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Spreading properties and complex dynamics

for monostable reaction-diffusion equations

François Hamel a and Grégoire Nadin b∗

a Aix-Marseille Université & Institut Universitaire de France

LATP, UMR 6632, Avenue Escadrille Normandie-Niemen, F-13397 Marseille Cedex 20, France

b CNRS, UMR 7598, Laboratoire Jacques-Louis Lions, F-75005 Paris, France

Abstract

This paper is concerned with the study of the large-time behavior of the solutions u
of a class of one-dimensional reaction-diffusion equations with monostable reaction
terms f , including in particular the classical Fisher-KPP nonlinearities. The nonneg-
ative initial data u0(x) are chiefly assumed to be exponentially bounded as x tends
to +∞ and separated away from the unstable steady state 0 as x tends to −∞. On
the one hand, we give some conditions on u0 which guarantee that, for some λ > 0,
the quantity cλ = λ + f ′(0)/λ is the asymptotic spreading speed, in the sense
that limt→+∞ u(t, ct) = 1 (the stable steady state) if c < cλ and limt→+∞ u(t, ct) = 0
if c > cλ. These conditions are fulfilled in particular when u0(x) e

λx is asymptoti-
cally periodic as x → +∞. On the other hand, we also construct examples where the
spreading speed is not uniquely determined. Namely, we show the existence of classes
of initial conditions u0 for which the ω−limit set of u(t, ct + x) as t tends to +∞ is
equal to the whole interval [0, 1] for all x ∈ R and for all speeds c belonging to a given
interval (γ1, γ2) with large enough γ1 < γ2.

Keywords: reaction-diffusion equations; spreading speeds; propagation phenomena.
AMS classification: 35B05; 35B40; 35K57.

1 Introduction

We study in this paper the large-time behavior of the solutions of monostable reaction-
diffusion equations of the type

{
∂tu− ∂xxu = f(u), t > 0, x ∈ R,

u(0, x) = u0(x) for a.e. x ∈ R,
(1.1)

∗The first author is indebted to the Alexander von Humboldt Foundation for its support. Both authors
are also supported by the French “Agence Nationale de la Recherche” within the project PREFERED.
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where the reaction term f : [0, 1] → R is a C1 function such that

f(0) = f(1) = 0, f(s) > 0 if s ∈ (0, 1), f ′(0) > 0, (1.2)

and u0 is a measurable initial datum such that u0 6≡ 0, u0 6≡ 1 and 0 ≤ u0(x) ≤ 1 for almost
every x ∈ R (the quantity u stands for a normalized density in the applications in population
dynamics models, see e.g. [4, 32, 39]). Under these hypotheses, the Cauchy problem (1.1) is
well-posed, the solution u is classical for t > 0, and u(t, x) ∈ (0, 1) for all t > 0, x ∈ R.

This type of equation has first been investigated by Fisher [12] and Kolmogorov, Petrovski
and Piskunov [24] in the 30’s. Among other results, these authors proved that, in dimension 1,
when f(s) = s(1 − s) and u0 is the Heaviside function, that is u0(x) = 1 if x < 0 and 0
if x > 0, then 




min
x≤ct

u(t, x) → 1 as t→ +∞ if c < c∗,

max
x≥ct

u(t, x) → 0 as t→ +∞ if c > c∗,
(1.3)

with c∗ = 2 in this case. Such properties are called spreading properties and the quantity c∗

is called the spreading speed associated with the initial datum u0. This result has been ex-
tended by Aronson and Weinberger [1] in the 70’s to multidimensional media and positive
nonlinearities satisfying (1.2). In particular, it is proved in [1] that, in dimension 1, for-
mula (1.3) still holds when u0 is the Heaviside function, for some positive real number c∗

which only depends on f .

Travelling fronts

For general functions f satisfying (1.2), this threshold c∗ also turns out to be the minimal
speed of existence of travelling fronts solutions of equation (1.1). Namely, we say that a
solution u of (1.1) is a travelling front if it can be written as

u(t, x) = Uc(x− ct),

with Uc(−∞) = 1, Uc(+∞) = 0 and 0 < Uc < 1 in R. In this case, we say that c is the speed
of the travelling front solution u. It is well known [1, 15] that if f satisfies (1.2), then there
exists a speed c∗ such that there exists a travelling front solution of (1.1) with speed c if and
only if c ≥ c∗. Furthermore, if f satisfies the now-called Fisher-KPP assumption, that is if

0 < f(s) ≤ f ′(0)s for all s ∈ (0, 1), (1.4)

then c∗ = 2
√
f ′(0). For general functions f satisfying (1.2), one has

c∗ ≥ 2
√
f ′(0),

see [1, 15]. Lastly, for each c ≥ c∗, the profile Uc associated with the travelling front of
speed c is decreasing on R and unique up to translation and, if c > c∗, there exists M > 0
such that

Uc(z) ∼M e−λz as z → +∞, (1.5)
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where λ = (c −
√
c2 − 4f ′(0))/2 is the smallest root of the equation λ2 − λc + f ′(0) = 0.

When c = c∗ > 2
√
f ′(0), then Uc∗(z) ∼M e−λz as z → +∞ for some M > 0, where λ is the

largest root of λ
2−λc∗+f ′(0) = 0. When c = c∗ = 2

√
f ′(0), then Uc∗(z) ∼ (M z+M ′) e−λ∗z

as z → +∞, where λ∗ =
√
f ′(0) = c∗/2 and either M > 0, or M = 0 and M ′ > 0.

Notice here that the nondegeneracy of f at 0, that is the condition f ′(0) > 0, guarantees
the exponential behavior of the travelling fronts as they approach 0. Thus, the estimates of
the spreading speeds, as defined below, are expected to be given in terms of the exponential
decay rate of the initial condition. If f ′(0) = 0, then the non-critical travelling fronts have
in general an algebraic decay and the convergence to the travelling fronts depends on the
algebraic decay rate of the initial condition and exponentially decaying initial conditions will
then travel with the minimal speed (see [22, 38] for some results in that direction).

Definition of minimal and maximal spreading speeds for front-like initial data

Before stating our main results in the next section, we define in this section the notions
of minimal and maximal spreading speeds for the solutions u of (1.1) with initial condi-
tions u0 : R → [0, 1] which are much more general than the Heaviside function. We state
here some elementary comparisons between the spreading speeds and we recall the known
standard examples for which the spreading speeds are well determined. It would have been
natural to also consider heterogeneous reaction-diffusion equations as well as equations in
higher dimensions. We chose to present our results in the homogeneous one-dimensional
setting for problem (1.1) for the sake of simplicity of the presentation, and also because
this one-dimensional homogeneous framework already captures new and interesting com-
plex propagation phenomena at large time. However, in the appendix, we briefly mention
some extensions of our main results to more general heterogeneous and higher-dimensional
situations.

Coming back to problem (1.1), the initial data u0 we consider are front-like, in the sense
of the following definition.

Definition 1.1 We say that a function u0 ∈ L∞(R) is front-like if 0 ≤ u0(x) ≤ 1 for

a.e. x ∈ R and there exist x− ∈ R and δ > 0 such that

u0(x) ≥ δ for a.e. x < x− and lim
x→+∞

‖u0‖L∞(x,+∞) = 0.

The term front-like means that the values of u0(x) as x → ±∞ (up to a negligible set)
are strictly ordered, although the front-like initial u0 may not be nonincreasing on R even up
to a set of zero measure. However, these very mild conditions still guarantee that u(t, x) → 0
as x→ +∞ for every t > 0, from standard parabolic estimates and the maximum principle.

For such initial data, we still expect the solutions of the Cauchy problem (1.1) to spread,
that is the stable state 1 to invade the unstable steady state 0. At first glance, we could
think that a property like (1.3) still holds, where c∗ would in general be replaced with a
quantity w > 0 which would depend on u0. A natural question, which is fundamental for the
applications in biology or ecology, would then be to compute the speed w of this invasion.
In fact, it turns out that some complex dynamics may occur in general. The mild conditions

3



in Definition 1.1 give rise to a large variety of propagation phenomena at large time, some
of them being of a completely new type. Thus, in order to quantify the spreading, we are
led to introduce two natural quantities: the minimal and the maximal spreading speeds.

Definition 1.2 For a given front-like function u0, we define the minimal and maximal sprea-
ding speeds w∗(u0) and w

∗(u0) of the solution u of (1.1) as

w∗(u0) = sup
{
c ∈ R, inf

x≤ct
u(t, x) → 1 as t→ +∞

}
,

w∗(u0) = inf
{
c ∈ R, sup

x≥ct

u(t, x) → 0 as t→ +∞
}
.

It immediately follows from Definition 1.2 that, for any given front-like function u0,





inf
x≤ct

u(t, x) → 1 as t→ +∞ for all c < w∗(u0),

sup
x≥ct

u(t, x) → 0 as t→ +∞ for all c > w∗(u0)

if w∗(u0) is finite. Actually, we will see below that w∗(u0) can never be −∞, but that w∗(u0),
and w∗(u0), are sometimes equal to +∞.

Computation of the spreading speeds in the standard cases

Let us now give some general comparisons and a list of standard examples for which these
quantities can be explicitly computed. First, when there is a real number A such that

u0(x) = σ ∈ (0, 1] for a.e. x < A and u0(x) = 0 for a.e. x > A,

it is then well known [1, 24] that w∗(u0) = w∗(u0) = c∗, where

c∗ is the minimal speed of existence of travelling fronts solutions.

Using this fact and the parabolic maximum principle, as any front-like function is bounded
from below by a space shift of the Heaviside function multiplied by some σ ∈ (0, 1], we get
that

c∗ ≤ w∗(u0) ≤ w∗(u0) ≤ +∞ (1.6)

for any front-like initial datum u0.
In general, the spreading speeds are strictly larger than c∗. For example, for any

speed c ≥ c∗, if u(t, x) = Uc(x− ct) is a travelling front solution of speed c, then

w∗(u(0, ·)) = w∗(Uc) = w∗(u(0, ·)) = w∗(Uc) = c.

Set now

λ∗ = min
{
λ > 0, λ2 − λc∗ + f ′(0) = 0

}
=
c∗ −

√
c∗2 − 4f ′(0)

2
, (1.7)
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which is a well defined real number since c∗ ≥ 2
√
f ′(0), consider

u0(x) = min
(
σ, θ e−λx

)
for all x ∈ R (1.8)

with σ ∈ (0, 1], θ > 0 and λ ∈ (0, λ∗), and define

cλ = λ+
f ′(0)

λ
.

