-

View metadata, citation and similar papers at core.ac.uk brought to you byff CORE

provided by Hal-Diderot

HAL

archives-ouvertes

CPC: programming with a massive number of
lightweight threads

Gabriel Kerneis, Juliusz Chroboczek

» To cite this version:

Gabriel Kerneis, Juliusz Chroboczek. CPC: programming with a massive number of lightweight
threads. PLACES’11, Apr 2011, Saarbriicken, Germany. pp. 30-34, 2011. <hal-00563369>

HAL Id: hal-00563369
https://hal.archives-ouvertes.fr /hal-00563369
Submitted on 4 Feb 2011

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://core.ac.uk/display/47107229?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr
https://hal.archives-ouvertes.fr/hal-00563369

CPC: programming with a massive number of lightweight tdsea

Gabriel Kerneis Juliusz Chroboczek
Université Paris Diderot Université Paris Diderot
Paris, France Paris, France

kerneis@pps. jussieu.fr

1 Introduction

Threads are a convenient and modular abstraction for wgritioncurrent programs. Unfortunately,
threads, as they are usually implemented, are fairly exypsng/hich often forces the programmer to
use a somewhat coarser concurrency structure than he wanldtev The standard alternative to threads,
event-loop programming, allows much lighter units of canency; however, event-loop programming
splits the flow of control of a program into small pieces, whieads to code that is difficult to write and
even harder to understarid [1, 8].

Continuation Passing C (CPC) [4, 6] is a translator that converts a program writtethireaded style
into a program written with events and native system threadthe programmer’s choice. Threads in
CPC, when compiled to events, are extremely cheap, rougldyotders of magnitude cheaper than in
traditional programming systems; this encourages a somiewtusual programming style.

Together with two undergraduate students [2], we taughtadues how to program in CPC by writing
Hekate, a BitTorrent seeder, a massively concurrent network server designed to effigiérandle tens
of thousands of simultaneously connected peers. In thisrpage describe a number of programming
idioms that we learnt while writing Hekate; while some ofghédioms are specific to CPC, many should
be applicable to other programming systems with sufficjecttieap threads.

The CPC translation process itself is described in detsdvetherel [6].

2 Cooperative CPC threads

The extremely lightweight, cooperative threads of CPC lead “threads are everywhere” feeling that
encourages a somewhat unusual programming style.

Lightweight threads Contrary to the common model of using one thread per clieekate spawns at
least three threads for every connecting peer: a readeiifer,vand a timeout thread. Spawning several
CPC threads per client is not an issue, especially when diely af them are active at any time, because
idle CPC threads carry virtually no overhead.

The first thread reads incoming requests and manages thaétht client. The BitTorrent protocol
defines two states for interested peers: “unchoked,” ireently served, and “choked.” Hekate maintains
90 % of its peers in choked state, and unchokes them in a nabid-fashion.

The second thread is in charge of actually sending the chofrdata requested by the peer. It usually
sleeps on a condition variable, and is woken up by the firsatthwhen needed. Because these threads
are scheduled cooperatively, the list of pending chunksasipulated by the two threads without need
for a lock.

Each read on a network interface is guarded by a timeout, grebathat has not been involved in
any activity for a period of time is disconnected. Earliersiens of Hekate which did not include this
protection would end up clogged by idle peers, which presgniew peers from connecting.

In order to simplify the protocol-related code, timeoutsianplemented in the buffered read function,
which spawns a new timeout thread on each invocation. Thigaeary third thread sleeps for the

kerneis@pps.jussieu.fr

CPC: programming with a massive number of lightweight tisea Kerneis, Chroboczek

cps void
listening(hashtable * table) {
/* ... x/
while(1) {
cpc_io_wait(socket_fd, CPC_IO_IN);
client_fd = accept(socket_fd, ...);
cpc_spawn client(table, client_£fd);

Figure 1: Accepting connections and spawning threads

duration of the timeout, and aborts the /O if it is still pamgl Because most timeouts do not expire, this
solution relies on the efficiency of spawning and contextedving short-lived CPC threads![4, 6].

