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Abstract—We address the problem of verification by model-
checking of basic population protocol (PP) model of Angluin
et al. This problem has received special attention the last two
years and new tools have been proposed to deal with. We
show that the problem can be solved using the existing model-
checking tools, e.g., Spin and Prism. For this, we apply the
counting abstraction to obtain an abstract model of a PP which
can be efficiently verified by the existing model-checking tools.
Moreover, this abstraction is preserves the correct stabilization
property of PP. To deal with the fairness assumed in the PP
model, we provide two recipes. The first one gives sufficient
conditions under which the PP fairness can be replaced by the
weak fairness implemented in Spin. We show that this recipe
can be applied to several PP models. In the second recipe, we
show how to use the probabilistic model-checking and the tool
Prism to deal completely with the PP fairness. The correctness
of this recipe is based on existing theorems on finite discrete
Markov chains.

Keywords-population protocols; Petri Nets; vector addition
systems; model-checking; LTL; Spin; Prism

I. INTRODUCTION

Population protocols [1] are a formal model for sensor

networks. Since such networks should become a part of the

every day life, it is important to ensure their correctness.

This task is now possible in a fully automatic way due to

the important progress of verification techniques. Proposed

in the early eighties, the model-checking technique [2], [3]

allows to check complex correctness properties for models

with finite number of states. The system to be verified is

formalized in some high level formal language, e.g., CSP or

Petri Nets, to obtain a model. The requirements of the system

are specified using some logical language, e.g. LTL [4],

to obtain a property. Model-checking techniques explore

exhaustively the model in order to check that each state

of this model satisfies the given property (a reference for

model-checking techniques is [5]). Very performant model-

checkers, e.g., Spin [6], are now available. They are able to

deal with systems of more than 1020 states. Moreover, the

model-checking techniques have been extended to deal with

more complex finite models like the probabilistic ones, e.g.,

in the Prism [7] model-checker.

Unfortunately, some models of realistic systems have a

number of states which exceeds the capacity of finite model-

checkers. Thus, the research have focalized on designing

abstraction techniques to reduce the model-checking prob-

lem of huge systems to the model-checking of smaller

systems. One of the first abstraction technique proposed is

the counting abstraction [8]. It reduces systems with many

identical processes running in parallel to a system which

keeps track only of the number of processes which are

in some particular state. This abstraction has shown its

efficiency for the model-checking of safety properties in

cache coherence protocols.

In this work, we apply finite model-checking tools and

the counting abstraction technique to verify population pro-

tocols.

The model of population protocols (PP) [1] involves

individual agents with a very simple behavior, which can

be seen as a finite state machine. An important property is

the uniformity of the protocol, i.e., the fact that the protocol

description is independent on the number of agents (called

also the population size) or their identity. When two agents

come into range of each other (“meet”), they can exchange

information. The agents are anonymous and move in an

asynchronous way. At the beginning of the protocol, each

agent receives a piece of input. The goal of the protocol is

to stabilize each agent into a state in which it outputs the

value to be computed by the protocol. Thus, the specification

of a population protocol includes the “correct stabilization”

(CS) property which requires that each agent stabilizes its

computation to an output value which corresponds to a

function on the input assigned to agents.

Our contribution is to highlight the use of the existing

model-checking techniques to check the correct stabilization

property for protocols whose sizes is a fixed constant. For

this, we use the counting abstraction to reduce the PP

model to a vector addition system model, which is a model

computationally equivalent to classical place/transition Petri

Nets. We show in Section V that this abstraction allows

the verification of the correct stabilization property in a

more efficient manner. We also give sufficient conditions to

check the CS property under a fairness constraint weaker

than the one required in [1]. Based on these theoretical

results, we show in Section VI how to perform verification

using the Spin tool. Spin is able to verify our benchmark

of PP for population size greater than 103. The second

recipe is presented in Section VII. We highlight that the



fairness of the PP model can be exactly captured for the

CS property in a probabilistic model where probabilities

strictly greater than some ε > 0 are assigned to transitions.

Then, we show that the Prism tool is very efficient in the

model-checking this property on the abstract model of PP.

In addition, we provide a recipe to compute, using Prism,

the average number of interactions before the convergence

for a PP model. Section IX concludes our work and gives

some directions of future research.

Related work: The verification of systems with a huge

or unbounded number of processes using the counting ab-

straction has been introduced in [8]. The PP enter in the class

of systems considered by this work. However, the fairness

assumption they consider is not the same. We use their

abstraction technique to obtain a model on which the finite

model-checking tools can be applied. Although we fix the

number of processes, we deal with a more complex fairness

condition.

In several papers, Pang et al. [9], [10], [11] consider

the verification by model-checking of leader election PP

on complete graph or ring networks. For complete graphs

topologies, they apply directly Spin on the PP model, and

thus they obtain results for small population sizes. For

the leader election protocol in ring networks, they show

that a special fairness is necessary to obtain the correct

stabilization. Thus, Spin tool returns false negative for

this protocol because it implements a weaker fairness. In,

[10], the authors apply Prism to verify the probabilistic

version of leader election on rings. These works lead to

the development of a new model-checker, called PAT [12].

PAT does model-checking under different fairness conditions

including the fairness needed by the leader election PP on

rings. However, for the weak fairness, PAT is less efficient

than Spin, and for the other fairness conditions, it is able to

verify leader election PP with size smaller than 8. In this

work, we consider only PP on fully connected graphs, and

we manage to verify them for larger populations. Also, we

prove theorems on counting abstraction for PP that can be

used by any model-checker for the verification of PP models.

