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Abstract 

Background: Malignant mesothelioma is an aggressive tumor with a poor prognosis mainly 

linked to past asbestos exposure. Murine models of MM based on fiber exposure have been 

developed in order to understand the mechanism of mesothelioma formation. Genomic 

alterations in murine MM have now been partially characterized. 

Methods: To gain insight into the pathophysiology of mesothelioma, 16 murine and 35 

human mesotheliomas were characterized by array-comparative genomic hybridization and 

were screened for common genomic alterations. 

Findings: Alteration of the 9p21 human region, often by biallelic deletion, was the most 

frequent alteration in both species, in agreement with the CDKN2A/CDKN2B locus deletion in 

human disease and mouse models. Other shared aberrations were losses of 1p36.3-p35 and 

13q14-q33, and gains of 5p15.3-p13 regions. However, some differences were noted, such as 

absence of recurrent alterations in mouse regions corresponding to human chromosome 22. 

Comparison between altered recurrent regions in asbestos-exposed and non-exposed patients 

showed a significant difference in the 14q11.2-q21 region, which was also lost in fiber-

induced murine mesothelioma. A correlation was also demonstrated between genomic 

instability and tumorigenicity of human mesothelioma xenografts in nude mice. 

Conclusions: Overall, these data show similarities between murine and human disease and 

contribute to the understanding of the influence of fibers in the pathogenesis of mesothelioma 

and validation of the murine model for preclinical testing.  
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Introduction 

Malignant mesothelioma (MM) is a severe primary neoplastic disease. Its frequency 

has dramatically increased in recent decades due to occupational exposure to asbestos fibers 

and the long latency period between first exposure and diagnosis, ranging from 20 to more 

than 40 years1,2. The growing frequency of mesothelioma was also aggravated by the delayed 

recognition of asbestos diseases and implementation of asbestos regulations. Despite recent 

epidemiological data suggesting that the peak of MM incidence may occur sooner than 

expected, this malignancy remains a major concern in view of the poor results of treatment 

and reports of mesotheliomas with no known exposure to asbestos in 20% to 40% of cases3-6. 

This raises the question of the role of very low levels of asbestos, as described in the context 

of environmental exposure, or other as yet unidentified risk factors7-11. New manufactured 

fiber-shaped products may also be of concern, as recent studies have demonstrated that carbon 

nanotubes (CNT) can reach subpleural tissue in mice12,13 and induce inflammation after 

injection in the peritoneal cavity of mice14. Mesotheliomas also occur in genetically-modified 

cancer-sensitive mice and in conventional Fisher 344 rats exposed to CNT by intraperitoneal 

and intrascrotal administration, respectively15,16. 

 To improve the outcome of MM, a better knowledge of the somatic alterations in 

neoplastic cells is necessary in order to improve diagnosis, treatment and prognosis. Several 

techniques are available to identify MM genomic alterations, such as cytogenetics, 

comparative genomic hybridization (CGH) and single nucleotide polymorphism (SNP) array, 

or gene mutations by DNA sequencing. Data from the literature show that most human MM 

cases exhibit complex patterns of cytogenetic changes with chromosomal losses being more 

frequent than gains and numerous partial or total chromosome losses have been shown to be 

recurrent17-26. Somatic molecular abnormalities affecting tumor suppressor genes (TSGs) have 

also been described in human MM. They mainly consist of codeletion of p16/CDKN2A, 
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p14/ARF and p15/CDKN2B genes, and mutations of the NF2 gene in approximately one half 

of cases. In contrast, the TP53 TSG is less frequently inactivated27-30. 

Murine models of mesothelioma have been recently developed in wild-type (WT) and 

hemizygous Nf2+/- mice after asbestos exposure by intraperitoneal inoculation, offering an 

unique opportunity to more clearly characterize the genomic changes caused by asbestos on 

mesothelial cells31-33. These animals developed mesotheliomas 9 to 24 months after exposure, 

with frequent occurrence of ascitic fluid. Nƒ2 hemizygosity resulted in a higher rate of 

mesothelioma when compared to WT mice, with no significant difference in terms of time to 

tumor occurrence31. Mesothelioma cells isolated from tumor ascites obtained from these mice 

displayed similar gene mutations as human MM, characterized by frequent LOH at the Nƒ2 

locus in Nƒ2+/- mice and, in all genetic backgrounds, frequent inactivation of p16/Cdkn2a, 

p19/Arf, p15/Cdkn2b TSGs and infrequent inactivation of Trp5332,34,35. Only limited data on 

global analysis of genomic alterations have been reported to date in rodents. Only recurrent 

alterations in chromosome 4 were described in murine mesothelioma cells36. A CGH study 

was also performed in rats after intraperitoneal administration of iron saccharate37. 