Nativeand cpsfunctions CPC threads might execute two kinds of codative functions andpsfunc-
tions (annotated with theps keyword). Intuitively, cps functions are interruptibledanative functions
are not. From a more technical point of view, cps functiomscampiled by performing a transformation
to Continuation Passing Style (CPS), while native funcierecute on the native stack [6].

There is a global constraint on the call graph of a CPC progeaaps function may only be called
by a cps function; equivalently, a native function can ordi} native functions — but a cps function can
call a native function. This means that at any point in tinhe, dynamic chain consists of a “cps stack”
of cooperating functions followed by a “native stack” of udgy C functions. Since context switches are
forbidden in native functions, only the former needs to beedaand restored when a thread cooperates.

Figure[1 shows an example of a cps functidistening calls the primitivecpc_io_wait to wait
for the file descriptorsocket_fd to be ready, before accepting incoming connections withntitese
functionaccept and spawning a new thread for each of them.

3 Comparison with event-driven programming

Codereadability Hekate's code is much more readable than its event-driveivagnts. Consider for
instance the BitTorrent handshake, a message exchangeingdust after a connection is established.
In Transmissior@, a popular and efficient BitTorrent client written in (mg@3tevent-driven style, the
handshake is a complex piece of code, spanning over a theblisas in a dedicated file. By contrast,
Hekate’s handshake is a single function of less than fifgdiimcluding error handling.

While some of Transmission’s complexity is explained bystgpport for encrypted connexions,
Transmission’s code is intrinsically much more messy duthéouse of callbacks and a state machine
to keep track of the progress of the handshake. This resulia bbfuscated flow of control, scattered
through a dozen of functions (excluding encryption-reldtactions), typical of event-driven code [1].

Expressivity Surprisingly enough, CPC threads turn out to be more expesigan native threads, and
allow some idioms that are more typical of event-drivenestyl

A case in point: buffer allocation for reading data from tleéwork. When a native thread performs a
blocking read, it needs to allocate the buffer beforeréed system call; when many threads are blocked
waiting for a read, these buffers add up to a significant amofistorage. In an event-driven program,

Ihttp://www.transmissionbt .com

http://www.transmissionbt.com

CPC: programming with a massive number of lightweight tisea Kerneis, Chroboczek

it is possible to delay allocating the buffer until after areiet indicating that data is available has been
received.

The same technique is not only possible, but actually neinr&@PC: buffers in Hekate are only
allocated afteepc_io_wait has successfully returned. This provides the reducedgaargjuirements
of an event-driven program while retaining the linear flowcohtrol of threads.

4 Detached threads

While cooperative, deterministically scheduled threadslass error-prone and easier to reason about
than preemptive threads, there are circumstances in whidyeroperating system threads are necessary.
In traditional systems, this implies either convertingwiele program to use native threads, or manually
managing both kinds of threads.

A CPC thread can switch from cooperative to preemptive modeyatime by using the thepc_attach
primitive (inspired by FairThreads’t_thread 1ink [3]). A cooperative thread is said to b#ached to
the default scheduler, while a preemptive onddsched.

The cpc_attach primitive takes a single argument, a scheduler, either #fault event loop (for
cooperative scheduling) or a thread pool (for preemptividaling). It returns the previous scheduler,
which makes it possible to eventually restore the threatstoriginal state. Syntactic sugar is provided
to execute a block of code in attached or detached magte {ttached, cpc_detached).

Hekate is written in mostly non-blocking cooperative stylence, Hekate’s threads remain attached
most of the time. There are a few situations, however, whereability to detach a thread is needed.

