and experiment are consistent. Finally, we can use the full theory to extract
the contribution of CAR to the total transport. In this way we can state that a
CAR contribution up to 50% can be expected in the strong coupling regime.



Appendix A

CVD growth of Single-Walled
Carbon Nanotubes

A.1 Catalyst recipe for Single-Walled Carbon Nan-
otubes

• Fe(NO3)39H2O: 80,4mg

• MoO2(acac)2: 4,1mg

• Al(nanoparticles): 60,8mg

• Methanol: 60ml

A.2 Growth process - Paris

• growth temperature: 900◦C

• start: flush the tube with all used gases at the used flow rates for 2min

• heating: Argon, 1500 ml/min

• growth preparation: Hydrogen, 240ml/min, 10min

• growth: Hydrogen, 240ml/min and Methane, 1000ml/min, 10min

• cool down to 500◦C: Hydrogen, 240ml/min and Argon, 1500ml/min

• cool down to room temperature: Argon, 1500ml/min
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A.3 Growth process - Regensburg
• growth temperature: 900◦C

• start: flush the tube with all used gases at the used flow rates for 2min

• heating: Argon, 1500 ml/min

• growth: Hydrogen, 700ml/min and Methane, 800ml/min, 15min

• cool down: open the furnace directly after growth

• cool down to 500◦C: Hydrogen, 700ml/min and Argon, 1500ml/min, furnace
closed

• cool down to room temperature: Argon, 1500ml/min, furnace closed



Appendix B

Printed-Circuit-Bord

Figure B.1: The Printed-Circuit-Bord used for our measurements. To illustrate
how the sample was mounted on chip, a sketch of the sample is put in the middle
of our sample holder. The contact pads of the sample contacts are bonded to the
respective pads of the PCB. Note that at the corner of the sample we scratch the
wafer and thus destroy the oxide layer between surface and bulk. We can thus connect
the backgate of the chip with a contact pad on our sample holder.
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Appendix C

Finding the working point of the
beamsplitter

In figure C.1, we illustrate how to find suitable gate voltage ranges for our experi-
ment. This preliminary work is done in the side-injection scheme as defined in figure
(4.2). In principle, we have to adjust three parameters: Vbg, Vg1 and Vg2.
We leave the two sidegates at zero voltage and start with the adjustment of the
backgate voltage. In our experiment, the backgate voltage together with the poten-
tial barrier created by depositing the middle contact on our tube can be thought of
as an analog of the central gate in previous devices (see e.g. reference [22]). Hence
the backgate voltage is crucial because it defines the coupling of the two quantum
dots.
At 4K we measure Coulomb oscillations at zero bias between the normal contacts as
a function of the backgate. Clearly we can see that our nanotube is semiconducting
and has a pinch off around +2V (see figure C.1(a)). Next we cool our sample to
base temperature, which is 80mK in our case. As thermal smearing is reduced at
low temperatures, Coulomb peaks become sharper. As indicated in figure (C.1(b))
we set the backgate voltage in a region of low conductance, preferably not too far
away from the pinch off. This increases the chance to observe a double dot behavior
rather than a single dot behavior of our sample. Having adjusted the backgate to a
constant voltage we start sweeping sidegate 1. We investigate a large gate voltage
range −10V...10V and look for a regular spaced pattern as shown in figure (C.1(c)).
Last but not least we set sidegate voltage 1 to a constant value, too, and sweep the
second sidegate. If we obtain again a regular spaced pattern as the one in figure
(C.1(d)), the chance is high to find a promising double dot gate voltage configu-
ration. The next step is to start a detailed measurement of the stability diagram:
The conductance is measured as a function of the two sidegates and the honeycomb
stability diagram is supposed to occur.
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Figure C.1: In (a) Coulomb oscillations between the two normal contacts at T=4K
are depicted. Clearly, the nanotube is semiconducting with a pinch-off voltage around
2V. (b) We choose a smooth gate region to fix the backgate voltage. In (c) we sweep
sidegate 1. Once we find nice oscillations we fix sidegate 1. (d) Next we sweep
sidegate 2. If we find nice oscillattions also as a function of sidegate 2, we start the
measurement of the stability diagram.



Appendix D

Determination of the current
going to the superconductor in the
side-injection setup

We determine the current I2 going to the superconductor in the side-injection setup.
The setup is illustrated in figure (4.4). In the side-injection setup we measure the
parameters I1, I3. We switch to the middle-injection setup and measure GRS, GLS.
We apply a bias voltage Uac = 1, 8μV . By using equation 4.4 we can henceforth
determine the current I2.
We study the left triple point illustrated in figure (D.1). We obtain the following
results:

GLS = 0, 069e
2

h
(D.1)

GRS = 0, 028e
2

h
(D.2)

I1 = 0, 83nA (D.3)
I3 = 0, 0537nA (D.4)
I2 = 0, 023nA (D.5)

(D.6)

Hence the current going to the second normal reservoir is a factor 2, 4 times bigger
than the current going to the superconductor.

99



100
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SUPERCONDUCTOR IN THE SIDE-INJECTION SETUP

Figure D.1: We measure the differential conductance in the middle-injection setup
at left (a) and right (b) lead. Afterwards we switch to the side-injection setup and
measure the same region again. We measure I1 and I3 as defined in figure (4.4).
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[16] R. Warburton, C. Schäflein, D. Haft, F. Bickel, A. Lorke, K. Karrai, J. Gar-
cia, W. Schoenfeld and P. Petroff. ‘Optical emission from a charge-tunable
quantum ring.’ Nature, 405:926 (2000).

[17] A. Wallraff, D. Schuster, A. Blais, L. Frunzio, R.-S. Huang, J. Majer, S. Ku-
mar, S. Girvin and R. Schoelkopf. ‘Stong coupling of a single photon to a su-
perconducting qubit using circuit quantum electrodynamics.’ Nature, 431:162
(2004).

[18] S. Bednarek, T. Chwiej, J. Adamowski and B. Szafran. ‘Artificial molecules
in coupled and single quantum dots.’ Phys. Rev. B, 67 (20):205316 (2003).

[19] J. Gorman, D. G. Hasko and D. A. Williams. ‘Charge-qubit operation of an
isolated double quantum dot.’ Phys. Rev. Lett., 95 (9):090502 (2005).

[20] M. Rontani, F. Rossi, F. Manghi and E. Molinari. ‘Multiple quantum phases
in artificial double-dot molecules.’ Solid State Comm., 112:151 (1999).

[21] N. Mason, M. Biercuk and C. Marcus. ‘Local gate control of a carbon nanotube
double quantum dot.’ Science, 303:655 (2004).
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