[13] shows that the algorithmic verification of finite

instances of PP is NP-hard. It provides an incomplete,

polynomial algorithm for checking the correctness of the

computation for PP whose size is under some fixed constant.

We consider the same problem and we prove some theorems

in order to use the off the shelf tools for model-checking.

With these tools, we obtain better experimental results than

those reported by [13].

II. LABELED TRANSITION SYSTEMS

At the semantic level, the population protocol model

and the verification models we consider are finite labeled

transition systems.

Definition 1: A finite labeled transition system (LTS) is

a tuple T = 〈S, I,Σ,∆〉 where S is a finite set of states, I ⊆ S

is the set of initial states, Σ is a finite set of labels, and

∆ ⊆ S×Σ×S is a finite set of labeled transitions.

We also use the notations s
ℓ
−→s′ for (s, ℓ,s′) ∈ ∆. The

notation s−→s′ stands for ∃ℓ ∈ Σ such that (s, ℓ,s′) ∈ ∆. We

say that a label ℓ is enabled in a state s iff there exists s′

such that s
ℓ−→s′. This model can be extended to obtain a

probabilistic model by associating probabilistic distribution

to transitions, as shown in Section VII.

An execution E of an LTS is a sequence of alternat-

ing states and labels E = s0, ℓ0,s1, ℓ1, . . . ,si, ℓi, . . . such that

s0 ∈ I and si
ℓi−→si+1 for all i ≥ 0. A computation C of

an LTS is a maximal execution, i.e., either a finite execu-

tion s0, ℓ0,s1, ℓ1, . . . ,sn such that for all s ∈ S and ℓ ∈ Σ,

sn
ℓ−→s 6∈ ∆, or an infinite execution. A label ℓ is enabled

(resp. fired) in an execution E iff there exists i s.t. ℓ is

enabled in si (resp. ℓi = ℓ).
We are interested in computations of LTS which do not

avoid systematically some states or transitions of the LTS,

i.e., they are fair. A fairness constraint restricts the set of

system computations to ones which are fair. We give below

three fairness constraints used in the remainder of the paper.

Let C = s0, ℓ0,s1, ℓ1 . . . ,si, ℓi, . . . be a computation of an LTS.

Definition 2: C is strong locally fair (LF) iff for every ℓ,
if ℓ is enabled in infinitely many states si in C, then ℓ= ℓ j

for infinitely many j in C, i.e., ✷✸ℓ enabled ⇒✷✸ℓ fired.

LF constraint corresponds to the classic strong fair [14]

constraint. Intuitively, it asks that if a label is enabled

infinitely often in a computation, it is also executed infinitely

often by the computation.

A stronger version of fairness is obtained by looking at

the states in the neighborhood of a computation, i.e., states

that can be reached using any transition from the states of

a computation.

Definition 3: C is strong globally fair (GF) iff for every s

and s′ such that s−→s′, if s= si for infinitely many i in C, then

s j = s′ for infinitely many j in C i.e., s−→s′∧✷✸s ⇒✷✸s′.

In a GF computation C, any neighbor s′ of a state s

appearing infinitely often in C appears also infinitely often in

C. Note that the neighbor state s′ may be a direct successor

of s through transitions in ∆ labeled with different labels.

Also, GF does not require to have s′ a direct successor of s

in C. The GF constraint corresponds to the fairness constraint

required for the PP in [1].

Definition 4: C is weakly fair (WF) iff for every ℓ, if it

exists j and s′i with si
ℓ
−→s′i ∈ ∆ for any i ≥ j, then sk

ℓ
−→sk+1

for infinitely many k > j in C, i.e., ✸✷ℓ is enabled ⇒
✷✸ℓ is fired.

WF constraint states that if a label becomes enabled

forever after some steps, then it must be fired infinitely

often. The weak fairness have been well studied and the

verification under weak fairness is supported by performant

tools like Spin [6].



Let F be one of the fairness above (F ∈ {LF, GF, WF}).

We use the notation compF(T ) for the set of F computations

of the LTS T .

From the algorithmic point of view, testing that a compu-

tation is strong fair (i.e., LF or GF) requires to compute its

strongly connected components. Testing that a computation

is weak fair can be done in constant time [6], i.e., very

efficiently.

III. POPULATION PROTOCOL MODEL

In this section, we briefly introduce the population proto-

col model. More details are available in [1].

For a population of k agents, Π = {π1, . . . ,πk} denotes

the set of agents. Each agent in the system is modeled

as a finite state machine, representing the program of the

agent. These programs are uniform: each agent executes

the same finite state machine which form does not depend

on the number of agents in the system. This assumption

makes the model strongly anonymous: the agents can not

store a unique identifier. When two agents meet each other,

they may interact and perform a change in their states. The

underlying network of communication is a complete graph,

every pair of agents may meet. The initial state of each agent

is set by the protocol. The goal of a PP is to compute by

each agent the same value called the output of the protocol.

The value to be computed is a predicate on the initial state

of the protocol.

The following definition [1] indicates how to specify

population protocols.

Definition 5: A population protocol (PP) is specified as

a six-tuple P = (Q,X ,Y, ι,ω,δ) which contains a finite set

Q of possible agent states, an input assignment ι : X → Q,

an output assignment ω : Q → Y , and a transition relation

δ ⊆ Q4.

In this definition, the initial state of an agent is fixed (using

ι) by an input value in X received by the agent. In each state

q, an agent outputs a value in Y given by the mapping ω.

