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Swing Options Valuation:

a BSDE with Constrained Jumps Approach

Marie Bernhart∗ Huyên Pham † Peter Tankov‡ Xavier Warin§

January 7, 2011

Abstract

We introduce a new probabilistic method for solving a class of impulse control
problems based on their representations as Backward Stochastic Differential Equa-
tions (BSDEs for short) with constrained jumps. As an example, our method is used
for pricing Swing options. We deal with the jump constraint by a penalization pro-
cedure and apply a discrete-time backward scheme to the resulting penalized BSDE
with jumps. We study the convergence of this numerical method, with respect to the
main approximation parameters: the jump intensity λ, the penalization parameter
p > 0 and the time step. In particular, we obtain a convergence rate of the error
due to penalization of order (λp)α−

1
2 , ∀α ∈

(
0, 12
)
. Combining this approach with

Monte Carlo techniques, we then work out the valuation problem of (normalized)
Swing options in the Black and Scholes framework. We present numerical tests and
compare our results with a classical iteration method.

Keywords Backward stochastic differential equations with constrained jumps, Im-
pulse control problems, Swing options, Monte Carlo methods
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‡Centre de Mathématiques Appliquées, Ecole Polytechnique, 91128 Palaiseau, France. Email:

peter.tankov@polytechnique.org
§EDF R&D, 92141 Clamart, France and Laboratoire de Finance des Marchés de l’Energie, Université
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1 Introduction

In this report, we introduce a new probabilistic method for solving impulse control
problems based on their representations as Backward Stochastic Differential Equa-
tions (BSDEs for short) with constrained jumps. As an example, our method is used
for pricing Swing options in the Black and Scholes framework.

BSDEs provide alternative characterizations of the solution to multiple-obstacle,
optimal switching (see among others [19, 8, 20, 26, 13]) and more generally impulse
control problems: Kharroubi et al. [21] recently introduced a family of BSDEs with
constrained jumps providing a representation of the solution to such problems. A
challenging question is that of the numerical approximation of this kind of BSDEs
with constrained jumps.

A discrete-time backward scheme for solving BSDEs with jumps (without con-
straint) has been introduced by Bouchard and Elie [3]. In our case, the main diffi-
culty comes from the constraint, which concerns the jump component of the solution.
These BSDEs do not a priori involve any Skorohod type minimality condition. In
consequence, classical approaches by projected schemes (discretely reflected back-
ward schemes) used for example by [2] and [10] cannot be used.

We consider a penalization procedure to deal with the constraint on jumps and
provide a convergence rate of the penalized solution to the exact solution. This
allows us to establish a convergence rate of the error between the solution of the
considered impulse control problem and the numerical approximation given by the
discrete-time solution to the penalized BSDE with jumps, as the penalization coef-
ficient and the number of time steps go to infinity.

The rest of the report is structured as follows: in Section 2, we set the con-
sidered impulse control problem in the mathematical framework of BSDEs with
constrained jumps. We present in Section 3 our penalization approach and provide
a global convergence rate of our approximation. In Section 4, our method is used for
pricing multi-exercise options, so-called (normalized) Swing options. This multiple
optimal stopping time problem leads to a particularly degenerate three-dimensional
impulse control problem. We combine our BSDE-based approach with Monte Carlo
techniques and deal with Swing options with a small maximal number of exercises
rights, due to large computational times. We compare our pricing results with those
obtained by a classical iteration-based approach proposed for example by [9].

2 BSDE Representation for Impulse Control Prob-

lems

Let T be a given time horizon. We work in a complete probability space (Ω,F ,P),
on which is defined a d-dimensional Brownian motion W and a Poisson process N
with intensity λ > 0. We denote by F = (Ft)t≥0, the augmentation of the natural
filtration generated by W and N , by F

W = (FW
t )t≥0 the one generated by W , and

by P , the σ-algebra of predictable sub-sets of Ω× [0, T ].

Notation
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Throughout this report, the euclidean norm defined on R
d or on R will be indis-

criminately denoted by | · |. The matrix transposition is denoted by ⊥. In addition,
unless specified otherwise, C will denote a strictly positive constant depending only
on Lipschitz constants of the coefficients of the problem, see assumptions (H) and
(H′) below, and constants T , |b(0)|, |σ(0)|, |γ(0)|, |f(0)|, |κ(0)| and |g(0)|.

Besides, we shall use the standard notations:

• S2, the set of real-valued càdlàg adapted processes Y = (Yt)0≤t≤T such that

‖Y ‖S2 :=

(

E

[

sup
0≤t≤T

|Yt|
2

]) 1
2

<∞ .

• A2, the sub-set of S2 such that

A2 :=
{
K ∈ S2 : (Kt)0≤t≤T nondecreasing , K0 = 0

}
.

• L2
F
([0, T ]), the set of real-valued adapted processes (φt)0≤t≤T such that

E

[
∫ T

0

|φt|
2
dt

]

<∞ .

• L2(W ), the set of real-valued P-measurable processes Z = (Zt)s≤t≤r such that

‖Z‖L2(W ) :=

(

E

[
∫ T

0

|Zt|
2
dt

]) 1
2

<∞ .

• L2(N), the set of real-valued P-measurable processes V = (Vt)s≤t≤r such that

‖V ‖L2(N) :=

(

E

[
∫ T

0

|Vt|
2
λdt

]) 1
2

<∞ .