The present study was designed to investigate genomic alterations in MM by 

comparing the genomic profile of human MM cases to that of fiber-induced murine MM 

assessed by array-comparative genomic hybridization (aCGH). Genomic profiles showed 

numerous alterations in both species with fifteen similar regions of chromosome imbalance. 

In human MM cells, a link was found between genomic instability and the ability of MM 

xenografts to develop subcutaneous tumors in immunocompromized mice. Our data also 

suggest that loss of human 14q11.2-q21 region is related to asbestos exposure. 

These results suggest that genes in altered regions may be damaged or deregulated by 

asbestos exposure, and may subsequently sustain carcinogenesis. Research is currently 
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underway to identify the genes, gene families and pathways involved in mesothelial 

carcinogenesis. 

 

Materials and Methods 

Mesothelioma cells 

Murine mesothelioma cells were obtained from previous experiments in which mineral 

fibers, asbestos and carcinogenic refractory ceramic fibers (RCF) were inoculated into the 

peritoneal cavity of WT and NF2+/- mice. This strategy allowed the generation of 

mesotheliomas mimicking the morphology and histopathology of the corresponding human 

cancer31,35. Sixteen cell cultures were established from tumor ascites obtained from 12 Nf2+/- 

mice and 4 WT mice, as reported elsewhere31. The mesothelial origin was assessed by 

immunocytochemistry using cytokeratin and vimentin antibodies according to a previously 

described method31. Histological subtypes were epithelioid (15.4%), sarcomatoid (30.8%) and 

mixed (53.8%) MMs. Histopathological features of murine mesotheliomas were independent 

of the fiber type, asbestos or RCF. The genetic background did not influence tumor 

morphology or genetic alterations, apart from more frequent LOH at the NF2 locus in Nƒ2+/- 

mice34. 

Thirty five human cell cultures were obtained from confirmed malignant 

mesothelioma cases: 29 males (82.8%) and 6 females (17.2%) with a mean age of 63 ± 11 

years and 69 ± 5 years, respectively (mean ± standard deviation). The study was approved by 

the local Ethics Committee and human cells were obtained with the informed consent of the 

patients. Detailed information about the tumors was obtained from pathology reports. Most 

cases were epithelioid subtypes (80%). Sarcomatoid and mixed subtypes of MM were 

observed in 6.7% and 13.3% of cases, respectively. Patients’ asbestos exposure was estimated 

by interviewer-administered questionnaire. This questionnaire comprised complete job 
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history, including past occupational, domestic, and environmental exposures to asbestos. It 

was completed by face-to-face interview38. In this series, asbestos exposure was ascertained in 

24 MM cases, 2 cases were possibly exposed and no exposure was found in 8 cases. In one 

case, no data was available on asbestos history.  

 

DNA extraction and qualification 

Cells were grown in RPMI 1640 medium with Glutamax and 25 mM HEPES, 

supplemented with 8% fetal calf serum, 50 IU/ml penicillin and 50 mg/ml streptomycin 

(Invitrogen, Cergy Pontoise, France). All genetic analyses were carried out with cultures of less 

than 10 passages. Genomic DNA was extracted as previously described34, quantified by 

absorption measurement, and qualified by deposition of 100 ng on a 0.8% agarose gel. DNA 

ladder was λHindIII (Invitrogen). 

 

Human and murine aCGH. 

The human genome-wide CIT-CGH array (V6) contained 5,822 BAC clones, with a 

higher coverage in genomic regions known to contain genes involved in cancer. This array 

was developed by partnership between the Ligue nationale contre le cancer, the Genoscope, 

the Curie Institute and Integragen (http://cit.ligue-cancer.net). The genome-wide CIT M3 Mus 

musculus 1K BAC CGH array containing 958 unique BAC clones was manufactured by the 

Curie Institute (GEO record: GPL3972). Hybridizations and analyses were performed as 

previously reported39,40. Fluorescent signals were detected with GenePix 4000B scanner 

(Molecular Devices, Union City, CA) and analyzed with GenePix Pro 5.1 software. 

Normalization was performed by the MANOR routine41 and data were visualized on VAMP 

interface42. A syntenic conversion tool was developed to visualize the “humanized” profile of 

murine tumors and to facilitate comparison with human profiles. This tool attributes human 
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syntenic coordinates obtained from the UCSC website [http://genome.ucsc.edu/] to each 

murine BAC of the array. Gains and losses were defined by the GLAD algorithm43. 

Amplifications and bi-allelic deletions were defined by a normalized fluorescence ratio 

greater than 3 and less than 0.5, respectively. Recurrent regions of chromosomal alteration 

were defined as regions that encompassed at least two adjacent probes that were both gained 

or lost. 