The interaction between agents is described by the relation

δ: if two agents in states q1 and q2 meet each other, they

change into states q′1 resp. q′2, where (q1,q2,q
′
1,q

′
2) ∈ δ. We

also use notation (q1,q2)−→(q′1,q
′
2) for the elements of δ.

In this paper, we restrict ourselves to PP whose specifi-

cations satisfy the following conditions:

H1: the protocol computes predicates, i.e., Y = {0,1};

H2: the transition relation is non-deterministic but symmet-

ric, i.e., δ ⊆ P≤2(Q)×P≤2(Q) where P≤2(Q) is the set

of non empty subsets of Q with cardinality at most 2.

Hypotheses H1–H2 simplify our proofs, but do not restrict

the power of the PP model. To emphasize the symmetry of

transitions required by H2, we use a special operator ‖ in-

stead of tuples to specify a transition in δ, i.e., q1‖q2−→q3‖q4

(q1 and q2 or q3 and q4 may be equal). Note that a transition

exists for any couple of states q1 and q2; when is no explicit

transition with left side q1‖q2 in δ, the default transition

q1‖q2−→q1‖q2 is applied. We denote by U(δ) the elements

of δ which are not identities, i.e., {q1,q2} 6= {q3,q4}.

The semantics of a PP P is given by an LTS TP =
〈S, I,Σ,∆〉 defined by:

• a state s (called configuration in [1]) is a mapping Π →
Q specifying the state of each agent; then S = 2Π→Q,

• the initial set of states I, is given by the image of the

input of the protocol by the function ι,
• the set of labels Σ ⊆ P2(Π)×δ, and

• the set of labeled transitions ∆ = {s
ℓ

−→s′ | ∃πi,π j ∈
Π s.t. t = s(πi)‖s(π j)−→s′(πi)‖s′(π j) ∈ δ and ℓ =
({i, j}, t)}.

Intuitively, an interaction between two agents in the PP

model is identified at the semantic level by the set of

identities of the agents interacting and by the transition in

δ which is applied by this interaction. The presence of an

interaction in some state s of the protocol is denoted by a

transition s−→s′ at the semantic level.

An important semantic notion for the PP is the stable

output of a computation. To define it, we use the natural ex-

tension of ω to Qk →Y k. A computation C = s0, ℓ0,s1, ℓ1, . . .
stably outputs some b ∈ Y if there exists some i such that

ω(s j) = bk for all j ≥ i, i.e., every agent eventually outputs

b and never changes its output thereafter, i.e., C satisfies

✸✷
(
ω(s) = bk

)
.

One of the characteristics of the PP model is that the

order in which pairs of agents interact is unpredictable. In

order to model this aspect, one may imagine the presence

of a scheduler which is scheduling the interactions. This

scheduler may force two agents to never interact. In the

presence of such scheduler, the PP has no chance to compute

its goal. Thus, Angluin et al. [1] require that the scheduler

allows only GF computations.

Under the GF requirement for the scheduler, a protocol

of size k stably computes a function f : Xk → Y if, for

every input ~x ∈ Xk, every GF computation starting in ι(~x)
stably outputs f (~x), i.e., ι(~x)∧GF ⇒✸✷

(
ω(s) = f (~x)

)
. The

important result of Angluin et al. [15] is that a predicate is

stably computable by the PP model iff it can be defined as

a first-order logical formula in Presburger arithmetic.

We shortly present two examples of PP that will be our

running examples. For more examples, see e.g., [16].

Example 1 (Majority): Let X = {L,F}. The MAJORITY

protocol stably computes the predicate |L| > |F | where |L|
(resp. |F |) is the number of agents with input L (resp. F).

The states of the protocol are Q= {L,F,0,1}, ι is the identity

function, and ω maps L and 1 to 1, F and 0 to 0. The

transition set δ is defined as follows:

t1 : L‖F −→ 0‖0 t2 : L‖0 −→ L‖1

t3 : F‖1 −→ F‖0 t4 : 0‖1 −→ 0‖0

[16] notices that the execution in Figure 1 is not GF because

the state (0,L,1) appears infinitely often but not the state



(L,L,F) (0,L,0) (1,L,0)

(0,L,0)(0,L,1)

({1,3}, t1) ({1,2}, t2)

({1,3}, t4)

({2,3}, t2)

({1,3}, t4)

Figure 1. LF execution which is not GF in the MAJORITY protocol.

(1,L,1) which is its neighbor (by transition ({1,2}, t2)).
However, this execution is LF because each infinitely often

enabled label is fired infinitely often. From the Figure 1,

it appears that this execution is also accepted by a fairness

constraint which requires that any two agents meet infinitely

often.

Example 2 (Threshold): Let N ≥ 2 be an integer value

and X = {0,1}. The THRESHOLD(N) protocol stably com-

putes the function |ι(1)| ≥ N. The states of the protocol are

Q = {0, . . . ,N}. ι maps all agents with input 1 in state 1 and

all other agents in state 0. The output function ω maps a

state q to the boolean value q = N. δ is defined as follows:

tq,q : q‖q −→ q‖q+1 if 1 ≤ q < N

tN,q : N‖q −→ N‖N if 0 ≤ q < N

Notice that the size of Q (resp. δ) for this protocol is linear

(resp. quadratic) on N.

IV. ABSTRACT MODEL

We introduce an abstract model for the PP that facilitates

the verification task. This model has been studied in [17].