• V denotes the set of P-measurable essentially bounded processes, valued in
(0,∞) and Vp = {νp ∈ V : νpt ≤ p a.s.}.

2.1 A Class of Impulse Control Problems

We consider the class of impulse control problems whose value function is defined
by:

v(t, x) = sup
u=(τk)k≥1∈U(t,T ]

E




g(X

t,x,u
T ) +

∫ T

t

f(Xt,x,u
s )ds+

∑

k≥1

t<τk≤T

κ(Xt,x,u

τ−
k

)




 . (1)

An impulse strategy u = (τk)k≥1 is said to be admissible for problem (1) (and
belongs to U(t,T ]) if it is a non-decreasing sequence of FW -stopping times valued in
(t, T ] (we set by convention τ0 = t) such that, if

nu
(t,T ] := ♯ {k ≥ 1 : t < τk ≤ T }
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denotes the (random) number of interventions of the strategy u before time T , then

E

∣
∣
∣n

u
(t,T ]

∣
∣
∣

2

< C, (2)

for some universal constant C > 0. The controlled state variable Xt,x,u is a càdlàg
process with dynamics

Xt,x,u
s = x+

∫ s

t

b(Xt,x,u
r )dr +

∫ s

t

σ(Xt,x,u
r )dWr +

∑

t<τk≤s

γ(Xt,x,u

τ−
k

), ∀s ≥ t. (3)

Between two successive intervention times τk and τk+1, the state variable evolves as
a diffusion process and the controller makes an integral profit f . At each decided
intervention time τk, he gives an impulse to the system: the state process jumps
with a size Xu

τk
−Xu

τ−
k

= γ(Xu

τ−
k

) and he obtains the intervention gain κ.

We consider standard assumptions on the coefficients of the problem:

(H) b : Rd 7→ R
d, σ : Rd 7→ R

d×d and γ : Rd 7→ R
d are Lipschitz continuous

and γ is uniformly bounded.
f : Rd 7→ R, κ : Rd 7→ R and g : Rd 7→ R are Lipschitz continous.

(H′) The maps b, σ, γ, and g belong to C1
b (R

d) and have Lipschitz continuous
derivatives.

A straightforward computation using (H), (2) and Gronwall’s lemma shows that

∀(t, x) ∈ [0, T ]× R
d, sup

u∈U(t,T ]

E

[

sup
t≤s≤T

∣
∣Xt,x,u

s

∣
∣
2
]

<∞. (4)

Finally, we will assume the existence of an optimal strategy u∗ = (τ∗k )k≥1 ∈ U(t,T ]

to problem (1). We refer for example to [4] and [25] in the infinite horizon case, for
specific conditions on the coefficients of the problem which ensures such an existence.

2.2 Link to BSDEs with Constrained Jumps

Let us consider the BSDE with constrained jumps

{

Yt = g(XT ) +
∫ T

t
f(Xs)ds−

∫ T

t
ZsdWs −

∫ T

t
VsdNs +

∫ T

t
dKs, ∀0 ≤ t ≤ T

Vt + κ(Xt−) ≤ 0, ∀0 ≤ t ≤ T

(5)
where X is the (uncontrolled) jump diffusion process with dynamics

dXt = b(Xt)dt+ σ(Xt)dWt + γ(Xt−)dNt. (6)

Under (H), this SDE admits an unique solution in S2 and it is shown in [21] that
under the additional assumption (H1) given below, (5) admits a unique minimal

solution (Y, Z, V,K) ∈ S2 × L2(W )× L2(N)×A2 with K predictable.
The solution (Y, Z, V,K) is said to be minimal if and only if it has the smallest

component Y in the (infinite) class of solutions to (5). (Yt)t≥0 is called the value
process and jumps with a size Vt = Yt − Yt− .
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(H1) There exists a solution (Ỹ , Z̃, K̃) ∈ S2 × L2(W )×A2 to

Yt = g(XT ) +

∫ T

t

f(Xs)ds−

∫ T

t

ZsdWs +

∫ T

t

κ(Xs−)dNs +

∫ T

t

dKs.

(H′
1) (H1) holds and Ỹt = ṽ(t,Xt), ∀0 ≤ t ≤ T for some ṽ with linear growth.

(H2) There exists a non negative function ϕ ∈ C2(Rd) and a constant ρ > 0 s.t.

Lϕ+ f ≤ ρϕ, ϕ−Hϕ > 0,

ϕ ≥ g, lim|x|→∞
ϕ(x)
1+|x| = ∞,

in which L is the local component of the generator of the process X and H,
the intervention operator:

Lv(t, x) = b(x) ·Dxv(t, x) +
1

2
Tr
(
σσ⊥(x)D2

xv(t, x)
)
,

Hv(t, x) = v(t, x+ γ(x)) + κ(x) .