Blocking OS interfaces Some operating system interfaces, like gragaddrinfo DNS resolver in-
terface, may block for a long time (up to several secondshhchigh there exist several libraries which
implement equivalent functionality in a non-blocking mannn CPC we simply enclose the call to the
blocking interface in @pc_detached block (see Figurkl2a).

Figure[2b shows howpc_detached is expanded by the compiler into two calls ¢pc_attach.
Note that CPC takes care to attach the thread before retutaithe caller function, even though the
return Statement is inside thepc_detached block.

cpc_scheduler *s =

cpc_detached { cpc_attach(cpc_default_threadpool);
rc = getaddrinfo(name, ...) | rc = getaddrinfo(name, ...)
return rc; cpc_attach(s);

} return rc;

(@) (b)

Figure 2: Expansion ofpc_detached in terms ofcpc_attach

Blocking library interfaces Hekate uses theurl Iibrary@ to contact BitTorrentrackers over HTTP.
Curl offers both a simple, blocking interface and a compf®n-blocking one. We decided to use the one
interface that we actually understand, and therefore lealbtocking interface from a detached thread.

Parallelism Detached threads make it possible to run on multiple pracess processor cores. Hekate
does not use this feature, but a CPU-bound program wouldlle@mputationally intensive tasks and
let the kernel schedule them on several processing units.

2h‘ctp: //curl.haxx.se/libcurl/

http://curl.haxx.se/libcurl/

CPC: programming with a massive number of lightweight tisea Kerneis, Chroboczek

prefetch(source, length); /* (1) */
cpc_yield(); /% (2) */
if (!incore(source, length)) { /x (3) x/
cpc_yield(); /% (4) */
if ('incore(source, length)) { /* (B) =/
cpc_detached { /% (6) */
rc = cpc_write(fd, source, length);
}
goto done;
}
}
rc = cpc_write(fd, source, length); /x (7) x/
done:

The functionsprefetch and incore are thin wrappers around the posix madvise and mincore system calls.

Figure 3: An example of hybrid programming (non-blockingdg

5 Hybrid programming

Most realistic event-driven programs are actudprid programs|[¥| 9]: they consist of a large event
loop, and a number of threads (this is the case, by the wapedfransmission BitTorrent client men-
tioned above). Such blending of native threads with eveined code is made very easy by CPC, where
switching from one style to the other is a simple matter ofigshecpc_attach primitive.

This ability is used in Hekate for dealing with disk reads.aBeg from disk might block if the
data is not in cache; however, if the data is already in caitiveould be wasteful to pay the cost of
a detached thread. This is a significant concern for a Bi€fdrseeder because the protocol allows
requesting chunks in random order, making kernel readaheaustics useless.

The actual code is shown in Figuré 3: it sends a chunk of data ft memory-mapped disk file
over a network socket. In this code, we first trigger an asgorabus read of the on-disk data (1), and
immediately yield to threads servicing other clients (2)tider to give the kernel a chance to perform the
read. When we are scheduled again, we check whether the asampleted (3); if it has, we perform
a non-blocking write (7); if it hasn’t, we yield one more ti® and, if that fails again (5), delegate the
work to a native thread which can block (6).

Note that this code contains a race condition: the prefettheck of data could have been swapped
out before the call te&pc_write, which would stall Hekate until the write completes. Howewaur
measurements show that the write never lasted more than 1@mch clearly indicates that the race
does not happen. Note further that the callcigc_write in the cpc_detached block (6) could be
replaced by a call tarite: we are in a native thread here, so the non-blocking wragpeot needed.
However, the CPC runtime is smart enough to detect this easkz,pc write simply behaves agrite
when invoked in detached mode; for simplicity, we chooseswthe CPC wrappers throughout our code.

6 Experimental results

Benchmarking a BitTorrent seeder is a difficult task becdtusdies either on a real-world load, which is
hard to control and only provides seeder-side informatiwmgn an artificial testbed, which might fail to
accurately reproduce real-world behaviour. Our expegeamith Hekate in both kinds of setup shows that
CPC generates efficient code, lightweight enough to run téeta embedded hardware. This confirms
our earlier results 5], where me measured the performafity eveb servers.