Intuitively, we abstract a state s of the TP by a vector

of integers c indexed by Q such that c[q] is the number of

agents in state q in s. This abstraction is possible due to the

uniformity of the protocol: the behavior of an agent depends

only on its state and not on its index.

Another intuition of this abstraction may be obtained by

the translation of the PP model into a classic place/transition

Petri net (PN) model. To each state in Q is associated a

place in the PN, and to each transition in δ is associated

a transition in the PN. Agents are represented by tokens in

the PN; the firing of a transition in the PN corresponds to

an interaction between agents in the PP model. Figure 2

pictures the PN obtained for the MAJORITY protocol with

k = 3. The counting abstraction keeps track of the number

of tokens in each place of the PN by associating a counter

with each place (state in Q); the transitions of the PN are

encoded into conditions and assignments on these counters.

Formally, the model obtained by this abstraction is a

vector addition system model; it is equivalent (from the point

of view of computation power) with the PN model, but more

convenient to encode in the verification tools we consider.

Definition 6: A vector addition aystem (VAS) is a pair

A = (Γ,D) where Γ = {c1, . . . ,cn} is a finite set of integer

L

F

0

1

t2

t1

2

t3

t4

2

Figure 2. The Majority PP for k = 3 abstracted into a Petri net.

variables called counters, and D ⊆N
n ×Z

n is a finite set of

guarded translations φ = (µ,τ) such that µ+ τ ≥ 0.

We represent guarded translations (µ,τ) ∈ D by a con-

straint c ≥ µ∧c′ = c+τ, where c is the vector representation

of Γ, c′ is a vector of n symbols not in Γ used to denote

the new values of counters c. The constraint c ≥ µ is called

the guard (notation guard(φ)) and the constraint c′ = c+ τ
is called the translation (notation trans(φ)). Intuitively, a

guarded translation defines the condition on the values of

the counters Γ in the current state, and the update of these

counters to new values represented by the counters c′.

Example 3 (Majority cont.): The VAS model represent-

ing the PN on Figure 2 is given by:

i guard(φi) trans(φi)

φ1 :
︷ ︸︸ ︷

cL ≥ 1∧ cF ≥ 1 ∧
︷ ︸︸ ︷

c′L = cL −1∧ c′F = cF −1∧ c′0 = c0 +2
φ2 : cL ≥ 1∧ c0 ≥ 1 ∧ c′0 = c0 −1∧ c′1 = c1 +1
φ3 : cF ≥ 1∧ c1 ≥ 1 ∧ c′1 = c1 −1∧ c′0 = c0 +1
φ4 : c0 ≥ 1∧ c1 ≥ 1 ∧ c′1 = c1 −1∧ c′0 = c0 +1

The semantics of a VAS is given by an LTS TA =
〈S, I,Σ,∆〉 where:

• a state s is a valuation of counters in Γ, i.e., s : Γ →N;

thus S = 2Γ→N,

• the initial set of states I is a set of valuations for the

counters in Γ,

• the set of labels Σ is defined by D,

• the set of transitions ∆ = {s
ℓ−→s′ | s,s′ : Γ → N, ℓ =

(µ,τ), and s ≥ µ ∧ s′ = s+ τ}.

V. ABSTRACTING POPULATION PROTOCOLS

We now formalize the abstraction of the PP model into a

VAS model and present the main property of this abstraction

which allows us to perform the verification of the CS

property on the abstract model.

A. Abstraction function

Definition 7: The counting abstraction α maps a PP

model P = 〈Q,X , ι,ω,δ〉 into a VAS model A = 〈Γ,D〉 as

follows:

• Γ = {cq | q ∈ Q}, and



• D= {(µt ,τt) | δ ∋ t = q1‖q2−→q3‖q4 and

µt = {q 7→
(
(q1 ≡ q)+(q2 ≡ q)

)
},

τt = {q 7→
(
−(q1 ≡ q)− (q2 ≡ q)
+(q3 ≡ q)+(q4 ≡ q)

)
}}

where the expression (q ≡ q′) returns 1 if q is the

same as q′ and 0 otherwise.

We denote by α(t) the couple (µt ,τt) defined above. The

abstraction function α comes with a concretization function γ
which maps back the VAS model into the PP model. Figure 3

illustrates the relation between the mapping α and γ.

From the definition of α, it results that the LTS of a

VAS A abstracting a PP model P has a number of states

in O(k|Q|−1) while the LTS of P has O(|Q|k) states. But

k varies for a fixed Q and, in general, k ≫ |Q|. Thus, the

number of states TA is smaller that the one of TP when

A = α(P ). Also, α translates PP transitions in U(δ) into

transitions of VAS with a not null translation component.

A couple of mappings (α,γ) induces a couple (αLT S,γLT S)
defined on the LTS representing the semantics of PP and

VAS models. Let TP = 〈S, I,Σ,∆〉 be the LTS of some PP

P , and TA = 〈S#, I#,Σ#,∆#〉 be the LTS of A = α(P ). The

αLT S mapping is defined by two mappings αS : S → S# and

αΣ : Σ → Σ# such that:

αS(s) = {q 7→ |{i | s(i) = q}|}
αΣ({i, j}, t) = α(t) = (µt ,τt)

The properties of the induced mapping αLT S are described

by the following proposition:

Proposition 1: The components of TP and TA with A =
α(P ) satisfy the following identities:

S# =
⋃

s∈S{αS(s)}, Σ# =
⋃
({i, j},t)∈Σ{αΣ(t)}

I# =
⋃

s∈I{αS(s)}, ∆# =
⋃

s
{i, j},t
−−−−→s′∈∆

{αS(s)
αΣ(t)

−−−−→αS(s
′)}

In the following, we remove the subscripts of the α and γ
mappings if they are obvious from the context.