When f satisfies (1.2) and f ′(s) ≤ f ′(0) for all s ∈ [0, 1], it has been proved through proba-
bilistic methods by McKean [30] and through PDE’s methods by Kametaka [20] that the
solution u of (1.1) satisfies

sup
x∈R

∣∣u(t, x)− Ucλ(x− cλt+ x0)
∣∣→ 0 as t→ +∞, (1.9)

where Ucλ is the travelling front profile with speed cλ, satisfying (1.5), and x0 = −λ−1 ln(θ/M).
This property implies that

w∗(u0) = w∗(u0) = cλ = λ+
f ′(0)

λ
. (1.10)

When λ ≥ λ∗ in (1.8), McKean [30] and Kametaka [20] proved a similar convergence, namely
that

sup
x∈R

∣∣u(t, x)− Uc∗(x− c∗t+m(t))
∣∣→ 0 as t→ +∞, (1.11)

where m(t)/t→ 0 as t→ +∞. This implies (1.3) and leads to w∗(u0) = w∗(u0) = c∗. These
limits (1.9) and (1.11) have been extended by Uchiyama [40] to general monostable func-
tions f fulfilling (1.2) and to front-like initial data satisfying limx→+∞ u0(x+x0)/u0(x) = e−λx0

for all x0 ∈ R (see also [10, 25, 31, 35, 36] for further results and more precise convergence
estimates).

On the other hand, Bramson [7] and Lau [26] investigated spreading properties for more
general front-like initial data, using respectively probabilistic and PDE tools, when f satis-
fies (1.2) and f ′(s) ≤ f ′(0) for all s ∈ [0, 1]. They proved that if u0 is a front-like initial
datum such that there exist h > 0 and 0 < λ < λ∗ =

√
f ′(0) such that

lim
x→+∞

1

x
ln

(∫ (1+h)x

x

u0(y)dy

)
= −λ, (1.12)

then w∗(u0) = w∗(u0) = cλ = λ + f ′(0)/λ. This result is more general than the one of
Uchiyama [40], but it requires the nonlinearity f to satisfy f ′(s) ≤ f ′(0) for all s ∈ [0, 1]. This
property simplifies the analysis since it is known that the linearization near u = 0 does govern
the global dynamics of the equation in this case. However, we believe that Bramson’s and
Lau’s results could be extended from the KPP framework to that of (1.2), using comparison
with KPP nonlinearities. As will be seen in the Section 3, we will use in this paper other
assumptions and tools, which still guarantee the uniqueness of the spreading speeds in the
general monostable case (1.2). Furthermore, we also show that complex dynamics may occur
in general.
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Lastly, if u0 is front-like and

u0(x) e
εx → +∞ as x→ +∞ for all ε > 0, (1.13)

then it follows from the maximum principle and (1.10) that w∗(u0) ≥ ε+f ′(0)/ε for all ε > 0,
whence w∗(u0) = w∗(u0) = +∞. In this case, together with the Fisher-KPP assump-
tion (1.4), Hamel and Roques [17] also computed the position of the level sets of the func-
tion u(t, ·) as t→ +∞, according to the precise asymptotic behavior of u0(x) as x→ +∞.

To sum up, the spreading speeds w∗(u0) and w
∗(u0) are explicitly known when the front-

like initial data u0 are exponentially decaying near +∞, or when they fulfill (1.12) under the
additional condition that f satisfies f ′(s) ≤ f ′(0) for all s ∈ [0, 1]. It is important to notice
that, in all aforementioned examples, one has w∗(u0) = w∗(u0). This leads to the following
natural questions, that we investigate in the present paper:

• is it possible to compute w∗(u0) and w
∗(u0) for more general initial conditions, given

a nonlinearity f satisfying (1.2) only ?

• is it always true that w∗(u0) = w∗(u0) ?

Remark 1.3 Throughout the paper, the initial conditions u0 are assumed to be front-like
in the sense of Definition 1.1. Obviously, when 0 ≤ u0 ≤ 1, u0 6≡ 0 and u0(x) → 0
as x → ±∞, then left and right minimal and maximal spreading speeds could be defined
and similar results as the ones stated in the next section could be obtained. One of the
reasons lies on the fact that u(t, x) → 1 as t→ +∞ locally uniformly in x ∈ R (as a matter
of fact, min|x|≤ct u(t, x) → 1 as t → +∞ for all c ∈ [0, c∗), see [1]). Thus, the spreading
properties to the left and to the right only depend on the behavior of the tails of u0 at ±∞.

2 Main results

We first consider the class of front-like functions u0 such that

u0(x) = O
(
e−Λ(x)x

)
as x→ +∞ with lim

x→+∞
Λ(x) = λ ∈ [0,+∞]. (2.14)

We first look for some conditions on u0 which guarantee that w∗(u0) = w∗(u0) = cλ. In
other words, we want to know whether u satisfies the same spreading property as the solu-
tion associated with the initial datum x 7→ min(σ, θ e−λx), for some σ ∈ (0, 1] and θ > 0.
If λ ∈ [λ∗,+∞], where λ∗ > 0 was defined in (1.7), then, as already emphasized, it follows
from the maximum principle and [40] that w∗(u0) = w∗(u0) = c∗ (it is actually sufficient to
suppose that lim infx→+∞ Λ(x) ≥ λ∗). We thus restrict ourselves to the case

0 ≤ λ < λ∗.

The condition we will exhibit on u0 depends on the function x 7→ ρ(x) := u0(x) e
λx (for x

sufficiently large). Basically, this condition requires the solution of the heat equation asso-
ciated with the initial datum ρ (extended by 1 in a neighborhood of −∞) to be uniformly
away from 0 for each fixed t > 0.
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To make the arguments work, we shall use an additional assumption on the nonlinearity f
near 0. Namely, we assume that there exist C > 0, γ > 0 and s0 ∈ (0, 1) so that

∀s ∈ [0, s0], f(s) ≥ f ′(0)s− Cs1+γ. (2.15)

Note that this hypothesis is fulfilled in particular if f is of class C1+γ in a neighborhood of 0.
We first deal with the case 0 < λ < λ∗ in (2.14).

Theorem 2.1 Let f satisfy (1.2) and (2.15), let λ ∈ (0, λ∗) and let u0 be a front-like function

such that there exist x0 ∈ R, a nonnegative bounded function ρ : (x0,+∞) → [0,+∞) and a

function Λ : (x0,+∞) → R so that

u0(x) = ρ(x) e−Λ(x)x for a.e. x > x0 and Λ(x) → λ as x→ +∞.

Let ρ : R → [0,+∞) be defined by ρ(x) = 1 for x < x0 and ρ(x) = ρ(x) for x > x0. Lastly,

let ζ be the solution of the heat equation

{
∂tζ − ∂xxζ = 0, t > 0, x ∈ R,

ζ(0, x) = ρ(x) for a.e. x ∈ R.
(2.16)

If there exists a time T > 0 such that

inf
x∈R

ζ(T, x) > 0, (2.17)

then

w∗(u0) = w∗(u0) = λ+
f ′(0)

λ
. (2.18)

Remark 2.2 Note that the existence of a time T > 0 such that infx∈R ζ(T, x) > 0 is
equivalent to

inf
x∈R

ζ(t, x) > 0 for all t > 0

and even
inf
t′≥t

(
inf
x∈R

ζ(t′, x)
)
> 0 for all t > 0. (2.19)

Indeed, if there exist t0 > 0 and a sequence (xn)n∈N of real numbers such that ζ(t0, xn) → 0
as n → +∞, then the Schauder parabolic estimates and the strong parabolic maximum
principle imply that, up to extraction of a subsequence, ζ(t, x + xn) → 0 as n → +∞
locally uniformly in (t, x) ∈ (0,+∞) × R. Thus, if infx∈R ζ(T, x) > 0 for some T > 0,
then infx∈R ζ(t, x) > 0 for all t > 0 and the parabolic maximum principle yields (2.19).
Observe also that, by linearity of the heat equation and by the maximum principle, condi-
tion (2.17) remains unchanged if the function ρ is set to be equal to any given positive real
number η > 0, instead of 1, on (−∞, x0). Thus, what really matters in condition (2.17) is
the behavior of ρ(x) as x→ +∞.
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Under the only monostability and behavior-at-0 conditions (1.2) and (2.15), Theo-
rem 2.1 then gives a sufficient condition on u0 for the solution u of (1.1) to spread at
speed cλ = λ + f ′(0)/λ. It is immediate to see that the boundedness assumption of ρ
is necessary for Theorem 2.1 to hold in general. For instance, if ρ(x) = eεx for x > x0
with ε ∈ (0, λ), then, by writing u0(x) = ρ̃(x) e−Λ̃(x)x for a.e. x > x0 with Λ̃(x) = Λ(x) − ε
and ρ̃(x) = 1 for x > x0, the conclusion of Theorem 2.1 yields w∗(u0) = w∗(u0) = cλ−ε > cλ.
Similarly, the condition (2.17) is obviously necessary for the conclusion to hold in gene-
ral: indeed, if ρ(x) = e−εx for x > x0, with ε ∈ (0, λ∗ − λ), then (2.17) is not fulfilled
and w∗(u0) = w∗(u0) = cλ+ε < cλ. However, this condition (2.17) is also not necessary
in general for the conclusion (2.18) to hold. That is, there are examples for which (2.17)
is violated and (2.18) still holds. For instance, choose any positive measurable function ρ
on (x0,+∞) such that

ρ(x) → 0 and | ln ρ(x)| = o(x) as x→ +∞;

then ζ(t, x) → 0 as x→ +∞ for all t > 0 and conclusion (2.18) still holds since Theorem 2.1

can be applied by writting u0 as u0(x) = e−Λ̃(x)x for a.e. x ≥ x0 with

Λ̃(x) = Λ(x)− ln ρ(x)

x
→ λ as x→ +∞.

On the other hand, what is much less obvious is to see that there are examples for which (2.17)
is violated while the maximal spreading speed w∗(u0) is still equal to cλ and the minimal
spreading speed w∗(u0) is strictly less. That will be the purpose of Theorem 2.6 which is
stated at the end of this section.

Before doing so, we first state an immediate corollary of Theorem 2.1, concerning the
particular case of a function ρ which is the restriction on (x0,+∞) of a function having an
average: we say that a function g ∈ L∞(R) admits an average gm ∈ R if

1

h

∫ x+h

x

g(z) dz → gm as h→ +∞ uniformly in x ∈ R.