 

Gene alterations analysis. 

Gene mutations and deletions were analyzed from genomic DNA extracted from all 

murine and human MM cases. PCR amplifications and sequencing were carried out on a 

GeneAmp 9700 apparatus (Perkin Elmer, Courtaboeuf, France) and ABI PRISM 3100 Genetic 

analyzer (Applied Biosystems, Courtaboeuf, France), respectively, according to previously 

published methods34,35. Analyses concerned human genes TP53, CDKN2A, CDKN2B and NF2, 

and the murine orthologs Trp53, Cdkn2a, Cdkn2b and Nƒ2.  

 

Human MM cell xenografts. 

Female athymic BALB/c nude mice (6-8 weeks old) were purchased from Charles River 

laboratories (Les Oncins, Saint Germain sur l’Arbresle, France) and maintained under 

pathogen-free conditions. Animal care and experimentation were conducted in compliance with 

institutional guidelines in France. Human MM cells were harvested using a 0.25% trypsin, 

0.2% EDTA solution (w/v) (Invitrogen). Three million cells with more than 90% viability were 

suspended in a volume of 200 µl PBS and injected subcutaneously into the scapular region of 

athymic nude mice. At least 4 mice were inoculated for each MM, and subcutaneous tumor 

growth was monitored twice a week. 
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Statistical analyses. 

Statistical analyses were performed using Prism software, version 4.0c (GraphPad 

Software, San Diego, CA). A t-test was used to analyze the association between tumorigenic 

phenotype and number of chromosomal breakpoints. Statistical differences in the frequency 

of gene mutations between human and murine MMs and comparison between the occurrence 

of recurrent alterations in chromosomal region and tumorigenic phenotype or asbestos 

exposure were assessed by Fisher’s exact test.  
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Results 

 

Genomic characterization of murine mesotheliomas. 

The molecular profile of murine mesotheliomas was investigated in a series of 16 

murine mesotheliomas. An overview of chromosome alteration patterns is presented in Figure 

1. This analysis revealed numerous genomic alterations, with an average of 10.7 altered 

autosomes per tumor (range: 4-18). Interestingly, these alterations were mostly gains or losses 

of entire chromosomes. Recurrent regions of chromosomal alterations were then defined as 

regions with at least two adjacent probes gained or lost at a frequency higher than 30% (Table 

1). Frequent recurrent gained regions (more than 50% of cases) included: chr15 (75-81%), 

19qC3-qD2 (75%), 19qA-qC1 (63-75%), 6qA1-qB1 (50%-56%), 8qC2-qC5 (50%) and 

frequent losses included regions in 4qC4-qD1 (50-81%), 14qD3-qE2.1 (50-69%), 4qD3-

qE2.1 (50-63%), chr7 (56-63%) and 14qb (50%) (supplementary Figure 1s.A-C, see Figure 1s 

at http://ajp.amjpathol.org). Minimal regions of chromosomal loss were then delineated on the 

basis of the alteration frequency and the presence of an interstitial deletion in at least two 

MMs in order to identify potential tumor suppressor genes and the miRNAs lost in murine 

mesothelioma cells (Table 2 and supplementary Figure 1s.A-C, see Figure 1s at 

http://ajp.amjpathol.org). The most remarkable characteristic was the high frequency of 

interstitial deletion in chromosome 4 (81%), which was biallelic in six tumors (Table 2). The 

5 Mb minimal region of this recurrent deletion located in 4qC4 contained the Cdkn2a/Cdkn2b 

gene locus. Another recurrent interstitial deletion was observed on chromosome 14 (14qE2.1) 

in 11/16 MM cells, containing the Diap3, Pcdh9 and Pcdh20 candidate genes. Deletion of the 

Nf2 region in 11qA1 was infrequent (3/16) and only found in a Nf2+/- background. Three high-

level gained regions containing the protooncogene Myc and several cadherins were identified. 
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Four regions of homozygous deletions were observed including Sav1, the putative TSG 

involved in the Hippo signaling pathway as candidate target gene (Table 2). 

 

Genomic characterization of human mesotheliomas 

The genomic characterization of a series of 35 human MMs also demonstrated a high 

rate of rearrangements (Figure 2). Two tumors displayed up to 21 altered autosomes (mean of 

13.8 altered autosomes per tumor; range: 1-21). However, most alterations did not involve 

entire chromosome, and monoallelic gains were less frequent than in murine MMs. Nine 

recurrent regions of loss with a frequency higher than 50% were observed: 9p22-p13 (51%-

91%), 22q (57%-80%), 3p22-p14 (51%-63%), 13q11-q21 (51%-60%), 6q21-q22 (51%-57%), 

4q21-q24 (51%-54%), 12p13 (54%), 1p36.3 (51%), 6q24-q25 (51%) and only one region of 

gain was observed: 5p15.3 (51%) (supplementary Figure 2s.A-Q, see Figure 2s at 

http://ajp.amjpathol.org). Recurrent regions of chromosomal alterations with a frequency 

higher than 30% are shown in Table 3. Ten high-level gained regions and twelve regions 

containing homozygous deletions were detected (Table 4). Homozygous deletions in 9p21 

(22/35), 22q11.2 (3/35), 1p21 (2/35) and 9p23 (2/35) were identified in several human MMs, 

but none of the amplicons were recurrent. 

