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Afrika Matematika, to appear December 21, 2010

On the p-adic closure of a subgroup of rational points

on an Abelian variety

by

Michel Waldschmidt1

Abstract

In 2007, B. Poonen (unpublished) studied the p–adic closure of a subgroup of
rational points on a commutative algebraic group. More recently, J. Belläıche
asked the same question for the special case of Abelian varieties. These problems
are p–adic analogues of a question raised earlier by B. Mazur on the density of
rational points for the real topology. For a simple Abelian variety over the field
of rational numbers, we show that the actual p–adic rank is at least the third
of the expected value.

Acknowledgments The author wishes to take this opportunity to thank Jean
Fresnel, who introduced him to p-adic transcendence problems long back. This
research started thanks to a discussion with Bjorn Poonen in Tucson during
the Arizona Winter School in March 2008. Further discussions on this sub-
ject with Cristiana Bertolin in Regensburg shortly afterwards were also useful.
The motivation to write this paper was renewed by a correspondence with Joël
Belläıche early 2010 [3], while the author was visiting the Harish-Chandra Re-
search Institute in Allahabad, where he had fruitful discussions with Chandan
Singh Dalawat.

1 Introduction

Let A be a simple Abelian variety over Q of dimension g, Γ a subgroup of A(Q)
of rank ℓ over Z, p a prime number, log : A(Qp) → TA(Qp) the canonical map
from the p–adic Lie group A(Qp) to the p–adic Lie algebra TA(Qp) (see § 2.1)
and r the dimension of the Zp–space spanned by log Γ in TA(Qp). We have
r ≤ min{g, ℓ}.

Conjecture 1. Under these hypotheses, r = min{g, ℓ}.

This conjecture trivially holds for an elliptic curve (g = 1).
The real analog of this conjecture is related with a conjecture of B. Mazur

[13]. See also the conjectures by Yves André [1, 2].

1Université Pierre et Marie Curie (Paris 6), Paris, France
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Theorem 2. We have

r ≥
ℓg

ℓ + 2g
·

Corollary 3. Under the same assumptions,

r ≥
1

3
min{g, ℓ}.

Moreover, if ℓ > 2g(g − 1), then r = g.

Theorem 2 is a special case of Theorem 2.1 of [20], where the simple Abelian
variety A over Q is replaced by a commutative algebraic group G over a number
field. Our special case enables us to produce a much simpler proof. In particular,
the zero estimate is much easier here, since there is no algebraic subgroup of
G to be taken care of. Also, the main difference between our proof and the
two proofs in [20] is that we use an interpolation determinant in place of an
auxiliary function (Proposition 2.7 of [20]) or in place of an auxiliary functional
(Proposition 2.10 of [20]): we do not need the p–adic Siegel Lemma (Lemma 3.3
of [19]). The two proofs in [20] are dual to each other, and this duality is just
a transposition of the interpolation determinant of the present paper.

2 Further notations and auxiliary results

We keep the notations of § 1. We select ℓ elements γ1, . . . , γℓ in Γ linearly
independent over Z.

For T a positive integer, we denote by Zg(T ) the set of tuples t = (t1, . . . , tg)
in Zg with 0 ≤ ti < T (1 ≤ i ≤ g). Similary, for S ∈ Z>0, Z

ℓ(S) denotes the
set of tuples s = (s1, . . . , sℓ) in Zℓ with 0 ≤ sj < S (1 ≤ j ≤ ℓ). Further, Γ(S)
will denote the set of s1γ1 + · · ·+ sℓγℓ with s ∈ Zℓ(S). Hence Γ(S) is a subset
of A(K) with Sℓ elements.

2.1 The p–adic logarithm

We follow the paper by B. Poonen [14] which refers to N. Bourbaki [6] Chap. III,
§ 1 and § 7.6.

Since Γ is a finitely abelian subgroup of A(Qp) of rank ℓ, log Γ is also a
finitely generated abelian subgroup of TA(Qp) of the same rank ℓ over Z. The
closure log Γ = log Γ with respect to the p-adic topology is nothing else than
the Zp–submodule of TA(Qp) spanned by log Γ, hence is a finitely generated
Zp–module. The dimension of Γ as a Lie group over Qp is

dimΓ := rkZp log Γ.