Corollary 2.3 Let f , λ, u0, x0, ρ and Λ be as in Theorem 2.1 and assume furthermore

that ρ can be extended on R to a bounded nonnegative function having a positive average.

Then, the conclusion (2.18) holds automatically.

In particular, Corollary 2.3 covers the case of nonnegative functions ρ ∈ L∞(R) which
are periodic, almost-periodic or uniquely ergodic, assuming that their average, which exists,
is positive. Under the assumptions of Corollary 2.3, it is easy to check that u0 satisfies the
condition (1.12) of Bramson [7] and Lau [26]. Hence, if, in addition to (1.2) and (2.15), the
function f is such that f ′(s) ≤ f ′(0) for all s ∈ [0, 1], the proof of Corollary 2.3 gives then
an alternate approach of that of Bramson and Lau.

We point out that, in Theorem 2.1 or in Corollary 2.3, the function ρ may vanish on
sequences of sets with positive measure on [A,+∞) for all large A, in which case the func-
tion u0 cannot be bounded from below by a positive constant times any function e−λx for
large x. A typical example is when ρ is periodic and vanishes periodically, as in the joint
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figure. However, for the conclusion (2.18) to hold, the function ρ cannot be too close to 0
on a too large set, this is roughly speaking the meaning of condition (2.17). The simplest
example is when ρ is periodic: the function ρ may vanish periodically but, unless it vanishes
almost everywhere, the spreading speeds w∗(u0) and w

∗(u0) are equal to cλ.
Another enlightening application of Theorem 2.1 is the following one. Let 0<λ1<λ2<λ

∗

be fixed, let ρ1 and ρ2 be two given bounded nonnegative periodic functions with positive
averages, let u1,0 and u2,0 be two given front-like functions such that u1,0(x) = ρ1(x) e

−λ1x

and u2,0(x) = ρ2(x) e
−λ2x for large x, and let u1 and u2 be the solutions of (1.1) with initial

conditions u1,0 and u2,0, respectively. It follows from Theorem 2.1 (actually, Corollary 2.3)
that u1 and u2 spread at the speeds cλ1 = λ1+f

′(0)/λ1 and cλ2 = λ2+f
′(0)/λ2, respectively.

Let now u0 be a front-like function such that

u0(x) = ρ1(x) e
−λ1x + ρ2(x) e

−λ2x for large x

and let u be the solution of (1.1) with initial condition u0. Since u0 is equal to a linear
combination of the functions u1,0 and u2,0 near +∞, one could have thought that u would
have spread at a speed which would have been a sort of average of cλ1 and cλ2 . This is
actually not the case, since Theorem 2.1 implies that

w∗(u0) = w∗(u0) = cλ1 .

In other words, u spreads at the largest speed, that is the one given only from the slowest ex-
ponential decay. Indeed, for large x, u0(x) = ρ(x) e−λ1x, where ρ(x) = ρ1(x)+ρ2(x) e

−(λ2−λ1)x

is bounded near +∞; since ρ ≥ ρ1 ≥ 0 and ρ1 has a positive average, the condition (2.17) is
fulfilled and the conclusion (2.18) holds with λ = λ1.

When, in Theorem 2.1, the function Λ is equal to the constant λ, the method we use
to prove Theorem 2.1 gives actually more than (2.18) under assumption (2.17). Namely, it
implies that the solution u of (1.1) is asymptotically almost trapped between two travelling
fronts solutions with speed cλ = λ+ f ′(0)/λ, in the following sense.
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Proposition 2.4 Let f , λ, u0, x0, ρ and Λ be as in Theorem 2.1 and assume furthermore

that Λ = λ on [x0,+∞) and that (2.17) holds. Then there exist two real numbers x1 and x2
such that

Ucλ(x+ x1) ≤ lim inf
t→+∞

u(t, x+ cλt) ≤ lim sup
t→+∞

u(t, x+ cλt) ≤ Ucλ(x+ x2) (2.20)

uniformly in x ∈ R.

This result means that the solution u is, at large time, as close as wanted from two
shifts of the travelling front Ucλ in the moving frame with speed cλ (in the case when Λ
depends on x, the conclusion is not true in general, see the comment below on the position
of the level sets of u at large time). However, even when Λ is constant, formula (2.20)
does not mean that u(t, · + cλt) is truly trapped between two shifts of Ucλ , even for large t.
Indeed, for instance, if 0 < esssup

R
u0 = M0 < 1, then sup

R
u(t, ·) ≤ M(t) for all t ≥ 0,

where Ṁ(t) = f(M(t)) for all t ≥ 0 and M(0) = M0. Since M(t) < 1 for all t ≥ 0
and since Ucλ(−∞) = 1, the function u(t, · + cλt) can never be larger than any shift of Ucλ .
Proposition 2.4 does not mean either that the solution in the moving frame, that is u(t, ·+cλt),
converges to a shift of the front Ucλ . The solution may well oscillate without converging
between two shifts of the front Ucλ , as proved by Bages, Martinez and Roquejoffre [2, 29]
under the additional assumption that f is concave. Actually, more precise estimates of
the time-dependent shift, which also hold for more geneal periodic equations in cylindrical
domains, are given in [2, 29] when u0 is assumed to be trapped between two finite shifts of
the same front Ucλ .

Lastly, when u0 is not exponentially bounded as x → +∞, in the sense of (1.13),
then w∗(u0) = w∗(u0) = +∞, as already noticed. More generally speaking, Theorem 2.1 still
holds when λ = 0, if the condition (2.17) is fulfilled, implying that the solution u spreads
with infinite speed.

Corollary 2.5 Under the same notations as in Theorem 2.1 but with λ = 0, and under the

assumption (2.17), one has

w∗(u0) = w∗(u0) = +∞. (2.21)

It is possible to reformulate the above results in terms of the level sets of the solution u
of the Cauchy problem (1.1). Namely, given a front-like initial condition u0, define the level
set of u for a value m ∈ (0, 1) at a time t > 0, as follows:

Em(t) =
{
x ∈ R, u(t, x) = m

}
.

For a given m ∈ (0, 1), this set can be empty, but it is easy to see that it is non-empty and
compact when t is sufficiently large. Now, from Definition 1.2 and under the hypotheses of
Theorem 2.1 with 0 < λ < λ∗ (resp. Corollary 2.5 with λ = 0), we can reformulate the
conclusions (2.18) and (2.21) into:

∀m ∈ (0, 1), lim
t→+∞

1

t
minEm(t) = lim

t→+∞

1

t
maxEm(t) = cλ = λ+

f ′(0)

λ
(2.22)
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with the convention that c0 = +∞. In other words, for any m ∈ (0, 1) and any family of real
numbers (xm(t))t>0 such that u(t, xm(t)) = m for large t, then xm(t)/t → cλ as t → +∞.
Thus, the quantity cλ is the asymptotic time-averaged speed of all level sets of u. We
mention here that another notion of speed, that of bulk burning rate defined, under additional
assumptions on u0, as the integral of ∂tu over R, was also introduced in [9] (see also [23] for
further estimates). The bulk burning rate can then be viewed as a space-averaged speed and,
of course, the bulk burning rate and the spreading speeds defined in Definition 1.2 coincide
at large time when the solution u converges globally to a travelling front.

As far as Proposition 2.4 is concerned, its conclusion (2.20) implies in particular that, for
all m ∈ (0, 1),

lim sup
t→+∞

∣∣maxEm(t)− cλt
∣∣ < +∞ and lim sup

t→+∞

∣∣minEm(t)− cλt
∣∣ < +∞, (2.23)

Property (2.23) is clearly stronger than (2.22). Both (2.22) and (2.23) also yield for-
mula (2.18), since, as it can be easily seen, lim infx→−∞ u(t, x) → 1 as t → +∞
and limx→+∞ u(t, x) = 0 for all t ≥ 0. However, it is worth noticing here that, in gene-
ral, the only assumptions of Theorem 2.1 do not guarantee that the level sets Em(t) stay
at finite distance as t → +∞ from the position cλt for each fixed m ∈ (0, 1). For ins-
tance, if u0 is front-like and u0(x) = e−Λ(x)x for large x with limx→+∞ Λ(x) = λ ∈ (0, λ∗)
and limx→+∞(Λ(x)− λ)x = +∞ (resp. −∞), it then follows from the comparison principle
and the general convergence results (1.9), that

maxEm(t)− cλt→ −∞
(
resp. minEm(t)− cλt→ +∞

)
as t→ +∞

for all value m ∈ (0, 1), while w∗(u0) = w∗(u0) = cλ from Theorem 2.1. On the other hand,
if |Λ(x) − λ| = O(x−1) as x → +∞ and if (2.17) is fulfilled, then Proposition 2.4 and the
maximum principle imply that (2.20) holds, whence (2.23).

In all above results, the solutions u of (1.1) have a well defined spreading speed, that
is w∗(u0) = w∗(u0), and this quantity is explicitely expressed in terms of the asymptotic
behavior of the front-like initial condition at +∞. We now exhibit a class of front-like initial
data u0 for which w∗(u0) < w∗(u0). We not only prove that for some range of speeds c,
the functions t 7→ u(t, ct + x) do not converge as t → +∞, but also that their ω−limit
sets are the whole interval [0, 1]. We recall that the ω−limit set as t → +∞ of a func-
tion t 7→ g(t) ∈ [0, 1] defined in a neighborhood of +∞ is the set of all s ∈ [0, 1] for which
there exists a sequence tn → +∞ such that g(tn) → s as n → +∞. Given a function f
satisfying (1.2), we denote

Mf = max
s∈[0,1]

f ′(s) > 0.

From comparisons with KPP-type nonlinearities, it follows that c∗ ≤ 2
√
Mf , where c

∗ is the
minimal speed of travelling fronts with nonlinearity f (see also [15]).

Theorem 2.6 Let f satisfy (1.2) and (2.15) and let γ1 < γ2 be given in the inter-

val [2
√
Mf ,+∞]. Then there exists a front-like function u0 such that

γ1 = w∗(u0) < w∗(u0) = γ2.
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Furthermore, for any c ∈ (γ1, γ2), any x ∈ R and any m ∈ (0, 1), the ω−limit set of the func-

tion t 7→ u(t, ct+x) as t→ +∞ is equal to the whole interval [0, 1] and the ω−limit sets of the

functions t 7→ t−1 minEm(t) and t 7→ t−1 maxEm(t) are equal to the whole interval [γ1, γ2].