  

Humanized murine aCGH 

Syntenic analysis of the murine genomic profiles revealed similarities between their 

humanized profiles and the genomic profiles obtained from the human series of MM. In 

particular, twelve regions recurrently altered (frequency higher than 30%) in both the human 

disease and in the mouse model were identified (Table 5). Human and murine MM cells 

shared the same lost regions with the highest frequency: Hs (Homo sapiens) 9p24-p13 (91%) 

and Mm (Mus musculus) 4qC3-C5 (81%). Other altered regions, such as Hs 1p36.3-p35 (Mm 
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4qD2.3-4qE2) and Hs 13q14-q33 (Mm 14qD1-qE2.3), showed a frequency of loss higher than 

50%. Gain in Hs 5p15.3-p13 (Mm 15qA1-qB3.1) and losses in Hs 3p21-p14 (Mn 14qA1-

14qA3) and Hs 13q12 (Mn 14qC3) were also characterized as recurrent in both species. 

However, it must be noted that some loci within these human recurrent regions (Hs 3p21, Hs 

13q13) were not altered in mice (see supplementary Figure 2s.D,L, see Figure 2s at 

http://ajp.amjpathol.org). Furthermore, several regions of chromosomal imbalance in human 

MM were not recurrently altered in the murine genomic profile. The most striking difference 

was the absence of recurrent alteration in mouse genomic regions corresponding to human 

chromosome 22. Others human regions characterized by a frequency of loss higher than 50%, 

such as Hs 4q21-q24, Hs 6q21-q22, Hs 6q24-q25, and Hs 12p13, were also not recurrently 

lost in the murine syntenic regions. Furthermore, regions of high-level gain differed between 

human and murine MMs and only the frequent homozygous deletion in the Hs 9p21 region 

was detected in murine MM (Mn 4qC4). 

 

Human candidate genes associated with minimal regions of chromosomal imbalance  

To determine genes or miRNAs potentially involved in human mesothelial 

carcinogenesis, minimal altered regions were defined on the basis of several criteria. First, 

CGH array data were compared between murine and human MMs and four minimal regions 

of loss were delineated in both species: 1p36.3, 1p36.1, 9p21 and 13q21 (Table 6 and 

supplementary Figure 2s.A,B,I,M, see Figure 2s at http://ajp.amjpathol.org). The 9p21 region, 

which encompassed the CDKN2A and CDKN2B genes, showed the highest alteration 

frequency in both species. The presence of homozygous deletions in this region was also 

detected in 63% and 40% of human and murine MMs, respectively (Table 5). Three other 

regions also contained putative TSG, such as CHD5 (1p36.3), NBL1 (1p36.1), PCDH9 and 

DACH1 (13q21). Interestingly, the 13q21 region, in which one of the human MMs showed a 
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homozygous deletion (Table 4), contained only three coding genes (Table 6). Second, thirteen 

new minimal regions of chromosomal loss in human MM were defined on the basis of the 

alteration frequency and the presence of an interstitial deletion in at least three MMs (Table 6 

and supplementary Figure 2s.A-Q, see Figure 2s at http://ajp.amjpathol.org). Seven of these 

regions (3p21, 4q22-23, 6q24-q25, 10q23-q24, 12p13, 13q13 and 15q14-q21) contained genes 

that have been previously described as being involved in cancer progression, as shown in 

Table 6. The other six regions (1p22-p21, 4p16-p15.3, 4q13, 6q22, 9p22, 9p11.1 and 15q14-

q21) did not contain any potential TSG, but encompassed several miRNAs loci. Third, despite 

the entire loss of 22q in 57% of human MMs, the smaller q12-q13 region, characterized by 

the highest alteration frequency (80%), was delineated. This region contains two potential 

genes previously described to be involved in tumor progression (EP300, BIK) and four 

miRNAs (Table 6). The NF2 gene locus located in 22q12 showed an alteration frequency of 

71% (supplementary Figure 2s.Q, see Figure 2s at http://ajp.amjpathol.org). Fourth, genes and 

miRNAs localized in high-level gained regions and in regions with homozygous deletions 

were identified (Table 4). The most remarkable finding was the presence of the NF2 locus in 

one of the regions bearing biallelic deletion (22q12). Furthermore, several human genes 

possibly involved in tumor progression of MM such as CDC20 (1p34.2-p34.1), TERT 

(5p15.3), FGFR2 (10q26) and AURKA (20q13.3) were localized in high-level gained regions 

(Table 4). 