Let (Y t,x
s , Zt,x

s , V t,x
s ,Kt,x

s )t≤s≤T be the solution to (5) when X ≡ (Xt,x
s )t≤s≤T is

the solution starting at x in t to SDE (6). Under assumptions (H), (H′
1) and (H2),

[21] show that the solution to impulse control problem (1) coincides with initial
value of component Y t,x:

Y
t,x
t = v(t, x) (7)

and is equal to the (unique) solution with linear growth to quasi-variationnal in-
equality

min
{
−∂v

∂t
(t, x)− Lv(t, x) − f(t, x) ;

v(t, x) −Hv(t, x)} = 0, ∀(t, x) ∈ [0, T )× R
d,

min {v(T−, x)− g(x); v(T−, x) −Hv(T−, x)} = 0, ∀x ∈ R
d.

(8)
Let us mention that in general, the terminal condition v(T−, ·) = g is irrelevant,
because of the possible discontinuity of Y in T− due to constraints: the relaxed
terminal condition in (8) expresses the possibility of a jump at time T−.

Remark 1. For a better intuition, the following interpretation to solution (Y, Z, V,K)
holds when assuming v ∈ C1,2([0, T ],Rd):

∀0 ≤ t ≤ T, Yt = v(t,Xt)
Zt = σ(t,Xt−)Dxv(t,Xt−)
Vt = v(t,Xt− + γ(Xt−))− v(t,Xt−)

= Hv(t,Xt−)− v(t,Xt−)− κ(Xt−)

Kt =
∫ t

0

(
−∂v

∂t
− Lv − f

)
(s,Xs)ds.

The constraint in (5) means thus that the obstacle condition is satisfied, namely
v(t,Xt−)−Hv(t,Xt−) ≥ 0.
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3 Convergence of the Numerical Approximation

by Penalization

It does not seem possible to use the minimality condition of the solution to BSDE
with constrained jumps (5) directly in a numerical scheme. We thus propose an
approach by penalization of the jump constraint. The penalized constraint is intro-
duced in the BSDE driver: when the constraint is fulfilled, this penalization term
disappears, and otherwise penalizes the driver with an exploding factor p.

In Theorem 1, we provide an explicit rate of convergence of our approximation
with respect to the parameters introduced: namely, the jump intensity λ, the pe-
nalization coefficient p and the time step. Such an error estimate is essential for
numerical purposes (understanding of the numerical impact of those parameters)
and allows to adjust in practice the fineness of the time grid in relation to (λ, p).

3.1 Approximation by Penalization

Given a parameter value p > 0, the penalized BSDE is:

Y
p
t = g(XT ) +

∫ T

t

[

f(Xs) + p (V p
s + κ(Xs−))

+
λ
]

ds (9)

−

∫ T

t

Zp
sdWs −

∫ T

t

V p
s dNs, ∀0 ≤ t ≤ T

which admits an unique solution (Y p, Zp, V p) ∈ S2 ×L2(W )×L2(N) from the clas-
sical theory of BSDEs with jumps. In addition, the sequence of penalized solutions
(Y p, Zp, V p)p tends in L2

F
([0, T ])×L2(W )×L2(N) to the minimal solution (Y, Z, V )

to (5) as p goes to infinity, see [21]. Besides, the convergence of (Y p)p to Y is mono-
tone and increasing.

Let (Y p,t,x, Zp,t,x, V p,t,x) be the solution to (9) when X ≡ (Xt,x
s )t≤s≤T . We

consider the following error introduced by this penalization procedure:

Ep := sup
0≤t≤T

∣
∣v(t, x) − Y

p,t,x
t

∣
∣ . (10)

For any t < η ≤ T , let us introduce

v
η
T (t, x) = sup

u=(τk)k≥1∈U(t,T−η]

E




g(X

t,x,u
T ) +

∫ T

t

f(Xt,x,u
s )ds+

∑

k≥1

t<τk≤T

κ(Xt,x,u

τ−
k

)




 (11)

which corresponds to initial problem (1) restricted to the sub-set of strategies taking

values in (t, T − η]. We shall denote by uη∗ = (τη∗k )k≥1 an η
1
2 -optimal strategy to

problem (11) (the existence of an optimal strategy is not ensured) and by nη∗ be
the number of impulses in strategy uη∗ that is:

nη∗ := ♯
{
k ≥ 1 : t < τ

η∗
k ≤ T − η

}
.

We will use the following additional assumptions:

6



(Hn) There exists some n̄ ∈ N
∗ such that

∀j ≥ n̄, P (nη∗ ≥ j) ≤ l(j)

for some map l such that l(j) ≤ e−Cj for some some constant C > 0.

(H∗) There exists a map h such that h(ε) = Oε→0(ε
1
2 ) and

∀ε > 0, P

(

min
k≥1

∣
∣τ

η∗
k+1 − τ

η∗
k

∣
∣ ≤ ε

)

≤ h(ε).

Remark 2 (Assumptions (Hn) and (H∗)). Both assumptions (Hn) and (H∗) are
directly satisfied for the problem of Swing options valuation since the number of
exercises right is almost surely bounded by some nmax and there is some fixed time
delay δ > 0 between two consecutive interventions.

More generally, (Hn) is intuitively satisfied as soon as the controlled state variable
is constrained almost surely and admits jumps of constant sign, see Example 1. (H∗)
is verified for sufficiently smooth problems, see for example the case of optimal forest
management studied in [1].