The initial data u0 are constructed in such a way that they oscillate as x → +∞ be-
tween the two exponential functions e−λ1x and e−λ2x on larger and larger space-intervals,
with γ1 = cλ1 (or λ1 = λ∗ if γ1 = c∗) and γ2 = cλ2 . The proof then shows that the solution u
of (1.1) oscillates on larger and larger time-intervals between two approximate solutions
moving with speeds close to γ1 and γ2, so that the averaged speeds of the level sets, namely
minEm(t)/t and maxEm(t)/t, oscillate infinitely many times between γ1 and γ2. Therefore,
the level sets do not converge in speed to any real number as t→ +∞. We refer to Section 4
for the details. It is worth noticing that, for such monostable problems, this completely new
and highly non-trivial oscillating dynamics is present even in the simplest case of the one-
dimensional homogeneous equation (1.1). It also holds for general monostable functions f
satisfying (1.2) and (2.15), provided that the chosen speeds γ1 and γ2 are large enough. No-
tice that, in the case when f ′(s) ≤ f ′(0) for all s ∈ [0, 1], then Mf = f ′(0) and c∗ = 2

√
Mf .

Hence, in this case, the speeds γ1 and γ2 can take any values between c∗ and +∞.
The proofs of the above results rely firstly on the maximum principle and on the con-

struction of suitable sub- and supersolutions for the Cauchy problem (1.1). The gaussian
decay of the heat kernel plays a crucial role in the proof of Theorem 2.6. We have to estimate
sharply the time-depending behavior of u(t, x) as x → +∞ and we prove that these tails
force the solution to spread at the desired approximated speeds on large time-intervals. It
is important to point out that, even if the spreading properties are determined through the
asymptotic behavior of u(t, x) as x → +∞, that is as u → 0, the function f may not need
to be concave or even of the KPP type (1.4).

Remark 2.7 Similar propagation phenomena have been shown by Hamel and Sire [19] for
ignition-type nonlinearities arising in combustion theory (see e.g.[21]), that is functions f for
which there exists θ ∈ (0, 1) such that

f(s) = 0 if s ∈ [0, θ] ∪ {1}, f(s) > 0 if s ∈ (θ, 1). (2.24)

It is known that for such nonlinearities, for all α ∈ [0, θ), there exists a unique speed c̃α
so that there exists a travelling front that connects α to 1 with speed c̃α, see [21]. The
front-like initial data u0 : R → [0, 1] are then defined as follows: lim infx→−∞ u0(x) > θ
and lim supx→+∞ u0(x) < θ (up to a negligible set). For such nonlinearities f , the same
definition for the minimal spreading speed w∗(u0) as in Definition 1.2 is taken, but the
maximal spreading speed w∗(u0) is now defined by

w∗(u0) = inf
{
c ∈ R, lim sup

t→+∞

(
sup
x≥ct

u(t, x)
)
≤ θ
}
,

since the whole interval [0, θ] corresponds to the set of weakly unstable zeroes of the
function f . More general heterogeneous problems in higher dimensions have been con-
sidered in [19], but, as far as the homogeneous one-dimensional equation (1.1) is con-
cerned, the results of Hamel and Sire are the following ones: if u0 is front-like and
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if u0(x) − p(x) → 0 as x → +∞, where p is a periodic function with periodic average p,
then w∗(u0) = w∗(u0) = c̃p. But in the general case, the authors constructed a class of initial
data u0 such that w∗(u0) < w∗(u0). Moreover, their construction gives that, for such u0,
for any c ∈ (w∗(u0), w

∗(u0)) and any x ∈ R, the ω-limit set of t 7→ u(t, ct + x) is [α, 1],
where α ∈ [0, θ) is defined by c̃α = w∗(u0). It is interesting to notice that, despite their
similarities, the results and proofs of [19] and the present paper are different in nature. For
instance, a front-like initial condition u0 which oscillates periodically at +∞ between two
constants α and β in [0, θ) for equation (1.1) with (2.24) leads to a solution u spreading
at an average speed belonging to the open interval (c̃α, c̃β). On the other hand, under the
condition (1.2), a front-like initial condition which oscillates periodically at +∞ between two
exponential tails e−λ1x and e−λ2x with 0 < λ1 < λ2 < λ∗ leads to a solution u spreading
at the speed cλ1 . Furthermore, although the equation (1.1) reduces to the heat equation
when u < θ under assumption (2.24), the propagation phenomena and the proofs in this
case are rather nonlinear in nature, whereas the spreading properties stated in Theorems 2.1
and 2.6 of the present paper are chiefly determined by the asymptotic behavior of u0 when
it approaches 0 and then by the linearization of (1.1) around u = 0, even if the function f
does not satisfy the KPP assumption (1.4). Lastly, we mention that when the nonlinearity f
is of the bistable type on [0, 1], that is when there exists θ ∈ (0, 1) such that

f(0) = f(θ) = f(1) = 0, f < 0 on (0, θ), f > 0 on (θ, 1), f ′(0) < 0, f ′(1) < 0,

then the situation is much simpler: there is a unique (up to shifts) travelling front Uc(x− ct)
connecting 0 to 1, with a unique speed c, and, for any “front-like” initial datum u0,
namely 0 ≤ u0(x) ≤ 1 for a.e. x ∈ R and lim infx→−∞ u0(x) > θ > lim supx→+∞ u0(x),
then u(t, x) converges to Uc(x − ct + x0) uniformly in x ∈ R as t → +∞, for some x0 ∈ R,
see [11]. Thus, in the bistable case, the solutions u spread at the unique speed c for all front-
like initial conditions u0. We refer to [42] for a much more complete picture in heterogeneous
media.

3 The case when the spreading speed is unique

This section is devoted to the proof of Theorem 2.1 and its corollaries. It is based on the
construction of sub- and supersolutions moving asymptotically at the speed cλ, and on the
basic interpretation of the solutions of the linearized problem (3.25) below in terms of the
solutions of the heat equation (2.16). As a matter of fact, we first prove Theorem 2.1 when
the function Λ is a constant. Namely, we prove Proposition 2.4, which implies the conclu-
sion (2.18) of Theorem 2.1 when Λ(x) = λ in a neighborhood of +∞.

Proof of Proposition 2.4. As 0 < λ < λ∗, one has λ2 − λc∗ + f ′(0) > 0. In other
words, cλ > c∗. As recalled in the introduction, we know that there exists a travelling front
solution Ucλ(x − cλt) of (1.1) with speed cλ, and such that Ucλ(x) ∼ M e−λx as x → +∞,

for some M > 0. Since ρ is bounded, there exists then M̃ > 0 such that u0(x) ≤ u0(x) for
a.e. x ∈ R, where

u0(x) = min
(
1, M̃ e−λx

)
.
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Let now u be the solution of (1.1) with initial condition u0. Because of (1.9), there exists a
real number x2 such that

sup
x∈R

∣∣∣u(t, x)− Ucλ(x− cλt+ x2)
∣∣∣→ 0 as t→ +∞.

But the maximum principle yields

u(t, x) ≤ u(t, x) for all t > 0 and x ∈ R,

which provides the right inequality in (2.20). Furthermore, for any speed c such that c > cλ,
one has

0 ≤ lim sup
t→+∞

(
max
x≥ct

u(t, x)
)
≤ lim sup

t→+∞

(
max
x≥ct

u(t, x)
)
= lim sup

t→+∞

(
max
x≥ct

Ucλ(x− cλt+ x2)
)

= lim sup
t→+∞

Ucλ(ct− cλt+ x2) = 0,

which implies that w∗(u0) ≤ cλ.
In order to prove the left inequality in (2.20), and consequently w∗(u0) ≥ cλ, consider

the solution ξ of the linear problem

{
∂tξ − ∂xxξ = f ′(0)ξ, t > 0, x ∈ R,

ξ(0, x) = ρ(x) e−λx for a.e. x ∈ R.
(3.25)

From the definition of cλ, the maximum principle yields

ξ(t, x) ≤ ‖ρ‖L∞(R) e
−λ(x−cλt) for all t > 0 and x ∈ R. (3.26)

The key-point here is to observe that the function (t, x) 7→ e−λ(x−cλt)ζ(t, x−2λt) solves (3.25),
since ζ solves (2.16). Thus, by uniqueness, one has

ξ(t, x) = e−λ(x−cλt)ζ(t, x− 2λt) (3.27)

for all t > 0 and x ∈ R.
Remember now that s0 ∈ (0, 1), γ > 0 and C > 0 are given in (2.15). De-

fine P (β) = β2−βcλ+f ′(0) for all β ∈ R. This function P is decreasing on the interval [0, λ]
since λ > 0 is its smallest simple zero, and one has 2λ < cλ. Choose ε > 0 and κ ∈ (0, 1]
small enough so that

(1 + γ)λ ≥ λ+ ε and (cλ − 2λ− ε) ε ≥ κγ.

Next, owing to (3.26), choose A > 0 large enough so that A ≥ C ‖ρ‖1+γ

L∞(R) and

∀ (t, x) ∈ (0,+∞)× R,
(
ξ(t, x) > Ae−(λ+ε)(x−cλt)

)
=⇒

(
x ≥ max(cλt, x0)

)

and
κ
(
ξ(t, x)− Ae−(λ+ε)(x−cλt)

)
≤ s0 for all t > 0 and x ∈ R.
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Lastly, set

u(t, x) = max
(
0, κ

(
ξ(t, x)− Ae−(λ+ε)(x−cλt)

))
(3.28)

in [0,+∞) × R (see the joint figure for a schematic shape of the functions u, u and u at
time t = 0). It follows that

Ω =
{
(t, x) ∈ (0,+∞)× R, u(t, x) > 0

}
⊂
{
(t, x) ∈ (0,+∞)× R, x ≥ max(cλt, x0)

}

and
sup

(t,x)∈(0,+∞)×R

u(t, x) ≤ s0.