 

Gene mutations in human and murine MM 

The rate of mutations in human TP53, CDKN2A/CDKN2B, and NF2 genes, and in the 

orthologous murine genes are reported in Table 7, confirming previously published data, but 

based on a larger series34,35,44. No significant difference was observed for the percentage of 

human and murine MMs showing gene alterations. Mutations in TP53 TSG were found in a 
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fairly low percentage in both human and murine MMs (20% and 25%, respectively). In 

contrast, CDKN2A and CDKN2B genes were altered by high frequency deletions, especially 

in human MM. Comparison between NF2 alterations in mice and humans is more difficult, as 

75% (12/16) of murine MM cultures were derived from mesotheliomas developed in Nƒ2+/- 

mice. Nevertheless, deletions were the most frequent type of mutation in both human and 

murine MMs (65% and 92%, respectively). 

 

Association between genomic alterations and histological subtype of MM in mice and human 

 Comparison of recurrent regions of chromosomal alterations with histological MM 

subtypes underlined different frequencies among the altered regions. As biphasic subtype is a 

mixed population, comparisons were only made between epithelioid and sarcomatoid 

subtypes. Results should be considered with caution regarding the low percentage of 

sarcomatoid human MM (6.7%) and murine epithelioid MM (15.4%). Gain in Hs 5p15.3-p11 

and losses in Hs 3p23-p14, Hs 6q14-q27 and Hs 10p15-p12 were observed in more than 50% 

and 0% of epithelioid and sarcomatoid subtypes, respectively. In mice, loss of Mm 2qE1-qE3 

showed the same distribution. At the opposite, Mm 1qH2.1-qH5 and Mm 16qA1-qB3 

alterations showed a frequency higher than 50% in sarcomatoid subtypes and 0% in 

epithelioid subtypes. However, there were no similarities between human and mouse MM in 

terms of type and location of recurrent alterations according to histological subtype. 

 

Association between genomic alterations and xenograft growth of human MM cells 

Tumorigenicity of 32 human MM cells was determined in immunocompromised mice. 

In vivo tumor growth was observed with 23 MMs. For each case, the tumorigenic potency was 

compared to that of genomic alterations. Several recurrent genomic alterations were more 

frequent in tumorigenic (T) than in non-tumorigenic (NT) human MM, corresponding to 
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losses in 3p23-p14 (T: 74%; NT: 33%), 1p31-p12 (T: 52%; NT: 22%), 10p15-p12 (T: 43%; 

NT: 22%) and 17p13-p11.2 (T: 43%; NT: 22%), and gain in 5p15.3-p11 (61%; NT: 33%). 

Statistical comparison between the occurrence of minimal regions of chromosomal alterations 

(Table 6) and this biological feature revealed that losses of 1p22-p21 (p<0.05), 3p21 (p<0.05), 

and 9p22 (p<0.02) regions were more frequent in tumorigenic than in non-tumorigenic MM. 

Interestingly, the 3p21 region contained several genes previously described as being involved 

in tumor progression (SETD2, MST1R, PLXNB1, RASSF1, RBM5, SEMA3B, SEMA3F, 

HYAL1, HYAL2). 

The number of breakpoints across the 22 autosomes was quantified in order to 

estimate genomic instability in human MM. Breakpoints were defined as the junction between 

a non-altered chromosomal region and a lost region. The breakpoint index, which corresponds 

to the sum of all breakpoints observed, ranged from 2 to 35 with a median of 22.5 (Figure 3). 

Interestingly, a statistically significant correlation was demonstrated between a high 

breakpoint index and the ability of MMs to develop a tumor in nude mice (p=0.031). 