2.2 Heights

2.2.1 A projective embedding

We fix an embedding ι of the Abelian variety A into a projective space PN over
Q, with an image which is not contained into the hyperplaneX0 = 0, and so that
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the functions X1/X0, . . . , Xg/X0 are algebraically independent over A (recall
that A has dimension g). We also assume that for s ∈ Zℓ, ι(γs) does not lie in
the hyperplane X0 = 0 and we denote by (1 : γs1 : · · · : γsN) the coordinates of
ι(γs) in PN , so that γsν ∈ Q for 1 ≤ ν ≤ N and s ∈ Zℓ. For convenience, we also
assume that the zero element of A has projective coordinates (1 : 0 : · · · : 0).

2.2.2 Absolute logarithmic height

Denote by P = {2, 3, 5, . . .} the set of positive prime numbers and by MQ the
set of normalized places of Q indexed by P ∪ {∞}: for c ∈ Q× we write

c = ±
∏

p∈P

pvp(c)

and we have
{

|c|v = |c| = max{c,−c} for v = v∞

|c|p = p−vp(c) for p ∈ P .

The product formula, in this very simple case, states that, for c ∈ Q \ {0},

∏

v∈MQ

|c|v = 1.

The absolute logarithmic height of c ∈ Q is defined as

h(c) =
∑

v∈MQ

logmax{1, |c|v}.

For c ∈ Q×, we write c = a/b where a ∈ Z \ {0} and b ∈ Z>0 are two relatively
prime integers. Since min{vp(a), vp(b)} = 0 for all p ∈ P , we have, for all
p ∈ P ,

max{|a|p, |b|p} = 1, which means max{1, |c|p} = |b|−1
p .

Hence, by the product formula,

∏

p∈P

max{1, |c|p} = b.

Multiplying both sides by max{1, |c|} yields

h(c) = logmax{|a|, b},

which can be taken as an alternative definition for the absolute logarithmic
height.

Liouville’s inequality is very simple in this context:

Lemma 4. If c is a non–zero rational number and p a prime number, then

log |c|p ≥ −h(c).
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For N ≥ 1 and c = (c0 : · · · : cN ) ∈ PN (Q), we set

h(c) =
∑

v∈MQ

logmax{|c0|v, . . . , |cN |v}.

If c0, . . . , cN are rational integers, not all of which are zero, which are relatively
prime, then

h(c) = logmax{|c0|, . . . , |cN |}.

Notice that for c ∈ Q, h(c) = h(1 : c).

2.2.3 Néron–Tate height

The projective embedding considered in § 2.2.1 is associated with a very ample
line bundle on A, to which is associated a canonical height which is a quadratic
function (see [18] Chap. 3 and [9] § B.5).

Lemma 5. For s ∈ Zℓ(S),

h(s1γ1 + · · ·+ sℓγℓ) = h(1 : γs1 : · · · : γsN ) ≤ cS2.

2.2.4 Upper bound for the height

We shall use the following result, which is a very simple case of Lemma 3.8. in
[26] (where Q is replaced by a number field). We denote by L(f) the length of
a polynomial f (sum of the absolute values of the coefficients).

Lemma 6. Let ν1, . . . , νL be positive integers. For 1 ≤ i ≤ L, let γi1, . . . , γiνi
be rational numbers. Denote by γ the point

(

γij
)

1≤j≤νi,1≤i≤L
in Qν1+···+νL .

Further, let f be a nonzero polynomial in ν1+ · · ·+νL variables, with coefficients
in Z, of total degree at most Ni with respect to the νi variables corresponding to
γi1, . . . , γiνi . Then

h
(

f(γ)
)

≤ log L(f) +

L
∑

i=1

Nih(1: γi1 : · · · : γiνi).

Proof. Let us write

f(X) =
∑

λ

cλ

L
∏

i=1

νi
∏

j=1

X
λij

ij ,

where X (resp. λ) stands for the ν1 + · · ·+ νL –tuple (Xij)1≤j≤νi, 1≤i≤L (resp.
(λij)1≤j≤νi, 1≤i≤L. Lemma 6 follows from the estimates

|f(γ)| ≤
∑

λ

|cλ|

L
∏

i=1

νi
∏

j=1

max{1, |γij |}
λij

≤ L(f)

L
∏

i=1

max{1, |γi1|, . . . , |γiνi |}
Ni
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and

|f(γ)|p ≤ max
λ

L
∏

i=1

νi
∏

j=1

max{1, |γij |p}
λij

≤

L
∏

i=1

max{1, |γi1|p, . . . , |γiνi |p}
Ni

for p ∈ P .