Let us then check that u is a subsolution for problem (1.1). When (t, x) ∈ Ω, one has

∂tu(t, x)− ∂xxu(t, x)− f ′(0) u(t, x) =
(
(λ+ ε)2 − (λ+ ε)cλ + f ′(0)

)
κA e−(λ+ε)(x−cλt)

= −(cλ − 2λ− ε) ε κA e−(λ+ε)(x−cλt)

≤ −(cλ − 2λ− ε) ε κA e−(1+γ)λ(x−cλt)

≤ −κ1+γAe−(1+γ)λ(x−cλt)

≤ −C u(t, x)1+γ

from (3.26) and the choice of ε, κ and A. Therefore, ∂tu − ∂xxu ≤ f(u) in Ω because
of (2.15). It also follows from the definition of ξ(0, ·) and from the choice of A and the
inequality 0 < κ ≤ 1, that u(0, x) ≤ u(0, x) for a.e. x ∈ R. Summing up, as u = 0
in (0,+∞)× R \ Ω, the function u is a subsolution of (1.1). Thus

u(t, x) ≥ u(t, x) for all (t, x) ∈ (0,+∞)× R (3.29)

from the maximum principle.
Lastly, let τ > 0 be any positive real number. On the one hand, the maximum prin-

ciple implies that lim infx→−∞ u(t, x) ≥ θ(t) for all t > 0, where θ̇(t) = f(θ(t)) in [0,+∞)
and θ(0) = lim infx→−∞

(
essinf(−∞,x)u0

)
> 0. Hence

lim inf
x→−∞

u(t, x) ≥ θ(t) > 0 for all t > 0. (3.30)
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Since u is a continuous positive function on (0,+∞) × R, there exists then η ∈ (0, 1) such
that u(τ, x) ≥ η for all x ≤ 0. On the other hand, remember from Remark 2.2 and assump-
tion (2.17) that η′ := infx∈R ζ(τ, x) > 0. Therefore, it follows from (3.27), (3.28) and (3.29)
that

1≥u(τ, x)≥v0(x) := η 1(−∞,0](x)

+max
(
0, κ η′ e−λ(x−cλτ) − κA e−(λ+ε)(x−cλτ)

)
1(0,+∞)(x) ≥ 0

(3.31)

for all x ∈ R. Let v denote the solution of (1.1) with initial condition v0. The maximum
principle implies that

u(t, x) ≥ v(t− τ, x) for all t ≥ τ and x ∈ R. (3.32)

But v0 is front-like and v0(x) ∼ η′′ e−λx as x → +∞, with η′′ = κ η′ eλ cλτ > 0. It follows
then from [40] that there exists x̃1 ∈ R such that

v(t, x+ cλt) → Ucλ(x+ x̃1) uniformly in x as t→ +∞. (3.33)

The inequality (3.32) then gives the left inequality in (2.20) with x1 = x̃1 + cλτ . The proof
of Proposition 2.4 is thereby complete. Observe finally that, as done above for w∗(u0),
the left inequality in (2.20) also yields w∗(u0) ≥ cλ, since Ucλ(−∞) = 1. Even-
tually, w∗(u0) = w∗(u0) = cλ. �

Remark 3.1 The arguments used in the proof of Proposition 2.4, namely the construction
of the subsolution u and the inequality (3.31), imply that, for all t > 0, u(t, ·) is front-like
and lim infx→+∞ u(t, x) eλx > 0. As a matter of fact, the quantity u(t, x) eλx is also bounded
as x→ +∞ for all t > 0. Indeed, denote L = sups∈(0,1] f(s)/s. It follows from the maximum
principle that

u(t, x) ≤ M̃ e(λ
2+L)t−λx for all t > 0 and x ∈ R, (3.34)

where 0 < M̃ = ‖u0(x) eλx‖L∞(R) < +∞. Thus, lim supx→+∞ u(t, x) eλx < +∞ for all t > 0.

Furthermore, if f satisfies (1.4), then L = f ′(0) and (3.34) implies that u(t, x) ≤ M̃ e−λ(x−cλt)

for all t > 0 and x ∈ R, which directly gives w∗(u0) ≤ cλ.

Remark 3.2 In the proof of Proposition 2.4, the left inequality in (2.20) implies immediately
that w∗(u0) ≥ cλ. The proof uses (3.32) and the convergence result (3.33), given that v0
is front-like and decays with the right exponential decay e−λx as x → +∞. However, one
could also derive the weaker inequality w∗(u0) ≥ cλ without referring to the stronger proper-
ties (3.32) and (3.33), using only (3.29) and (3.30). Indeed, with the same notations as in the
proof of Proposition 2.4, remember that inf [T,+∞)×R ζ ≥ infR ζ(T, ·) > 0 and choose δ0 > 0
large enough such that inf [T,+∞)×R ζ ≥ 2Aκ−1 e−εδ0 . It follows from (3.27), (3.28) and (3.29)
that, for all t ≥ T ,

u(t, cλt+ δ0) ≥ κ e−λδ0ζ(t, (cλ − 2λ)t+ δ0)− Ae−(λ+ε)δ0 ≥ Ae−(λ+ε)δ0 > 0. (3.35)

Let τ > 0 be arbitrary and define

Q =
{
(t, x) ∈ [τ,+∞)× R, x ≤ cλt+ δ0

}
.
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Since the function u is continuous and positive in (0,+∞) × R, it follows from (3.30)
and (3.35) that α := inf(t,x)∈∂Q u(t, x) ∈ (0, 1). Since f(α) > 0, the weak maximum princi-
ple yields u ≥ α in Q. Consider now any real number c such that c < cλ and assume by
contradiction that there exist ε0 > 0 and a sequence (tn, xn)n∈N in (0,+∞)× R such that

tn → +∞ as n→ +∞, and xn ≤ ctn and u(tn, xn) ≤ 1− ε0 for all n ∈ N.

Set vn(t, x) = u(t + tn, x + xn). From the Schauder parabolic estimates, the functions vn
converge in C1,2

loc (R× R), up to extraction of a subsequence, to a solution v∞ of

∂tv∞ − ∂xxv∞ = f(v∞) in R× R

such that 0 ≤ v∞ ≤ 1. Moreover, for all (t, x) ∈ R × R, there exist n0 ∈ N large enough
so that (t + tn, x + xn) ∈ Q for all n ≥ n0, since xn ≤ ctn and c < cλ. Thus v∞ ≥ α
in R×R. In particular, it follows from the maximum principle that v∞(t, x) ≥ ω(t− t0) for
all t0 ∈ R and for all (t, x) ∈ [t0,+∞)× R, where ω̇(t) = f(ω(t)) in [0,+∞) and ω(0) = α.
Since ω(+∞) = 1, one concludes, by passing to the limit as t0 → −∞, that v∞(t, x) ≥ 1 for
all (t, x) ∈ R×R, which contradicts v∞(0, 0) ≤ 1− ε0. Thus, infx≤ct u(t, x) → 1 as t→ +∞
for all c < cλ, whence w∗(u0) ≥ cλ.

Proof of Theorem 2.1. Take ε > 0 such that λ+ ε < λ∗, and then x1 ≥ max(x0, 0) large
enough so that Λ(x) ≤ λ+ ε for all x > x1. Set

vε,0(x) =

{
u0(x) if x ≤ x1,

ρ(x) e−(λ+ε)x if x > x1.

Then vε,0 ≤ u0 a.e. in R and thus w∗(u0) ≥ w∗(vε,0), using the maximum principle and
Definition 1.2 of the minimal spreading speed w∗. Moreover, we know from Proposition 2.4
that

w∗(vε,0) = λ+ ε+
f ′(0)

λ+ ε
.

Hence, w∗(u0) ≥ λ+ε+f ′(0)/(λ+ε) for all ε > 0, which gives w∗(u0) ≥ λ+f ′(0)/λ. A simi-
lar argument leads to the inequality w∗(u0) ≤ λ+ f ′(0)/λ. The inequality w∗(u0) ≤ w∗(u0)
completes the proof. �

Proof of Corollary 2.3. Consider the solution ζ of (2.16), that is

{
∂tζ − ∂xxζ = 0, t > 0, x ∈ R,

ζ(0, x) = ρ(x) for a.e. x ∈ R,

where the function ρ is now assumed to be a bounded, nonnegative function on R with
positive average ρm, and ρ(x) = ρ(x) if x > x0 and ρ(x) = 1 if x < x0. Choose any real
number η > 0 such that η ≤ 1 and η‖ρ‖L∞(R) ≤ 1. Thus, ρ(x) ≥ η ρ(x) for a.e. x ∈ R and

ζ(t, x) ≥ ζ̃(t, x) for all (t, x) ∈ (0,+∞)× R,

17



where ζ̃ denotes the solution of the heat equation ∂tζ̃ = ∂xxζ̃ with initial condition η ρ.
But it is elementary to see that ζ̃(t, x) → η ρm as t → +∞ uniformly in x ∈ R (we give
a quick proof in the next paragraph for the sake of completeness). Since η > 0 and ρm
is positive by assumption, condition (2.17) is fulfilled and we can thus apply Theorem 2.1,
which provides (2.18).

Let us now check that ζ̃(t, x) → η ρm as t → +∞ uniformly in x ∈ R. By linearity, it
is sufficient to consider the case η = 1. For all (x, y) ∈ R

2, set Rx(y) =
∫ y

x
ρ(z)dx. For

all (t, x) ∈ (0,+∞)× R, one has

ζ̃(t, x) =
1√
4πt

∫

R

e
−y2

4t ρ(x− y)dy =
−1√
4πt

∫

R

y

2t
e

−y2

4t Rx(x− y)dy

after integrating by parts (notice that |Rx(x − y)| = O(|y|) as |y| → +∞). Let ε > 0
be arbitrary. Since ρ is assumed to have the average ρm, there exists A > 0 such
that | − y−1Rx(x − y) − ρm| ≤ ε for all |y| ≥ A and for all x ∈ R. Thus, for
all (t, x) ∈ (0,+∞)× R,

|ζ̃(t, x)− ρm| ≤ 1√
4πt

∫ A

−A

|y|
2t
e−

y2

4t |Rx(x− y)|dy + ε√
4πt

∫

|y|≥A

y2

2t
e−

y2

4t dy

+ρm ×
∣∣∣ 1√

4πt

∫

|y|≥A

y2

2t
e−

y2

4t dy − 1
∣∣∣.

Since |Rx(x − y)| ≤ ‖ρ‖L∞(R) × |y| for all (x, y) ∈ R
2, the first term of the right-hand side

converges to 0 as t → +∞, uniformly in x ∈ R. The other two terms are independent of x
and converge to ε and 0, respectively, as t → +∞. Thus, |ζ̃(t, x) − ρm| ≤ 2ε for t large
enough, uniformly in x ∈ R. This provides the desired result. �

Proof of Corollary 2.5. The same kind of argument as in the proof of Theorem 2.1 implies
that for all ε ∈ (0, λ∗), one has

w∗(u0) ≥ ε+
f ′(0)

ε
.