Because one abstract state s# represents all the concrete

states s which have the same number of agents in the

same state, we have that one abstract execution E# in TA

represents several concrete executions in E1,E2, . . . in TP .

Figure 3 illustrates this fact. The concrete states situated

at the same distance form the initial state are permutations

of each other (relation represented by a dotted arrow in

Figure 3). Also, the labels of transitions in the concrete

executions abstracted by E# correspond in their second

component t.

Using the induced abstraction on LTS, we obtain that an

abstract computation C# = s#
0, ℓ

#
0,s

#
1, ℓ

#
1, . . . stably computes a

predicate f : Xk →Y if there exists some i such that, for all

j ≥ i

Σq,ω(q)= f (~x)s
#
j(cq) = k (1)

or equivalently,

Σq,ω(q)6= f (~x)s
#
j(cq) = 0 (2)

P ∈PP A ∈VAS

α

γ

s#
0 s#

1 s#
2

. . . s#
i

. . .
α(t j0) α(t j1) α(t j2) α(t ji)

s0

γ

s1

γ

s2

γ

. . . si

γ

. . .
ℓ0, t j0 ℓ1, t j1 ℓ2, t j2 ℓi, t ji

s′0

γ

s′1

γ

s′2

γ

. . . s′i

γ

. . .
ℓ′0, t j0 ℓ′1, t j1 ℓ′2, t j2 ℓ′i, t ji

Figure 3. Abstraction and concretization mappings.

We denote by α( f ) the state predicate in equation 1. Then,

C# stably computes f if it satisfies ✸✷α( f ).

B. Properties of the abstraction

We are now ready to show that the verification of the

correct stabilization property on the PP can be transferred

into a verification of the same property in the abstract model.

This result is given by the following theorem:

Theorem 1 (Property transfer): A PP P stably computes

a function f iff its VAS abstraction α(P ) stably computes

α( f ), i.e., TP satisfies GF ⇒ ✸✷
(
ω(s) = f (~x)

)
iff Tα(P )

satisfies GF ⇒✸✷α( f )

To obtain the proof of this theorem, we need the following

two lemmas which relate GF computations in the LTS of the

concrete and abstract models.

Proposition 2: If C is a GF computation of P , then α(C)
is a GF computation in α(P ).
Proof: Let C# = α(C) and let s# be a state in C# such that s#

appears infinitely often. Recall that s# represents a finite set

of states in C, denoted by γ(s#). Then, there is at least one

state s in γ(s#) which appears in C infinitely often. Let s#
1

be a state neighbor of s#, i.e., s#−→s#
1. Since the transitions

in P are anonymous and symmetric, the state s has also a

neighbor s1 such that s1 ∈ γ(s#
1). From the hypothesis that

C is a GF computation, we obtain that s1 appears infinitely

often in C, and then s#
1 = α(s1) appears infinitely often in

C#.

Proposition 3: If C# is a GF computation of α(P ), then

there exists C ∈ γ(C#) s.t. C is a GF computation of P .

Proof: Notice than not all computations in γ(C#) are GF

computations even if C# is GF computation. Indeed, suppose

that some state s#
i appears infinitely often in C#, and let

z#
i be its neighbor by some transition labeled by t. If si

is the ith concrete state in some C ∈ γ(C#), i.e., si ∈ γ(s#
i ),

the neighbors of si by t are states zi such that zi ∈ γ(z#
i ),

and si
{u,v},t
−−−−→zi for some couple of agents (u,v). The

computation C may not execute infinitely often some of the



neighbors in γ(z#
i ), but still its abstraction C# is still a GF

computation.

Then, we have to prove that there exists some computation

C in γ(C#) that contains infinitely often any neighbor of

any state si which appears infinitely often. To build such a

sequence, we observe that the maximal number of neighbors

of si by some transition t ∈ δ is a constant ξ fixed by the

population size k. Thus, we build C from C# by choosing

some initial state s0 ∈ γ(s#
0) and by choosing agents to

meet in the transitions of C# such that all the interactions

are considered by all concretizations of s#
i which appears

infinitely often in C. This choice is possible due to the

symmetry property of transitions in P .

Proof of Theorem 1: (⇒) Suppose that any GF compu-

tation of TP satisfies ✸✷
(
ω(s)= f (~x)

)
, and consider one GF

computation C# in Tα(P ). From Proposition 2, there is some

C which is a GF computation of P in γ(C#). By hypothesis,

C satisfies ✸✷
(
ω(s) = f (~x)

)
, i.e., there exists some i such

that for all j ≥ i, s j satisfies ω(s j) = f (~x). Since C# has the

same transitions than C, we obtain that for all j ≥ i, s#
j(cq)

has a strictly positive value only if ω(q) = f (~x). From the

definition of α( f ) (Equation 1), it follows that s#
j satisfies

α( f ).
(⇐) Suppose that any GF computation of Tα(P ) satisfies

✸✷α( f ), and consider some GF computation C in TP . From

Proposition 1, C# = α(C) is a GF computation of Tα(P ). By

hypothesis, C# satisfies ✸✷α( f ), i.e., there exists some i

such that for all j ≥ i, s#
j satisfies α( f ). From the definition

of α( f ) , it results that for any s in γ(s#
j), there is no agent

with state q such that ω(q) 6= f (~x), which also means that

ω(s j) = f (~x). Then, in computation C, all the states s j for

j ≥ i satisfies ω(s) = f (~x).

