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We introduce a procedure to infer the interactions among a set of binary variables, based on
their sampled frequencies and pairwise correlations. The algorithm builds the clusters of variables
contributing most to the entropy of the inferred Ising model, and rejects the small contributions
due to the sampling noise. Our procedure successfully recovers benchmark Ising models even at
criticality and in the low temperature phase, and is applied to neurobiological data.

Understanding the correlated activity of complex, non-
homogeneous multi-component systems is of fundamen-
tal importance in physics, biology, sociology, finance, ...
A natural issue is to separate direct correlations (due to
direct interactions) from network-mediated correlations.
The Ising model, of ubiquitous importance in statistical
physics, provides a natural framework to extract inter-
actions from correlations [1], and was recently used for
the analysis of neurobiological data [2–4]. It is indeed
the least constrained model capable of reproducing the
individual and pairwise frequencies of a set of, say, N
binary-valued variables, σi = 0, 1. In practice, these fre-
quencies, pi and pij , are often estimated through empir-
ical averages over a number of sampled configurations
{σb

1, σ
b
2, . . . , σ

b
N}, b = 1, . . . , B. The task then consists in

inferring the parameters (fields hi and interactions Jij)
of the Ising model reproducing those data. From a math-
ematical point of view, one has to solve the 1

2N(N + 1)
implicit equations pi = 〈σi〉 and pij = 〈σiσj〉 for the
fields and interactions, where 〈·〉 denotes the Gibbs aver-
age with Boltzmann factor exp

(
∑

i hiσi+
∑

i<j Jijσiσj

)

.
Various approaches have been developed to solve the

inverse Ising problem, called Boltzmann Machine (BM)
in Machine Learning, including BM learning [5], mean
field [6] and message-passing [7, 8] methods, and pseudo-
likelihood algorithms [9]. Despite their specificities, those
methods have in common to be efficient when the corre-
lations, cij = pij − pipj, are weak, and to perform badly
when most pairs (i, j) are strongly correlated, e.g. when
the data are generated by a critical Ising model. Those
examples seem to suggest that fast algorithms cannot in-
fer BMs with long-range correlations [10].
However, the existence of a relationship between the

presence of strong correlations in the ’direct’ model and
the intrinsic hardness of the inverse problem is ques-
tionable [11]. Let p = {pi, pij}, J = {hi, Jij}, 〈σ〉 =
{〈σi〉, 〈σiσj〉} be the 1

2N(N + 1)-dimensional vectors
of, respectively, the measured frequencies, the interac-
tion parameters and the Gibbs frequencies. We define
the susceptibility and the inverse susceptibility matrices
through, respectively,

χ =
∂〈σ〉

∂J

∣

∣

∣

∣

J

and χ
−1 =

∂J

∂〈σ〉

∣

∣

∣

∣

〈σ〉

. (1)

χ is attached to the direct model, and quantifies how the
frequencies respond to a small change in the interaction
parameters. χ

−1, which gives the response of the BM
interaction parameters to a small change in the frequen-
cies, is a natural characterization for the inverse problem.
An essential point, which has received little attention in
the context of BM so far, is that χ−1 is generally much
sparser and shorter-range than χ; evidence for this claim
is reported below. Even if strong responses (and correla-
tions) pervade the system, each BM interaction parame-
ter may mostly depend on a small (compared to N) num-
ber of frequencies p. Interestingly, the short-rangedness
of χ

−1 makes the inference not only possible but also
meaningful, as experiments generally probe limited parts
of larger systems.
In this letter, we present a method for inferring BM,

exploiting this notion of limited dependence. The inter-
action network is progressively unveiled, through a re-
cursive processing of larger and larger subsets of vari-
ables, which we call clusters. To each cluster Γ is asso-
ciated an entropy ∆S(Γ), which assesses how much the
cluster is relevant to infer the BM. Clusters such that
|∆S(Γ)| < Θ, where Θ is a fixed threshold are discarded;
the other clusters are kept and recursively used to gener-
ate larger clusters. Threshold Θ must be large enough to
avoid overfitting of the data corrupted by the sampling
noise (finite B) and small enough in order not to miss
important components of the interaction network. Con-
trary to conventional cluster expansions [4, 7], the num-
ber, size, and composition of the clusters automatically
adapt to the data, and, rather than the sole value of N ,
determine the running time of the algorithm. Pseudo-
codes intended for the practical implementation of our
algorithm are given in Supplemental Material [12].
Our starting point is the Legendre transform of the

partition function Z(J) (sum of the Boltzmann factors)
of the Ising model,

S(p) = min
J

[

logZ(J)− p · J
]

, (2)

where · denotes the dot product; it is the cross entropy
between the sampled distribution and the best BM or,
equivalently, the negative of the maximum log-likelihood
of the parameters J given the data p [13]. Let us define
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S0(p) =
1
2 log det(ĉij), where ĉij = cij/[pi(1 − pi)pj(1 −

pj)]
1

2 . We now formally write, for given p,

S−S0 =
∑

i

∆S(i)+
∑

i<j

∆S(i, j)+
∑

i<j<k

∆S(i, j, k)+. . . ,

(3)
where the sums run over every subset (cluster) of the N
variables. The choice of expanding S − S0 rather than
S will be explained later. According to (3) for N = 1,
∆S(i) is the entropy of a single spin with average value
pi. Using (3) again for N = 2, we find that ∆S(i, j)
equals the loss in entropy when imposing the constraint
〈σiσj〉 = pij to a system of 2 spins with fixed magne-
tizations, 〈σi〉 = pi, 〈σj〉 = pj , minus the contribution
1
2 log(1 − ĉ2ij) coming from S0. A recursive use of (2)
and (3) for increasing N allows us to calculate ∆S(Γ) for
larger and larger clusters Γ = (i1, i2, . . . , iK). The maxi-
mal cluster size, say, K = 20, is set by the computational
hardness of obtaining S from (2). Note that ∆S(Γ) is a
function of the individual and pairwise frequencies of the
spins in Γ only.
To illustrate the properties of the cluster expansion (3)