We get the conclusion (2.21) by letting ε→ 0+. �

4 Complex dynamics and intervals of spreading speeds

This section is devoted to the proof of Theorem 2.6. That is, we construct explicit ex-
amples of front-like initial conditions u0 for which the minimal and maximal spreading
speeds w∗(u0) and w∗(u0) are any two given strictly ordered numbers between 2

√
Mf

and +∞, where Mf = maxs∈[0,1] f
′(s). The constructed functions u0 oscillate at +∞ be-

tween two exponentially decaying functions, with different exponential rates. The intervals
of oscillation are larger and larger. They are chosen in such a way that, during some suitable
time-intervals and on some space-intervals, the Gaussian estimates of the difference between
the solution u and two approximated fronts is negligible.
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Proof of Theorem 2.6. Let γ1 < γ2 be given in the closed interval [2
√
Mf ,+∞] ⊂ [c∗,+∞].

If γ1 > c∗, let λ1 ∈ (0, λ∗) be such that cλ1 = γ1, that is λ1 = (γ1 −
√
γ21 − 4f ′(0))/2.

If γ1 = c∗, set λ1 = λ∗. Let also λ2 be the unique real number in [0, λ∗) such that cλ2 = γ2
(with the convention that c0 = +∞). In all cases, there holds

0 ≤ λ2 < λ1 ≤ λ∗.

Let (λ2,n)n∈N be the sequence defined by

∀n ∈ N,





λ2,n = λ2 if λ2 > 0,

λ2,n =
λ1

n+ 2
if λ2 = 0.

Let now (xn)n∈N and (yn)n∈N be any two increasing sequences of positive real numbers such
that

0 < xn < yn <
λ1
λ2,n

yn < xn+1 − 1 < xn+1 for all n ∈ N

and
lim

n→+∞

yn
xn

= lim
n→+∞

xn+1

(λ1/λ2,n)yn
= +∞. (4.36)

Typical examples are xn = (2n+n0)! and yn = (2n+1+n0)! if λ2 > 0 (resp. xn = ((2n+n0)!)
2

and yn = ((2n+ 1 + n0)!)
2 if λ2 = 0), for some large enough integer n0.

Given any such sequences (xn)n∈N and (yn)n∈N, we define the function u0 : x 7→ u0(x) as
follows:

u0(x) =





min(1, e−λ1x) if x < x0,

e−λ1x if xn ≤ x < yn,

e−λ1yn if yn ≤ x <
λ1
λ2,n

yn,

e−λ2,nx if
λ1
λ2,n

yn ≤ x < xn+1 − 1,

e−λ1xn+1 +
(
e−λ2,n(xn+1−1) − e−λ1xn+1

)
(xn+1 − x) if xn+1 − 1 ≤ x < xn+1,

see the joint figure below. The function u0 is thus continuous, front-like in the sense of
Definition 1.1, non-increasing in R, and u0(−∞) = 1. Let u be the solution of (1.1) with
the initial condition u0 and let us check that the conclusion of Theorem 2.6 holds with this
choice of u0.

The function u0 oscillates between e−λ1x and e−λ2x (or e−λ2,nx if λ2 = 0) as x → +∞. It
is also glued between these two exponentially decaying functions between yn and (λ1/λ2,n)yn
and between xn+1 − 1 and xn+1 in such a way that it is nonincreasing. This monotoni-
city property will be inherited at all positive times, which reduces the level sets Em(t) to
singletons (and will then help in the calculations of their positions). Namely, the strong
maximum principle implies that, for every t > 0, the function u(t, ·) is decreasing on R,
and u(t,−∞) = 1, u(t,+∞) = 0. Therefore, for every t > 0 and m ∈ (0, 1), the level
set Em(t) reduces to a singleton

Em(t) =
{
xm(t)

}
.
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Furthermore, the functions t 7→ xm(t) are all (at least) of class C1 on (0,+∞) from the
implicit function theorem.

Since u0 is front-like and

e−λ1x ≤ u0(x) ≤ e−λ2x for all x ≥ 0,

it follows from the maximum principle, together with [40] (or Theorem 2.1) and the general
comparisons (1.6), that

γ1 ≤ w∗(u0) ≤ w∗(u0) ≤ γ2.

It also follows from the definitions of the spreading speeds that, for every m ∈ (0, 1),

γ1 ≤ w∗(u0) ≤ lim inf
t→+∞

xm(t)

t
≤ lim sup

t→+∞

xm(t)

t
≤ w∗(u0) ≤ γ2. (4.37)

Next, let u0 and u0 be the two functions defined on R by

u0(x) =

{
1 if x < 0,

e−λ1x if x ≥ 0
and u0(x) =

{
1 if x < 0,

e−λ2,nx if xn ≤ x < xn+1.
(4.38)

Observe that, if λ2 > 0, then u0(x) = e−λ2x for all x ≥ 0. The function u0 is obviously front-
like, as is the function u0 if λ2 > 0. If λ2 = 0, then λ2,n = λ1/(n+ 2), whence λ2,nxn → +∞
as n → +∞ (since xn+1/xn → +∞ as n → +∞) and u0(x) → 0 as x → +∞. In other
words, the function u0 is front-like whenever λ2 is positive or 0. Let u and u be the solutions
of (1.1) with initial conditions u0 and u0. Since 0 ≤ u0 ≤ u0 ≤ u0 ≤ 1 on R, the maximum
principle yields

0 ≤ u(t, x) ≤ u(t, x) ≤ u(t, x) ≤ 1 for all t ≥ 0 and x ∈ R.

Furthermore, as already recalled in Section 1, it follows from Uchiyama [40] that

sup
x∈R

∣∣∣u(t, x)− Uγ1(x− γ1t+m1(t))
∣∣∣→ 0 as t→ +∞, (4.39)
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where m1(t)/t → 0 as t → +∞ (moreover, if γ1 > c∗, then m1(t) can be chosen to be a
constant real number x1 in the above formula). Similarly, if γ2 < +∞ (that is, λ2 > 0), then
there exists x2 ∈ R such that

sup
x∈R

∣∣∣u(t, x)− Uγ2(x− γ2t+ x2)
∣∣∣→ 0 as t→ +∞. (4.40)

Let us now prove that these two approximated travelling fronts Uγ1(x − γ1t + m1(t))
and Uγ2(x − γ2t + x2) (if γ2 < +∞) are closer and closer to u on some larger and larger
space-intervals during some larger and larger intervals of time. That will be sufficient to
derive the conclusion of Theorem 2.6 (at least if γ2 < +∞, the case γ2 = +∞ requiring a
special treatment).

To do so, denote

v = u− u ≥ 0 and w = u− u ≥ 0 on [0,+∞)× R.

Choose any sequences (tn)n∈N and (t′n)n∈N of positive real numbers such that

xn < tn ≤ t′n < yn for all n ∈ N and lim
n→+∞

tn
xn

= lim
n→+∞

yn
t′n

= +∞.

Such sequences exist since yn/xn → +∞ as n → +∞. For instance, a particular choice
is: tn = x1−θ

n yθn and t′n = x1−θ′

n yθ
′

n with 0 < θ ≤ θ′ < 1. We now claim that

max
t∈[tn,t′n]

(
max

x∈
[
(2
√

Mf+ε)t,γt
] v(t, x)

)
→ 0 as n→ +∞ (4.41)

for any two positive real numbers ε and γ such that

2
√
Mf + ε ≤ γ.

This property will imply that the solution u is close to u and then to the approximated
front Uγ1(x− γ1t+m1(t)) on sequences of time-intervals [tn, t

′
n] and on some space-intervals,

provided that the ratio between the position and the time belongs to [2
√
Mf + ε, γ].

Since ε > 0 can be arbitrarily small, the equality w∗(u0) = γ1 will follow.
In order to prove (4.41), let ε > 0 and γ > 0 be as above and denote, for all n ∈ N,

Eε,γ
n =

{
(t, x) ∈ (0,+∞)× R, tn ≤ t ≤ t′n, (2

√
Mf + ε)t ≤ x ≤ γt

}
.

Observe that

0 ≤ v(0, x) = u0(x)− u0(x) ≤
∑

n∈N
1[yn,xn+1](x) for all x ∈ R

and that

∂tv(t, x)− ∂xxv(t, x) = f(u(t, x))− f(u(t, x)) ≤Mf v(t, x) for all (t, x) ∈ (0,+∞)× R,
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owing to the definition of Mf = maxs∈[0,1] f
′(s) and the nonnegativity of v. The maximum

principle implies then that, for all (t, x) ∈ (0,+∞)× R,

0 ≤ v(t, x) ≤ eMf t

√
4πt

∑

n∈N

∫ xn+1

yn

e−
(x−y)2

4t dy. (4.42)

Then, choose n1 ∈ N such that

xn ≤ (2
√
Mf + ε) tn ≤ γ t′n ≤ yn for all n ≥ n1.

For any n ≥ n1 and (t, x) ∈ Eε,γ
n , one then has

xn ≤ (2
√
Mf + ε) tn ≤ (2

√
Mf + ε) t ≤ x ≤ γ t ≤ γ t′n ≤ yn,

whence

0 ≤ v(t, x) ≤ eMf t

√
4πt

×
(∫ xn

−∞
e−

(x−y)2

4t dy +

∫ +∞

yn

e−
(x−y)2

4t dy
)

=
eMf t

√
π

∫ xn−x√
4t

−∞
e−z2dz +

eMf t

√
π

∫ +∞

yn−x√
4t

e−z2dz,

(4.43)

from (4.42). But

xn − x√
4t

≤ xn − (2
√
Mf + ε)t√
4t

= −
√
t×
(√

Mf +
ε

2
− xn

2t

)
≤ −

√
t×
(√

Mf +
ε

2
− xn

2tn

)

and xn/tn → 0 as n → +∞. Therefore, there exists n2 ≥ n1 such that, for all n ≥ n2

and (t, x) ∈ Eε,γ
n ,

xn − x√
4t

≤ −
√
Mf t ≤ −

√
Mf tn < 0.

On the other hand, ∫ +∞

A

e−z2dz ≤ e−A2

2A

for all A > 0. Therefore,

eMf t

√
π

∫ xn−x√
4t

−∞
e−z2dz ≤ eMf t

√
π

×
∫ −

√
Mf t

−∞
e−z2dz ≤ eMf t

√
π

× e−Mf t

√
4Mf t

≤ 1√
4πMf tn

(4.44)

for all n ≥ n2 and (t, x) ∈ Eε,γ
n . As far as the second term in the right-hand side of (4.43) is

concerned, one knows that

yn − x√
4t

≥ yn − γt′n
2
√
t′n

≥ yn
4
√
t′n

for all n large enough,

since yn/t
′
n → +∞ as n→ +∞. Thus, there exists n3 ≥ n2 such that

eMf t

√
π

∫ +∞

yn−x√
4t

e−z2dz ≤ eMf t
′
n

√
π

∫ +∞

yn

4
√

t′n

e−z2dz ≤ eMf t
′
n

√
π

× e
− y2n

16 t′n × 2
√
t′n

yn
(4.45)
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for all n ≥ n3 and (t, x) ∈ Eε,γ
n . Combining (4.43), (4.44) and (4.45), one infers that, for

all n ≥ n3,

max
(t,x)∈Eε,γ

n

v(t, x) ≤ 1√
4πMf tn

+
eMf t

′
n

√
π

× e
− y2n

16 t′n × 2
√
t′n

yn
.