Example 1. Let us assume that the state variable defined in (3) is such that

• b is uniformly bounded and σ > 0 constant,

• for some constant c > 0,
sup
x∈Rd

γ(x) ≤ −c,

and that the optimal strategy u∗ implies Xu∗

T ≥ 0 a.s. Then a straightforward com-
putation shows that the (random) number n∗

(0,T ] of optimal impulses before time T
satisfies, for any a > 0,

P

(

n∗
(0,T ] > n

)

= O
(
e−an

)
as n→ +∞.

Proposition 1. Let assumptions (H), (Hn), (H∗), (H′
1) and (H2) be satisfied. Then

the penalization error in (10) admits the following bound as p goes to infinity:

Ep ≤ C

(
n̄C̄n̄

(λp)
1
2−α

)

, ∀α ∈

(

0,
1

2

)

.

for some constants C > 0 and C̄ > 1, which do not depend either on λ, p, n̄ or α.

Proof. We provide the main arguments of the proof and refer the reader to [1] for
more details. The main idea comes from the following explicit functional represen-
tation available for Y p,t,x, see [21]:

Y
p,t,x
t = ess sup

νp∈Vp

E
νp

[

g(Xt,x
T ) +

∫ T

t

f(Xt,x
s )ds+

∫ T

t

κ(Xt,x

s−
)dNs

]

, (12)

where E
νp

denotes the expectation under the probability measure Pνp

equivalent to
P on (Ω,FT ) with Radon-Nikodym density

dPνp

dP

∣
∣
∣
∣
FT

= e−
∫

T
0
(νp

s−1)λdse
∫

T
0

ln(νp
s )dNs .
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The specificity of such a change of measure is that it impacts only the jump parts of
the processes: under P

νp

, the Brownian motion W remains unchanged whereas N
has a (stochastic) intensity (λνps )s≥0. We shall denote by Np, the doubly stochas-
tic Poisson process (Cox process) with intensity (λνps )s≥0 under P, by (τpk )k≥1 the
sequence of its jump dates and by Xp the solution to (6) driven by Np.

In view of (11) and (12), we introduce a convenient measure change, which
intuitively forces the penalized solution to jump as soon as possible after that an
optimal impulse occurs:

∀s ≥ 0, νps =

{

p if
∑

k≥1 1{τη∗
k

<s} 6= Np
s ,

0 else.
(13)

Notice that νp is a P-measurable process bounded by p a.s. By definition of the
counting process Np,

∀s ≥ 0, P



τ
p
k − τ

η∗
k > s |

∑

j≥1

1{τp
j ≤τ

η∗

k } = k − 1



 = e−λps.

In other words, the increment τpk − τ
η∗
k has an exponential distribution with param-

eter (λp), conditionally to the fact that Xp has jumped one time less than Xuη∗

.
This allows us to compute an estimate of the distance

sup
0≤t≤T

∣
∣v

η
T (t, x) − Y

p,t,x
t

∣
∣ ,

which holds for Ep by sending η to 0 together with a continuity argument of the
value function in its maturity variable.

3.2 Convergence Rate of the Numerical Scheme

Given a regular time grid π = {t0 = 0, t1, . . . , tN = T }, we assume that the solution
X to (6) can be simulated on π either perfectly or by using an Euler scheme and
denote its discrete-time version by Xπ. Along the lines of [3], we consider the
following backward discrete-time scheme for numerically solving the penalized BSDE
with jumps (9),







Y
p,π
tN

= g(Xπ
tN
)

∀tn ∈ π, tn < T :

V
p,π
tn

= 1
λ∆tn+1

E

[

Y
p,π
tn+1

∆Ñtn+1 |Ftn

]

Z
p,π
tn

= 1
∆tn+1

E

[

Y
p,π
tn+1

∆Wtn+1 |Ftn

]

Y
p,π
tn

= E

[

Y
p,π
tn+1

|Ftn

]

+
[

f(Xπ
tn
) +

(

p
(
V

p,π
tn

+ κ(Xπ
tn
)
)+

− V
p,π
tn

)

λ
]

∆tn+1

(14)

where ∆tn+1 = tn+1 − tn, ∆Wtn+1 is the Brownian increment on [tn, tn+1] and

∆Ñtn+1 the compensated version of the Poisson increment ∆Ntn+1 on [tn, tn+1).
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We consider the classical discretization error between the continuous-time so-
lution (Y p, Zp, V p) in (9) and its discrete-time approximation (Y p,π, Zp,π, V p,π) in
(14), that is

Eπ(Y p) :=

(

max
n<N−1

sup
tn≤t≤tn+1

E
∣
∣Y

p
t − Y

p,π
tn

∣
∣
2

) 1
2

Eπ(Zp) :=

(
N−1∑

n=0

∫ tn+1

tn

E
∣
∣Z

p
t − Z

p,π
tn

∣
∣
2
dt

) 1
2

Eπ(V p) :=

(
N−1∑

n=0

∫ tn+1

tn

E
∣
∣V

p
t − V

p,π
tn

∣
∣
2
λdt

) 1
2

.