 

Comparative genomic alterations related to fiber exposure  

Comparison of recurrent regions of chromosomal alterations between asbestos-

exposed (24 cases) and non-exposed (8 cases) patients showed a difference in the 14q11.2-

q21 region (Figure 4). The maximum frequency of chromosomal alterations was 46% and 0% 

in asbestos-exposed and non-exposed cases, respectively (p<0.03). In our murine model of 

fiber-induced MM, the syntenic regions 12qB3-qC1 and 14qC1-qC2 were also altered at a 

frequency of 44% (Table 5). 
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Discussion 

This study was designed to compare genomic alterations in human MMs and in fiber-

related murine MMs as models of human MM. To our knowledge, an aCGH study of mineral 

fiber-induced murine MM was recently reported by Altomare et al. (2009)36. This 

investigation concerned 4 MMs developed in Arf+/- mice and primarily identified losses or 

gains of whole chromosomes, but the only recurrent genomic imbalance was a focal loss in 

chromosome 4C6 containing the Cdkn2a locus and the Faf1 gene36. The present study based 

on 16 murine MMs demonstrated numerous genomic alterations involving several 

chromosomes. Similarly, 2 minimal regions of chromosomal loss were identified, containing 

Cdkn2a/Cdkn2b, and Cdkn2c and Faf1, respectively. In addition to recurrent deletions in 

mouse chromosome 4, frequent losses included regions in chromosomes 7 and 14, and 

frequent gains were detected in chromosomes 6, 8, 15 and 19, likely due to the greater number 

of MMs investigated in this series. Another aCGH study was carried out in 11 cases of iron 

saccharate-induced MM (6 epithelioid and 5 sarcomatoid) in rats37. Epithelioid MMs showed 

minimal alterations, while a few chromosomal amplifications and deletions were found in 

sarcomatoid MM including homozygous deletion of the Cdkn2a/Cdkn2b locus. Further 

studies would be necessary to determine whether these differences are related to the type of 

MM-inducing agent and/or to species specificities. However, Cdkn2a/Cdkn2b locus deletion 

seems to be an independent and specific feature of MM. 

Human MMs have been previously studied by various cytogenetic methods, classical 

CGH, CGH array, SNP array and representational oligonucleotide microarray analysis 

(ROMA). Human MM is characterized by frequent losses of chromosomes 1p, 3p, 4, 6, 9p, 

13q, 14q and 22q, and gains mostly involving chromosomes 5p, 7p, 8q and 17q21-26,45,46. In 

agreement with data in the literature, aCGH in our series detected chromosomal losses in 

similar regions, confirming the recurrence of these alterations in human MM. Other regions of 
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loss identified in 8p, 10p, 14q, 15q, 17p, 18q, 19p and 19q have also been reported in some 

studies47,48. In the 12p region, a translocation breakpoint with X chromosome was described 

in one human MM49. In the present study recurrent regions of gain were only identified in 5p, 

7p and 20q. Data in the literature data tend to indicate that MM tumors show more marked 

diversity of chromosomal gains.  

Genomic data obtained with cultured MM cells are in good agreement with those 

found in MM primary tumors, i.e. all recurrent regions of chromosomal alterations identified 

in cultures of human MM, except for losses in 8p23-p12 and 12p13, have been previously 

described in primary tumors using CGH, CGH array or ROMA (supplementary Table 1s, see 

Table 1s at http://ajp.amjpathol.org). Nevertheless, a higher frequency of alterations was 

observed in MM cultured cells probably due to contamination of tumor specimens by normal 

tissue. 

Similarities and differences were clearly demonstrated after “humanizing” murine 

MM genomic profiles. The most striking similarity between human disease and its mouse 

model is the deletion of CDKN2A/CDKN2B locus, with a frequency as high as 91% and 81% 

in humans and mice, respectively, and this deletion is frequently bi-allelic in both species 

(Table 5). These results are in agreement with published data reporting that 

CDKN2A/CDKN2B deletions are a feature of MM28,29,50,51. The present results suggest 

codeletion of CDKN2A and MTAP (methylthioadenosine phosphorylase), a gene under study 

as a potential therapeutic target51,52. Interestingly, the orthologous Mtap gene is located in the 

syntenic region (Mm chr4C4), and could be accordingly co-deleted with Cdkn2a in the 

murine genome.  

Loss of Hs 1p36.3-p35 (Mm 4qD2.3-4qE2) is another notable similarity. Deletions in 

the short arm of chromosome 1 are a well known feature of human MM53,54, and were 

associated with high asbestos exposure level in one study55. In our series, losses of 1p36.3 
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were found in 51% and 63% of cases in human and murine MM, respectively (Table 5). One 

gene, CHD5, may be of interest in this region. CHD5 is involved in chromatin remodelling, 

and has been defined as a tumor suppressor gene56. Monoallelic loss of this gene was 

observed in several human MMs in the present series. Other studies reported that CDH5 

inactivation was associated with silencing of the second allele by an epigenetic mechanism, as 

in neuroblastoma and several carcinomas57,58. 

The minimal region of common deletion between Hs 13q14-q33 and Mm 14qD1-

qE2.3 was found at a frequency of 58% and 69%, respectively. The minimal region of 

deletion, 13q21, contains only three genes, PCDH9, KLHL1 and DACH1. Interestingly, a 

biallelic deletion was found in this region in one human MM. PCDH9 is a member of the 

protocadherin family, involved in oncogenesis59. PCDH9 was found to be mutated in one 

pancreatic primary tumor60 and DACH1 is a nuclear factor playing a role in breast, prostate 

and ovary cancers61. 