2.3 p–adic analytic functions

2.3.1 Ultrametric power series

We follow [17]. The field Qp is complete for the p–adic absolute value. Let

f =
∑

n1≥0

· · ·
∑

nr≥0

an1,...,nrz
n1

1 · · · znr
r =

∑

n∈Zr
≥0

anz
n

be a formal series with coefficients in Qp. If R is a real number > 0, we set

|f |R = sup
n∈Zr

≥0

R|n||an|, where |n| = n1 + · · ·+ nr.

We have

|f + g|R ≤ sup{|f |R, |g|R}, |λf |R = |λ| · |f |R and |fg|R = |f |R|g|R

if |f |R and |g|R are finite. When |f |R is finite, the series f(z) converges in the
polydisc |zi| < R. Moreover, it converges in the closed polydisc |zi| ≤ R when
R|n||an| tends to zero. We have

|f(z)| ≤ |f |R.

Since the residue field of Qp is infinite and the group of values of Q×
p is dense,

we also have
|f |R = sup |f(z)| for |zi| < R.

If R′ ≤ R, we have |f |R′ ≤ |f |R (maximum modulus principle).

2.3.2 Ultrametric Schwarz Lemma

The purpose of the Schwarz’s Lemma is to improve the maximum modulus
principle by taking into account the zeros of f inside the polydisc |zi| < R′.
With the method of interpolation determinants of Laurent [26], we need only to
take into account the multiplicity of the zero at the origin. For this reason, the
proof reduces to the one variable case (as a matter of fact, we shall use Lemma
7 only for the case of functions of a single variable).
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Lemma 7. If f has a zero of multiplicity ≥ h at the origin, then for R′ ≤ R
we have

|f |R′ ≤

(

R′

R

)h

|f |R.

Proof (following [17]). Let z satisfy |f(z)| = |f |R and |zi| ≤ R. Define g(t) =
t−hf(tz) for t ∈ Qp with |t| ≤ 1. Since R′/R ≤ 1, we deduce |g|R′/R ≤ |g|1.

Since |g|1 = |f |R and |g|R′/R = (R/R′)h|f |R, Lemma 7 follows.

A quantitative version of Lemma 7 is Lemma 3.4.p of [19].

Corollary 8. Let f1, . . . , fL be power series in Qr
p with |fλ|R < ∞ and let

z1, . . . , zL be points in the polydisc |zi| ≤ R′ with R′ ≤ R. Then the determinant

∆ = det
(

fλ(zµ)
)

1≤λ,µ≤L

is bounded by

|∆| ≤ L!

(

R′

R

)L1+1/r L
∏

λ=1

|fλ|R.

Proof. Corollary 8 is an ultrametric version of Lemma 6.3 of [26]; it follows
from Lemma 7 by means of Lemmas 6.4 and 6.5 of [26], according to which the
function of one variable

Ψ(t) = det
(

fλ(tzµ)
)

1≤λ,µ≤L

has a zero of multiplicity greater than (n/e)L1+1/n at the origin.

2.3.3 p–adic theta functions

Since the kernel of the logarithmic map

log : A(Qp) −→ TA(Qp)

is the set of torsion points of A(Qp), this map is locally injective near the neutral
element of A(Qp). Let U be an open neighborhood of (1 : 0 : · · · : 0) in A(Qp),
V be an open neighborhood of 0 in TA(Qp) and θ : V → U be a local inverse of
log:

u ∈ U =⇒ log u ∈ V and θ log(u) = u,

v ∈ V =⇒ θ(v) ∈ U and log θ(v) = v.

By definition of r, log Γ is a Zp-submodule of TA(Qp) of dimension r which
contains the ℓ elements log γj (1 ≤ j ≤ ℓ). Let e1, . . . , er be a basis. Let
R > 0 be a positive real number such that z1e1 + · · · + zrer ∈ V for any
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z = (z1, . . . , zr) ∈ Qr
p with |zi|p ≤ R. For z = (z1, . . . , zr) ∈ Qr

p with |zi|p < R,
define θ1(z), . . . , θN (z) by

θ(z1e1 + · · ·+ zrer) =
(

1 : θ1(z) : · · · : θN (z)
)

.

Then θ1, . . . , θN are power series in r variables with coefficients in Qp and radius
of convergence ≥ R.

Write

log γj =

r
∑

i=1

ηjiei and yj = (ηj1, . . . , ηjr) ∈ Qr
p (1 ≤ j ≤ ℓ).

Further, select M ∈ Z>0 such that

max
1≤j≤ℓ
1≤i≤r

|Mηji|p < R.