Because of the lack of first order regularity of the driver of the penalized BSDE

fp(x, v) := f(x) +
(
p(v + κ(x))+ − v

)
λ, ∀(x, v) ∈ R

d × R, (15)

classical regularization arguments for the FBSDE coefficients and Malliavin differ-
entiation representations allow us to provide an explicit convergence rate of order
|π|

1
2 for errors Eπ(Y p) and Eπ(V p), but only of order |π|

1
4 for error Eπ(Zp), see

Proposition 2.
The impact of the penalization coefficient p on the convergence of backward

discrete-time schemes is well known in practice, even if there does not exist, to
our best knowledge, any explicit computation in the literature (see for example the
numerical experiments of [23] for the resolution by penalization of a BSDE with one
reflecting barrier). Basically, as p increases at fixed discrete-time step, the quantity
fp(·)∆tn+1 explodes, leading to a numerical explosion of the approximate values
Y p,π, see (14).

We show rigorously in Proposition 2 that the discretization error grows exponen-
tially with (λp2). This is due to the linear dependence in λ and p of the BSDE driver
fp, see (15), and estimate computations based on the use of Gronwall’s lemma.

Proposition 2. Assume (H). Then, as soon as

|π| = O

(
1

λp2

)

, (16)

we get the following bounds as p goes to infinity:

Eπ(Y p) ≤ C
(

(1 + λ)2λpC̄λp2

|π|
1
2

)

Eπ(V p) ≤ C
(

(1 + λ)2λ
3
2 p2C̄λp2

|π|
1
2

)

.

Under (H′), there exists a version of Zp such that,

Eπ(Zp) ≤ C
(

(1 + λ)2λ
5
2 p3C̄λp2

|π|
1
4

)

,

for some constants C > 0 and C̄ > 1, which do not depend either on λ, p or |π|.
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Proof. This follows from the same arguments as [15]: computations using Itô and
Gronwall’s lemma and regularization and Malliavin differentiation arguments ap-
plied to the penalized BSDE with jumps (9). We refer the reader to [1] for a detailed
proof.

Propositions 1 and 2 enable us to establish a global convergence rate of the error
introduced by our approximation by penalization.

Theorem 1. Let the assumptions of Proposition 1 be satisfied. Then

Ep + Eπ(Y p) ≤ C

(
1

(λp)
1
2−α

+ (1 + λ)2λpC̄λp2

|π|
1
2

)

, ∀α ∈

(

0,
1

2

)

(17)

for some constants C > 0 and C̄ > 1, which do not depend either on λ, p, |π|, n̄
or α. Thus, for a sufficiently small time step |π| with respect to λ and p, the global

error is such that

[Ep + Eπ(Y p)]∗ = O

(

1

(λp)
1
2
−α

)

, ∀α ∈
(
0, 12

)
.

Remark 3 (Global convergence rate). At fixed time step |π|, the convergence rate
strongly deteriorates as λ or p increases, see (17). The numerical method is more
sensitive to p than to λ according to (16) and (17). (16) constitutes a necessary
condition for the convergence of the backward discrete-time scheme. In practice,
the penalization parameter will need to be chosen relatively small and the time
step |π| very small to avoid multiple jump times on each time step (otherwise, this
introduces a bias).

4 Application to Swing Options Valuation

In this section, our method is applied for the valuation of Swing options in the Black
and Scholes framework. This constitutes a multiple optimal stopping time problem
which can be reformulated as a particularly degenerate three-dimensional impulse
control problem. We have been able to achieve convergence for a small maximal
number of exercises rights (nmax ≤ 2) due to the slow computational speed of our
method.

4.1 Swing Options Valuation as an Impulse Control Problem

We consider a (normalized) Swing option: the holder of the option is given a maximal
number of exercise rights, say nmax ≥ 1, and has the opportunity to sell whenever
he wants over a time period [0, T ] an underlying asset against a fixed strike price.

For some fixed strike price K, we shall denote by φ(s) = (K − s)+ the reward
function corresponding to the profit made at each exercise date and by S the under-
lying asset spot price. We concentrate here on the risk-neutral Black and Scholes
framework in which r > 0 is a constant interest rate and the spot price process is
defined by

St = s exp

{

(r −
1

2
σ2)t+ σWt

}

, ∀t ≥ 0, (18)
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where σ > 0 denotes the volatility coefficient and s an initial price value.

A delay δ > 0 between two consecutive exercise dates is introduced. Indeed,
without any delay, the optimal strategy would consist in nmax simultaneous exercise
at an unique optimal date (so that this option is equivalent to nmax identical Amer-
ican options). The value of such an option at time 0 can be written as the solution
to the following multiple optimal stopping time problem

v̄(nmax)(s) = sup
u=(τk)k≥1∈Uδ,nmax

(0,T ]

E




∑

k≥1

e−rτkφ(Sτk)



 (19)

in which a strategy u = (τk)k≥1 is said to be admissible and belongs to Uδ
(0,T ] if and

only if it is a vector of FW -stopping times valued in (0, T ] with maximal lenght nmax

which satisfied the constraint on delay, that is

∀k ≥ 1, τk+1 − τk ≥ δ.

As a multiple optimal stopping time problem, this problem can be formulated as
a particular (and strongly degenerate) impulse control problem. An impulse control
corresponds to a sequence of exercise dates and the intervention gain is written as
the payoff function φ multiplied by an indicator function which allows to satisfy
both the constraint on the number of exercise rights and the constraint on delay
between exercise dates. Namely:

v(s) = sup
u=(τk)k≥1

E






∑

k≥1

τk≤T

e−rτkφ(Sτk)1
{(

Θk−1

τ
−
k

≥δ
)
∩
(
Qu

τ
−
k

<nmax

)}




 , (20)

where u = (τk)k≥1 is the sequence of FW -stopping times valued in (0, T ] and two
additional state variables which both are controlled and discontinuous (càdlàg) pro-
cesses are introduced:

• Qu counts the number of exercise rights used before considered time

Qu
0 = 0, Qu

t = ♯ {k ≥ 1, τk ≤ t} , ∀t ≥ 0.