C. Verification under weak fairness

As mentioned in Section II, the verification of a property

under some strong fairness (LF or GF) constraint is more

expensive than the verification under the WF constraint.

Thus, we study the conditions on which the WF constraint

can be used for the verification of PP. The problem of using

the WF constraint is that we can obtain false negatives,

since the set of WF computations includes the set of GF

computations. For example, a false negative is signaled

for the MAJORITY protocol because the loop shown at

Example 1 is not a WF computation.

The results of the model-checking under GF and WF con-

straints are equal for computations which are “insensitive” to

the fairness constraint. We provide two sufficient conditions

on the transition system TP of some PP model P to

obtain this equality. These conditions constrain the strongly

connected components (SCC) of the transition system of the

protocol.

Condition SCC1: TP has only sink strongly connected

components.

Condition SCC2: All the SCC of TP have the same output

value.

Theorem 2 (Correction of verification under WF):

Let P be a PP whose TP satisfies SCC1 or SCC2. If P

stably computes f under the WF constraint then P stably

computes f under the GF constraint.

Proof : Recall that the correct stabilization property has the

form ✸✷φ. Its model-checking algorithm consists in finding

a point in each execution from which φ is satisfied in each

configuration.

Condition SCC1 means that each execution has the form

of a finite sequence (without loops) followed by a SCC. For

both GF and WF constraint, this kind of executions is fair.

The point to be searched by the model-checking algorithm

is in a state before or at the entry in the sink SCC. Thus,

the result of the model-checking is given by the satisfaction

of φ in all the states of the sink SCC.

Condition SCC2 allows executions that loop infinitely in

some SCC. The GF constraint forces the exit from any non-

sink SCC, but the WF constraint does not if the SCC has

at least two transitions. However, since all SCC have the

same output, the result of the model-checking is the same in

both cases and equal to the satisfaction of φ by the common

output value.

Notice that the constraint SCC1 is not satisfied by a PP

model P which contains only identity transitions, i.e., ones

not in U(δ), because identity transitions generates self loops

in TP . This check is syntactic, and can be done in constant

time. For PP models where U(δ) = δ, the condition SCC1

is not very restrictive. For example, it is satisfied by all

our benchmark protocols except MAJORITY. The condition

SCC1 can be tested using classical tools on LTS [?], as well

as the HSF-Spin [18], and extension of Spin which computes

the SCC of any Spin model. Notice however that this test is

as expensive as testing the strong fairness.

VI. VERIFICATION USING SPIN

The Spin model-checker [6] is one of the most efficient

model-checkers for finite systems. The language for model

description in Spin is called Promela. It provides intuitive

constructs for modeling finite state automata extended with

finite domain variables (e.g., finite counters). The general

scheme of translation from our VAS model to the Promela

code is given in Figure 4. The do loop statement contains

several branches (introduced by ::) which are chosen to be

executed in a non-deterministic way; a branch is executed

only if its guard (expression before →) is true.

The property to be checked on the model is specified

using LTL. To check an LTL formula ϕ on a model M,

Spin executes the following two steps:

(1) ltl2ba: the negation of ϕ is translated into a Büchi

automaton which thus accepts all the traces which are not

satisfying ϕ; the size of this automaton 2O(|ϕ|) where |ϕ| is



do

:: guard(φ1) → trans(φ1)
... ... ...
:: guard(φm) → trans(φm)
od

Figure 4. Promela code scheme for VAS model of PP.

protocol |D| WF LF

majority 4 0.057 0.021

mod3 3 0.087 0.021

broadcast 4 0.057 0.021

flock-2 3 0.043 0.021
flock-4 9 0.377 0.091
flock-8 28 — —

threshold-2 3 0.033 0.030
threshold-4 7 — 210.515
threshold-8 14 — —

Table I
TIME PERFORMANCES (IN SEC.) FOR THE STEP ltl2ba.

the number of symbols in ϕ, This step is called one time

for each formula to be checked, so its result can be used for

several models M.

(2) check: the product of the Büchi automaton with the

input model M is done on-the-fly. ϖ is satisfied by M if

there are no cycles including an an accepting state of the

Büchi automaton. Otherwise, a trace of M not respecting

the formula ϕ is provided. The time complexity of this step

is then 2O(|ϕ|)O(|M|), where |M| is the sum of transitions

and states in M.

The exponential size of the Büchi automaton generated by

the ltl2ba step prevents us to encode the GF constraint in the

LTL formula in order to select only GF computations. In-

deed, the size of an LTL formula encoding the GF constraint

is linear in the size of the LTS of M. To give an idea of the

explosion of this step, we provide in Table II the execution

times of the ltl2ba step for formulas encoding the LF and

the WF constraints. These experiments have been done on

an Intel i686 double core with 4GHZ and memory limited to

512MB. All experiments taking more than 30 minutes have

been stopped (entries “—” in the table).

Fortunately, Spin has an option to select WF computations

during the check step. This selection is done very efficiently

by Spin. From the Theorem ??, the result of model-checking

with Spin under the WF constraint is valid for models

satisfying SCC1 or SCC2. Thus, we have also to do the check

on one of these conditions.