The 5p15.3-p13 gains reported in human MM were found in different syntenic regions 

of the mouse genome (Table 5). Many genes of interest are located in these regions, including 

several cadherins, PRMD9, SKP2 and RAD1. TERT is located in 5p15.3, a recurrent region of 

gain in human MM, but not in the syntenic mouse region. 5p15.3 was also amplified in one 

human MM. Telomerase activity has been reported in a high proportion of human pleural 

MM, and telomere maintenance was recently reported to be due to both telomerase activity 

and alternative lengthening of telomeres in peritoneal MM62,63. Tert appears to be 

constitutively active in most murine cells64, and the Mm 13qC1 region in which it is located is 

not deleted in murine MM, in accordance with a potential role of this enzyme in both species. 

In contrast, several regions of genomic alterations differed between human and murine 

MMs. In the present series, a high rate of deletions was detected in Hs 22q mainly consisting 

of loss of the entire chromosome, and NF2 inactivation is a specific alteration in MM18,27,53,55. 
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Monoallelic deletions at NF2 were found in 71% of cases, and a biallelic deletion was 

observed in one MM. Lower percentages were observed in murine MM genomic profiles. 

However, genetic analyses confirmed loss of Nƒ2 in murine MM, in agreement with a role of 

this gene in mesothelial carcinogenesis (Table 7). The Nƒ2 gene has been shown to enhance 

the incidence of MM in mice without shortening the latency, in comparison with WT mice, 

supporting a role as a susceptibility factor, a hypothesis previously formulated in human 

MM65. Furthermore, MM occurred at a higher incidence when mice knockout for Nf2 were 

co-inactivated for either Ink4a/Arf or Trp5366. These observations indicate that inactivation of 

other genes potentiates Nf2 gene loss and substantially contributes to development of MM. 

Other genes located in Hs 22q could also play a role in mesothelial carcinogenesis, such as 

EP300 and BIK located in the region lost at the highest frequency. Further studies should be 

developed to identify other genes relevant to mesothelial oncogenesis. 

Deletions of 3p regions are among the most frequent alterations in human cancers, 

including human MM. Frequent loss of the Hs 3p21 region , in which several candidate genes 

are located, was observed, but not in mice. A cluster of tumor suppressor genes has been 

reported in the 3p21.3 region, including Ras-associated factor 1 (RASSF1), which appears to 

be inactivated by methylation in MM67-69. Alterations in this 3p21 region were significantly 

more frequent in human MM exhibiting tumorigenicity in nude mice than in non-tumorigenic 

MM, suggesting an important role of the associated genes in tumor formation. However, as 

for chromosome 22, the syntenic region of human 3p21 was not altered accordingly in mice. 

These differences could be explained by technical issues, including differences in resolution 

of human and murine arrays used for genomic profiling, as well as species specificities. 

Other regions of chromosome imbalance found exclusively in human MM contain 

well known TSG such as BRCA2 (13q13, 60% frequency of loss) or PTEN (10q23-24, 37% 

frequency of loss). Downregulation of PTEN has been previously described in human MM70. 
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In contrast, some recurrent regions of chromosomal alterations did not contain any potential 

TSG or oncogene, but encompassed loci of several miRNAs. Differential expression of 

miRNAs has been previously observed between mesothelioma and mesothelial cells71,72. 

Copy number alteration is one of the mechanisms affecting miRNAs gene expression. 

MiRNAs are thought to act as TSGs and oncogenes due to their ability to modulate the 

transcriptional regulation of their target genes. Indeed, MIR31, located in the 9p21 recurrently 

lost region (Table 6), was recently demonstrated to inhibit cell proliferation and invasion of 

mesothelioma cells73. Further investigations of other miRNAs, such as MIR760, MIR137 and 

MIR553, would be of interest. These miRNAs are located in 1p22-21, a region devoid of 

coding genes, but altered at a higher frequency in tumorigenic MM than in non-tumorigenic 

human MM. The present study identified several miRNAs which could be deregulated in both 

human and murine MMs. 

Comparison of recurrent regions of chromosomal alterations according to MM 

histology showed different frequencies between epithelioid and sarcomatoid subtypes. While 

the differences are not significant, at least partly due to the low power of the statistical 

analysis, they are likely species-dependent. This suggests that recurrent regions of 

chromosomal alterations are characteristic of a given subtype only in a given species. 