• Θu
t := Θk

t = inf {t− τk, τk ≤ t} corresponds to the delay between t and last
exercise date

Θk
t = t− τk, ∀τk ≤ t < τk+1, Θk

τk+1
= 0, ∀k ≥ 0,

where by convention Θu
0 = Θ0

0 = 0.

Obviously, the problem (19) is equivalent to the impulse control problem (20):

∀s ∈ R, v̄(nmax)(s) = v(s).

Penalized BSDE Associated to Swing Option Pricing Problem

Let us introduce the uncontrolled variable (Q,Θ) defined by
{

Qt = Nt, ∀t ≥ 0,

Θt = t−
∫ t

0 Θs−dNs,
(21)
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where we recall that N is a Poisson process with intensity λ > 0. For a penalization
coefficient p > 0, the penalized BSDE with jumps associated to problem (20) is

Y
p
t = κ(ST , QT− ,ΘT−)−

∫ T

t

rY p
u du+ p

∫ T

t

(V p
u + κ(Su, Qu− ,Θu−))+λdu

−

∫ T

t

Zp
udWu −

∫ T

t

V p
u dNu, ∀0 ≤ t ≤ T. (22)

in which the intervention gain is defined by

κ(s, q, θ) := φ(s)1{(θ≥δ)∩(q≤nmax−1)}, ∀(s, q, θ) ∈ R× N× R
+. (23)

4.2 Numerical Valuation Algorithm

The three-dimensional process (S,Q,Θ) can be exactly computed on the time grid
π. We shall denote by (Sπ, Qπ,Θπ) its version on π. In particular, the pure jump
processes Q and Θ can be computed without approximation error, recall (21), from
a simulated trajectory of a Poisson process with intensity λ, see for example [11].

As the driver of the penalized BSDE with jumps (22) does not depend on Zp,
it is sufficient to compute (Y p,π, V p,π) on π, which can be made by the backward
recursive scheme:






Y
p,π
tN

= κ(Sπ
tN
, Qπ

tN
,Θπ

tN
)

∀tn ∈ π, tn < T :

V
p,π
tn

= 1
λ∆tn+1

E

[

Y
p,π
tn+1

∆Ñtn+1 |Ftn

]

Y
p,π
tn

= 1
1+r∆tn+1

(

E

[

Y
p,π
tn+1

|Ftn

]

+
[

p
(
V

p,π
tn

+ κ(Sπ
tn
, Qπ

tn
,Θπ

tn
)
)+

− V
p,π
tn

]

λ∆tn+1

)

(24)

and in our setting:

E [·|Ftn ] = E
[
·|(Sπ

tn
, Qπ

tn
,Θπ

tn
)
]
. (25)

Monte Carlo-based Resolution

We compute estimators of the conditional expectations (25) by a classical least
squares Monte Carlo technique. We use least squares regressions on adaptative lo-
cal basis functions, see [6]. Since such an approach is only relevant for real-valued
variables (the regression basis functions have compact support), it cannot handle
the integer-valued variable Qπ.

We thus deal with this variable explicitly. Namely, we simulate M ≥ 1 i.i.d.
paths of (Sπ, Qπ,Θπ)

(Sπ,(m), Qπ,(m),Θπ,(m)), ∀m ≤M,

and at each time step tn < T of the backward recursion, the set of M Monte Carlo
samples is separated in nmax + 1 sub-sets corresponding to the samples on which
Qπ

tn
= 0, 1, . . . , nmax−1 and Qπ

tn
≥ nmax. Then, we just need to estimate nmax

conditional expectation operators, namely

E
[
·|(Sπ

tn
, Qπ

tn
= q,Θπ

tn
)
]
, ∀q ∈ {0, 1, . . . , nmax − 1}
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by using the corresponding Monte Carlo samples, since (Y p,π
tn

, V
p,π
tn

) = (0, 0) when
Qπ

tn
≥ nmax, see Remark 4.

Remark 4. Let us show that Qπ
tn

≥ nmax implies Y p,π
tn

= V
p,π
tn

= 0. We have

E

[

Y
p,π
tn+1

∆Ñtn+1|(S
π
tn
, Qπ

tn
≥ nmax,Θ

π
tn
)
]

= E

[

E

[

Y
p,π
tn+1

|Qπ
tn

≥ nmax

]

︸ ︷︷ ︸

= 0

∆Ñtn+1 |(S
π
tn
, Qπ

tn
≥ nmax,Θ

π
tn
)
]

= 0,

by definition of κ in (23) and (24). In the same way

E

[

Y
p,π
tn+1

|(Sπ
tn
, Qπ

tn
≥ nmax,Θ

π
tn
)
]

= 0

which allows to conlude.

The Monte Carlo-based algorithm is then the following:

I. Initialization:

Y
p,π,(m)
tN

= φ(S
π,(m)
tN

)1{(

Θ
π,(m)
tN

≥δ
)

∩
(

Q
π,(m)
tN

≤nmax−1
)}, ∀m ≤M.