Then, for any s ∈ Zℓ with M |sj for 1 ≤ j ≤ ℓ,

s1 log γ1 + · · ·+ sℓγℓ ∈ V

and
θ(s1 log γ1 + · · ·+ sℓ log γℓ) =

(

1 : γs1 : · · · : γsN
)

.

Hence γsν = θν(ys) for all s ∈ Zℓ with M |sj and for all ν with 1 ≤ ν ≤ N .

3 The zero estimate and the interpolation de-

terminant

The zero–estimate of Masser–Wüstholz (Main Theorem of [12]) is valid for a
quasi–projective commutative algebraic group variety over a field K of zero
characteristic. We need it only for a simple Abelian variety, which makes the
statement shorter, since there is no algebraic subgroup to worry about.

Let again A be a simple Abelian variety of dimension g embedded into
a projective space PN . When P ∈ K[Y0, . . . , YN ] is a non–zero homogenous
polynomial, we denote by Z(P ) the hypersurface P = 0 of PN (K).

Lemma 9 (Zero estimate). There exists a constant c > 0 depending only on A
and on the embedding of A into PN with the following property. Let γ1, . . . , γℓ be
Z–linearly independent elements in A(K). Let P ∈ K[Y0, . . . , YN ] be a homoge-
nous polynomial of total degree ≤ D, such that Z(P ) does not contain A(K) but
contains

Γ(S) =
{

s1γ1 + . . .+ sℓγs ; s ∈ Zℓ(S)
}

.

Then
D > c(S/g)ℓ/g.
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Like in [20], § 2.b, we could replace the zero estimate by an interpolation
lemma due to D.W. Masser ([11] and Theorem 2.1 of [20]). The idea is just to
consider the transposed matrix.

Coming back to the notations of § 2 (recall in particular the integer M > 0
introduced in § 2.3.3), we deduce from Lemma 9:

Corollary 10. There exist two integers c1 > 1 and N0 > 1, depending on A and
γ1, . . . , γℓ, with the following property: if N is a positive integer with N ≥ N0

and if we set
L = N ℓg, T = N ℓ, S = c1N

g,

then there exists a subset S = {s1, . . . , sL} of Zℓ(S) with L elements sµ =
(sµ,j)1≤j≤ℓ (1 ≤ µ ≤ L), such that M |sµ,j for 1 ≤ j ≤ ℓ and 1 ≤ µ ≤ L, and
such that the determinant

∆ = det
(

γt1
s1 · · · γ

tg
sg

)

s∈S, t∈Zg(T )

does not vanish.

Proof. Consider the matrix

(

γt1
s1 · · · γ

tg
sg

)

t,s
,

where the index of rows is t ∈ Zg(T ), while the index of columns s runs over
the elements in Zℓ(S) for which M divides sj . Our goal is to prove that this
matrix has maximal rank L. Consider a system of relations among the rows of
the matrix

∑

t∈Zg(T )

ptγ
t1
s1 · · · γ

tg
sg = 0 (s ∈ Zℓ(S), M |sj)

with pt ∈ k for all t ∈ Zg(T ). The polynomial

∑

t∈Zg(T )

ptX
t1
1 · · ·Xtg

g

has degree ≤ T in each of the variables X1, . . . , Xg and vanishes at all points of
γs ∈ Γ(S) for which M |sj (1 ≤ j ≤ ℓ). Use Lemma 9 with γ1, . . . , γℓ replaced

by Mγ1, . . . ,Mγℓ. Taking c1 > Mg(g/c)g/ℓ, so that gN ℓ < c(c1N
g/gM)ℓ/g, it

follows that this polynomial is 0, hence pt = 0 for all t ∈ Zg(T ).

4 Upper bound for the height and lower bound

for the absolute value of the interpolation de-

terminant

Under the assumptions of Theorem 2, we give an upper bound for the height of
the determinant ∆ introduced in Corollary 10.
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Proposition 11. There exists a positive integer c2 > 1, depending on A and
γ1, . . . , γℓ, such that, for all N ≥ N0,

h(∆) ≤ c2LTS
2.

Proof. From Lemma 5, we deduce, for any s ∈ Zℓ(S),

h
(

1 : γs1 : · · · : γsN
)

≤ cS2.

Proposition 11 now follows from Lemma 6 with

ν1 = · · · = νL = g, N1 = · · · = NL = T and L(f) ≤ L!

Liouville’s inequality (Lemma 4) implies:

Corollary 12. With the notations of Proposition 11,

log |∆|p ≥ −c2LTS
2.