But the right-hand side converges to 0 as n→ +∞, since tn, yn/t
′
n and yn/

√
t′n all converge

to +∞ as n→ +∞. This provides (4.41).
Putting together (4.39), (4.41) and the fact that Uγ1(+∞) = 0, it follows that, for

all A ∈ R and (2
√
Mf ≤) γ1 < c < γ,

max
t∈[tn,t′n]

(
max

x∈[ct+A,γt]
u(t, x)

)
→ 0 as n→ +∞.

In particular,

max
t∈[tn,t′n]

u(t, ct+ x) → 0 as n→ +∞ for all c > γ1 and x ∈ R. (4.46)

Since u(t, ·) is decreasing for all t > 0, one actually gets that

max
t∈[tn,t′n]

(
max

x∈[ct+A,+∞)
u(t, x)

)
→ 0 as n→ +∞

for all A ∈ R and c > γ1. Therefore, for all m ∈ (0, 1), lim inft→+∞ xm(t)/t ≤ γ1 and
eventually

lim inf
t→+∞

xm(t)

t
= γ1 (4.47)

because of (4.37). Furthermore, w∗(u0) ≤ γ1, and (4.37) also yields the equality

w∗(u0) = γ1.

Let us now prove that w∗(u0) = γ2 and lim supt→+∞ xm(t)/t = γ2 for all m ∈ (0, 1).
Remember the definition of u0 in (4.38), and that w = u − u ≥ 0 in [0,+∞) × R. Choose
any sequences (τn)n∈N and (τ ′n)n∈N of positive real numbers such that

λ1
λ2,n

yn < τn ≤ τ ′n < xn+1 − 1 for all n ∈ N and lim
n→+∞

τn
(λ1/λ2,n)yn

= lim
n→+∞

xn+1

τ ′n
= +∞.

Such sequences exist because of (4.36). Since w(0, ·) = u0 − u0 = 0 on all the inter-
vals [(λ1/λ2,n)yn, xn+1 − 1] for all n ∈ N, the same arguments as for the function v imply
that

max
t∈[τn,τ ′n]

(
max

x∈
[
(2
√

Mf+ε)t,γt
] w(t, x)

)
→ 0 as n→ +∞ (4.48)

for any two positive real numbers ε and γ such that 2
√
Mf + ε ≤ γ.

Consider first the case γ2 < +∞ (that is, λ2 > 0). It follows then from (4.40), (4.48)
and Uγ2(−∞) = 1 that, for all A ∈ R and 2

√
Mf < c′ < c < γ2,

min
t∈[τn,τ ′n]

(
min

x∈[c′t,ct+A]
u(t, x)

)
→ 1 as n→ +∞.
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Since u(t, ·) is decreasing for all t > 0, one actually gets that

min
t∈[τn,τ ′n]

(
min

x∈(−∞,ct+A)
u(t, x)

)
→ 1 as n→ +∞

for all A ∈ R and c < γ2. In particular,

min
t∈[τn,τ ′n]

u(t, ct+ x) → 1 as n→ +∞ for all c < γ2 and x ∈ R. (4.49)

Furthermore, for all m ∈ (0, 1), lim supt→+∞ xm(t)/t ≥ γ2 and eventually

lim sup
t→+∞

xm(t)

t
= γ2

because of (4.37). Lastly, w∗(u0) ≥ γ2, and (4.37) yields

w∗(u0) = γ2.

Lastly, consider the case γ2 = +∞ (that is, λ2 = 0). Let η be any real number in
the interval (0, λ∗). Let nη ∈ N be such that 0 < λ2,n < η for all n ≥ nη. Define the
function uη0 : R → [0, 1] by

uη0(x) =





1 if x < 0,

0 if 0 ≤ x <
λ1
λ2,nη

ynη
,

e−ηx if
λ1
λ2,n

yn ≤ x < xn+1 − 1 with n ≥ nη,

0 if xn+1 − 1 ≤ x <
λ1

λ2,n+1

yn+1 with n ≥ nη.

From the choice of nη and u0, one has u0 ≥ uη0 on R, whence

u(t, x) ≥ uη(t, x) for all t > 0 and x ∈ R (4.50)

from the maximum principle, where uη denotes the solution of the equation (1.1) with initial
condition uη0. Define now

uη0(x) =





1 if x <
λ1
λ2,nη

ynη
,

e−ηx if x ≥ λ1
λ2,nη

ynη

and let uη be the solution of problem (1.1) with initial condition uη0. Since uη0 ≥ uη0 on R,
the maximum principle yields

wη(t, x) = uη(t, x)− uη(t, x) ≥ 0 for all t > 0 and x ∈ R.
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Furthermore, since uη0 = uη0 on the intervals
[
(λ1/λ2,n)yn, xn+1 − 1

)
for all n ≥ nη, the same

arguments as above imply that

max
t∈[τn,τ ′n]

(
max

x∈
[
(2
√

Mf+ε)t,γt
] wη(t, x)

)
→ 0 as n→ +∞

for all ε > 0 and γ < +∞ such that 2
√
Mf + ε ≤ γ. On the other hand, because of

Uchiyama [40], there exists xη ∈ R such that

sup
x∈R

∣∣∣uη(t, x)− Ucη(x− cηt+ xη)
∣∣∣→ 0 as t→ +∞,

where cη = η + f ′(0)/η. Since Ucη(−∞) = 1, one then infers that

min
t∈[τn,τ ′n]

(
min

x∈[c′t,ct+A]
uη(t, x)

)
→ 1 as n→ +∞

for all A ∈ R and 2
√
Mf < c′ < c < cη. Remember now that u ≥ uη from (4.50) and

that u(t, ·) is decreasing for all t > 0. Therefore,

min
t∈[τn,τ ′n]

(
min

x∈(−∞,ct+A]
u(t, x)

)
→ 1 as n→ +∞ (4.51)

for all A ∈ R and c < cη. Since η ∈ (0, λ∗) can be chosen arbitrarily small and cη → +∞
as η → 0+, it follows that (4.51) holds for all c ∈ R and A ∈ R. In particular,

min
t∈[τn,τ ′n]

u(t, ct+ x) → 1 as n→ +∞ for all c < +∞ and x ∈ R. (4.52)

Moreover, lim supt→+∞ xm(t)/t = +∞ for all m ∈ (0, 1) and w∗(u0) = +∞.
As a conclusion, whenever γ2 is finite or +∞, there always holds w∗(u0) = γ2,

and lim supt→+∞ xm(t)/t = γ2 for all m ∈ (0, 1). Because of (4.47), one concludes that,
for all m ∈ (0, 1), the ω-limit set of the (continuous on (0,+∞)) function t 7→ xm(t)/t
is equal to the whole interval [γ1, γ2]. Lastly, the limits (4.46), (4.49) and (4.52) imply
that, for all c ∈ (γ1, γ2) and x ∈ R, the ω-limit set of the (continuous on (0,+∞)) func-
tion t 7→ u(t, ct+x) is equal to the whole interval [0, 1]. The proof of Theorem 2.6 is thereby
complete. �

Remark 4.1 If γ1 > c∗, then the quantity m1(t) appearing in (4.39) can be chosen to
be a constant real number x1. Together with the inequality u ≥ u and formula (4.49)
applied with c = γ1 < γ2, it follows that, for each x ∈ R, the ω-limit set of the func-
tion t 7→ u(t, γ1t + x) is equal to the interval [Uγ1(x + x1), 1]. Similarly, if γ2 < +∞,
then (4.40) and formula (4.46) applied with c = γ2 > γ1 imply that, for each x ∈ R,
the ω-limit set of the function t 7→ u(t, γ2t+ x) is equal to the interval [0, Uγ2(x+ x2)].

Remark 4.2 The complex dynamics shown in Theorem 2.6 for the nonlinear equation (1.1)
resembles that already known for the pure heat equation ∂tζ = ∂xxζ. Namely, there are
initial conditions ζ0 ∈ L∞(R), which oscillate between essinfRζ0 and esssup

R
ζ0 on larger and
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larger intervals, and for which the ω-limit set of the function t 7→ ζ(t, x) is equal to the
whole interval [essinfRζ0, esssupR

ζ0] for each x ∈ R. This phenomenon was first pointed out
by Collet and Eckmann [8]. Somehow, for the nonlinear equation (1.1), the complex dyna-
mics appears when the initial condition u0 oscillates on larger and larger intervals between
two exponentially decaying functions with different decay rates. For such u0, the proof of
Theorem 2.6 shows that the solution u oscillates between the two nonlinear travelling fronts
whose speeds are associated to the two decay rates of u0.

5 Appendix. Extensions to heterogeneous higher-

dimensional problems

In the appendix, we just mention without proof some possible extensions of the results of
the previous sections to more general equations. Similar theorems can indeed be established
with the same type of methods, concerning more general heterogeneous equations in higher
dimensions for which (pulsating) travelling fronts still exist.