Differences in the proportion of histological subtypes between human and mouse complicated 

comparison between these two species. Several authors emphasized that epithelioid MM is 

more frequent in human than in mouse following asbestos exposure31-32. More recently, 

Jongsma et al.66 found the same result in spontaneous MM identified in mice carrying 

conditional TSG knockout alleles for Nf2, Trp53 and Ink4a/Arf. In this study, eight different 

series of mice carrying co-inactivation of 2 or 3 TSGs were studied. The proportion of 

different subtypes was dependent on the genetic background with epithelioid MM being under 

represented in all but one series. These authors suggested that the predominant epithelioid 
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MM subtype seen in human opposed to mouse may occur as a result of species specific 

differences or relate to the route of MM induction. Our results would better suggest a species 

specific difference. 

An interesting finding was the relationship between chromosomal instability, 

estimated by the number of breakpoints, and the ability of human MM xenografts to develop 

subcutaneous tumors in nude mice. To the best of our knowledge, this relationship with tumor 

aggressiveness has not been previously reported in mesothelioma. However, in other types of 

cancer, an increase in chromosomal aberrations is associated with higher grade and stage of 

tumors, which is consistent with increased genomic instability observed in tumor 

development and progression74,75. It would be of interest to determine whether the number of 

breakpoints could be a useful prognostic factor for MM progression.  

The present study identified one recurrent region of chromosome loss, 14q11.2-q21, in 

asbestos-exposed patients not found in non exposed patients, but also lost in the syntenic 

region in mice mesotheliomas, suggesting that this region might be a target of action of 

mineral fibers. Frequent allelic loss has been detected in this region in human MM21,76. 

However, to date, it has been related to asbestos exposure in only one study by Björkqvist et 

al., who found a clear history of asbestos exposure in 9 of 13 MMs with deletions at 14q, 

compared to only 1 of 5 MMs with no known exposure to asbestos76. Several genes involved 

in cell cycle regulation (CCNB1IP1), DNA repair (PARP2) and tumor promoting transcription 

factor (NKX2-1) are located in this region. Moreover Sugarbaker et al. (2008)77 identified 

LOH in the 14q11 region involving LRP10, a member of low-density lipoprotein receptor-

related proteins, in one patient with a history of asbestos exposure. 

In conclusion, despite certain differences, our results show common genomic 

alterations between genomic profiles in murine and human MM and suggest that they can be 

of importance to account for asbestos-induced mesothelial cell neoplastic transformation. 
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Genes at the CDKN2A/ CDKN2B locus may play an important role in this process by 

committing cells to carcinogenic transformation. It would be of interested to determine 

whether other genes located in common regions of chromosomal imbalance in these two 

species could be involved in mesothelioma transformation. Genomic profiling of human and 

murine MM cells reported here validates the mouse model as a useful model to study the 

molecular mechanisms of this disease, and to test innovative therapeutic approaches. New 

generations of genomic profiling tools in combination with expression analysis will be useful 

to identify target genes involved in this dreadful disease. 
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Legends to figures 

Figure 1. Summary of genomic profiles in murine mesothelioma cells. 

Frequency plots of gains and losses of each chromosomal region in murine MM. Bars 

correspond to the percentage of samples with gain or loss in a given chromosomal region. 

Chromosome borders are indicated by solid vertical lines and centromere positions by dashed 

lines. Recurrent regions of chromosomal alteration are framed with a fine line. 

 

Figure 2. Summary of genomic profiles in human mesothelioma cells. 

Frequency plots of gains and losses of each chromosomal region in human MM. Bars 

correspond to the percentage of samples with gain or loss in a given chromosomal region. 

Chromosome borders are indicated by solid vertical lines and centromere positions by dashed 

lines. Recurrent regions of chromosomal alteration are framed with a fine line. 

 

Figure 3. Genomic instability and tumorigenic potency in nude mice xenografts of 

human mesothelioma cells. 

Breakpoint index was determined for each human MM and plotted separately for non-

tumorigenic (NT) and tumorigenic (T) MM cells. Medians are indicated by horizontal bars. 

 

Figure 4. Schematic diagram of chromosomal alterations in the Hs 14q11.2-q21 region 

in asbestos-exposed and non-exposed cases, and in the syntenic mouse chromosomal 

regions. 

The start position in the human genome (NCBI Build 36), the cytogenetic location and the 

alteration frequency of each BAC clones are shown in the left columns. Each vertical column 

represents one individual MM: Open circle ( ), no evidence of loss or gain; large black circle 
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( ), heterozygous loss; open circle with a central dot ( ), gain; small black circle ( ), not 

informative; dark grey shaded area, region of loss; light grey shaded area, region of gain. 

Corresponding mouse chromosomal regions are shown when alteration frequency of BAC 

clones are higher than 30%. Alteration frequency of each BAC clones are also specified for 

each group. 
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