A. Benchmark

The PP models in our benchmark are given on Table I

together with the characteristics of their VAS model: the

number of transitions (|D|) and the number of counters

(|Γ|). The majority and threshold-n protocols are our running

protocol computes |D| |Γ|

majority |ι(1)|> |ι(0)| 4 4

mod3 [ |ι(1)| / 3 ] = |ω(1)| 3 4

broadcast [ |ι(1)| ≥ 1 ] 1 2

flock-2 |ι(1)| ≥ 2 3 3
flock-4 |ι(1)| ≥ 4 9 5
flock-8 |ι(1)| ≥ 8 28 9

threshold-2 |ι(1)| ≥ 2 3 3
threshold-4 |ι(1)| ≥ 4 7 5
threshold-8 |ι(1)| ≥ 8 14 9

Table II
BENCHMARK OF PP MODELS.

protocol SCC1 population size k
11 101 1001

majority No 0.061 (-) 0.324 (-) 0.185 (-)

mod3 Yes 0.128 (+) 0.377 (+) 28.142 (+)

broadcast Yes 0.042 (+) 0.049 (+) 0.083 (+)

flock-2 Yes 0.055 (+) 0.250 (+) 22.748 (+)

flock-4 Yes 0.122 (+) 52.973 (+) 51.331 (+)

flock-8 Yes 0.070 (+) 59.198 (+) 57.904 (+)

threshold-2 Yes 0.045 (+) 0.199 (+) 17.554 (+)

threshold-4 Yes 0.080 (+) 40.441 (+) 40.551 (+)

threshold-8 Yes 0.881 (+) 65.458 (+) 64.450 (+)

Table III
PERFORMANCES (IN SEC.) FOR CHECKING CORRECT STABILIZATION.

examples. The broadcast protocol computes the OR predi-

cate on the input values. The mod3 protocol instantiate the

one given in [15] to compute the predicate testing that the

quotient by 3 of the number of agents with input 1 is equal

to the number of agents in state 1. The flock-n protocols are

the “flock of birds” protocol given in [13] which computes

the same predicate that threshold-n but in a different manner.

B. Experimental results

Table III presents the experimental results obtained for the

phase check on several instances of PP in our benchmark.

The execution memory is limited to 512MB. The worse

execution times observed for different inputs are given. The

entries annotated with (+) (resp. (-)) denote a positive (resp.

negative) answer of the checking phase. The column SCC1

indicates whether the model satisfies condition SCC1.

As expected, the MAJORITY protocol does not satisfies

the condition SCC1 and Spin returns a negative result. For

k = 3, the execution obtained as witness for the negative

result is the one shown in Figure 1. Notice that all other

protocols verify condition SCC1 and the checking times are

very performant.



VII. PROBABILISTIC VERIFICATION

A. Probabilistic model

An alternative way to introduce fairness constraints in the

PP model is to consider probabilistic schedulers. Angluin et

al. consider this alternative in [19] and define the notion of

probabilistic computation for a PP model.

Definition 8 (Probabilistic computation): A population

protocol P = 〈Q,X ,Y, ι,ω〉 of population size N computes a

predicate f : XN −→{0,1} in w steps with error probability

ε if for all ~x ∈ f−1({0,1}), the state s reached after w steps

satisfies the following properties with probability 1− ε:

1) all agents agree on the correct output, i.e., ∀i ∈
{1, . . . ,N} f (~x) = ω(s(πi)), and

2) the previous property is also true for every state

reachable from s.

Definition 9 (Probability of a computation): For a given

scheduler, the probability that a PP P = 〈Q,X ,Y, ι,ω〉 com-

putes a predicate f on input ~x is the probability of all

computations starting in state ι(~x) that stabilize with output

f (~x).

Let us introduce now two different probabilistic sched-

ulers. The simplest and more natural one has been consid-

ered in [1] and schedules ordered pairs of agents.

Definition 10: A random pairing (RP) scheduler choses,

in each state of a computation, the ordered pair of agents

which interact in a random independently and uniformly

manner from all ordered pairs of agents.

The modeling of the RP scheduler needs the LTS of a PP

because it makes its decision based on the state. It cannot be

modeled on an abstract VAS model because the VAS model

collapses transitions whose set of agents is the same. But

working on the LTS of PP suffers from the state explosion

problem when the population size increases. For example,

the MAJORITY protocol can only be verified with existing

probabilistic model-checkers for population sizes less than

30 agents.

Therefore, we define a scheduler that can be used in con-

junction with the counting abstraction because its decision is

based on the transitions of the PP which are also transitions

of the abstract VAS model.

Definition 11: The random ruling (RR) scheduler

choses, in each state of the computation, one enabled transi-

tion t ∈ δ of the PP in a random uniformly and independently

manner.

Note that for each state s, the set of enabled transitions is

a subset of δ. Therefore, the probability of each transition to

be chosen by the scheduler is greater than a strictly positive

constant (1/|δ|). This fact allows us to obtain the following

property as a consequence of the ergodic theorem on finite

discrete Markov chains:

Proposition 4: A population protocol P computes a pred-

icate f almost surely with a random pairing scheduler if and

only if P computes f almost surely with a random ruling

scheduler.

Notice that, for the non-probabilistic model, the LF

constraint, which also considers the firing of transitions

of P , is not sufficient to verify the correct stabilization

property for all PP, as illustrated in Example 1. In the

probabilistic case, considering states (random pairing) or

transitions (random ruling) is equivalent for almost sure

computations of predicates.

In fact, as in the non-probabilistic case, to verify that a

predicate f is computed almost surely when probabilities

are strictly positive consists in searching the closed strongly

connected components in the transition system. Since the

LTS in the probabilistic and non-probabilistic cases are the

same, we obtain the following result:

Proposition 5: A PP P stably computes a predicate f

⇔ P computes f almost surely with a RP scheduler

⇔ P computes f almost surely with a RR scheduler.