II. Computation backward in time of (V p,π,(m), Y p,π,(m)) on each sample m ≤M .
For n = N − 1, . . . , 0, set

Mq
tn

:=
{

m = 1, . . . ,M : Q
π,(m)
tn

= q
}

, ∀q ≤ nmax − 1,

Mnmax
tn

:=
{

m = 1, . . . ,M : Q
π,(m)
tn

≥ nmax

}

.

Then:

1. For any m ∈ Mnmax
tn

,

V
p,π,(m)
tn

= Y
p,π,(m)
tn

= 0.

2. Set q := nmax − 1.

3. If q ≥ 0, for any m ∈ Mq
tn
, the conditional expectations estimators

ε
V,q,(m)
tn

≈ E

[

Y
p,π
tn+1

∆Ñtn+1|
(

S
π,(m)
tn

,Θ
π,(m)
tn

)]

ε
Y,q,(m)
tn

≈ E

[

Y
p,π
tn+1

|
(

S
π,(m)
tn

,Θ
π,(m)
tn

)]

are approximated by least squares regression of
(

Y
p,π,(m)
tn+1

∆Ñ
(m)
tn+1

)

m∈Mq
tn

and
(

Y
p,π,(m)
tn+1

)

m∈Mq
tn

respectively on

(

ψ1(S
π,(m)
tn

,Θ
π,(m)
tn

), . . . , ψb(S
π,(m)
tn

,Θ
π,(m)
tn

)
)

m∈Mq
tn
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with b := b
q
tn

basis functions {ψ1, . . . , ψb}. Then,







V
p,π,(m)
tn

= 1
λ∆tn+1

ε
V,q,(m)
tn

Y
p,π,(m)
tn

= 1
1+r∆tn+1

(

ε
Y,q,(m)
tn

+

[

p

(

V
p,π,(m)
tn

+ φ(S
π,(m)
tn

)1{

Θ
π,(m)
tn

≥δ
}

)+

− V
p,π,(m)
tn

]

λ∆tn+1

)

.

4. q := q − 1 and go to 3.

III. At time t0 (M0
t0

= {1, . . . ,M} and Mq
t0

= ∅, ∀q ≥ 1) the Swing option price
estimator is given by Y p,π

t0
such that







V
p,π
t0

= 1
λ∆t1

1
M

∑M
m=1

(

Y
p,π,(m)
t1

∆Ñ
(m)
t1

)

Y
p,π
t0

= 1
1+r∆t1

(
1
M

∑M
m=1 Y

p,π,(m)
t1

+
[
p(V p,π

t0
)+ − V

p,π
t0

]
λ∆t1

)

.

Let us highlight some features of the above-presented Monte Carlo procedure. At
each backward induction date tn < T , we have to estimate in worst cases 2× nmax

conditional expectations, performed on each subset Mq
tn
, q ≤ nmax − 1. When

nmax increases, much more Monte Carlo samples are needed as each least squares
regression requires a sufficient number of samples.

In addition, the number of local basis functions bqtn has to be adapted to the num-
ber of Monte Carlo samples used for the least squares regression, namely card(Mq

tn
).

We thus introduce a dynamic choice for bqtn : it is fixed proportionally to card(Mq
tn
)

for any q ≤ nmax − 1 and tn < T .

Remark 5 (Statistical error of our method). A control of the statistical error in-
troduced by the least squares Monte Carlo approach is provided in Gobet et al. [18]
(see [23] for further details). By extension, this applies to BSDE with jumps (see
[15]) to control the error on the jump component V p,π and thus ensures that the
least squares Monte Carlo error tends to 0 as the number of samples M and the
number of basis functions b tends to +∞.

A Benchmark Method Based on Iteration

The classical method to value such a Swing option, recall formulation (19), is based
on an iteration over the number of exercise rights, see for example [9]. The dynamic
programming principle provides a direct link between the solution v(j) to the same
problem as (19) but with at most j ≤ nmax exercise rights and the solution v(j−1)

with at most (j − 1) exercise rights.
The value of the Swing option with 0 exercise right is obviously zero v(0) = 0.

Then, we compute the sequence of values of Swing options with j exercise rights
v(j), j = 1, . . . , nmax according the backward recursion scheme:







v(j)(tN , s) = φ(s)

∀tn ∈ π, T − δ < tn < T :

v(j)(tn, s) = max
{

φ(s) ; e−r∆tn+1E
(tn,s)

[

v(j)(tn+1, S
π
tn+1

)
]}

∀tn ∈ π, tn ≤ T − δ :

v(j)(tn, s) = max
{
φ(s) + e−rδ

E
(tn,s)

[
v(j−1)(tn + δ, Sπ

tn+δ)
]
;

e−r∆tn+1E
(tn,s)

[

v(j)(tn+1, S
π
tn+1

)
]}
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H
H
H

H
HH

λ

N
20 40 80 160 320

3 9.89 9.92 9.95 9.94 9.83
4 9.92 9.96 9.99 9.97 9.83
5 9.95 9.99 10.02 9.98 9.76

Table 1: Approximate prices of an American option with p = 5

where E
(tn,s) [·] := E

[
·|Sπ

tn
= s
]
. We use the same least squares Monte Carlo

regression-based method for approximating the conditional expectations operators
as above.