4

CPC: programming with a massive number of lightweight tisea Kerneis, Chroboczek

Real-world workload To benchmark the ability of Hekate to sustain a real-workblove need pop-
ular torrents with many requesting peers over a long perfdiine. Updates for Blizzard’s gamébrid
of Warcraft (WoW), distributed over BitTorrent, meet those conditioesch of the millions of WoW
players around the world runs a hidden BitTorrent client] anany time many of them are looking for
the latest update.

We have run an instance of Hekate seeding WoW updates wittteatuption for weeks. We saw up
to 1,000 connected peers (800 on average) and a throughpoit@fLlO MB/s (around 5 MB/s on average).
Hekate never used more than 10 % of the 3.16 GHz dual core CBUr dfenchmarking machine.

Stresstest on embedded hardware We have ported Hekate 1©penWrtE, a Linux distribution for
embedded devices. Hekate runs flawlessly on a MIPS-baséer nvith a 266 MHz CPU, 32 MB of
RAM and a 100 Mbps network card. The torrent files were kept DiSB key.

Because Hekate maps every file it serves in memory, and th& kliters running OpenWrt are 32-
bit machines, we are restricted to no more than 2 GB of con@ut stress-test consists in 1,000 clients,
requesting random chunks of a 1.2 GB torrent from a computectty connected to the device. Hekate
sustained a throughput of 2.9 MB/s. The CPU was saturatedtlynwith software interrupt requests
(60 %sirq, the usb-storage kernel module using up to 25 % of CPU).

7 Conclusions

Hekate has shown that CPC is a tool that is able to producéestficetwork servers, even when used by
people who do not fully understand its internals and are petislists of network programming. While
writing Hekate, we had a lot of fun exploring the somewhatawal programming style that CPC'’s
lightweight, hybrid threads encourage.

We have no doubt that CPC, possibly with some improvemeritsturn out to be applicable to a
wider range of applications than just network servers, aedaoking forward to experimenting with
CPU-bound distributed programs.

References

[1] A. Adya, J. Howell, M. Theimer, W. J. Bolosky, and J. R. eur. Cooperative task management without
manual stack management. Proceedings of the 2002 USENI X Annual Technical Conference, 2002.

[2] P. Attar and Y. Canal. Réalisation d'un seeder bittotien CPC, June 2009. Rapport de stage.

[3] F. Boussinot. FairThreads: mixing cooperative and prngive threads in CConcurrency and Computation:
Practice and Experience, 18(5):445-469, 2006.

[4] J. Chroboczek. Continuation-passing for C: a spaceiefft implementation of concurrency. Technical report,
PPS, Université Paris 7, 2005.

[5] G. Kerneis and J. Chroboczek. Are events fast? Techrégadrt, PPS, Université Paris 7, 2009.

[6] G. Kerneis and J. Chroboczek. Continuation-PassingoBymling threads to events through continuations.
Submitted for publication, 2010.

[7] V. S. Pai, P. Druschel, and W. Zwaenepoel. Flash: an efiichnd portable web server. Rnoceedings of the
1999 USENIX Annual Technical Conference, 1999.

[8] R. von Behren, J. Condit, and E. Brewer. Why events aredhitdba@a (for high-concurrency servers). In
Proceedings of the 9th conference on Hot Topics in Operating Systems, 2003.

[9] M. Welsh, D. Culler, and E. Brewer. SEDA: an architectfwewell-conditioned, scalable internet services.
S GOPS Oper. Syst. Rev., 35(5):230-243, 2001.

Shttp://openurt.org

http://openwrt.org

	1 Introduction
	2 Cooperative CPC threads
	3 Comparison with event-driven programming
	4 Detached threads
	5 Hybrid programming
	6 Experimental results
	7 Conclusions