Hence, we can use probabilistic model-checkers to verify

that P stably computes a predicate f even for a non ran-

domized model of population protocols. Indeed, we have to

verify that P computes f almost surely with some scheduler

assigning strictly positive probabilities to transitions.

B. Experiments with PRISM

Prism [20], [7] is a tool for formal modeling and anal-

ysis by model-checking of systems which exhibit random

or probabilistic behavior. Models are described using the

PRISM language, a simple, state-based language. The prop-

erty specification language incorporates the several temporal

logics including LTL, as well as extensions for quantitative

specifications and costs/rewards.

We encode in Prism the abstract VAS model used for Spin,

without probabilities, but specified as a discrete Markov

chain. Then, Prism associates to each transition enabled at

some state a uniform distribution of probabilities. Based on

the results of the previous section, we model-check the VAS

model against the property ✸✷α( f ) with probability at least

one, i.e., almost surely.

Table IV presents the experimental results obtained with

Prism. The time reported at each entry is the maximal time

observed on the different inputs for a given population size.

Entries marked by ‘—’ denote a timeout (fixed to 30 min-

utes) of the experiment. Entries marked by (*) correspond

to a partial experiment where some inputs of the protocol

produce a timeout.

VIII. EXTENSIONS

The previous sections demonstrate that standard verifi-

cation tools may help to prove that PP stably computes

some predicate. In fact, these tools may be used to verify



protocol population size k
11 101 1001

majority 0.140 4.824 (*) 27.202

mod3 0.228 0.570 (*) 70.486

broadcast 0.137 0.385 14.982

flock-2 0.284 14.933 (*) 35.398

flock-4 0.661 (*) 122.240 (*)13205.884

flock-8 0.561 (*) 4.891 (*) 1030.536

threshold-2 0.167 10.242 (*) 24.455

threshold-4 0.531 (*) 34.441 —

threshold-8 0.719 — —

Table IV
PERFORMANCES (IN SEC.) FOR MODEL-CHECKING WITH PRISM.

const int N; // Population size

global IN: [1..N] init 1; // number of infected nodes

// - transition T1: IN, NI-> IN,IN

module T1

[] (IN >= 1) & (N-IN >= 1) ->

(2*IN*(N-IN))/(N*(N-1)): (IN’ = IN + 1)

+ 1-(2*IN*(N-IN))/(N*(N-1)): true;

endmodule

Figure 5. Prism code for epidemic broadcast.

other properties of population protocols. Indeed, it could

be interesting to verify more general properties on states

that can be expressed by LTL formulas. For example, such

properties are (1) all agents are infinitely often in some state,

or (2) for PP with privacy [21], to verify that the privacy of

computations is ensured.

A probabilistic model-checker like Prism allows to com-

pute the expected average time of convergence, i.e., the

number of interactions that occur before convergence. We

illustrate this last extension of use to compute in a random

pairing scheduler model the average time of convergence for

two classical problems:

• the epidemic broadcast: some information broadcasted

by some agents needs to reach all agents;

• the leader election: starting from any numbers of lead-

ers, the protocol converges to a state with at most one

leader.

Notice that for an appropriate choice of probabilities for

transitions, the computation of the average time of conver-

gence can be done on the abstract VAS model. Figure 5

(resp. Figure 6) gives the Prism code of the epidemic broad-

cast (resp. the leader election). In both cases, we specify

probabilities for transitions corresponding to the random

pairing scheduler. For example, for the epidemic broadcast

(Figure 5), this probability is 2*IN*(N-IN))/(N*(N-1)),

where IN is the number of infected agents (i.e agents already

having the information) and N is the population size.

Angluin et al. [22] prove that, for a population size N, the

const int N; //Population size

const int L=N; // Number of initial leaders

global CL: [1..N] init L;

// - transition T1: L,L-> L,N

module T1

[] (CL >= 2 ) ->

(CL*(CL-1))/(N*(N-1)): (CL’ = CL -1 )

+ 1-(CL*(CL-1))/(N*(N-1)): true;

endmodule

Figure 6. Prism code for leader election.

expected average convergence time is:

• for the epidemic broadcast, Θ(N log(N)), and

• for the leader election, Θ(N2).

Using Prism and its reward computation option, we obtain

these results experimentally, as shown on Figures 7 and 8.

Figure 7. Expected average convergence time for epidemic broadcast.

Figure 8. Expected average convergence time for leader election.

IX. CONCLUSION

We show in this paper that the counting abstraction is very

useful to deal with the verification by model-checking of PP

on complete graphs. Indeed, it allows to use the existing

model-checking tools without facing the state explosion

problem for population sizes of order of 103. Nevertheless,

the fairness constraint of PP for stably computes property is

very difficult to verify at least when using model checkers

like Spin. We provide sufficient conditions to replace this

fairness constraint by the weak fairness and thus to ob-

tain scalability of verification. Moreover, since the fairness

condition can be replaced by randomization, probabilistic



model checkers like Prism allow to directly verify the stably

computation property with good time performances.

Therefore, we recommend to use the existing model-

checkers for the verification of finite instances of PP. We

show that such an experience may bring to more interesting

ones, e.g., the computation of the expected average time of

convergence.

Finite model checkers allow only verification of PP with

a fixed population size and the main extension of this work

would be to deal with unbounded population protocols.
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