To be more precise, consider the Cauchy problem




∂tu− div(A(z)∇u) + q(z) · ∇u = f(z, u), t > 0, z ∈ Ω,

ν(z)A(z)∇u = 0, t > 0, z ∈ ∂Ω,

u(0, z) = u0(z) for a.e. z ∈ Ω,

(5.53)

where Ω ⊂ R
N is an unbounded domain of class C2,α (with α > 0), periodic in d directions

and bounded in the remaining variables. That is, there are an integer d ∈ {1, · · · , N} and d
positive real numbers L1, . . . , Ld such that

{
∃ R ≥ 0, ∀ z = (x, y) ∈ Ω, |y| ≤ R,

∀ k ∈ L1Z× · · · × LdZ× {0}N−d, Ω = Ω+ k,

where x = (x1, · · · , xd), y = (xd+1, · · · , xN) and | · | denotes the euclidean norm. Typical
examples of such domains are the whole space R

N with or without periodic perforations,
or infinite cylinders with constant or periodically undulating sections. We denote by ν the
outward unit normal on ∂Ω, and ξBξ′ =

∑
1≤i,j≤N ξiBijξ

′
j for any two vectors ξ = (ξi)1≤i≤N

and ξ′ = (ξ′i)1≤i≤N in R
N and any N × N matrix B = (Bij)1≤i,j≤N with real entries. The

symmetric matrix field A = (Aij)1≤i,j,≤N is assumed to be of class C1,α(Ω) and uniformly
positive definite. The vector field q = (qi)1≤i≤N is assumed to be of class C0,α(Ω) and
divergence-free. The reaction term f : Ω × [0, 1] → R, (z, s) 7→ f(z, s) is continuous,
of class C0,α with respect to z uniformly in s ∈ [0, 1], and of class C1 with respect to s
uniformly in z ∈ Ω. All functions Aij, qi and f(·, s) (for all s ∈ [0, 1]) are assumed to be
periodic in Ω, in the sense that they all satisfy

w(x+ k, y) = w(x, y) for all z = (x, y) ∈ Ω and k ∈ L1Z× · · · × LdZ.

We further assume that q has zero average, that

f(z, 0) = f(z, 1) = 0, ∂sf(z, 0) > 0 for all z ∈ Ω, f > 0 on Ω× (0, 1)
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and that there exist 0 < s0 < s1 < 1, γ > 0, C > 0 such that f(z, s) ≥ ∂sf(z, 0) s − C s1+γ

on Ω× [0, s0] and f(z, ·) is nonincreasing on [s1, 1] for all z ∈ Ω.
For this problem, the usual notion of travelling fronts does not hold anymore in gene-

ral, and it is replaced with that of pulsating travelling fronts. Namely, given a unit vec-
tor e ∈ R

d × {0}N−d, a pulsating travelling front connecting 0 to 1, travelling in the direc-
tion e with (mean) speed c ∈ R

∗, is a time-global classical solution Uc : R × Ω → (0, 1)
of (5.53) such that





u(t, z) = Uc(z · e− ct, z) for all (t, z) ∈ R× Ω,

Uc(s, ·) is periodic in Ω for all s ∈ R,

Uc(s, z) −→
s→+∞

0, Uc(s, z) −→
s→−∞

1, uniformly in z ∈ Ω.

It is known that, for each direction e, there is a minimal speed c∗(e) > 0 such that pulsating
travelling fronts Uc in the direction e exist if and only if c ≥ c∗(e), see [3, 41]. Furthermore,
if f also satisfies the generalized KPP assumption f(z, s) ≤ ∂sf(z, 0)s on Ω× [0, 1], then the
fronts Uc with speed c are unique up to shifts in time, see [18]. Under the KPP assumption,
the speed c∗(e) is given by c∗(e) = minλ>0 ke(λ)/λ, where ke(λ) is the principal eigenvalue
of the operator

ψ 7→ div(A∇ψ)− 2λeA∇ψ − q · ∇ψ + [−λdiv(Ae) + λq · e+ λ2eAe+ ∂sf(z, 0)]ψ (5.54)

acting on the set of C2(Ω) periodic functions ψ such that νA∇ψ = λ(νAe)ψ on ∂Ω (the
principal eigenfunction ψ = ψe,λ is positive in Ω unique up to multiplication by positive
constants), see [6]. More generally speaking, with or without the KPP assumption, the
inequality

c∗(e) ≥ min
λ>0

ke(λ)

λ

always holds, see [3].
The Cauchy problem (5.53), where u0 : Ω → R is measurable and satisfies 0 ≤ u0 ≤ 1

a.e. in Ω and u0 6≡ 0, u0 6≡ 1 a.e. in Ω,1 was first considered when the initial condi-
tion u0 is compactly supported. In this case, the solution u spreads in any given unit
direction e ∈ R

d × {0}N−d with the speed

C∗(e) = min
e′∈Rd×{0}N−d, e′·e>0

c∗(e′)

e′ · e > 0,

in the sense that, as t→ +∞, u(t, c t e+ z) → 1 for any 0 ≤ c < C∗(e) and u(t, c t e+ z) → 0
for any c > C∗(e) locally uniformly in z such that c t e+ z ∈ Ω (see [5, 13, 14, 28, 41]).

In this appendix, given a direction e in R
d × {0}N−d, we consider the case when the

initial condition u0 is front-like in the direction e uniformly with respect to the orthogonal
directions, that is

lim inf
M→−∞

(
essinf

Ω∩{z·e<M}
u0

)
> 0 and lim

M→+∞
‖u0‖L∞(Ω∩{z·e>M}) = 0.

1The strong maximum principle then yields 0 < u(t, z) < 1 for all t > 0 and z ∈ Ω.
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The natural extension of the minimal and maximal spreading speeds in the given direction e,
uniformly with respect to the orthogonal directions, is the following one:

w∗(u0) = sup
{
c ∈ R, inf

z∈Ω, z·e≤ct
u(t, z) → 1 as t→ +∞

}
,

w∗(u0) = inf
{
c ∈ R, sup

z∈Ω, z·e≥ct

u(t, z) → 0 as t→ +∞
}
.

When u0 is front-like in the direction e and is such that u0 = 0 a.e. in Ω ∩ {z · e > M} for
someM ∈ R, then w∗(u0) = w∗(u0) = c∗(e), as proved byWeinberger [41] (see also [33, 34] for
further results in space-time periodic media, [37] for space periodic and time-limit periodic
media and [27] for abstract monotone evolution systems). When u0 is front-like in the
direction e and exponentially decreasing as z · e→ +∞, the exact estimates of the spreading
speeds have been established only in the KPP case (see [34, 37]). In the general monostable
case, the spreading speeds w∗(u0) and w

∗(u0) are still expected to be finite and to strongly
depend on the exponential decay of u0 and on that of the fronts Uc. In order to quantity
these statements, one needs to introduce a few additional notations. Let λ∗(e) > 0 be the
smallest root of the equation ke(λ) = c∗(e)λ. It was proved in [16] that, if c > c∗(e), then
any pulsating travelling front Uc with speed c in the direction e is such that

lnUc(s, z) ∼ −λs as s→ +∞ uniformly in z ∈ Ω,

where λ ∈ (0, λ∗(e)) is the smallest root of the equation ke(λ) = cλ. The map c 7→ λ is
decreasing, one-to-one and onto from (c∗(e),+∞) onto (0, λ∗(e)). Furthermore, if u0 decays
exactly as a given front Uc(z · e, z) as z · e → +∞ and is not far from 1 as z · e → −∞,
then u(t, z) converges to this front Uc(z · e − ct, z) as t → +∞ uniformly in z ∈ Ω. Even if
the exact exponential decay of the fronts Uc as they approach 0 is not know in general (it
is however in the generalized KPP case even for the minimal speed c∗(e), leading to more
precise stability results, see [16, 18]), the aforementioned logarithmic equivalent is enough
to show that similar results as in Section 2 are still valid for the problem (5.53).

Namely, the following statements generalize the results of Section 2. In the sequel, u0
denotes a front-like initial condition in a given unit direction e ∈ R

d × {0}N−d.

• If u0(z) = O(e−Λ(z) z·e) as z · e→ +∞ with lim infz∈Ω, z·e→+∞ Λ(z) ≥ λ∗(e), then

w∗(u0) = w∗(u0) = c∗(e).

• If there exist λ ∈ (0, λ∗(e)), M ∈ R, a nonnegative bounded function ρ defined
on Ω ∩ {z · e > M} and a function Λ : Ω ∩ {z · e > M} → R such that

u0(z) = ρ(z) e−Λ(z) z·e a.e. in Ω ∩ {z · e > M}

and Λ(z) → λ as z · e→ +∞, and if there exists T > 0 such that

inf
Ω
ζ̃(T, ·) > 0, (5.55)
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where ζ̃ is the solution of the linear equation

{
∂tζ̃ − div(A∇ζ̃)− 2∇(lnψe,λ)A∇ζ̃ + 2λeA∇ζ̃ + q · ∇ζ̃ = 0 t > 0, z ∈ Ω,

νA∇ζ̃ = 0 t > 0, z ∈ ∂Ω

with initial condition ζ̃(0, z) = ρ(z) if z · e > M and ζ̃(0, z) = 1 if z · e < M in Ω, then

w∗(u0) = w∗(u0) =
ke(λ)

λ
.

Notice that the condition (5.55) is equivalent to the condition (2.17) given in Theo-
rem 2.1 for the solution ζ of (2.16) in the case N = 1, A = 1 and q = 0, since, in this

particular case, ψe,λ is constant and ζ̃(t, x) = ζ(t, x − 2λt). Notice also that (5.55) is

equivalent to infΩ ζ̃(t, ·) > 0 for all t > 0 and even inf [t,+∞)×Ω ζ̃ > 0 for all t > 0. If the
function ρ can be extended to a bounded nonnegative function having a positive ave-
rage, then (5.55) is fulfilled automatically, whence w∗(u0) = w∗(u0) = c. Furthermore,
if Λ(z) → 0 as z · e → +∞ and if (5.55) is satisfied, then w∗(u0) = w∗(u0) = +∞.
Lastly, if f satisfies the generalized KPP condition f(z, s) ≤ ∂sf(z, 0)s on Ω × [0, 1],
if Λ = λ in Ω ∩ {z · e > M} and if (5.55) is fulfilled, then

lim inf
t→+∞

(
u(t, z)− Uc(z · e− ct+ τ1, z)

)
≥ 0

and
lim sup
t→+∞

(
u(t, z)− Uc(z · e− ct+ τ2, z)

)
≤ 0

uniformly in z ∈ Ω, for some τ1, τ2 ∈ R, where Uc denotes the profile of the (unique
up to time-shifts) pulsating travelling front with speed c = ke(λ)/λ in the direction e.

• For any large enough speeds γ1 < γ2 ≤ +∞, there exist front-like initial conditions u0
such that

γ1 = w∗(u0) < w∗(u0) = γ2.

Furthermore, for any c ∈ (γ1, γ2), any M ∈ R and any m ∈ (0, 1), the ω−limit
sets of the functions t 7→ infΩ∩{z·e=ct+M} u(t, ·) and t 7→ supΩ∩{z·e=ct+M} u(t, ·)
as t → +∞ are equal to the whole interval [0, 1] and the ω−limit sets of the func-
tions t 7→ t−1 inf{z · e, u(t, z) = m} and t 7→ t−1 sup{z · e, u(t, z) = m} are equal to
the whole interval [γ1, γ2].
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