5 Analytic estimate: upper bound for the abso-

lute value of the interpolation determinant

Proposition 13. There exists a positive integer c3 > 1, depending on A and
γ1, . . . , γℓ, such that, for all N ≥ N0,

log |∆|p ≤ −c3L
1+1/r.

Proof. Proposition 13 follows from Corollary 8 with the set of functions

{f1, . . . , fL} =
{

θt11 · · · θtgg ; t ∈ Z≥0(T )
}

and the points zµ = sµ1y1 + · · ·+ sµℓyℓ (1 ≤ µ ≤ L).

6 Proof of the main transcendence result

Proof ot Theorem 2. Since TS2 = c21L
(1/g)+(2/ℓ), the conclusions of corollary 12

and proposition 13 imply
1

r
≤

1

g
+

2

ℓ
·
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7 Remarks

• 7.1. In place of the rational number field and the prime number p, one may work with
an algebraic number field and a finite place v, replacing Qp with the completion
kv. One main difference is in § 2.2.2, where, in the case of a number field, one
needs to introduce height functions on the field of algebraic numbers in place
of the rational number field. See [26] Chap. 3 § 2, [9], § B.2, [18], Chap. 2, [4]
Chap. 1, [10] Chap. 4.

As pointed out in [14] (Remark 6.4), one cannot deduce the general case of
a number field from the special case of the rational numbers by means of the
restriction of scalars.

• 7.2. As mentioned in [21] (§ 6a p. 643), similar results hold when the simple Abelian
variety A is replaced by a commutative algebraic group G. There is a condition
in [21] for the ultrametric case that a subgroup of finite index of Γ is contained
in a compact subgroup of A(kv) – for an Abelian variety A, the group A(kv) is
compact and this condition is always satisfied.

Let us write, like in [21], G = G
d0

A × Gd1
m × G′, where G′ has dimension d2

(and therefore G has dimension d = d0 + d1 + d2). Roughly speaking, in this
general sitting, one replaces

ℓg

ℓ + 2g
by

ℓd

ℓ+ d1 + 2d2
·

However, one needs to take into account possible degeneracies occurring from
the algebraic subgroups of G. We refer to [21] for precise statements.

In the case of a power of the multiplicative groupG = Gd
m, the transcendence

result yields lower bounds for the p–adic rank of the units of an algebraic number
field (namely partial results towards Leopoldt’s Conjecture).

• 7.3. Following [14], consider a commutative algebraic group G over Q and a finitely
generated subgroup Γ of G(Q) contained in the union of compact subgroups of
G(Qp). The number dim(Γ) can be defined exactly like in § 2.1 as the dimension
of the Zp–submodule of the tangent space at the origine Lie(G) spanned by the
image of Γ under the logarithmic map. Another function d(Γ) of Γ is introduced
by B. Poonen in [14]:

d(Γ) := min
H⊂G

{

dimH + rkZ(Γ/Γ ∩H)
}

,

where the minimum is over all algebraic subgroups H of G over Q. The inequal-
ity dim(Γ) ≤ d(Γ) is always true. Here is an example where this inequality is
strict (compare with Langevin’s example in [23] p. 1201 and 1209 for G3

m). Con-
sider an elliptic curve E over Q with three linearly independent algebraic points
γ1, γ2, γ3 in E(Q). Let Γ be the subgroup of E3(Q) generated by (0, γ3,−γ2),
(−γ3, 0, γ1), (γ2,−γ1, 0). Then dimΓ = 2, while d(Γ) = 3.

To produce a lower bound for the p–adic rank amounts to produce lower
bounds for the rank of certain matrices whose entries are p–adic logarithms of
algebraic points. From a conjectural point of view, the answer is given by the

10



structural rank introduced by D. Roy. See [26] for the case of linear algebraic
groups.

• 7.4. Further applications of the algebraic subgroup theorem in the ultrametric case
are given by D. Roy in [15].

• 7.5. Our p–adic result Theorem 2 is an ultrametric version of [21, 22] (see also [16]).
In the Archimedean case, quantitative refinements are given in [25], they are
based on the results of [24]. See also [8]. Since the method is “effective”, it is
also possible to produce quantitative refinements of Theorem 2.

• 7.6. An alternative proof of the main result (Theorem 2) can be given by means of
Arakelov’s geometry and Bost slope inequality. See the papers by J.B. Bost [5]
and A. Chambert–Loir [7].
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Université P. et M. Curie (Paris VI)
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