4.3 Pricing Results

We consider put options with maturity T = 1 year and a strike price K = 100. The
Black and Scholes parameters, see (18), are r = 0.05, σ = 0.3 and s = 100.

4.3.1 Special Case of American Options: nmax = 1

In the single-exercise case, the additional variable Θ disappears (there is no delay
constraint). This helps simplify the Monte Carlo procedure described in Paragraph
4.2. In particular, the algorithm implies only two sequences of samples subsets,
whether one jump of N occurs before T on the considered path or not: that is
((M1)tn)n≤N−1 and ((M0)tn)n≤N−1.

In our numerical experiments, we find out that increasing too much λ makes the
variance of the Monte Carlo procedure explode. It would be necessary to increase
the number of Monte Carlo samples, which leads to prohibitive computational times
(each pricing result presented below was obtained after a computation between 6 and
8 hours). For the same reason (exploding behavior of the penalized BSDE driver),
we restrict our numerical experiments to penalization parameters ≤ 5.

The benchmark price for the American put option is 9.88 (by a binomial approach
or classical Monte Carlo). We report in Table 1 the price given by our method when
varying λ and the number of time steps N for a penalization parameter equal to 5.
We used 20 million of Monte Carlo paths.

In all the experiments that we performed in this simple case, we numerically
observed that the limiting prices of our method (with respect to N) are below the
benchmark value: this is due to penalization.

4.3.2 Swing Options with nmax = 2

We consider time delays δ = 1
10 ,

2
10 ,

3
10 .

The benchmark prices for the Swing put option with 2 exercise rights are 19.27,
18.77 and 18.21 respectively (computed with the method described in Paragraph
4.2, N = 200 time steps and M = 5 million of Monte Carlo paths). We report in
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Figures 1, 2 and 3 the corresponding approximate prices when varying λ and N for a
penalization parameter equal to 5 and 10 (we used 40 million of Monte Carlo paths
and N = 20, 40, 80, 160, 320, 640).
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Figure 1: Approximate prices of a Swing option with 2 exercise rights
and δ = 1
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Figure 2: Approximate prices of a Swing option with 2 exercise rights
and δ = 2

10
, with p = 5 (left) and p = 10 (right)

For each considered value of λ, we retrieve a convergence in the number of time
steps N of our method. As p = 5, approximate prices are converged from N = 160,
so that we restrict ourselves to N ≤ 320 time steps as p = 10. The limiting values
are still below the benchmark but accurate option prices (relative error less than
1%) are obtained with a penalization coefficient p equal to 10 and N = 160. See also
Table 2 in which the (signed) relative error to the benchmark is given in brackets.
Besides, we observe a monotone convergence in λ of our approximate method.

We should point out that fine-tuning the parameters of the algorithm is difficult.
As already mentioned, since the number of Monte Carlo paths is different in each
set of sample paths Mq

tn
, q = 0, 1, 2, the number of basis functions used for the least

squares regressions has to be dynamically adapted. And when increasing much more
the jump intensity λ, more Monte Carlo samples would be necessary.
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10
, with p = 5 (left) and p = 10 (right)

H
H
H
H
HH

p

λ
3 4 5

δ = 1

10

5 18.80 (-2.44%) 18.95 (-1.66%) 19.00 (-1.40%)
10 19.16 (-0.57%) 19.24 (-0.16%) 19.27 (0.00%)

δ = 2

10

5 18.23 (-2.88%) 18.37 (-2.13%) 18.43 (-1.81%)
10 18.59 (-0.96%) 18.65 (-0.64%) 18.69 (-0.43%)

δ = 3

10

5 17.62 (-2.97%) 17.76 (-2.20%) 17.81 (-1.93%)
10 17.99 (-0.94%) 18.04 (-0.66%) 18.05 (-0.61%)

Table 2: Prices of a Swing option with 2 exercise rights
(limiting values with N = 160)

For such a Swing option, the running time is much longer because the condi-
tional expectations are computed by regression with respect to the bidimensional
state variable (Sπ,Θπ). The computation of one option price takes at least 15 hours
in above cases (when N ≥ 80). In comparison, the benchmark method takes less
than 5 minutes. Besides, the complexity of our method increases with nmax, leading
to untractable computational times for bigger values of nmax, see Remark 6.

On this particular case of Swing options valuation, it seems that our method is
less competitive than the classical approach. This is without any doubt due to the
strong degeneracy of such a problem in our impulse control context: the valuation
problem is 3-dimensional and involves an additional integer-valued state variable Q
representing the number of exercise rights used at any considered time.

However, our method works and the numerical results that we obtain are con-
sistent with the theoretical convergence rate given in Theorem 1. One can expect
that our method would work better on less degenerate problems.

Remark 6 (Dealing with more exercise rights). The computational time of our
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method intuitively increases linearly with the number of exercise rights nmax. In-
deed, at each time step of the backward induction procedure, the number of condi-
tional expectation estimations is proportional to nmax. Besides, when multiplying by
2 the number of exercise rights, it would require, at least, a double number of Monte
Carlo samples for a same accuracy of the computation of conditional expectation
estimators.

Let us mention that the computational time of the benchmark method using
iteration increases linearly as function of the the maximal number of exercise rights
as well.
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