consider the 2D-Ising model on a M×M grid (Fig. 1), in
the absence of sampling noise (B = ∞). Enumerations

of the 2M
2

spin configurations allow us to calculate the
frequencies p = 〈σ〉 and the cluster-entropies ∆S(Γ) ex-
actly for small values of M (Fig. 1A). The entropy of the
clusters Γ decreases exponentially with the length L(Γ)
of the shortest closed interaction path joining the spins
in Γ, e.g. L(1, 2) = 2, L(1, 3, 6) = 6. The entropies
of clusters sharing a common interaction path (and the
same L) have alternating signs, depending on the parity
of the cluster size (Fig. 1A); their sum is much smaller
(in absolute value) than any cluster-entropy taken sep-
arately [21]. Figure 1B shows the error ǫS on the en-
tropy, when all cluster-entropies smaller than Θ are dis-
carded. ǫS exhibits lower and lower plateaus, separated
by higher barriers as the threshold Θ is decreased. The
first low plateau, ǫS ≃ .002, takes place at Θ∗

1 = .012,
when all nearest-neighbor clusters (L = 2) are selected.
The second and lower plateau, ǫS ≃ 5 10−6, is reached
for Θ∗

2 = 0.002, after all clusters with L = 4 are taken
into account. Barriers in between plateaus correspond
to values of Θ, for which the truncation interrupts the
summation (and partial cancellation) of all the clusters
sharing an interaction path; the error on the entropy is
then ǫS ∼ Θ.
Let us turn to the case of imperfect sampling (finite

B). The measured correlations, cij = pij − pipj, differ
from the Gibbs correlations, 〈σiσj〉−〈σi〉〈σj〉, by random

fluctuations of amplitude ν = O(B− 1

2 ). Those fluctua-
tions do not affect much the largest correlations and the
largest cluster-entropies. However, for the pairs i, j with
weak Gibbs correlations (< ν in absolute value), the mea-
sured correlations are dominated by the noise. This fact
has two consequences. First, the norm of the 2-point
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FIG. 1: Exact cluster enumeration for a 3× 3 grid, with cou-
pling J = 1.778 (units of kBT ), corresponding to the critical
value for an infinite grid [14]. A. Cluster-entropies ∆S(Γ)
vs. length L(Γ) of the interaction path for perfect sampling;
representative Γ are shown for L = 2, 4 (labels refer to the
grid). B. error ǫS vs. Θ for perfect sampling (B = ∞, full
curve), and two random samples with B = 107 (dashed) and
B = 4500 (dotted curve) configurations. The accuracy on ǫS
and each ∆S is ∼ 10−15.
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FIG. 2: Histograms of ∆S(i1, i2, i3) for the 1D-Ising (J =
4, h = −5, units of kBT ) and Independent Spin (IS) models,
for N = 50 and three values of B. The distributions collapse
onto each other after rescaling by the standard deviation of

the IS cluster-entropies, ∆SIS(B) ≃ 3(2p−1)2

2p(1−p)
( 3
B
)
5

2 + O( 1
B3 ).

Universality at small ∆S holds for larger cluster sizes (= 3
here). Large-∆S tails are not universal (not shown), and are
specific to the interaction network, see Fig. 1A.

susceptibility, |χ2| =
1

N

∑

i,j

c2ij ∼ Nν2 is extensive: over-

fitting makes the inferred Ising model look like critical.
Secondly, the distribution of the cluster entropies is uni-
versal for ∆S → 0 and N → ∞: it coincides with the
distribution for a system of Independent Spins, with the
same pi’s as the original system, and the same number
B of sampled configurations (Fig. 2). The presence of
this universal, noisy peak justifies the introduction of a
threshold Θ and sets a lower bound to its value. Fig-
ure 1B shows that the error ǫS behaves as in the perfect
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sampling case for large Θ and saturates at low Θ as ex-
pected. Again, the entropy is accurately estimated by
taking into account only the top cluster-entropies, asso-
ciated to the dominant interaction paths on the lattice.

Systematic enumeration of clusters is not possible for
large systems. The example above suggests a fast, recur-
sive procedure to build up clusters of increasing sizes,
whose principle is based on the existence of paths of
strong interactions connecting the spins. First we cal-
culate the entropies associated to the N clusters with
K = 1 spin. Then, two clusters Γ1 and Γ2 of size K can
be merged to give birth to the cluster Γ = Γ1 ∪Γ2 of size
K+1 if Γ1 and Γ2 have exactly K−1 common spins, and
if |∆S(Γ)| > Θ. The underlying principle is, again, that
the building-up prescription should be compatible with
the existence of a path of strong interactions connecting
the spins, and that clusters with low entropies can be dis-
carded. Each time a new cluster Γ is created and selected
we store its contributions to the entropy, ∆S(Γ) and to
the interaction parameters, ∆J(Γ) = − d

dp
∆S(Γ). The

procedure naturally stops when no cluster of larger size
can be built through the recursion. The sums of ∆S(Γ)
and ∆J(Γ) over the selected clusters, added to, respec-
tively, S0 and J0 = − d

dp
S0, are our approximations for

the entropy and the interactions of the BM.

We now report the tests of the above inference al-
gorithm on synthetic data generated from Ising models
with known couplings. First we consider dilute ferro-
magnets on 2D-grids of sizes M × M ; BM learning is
hindered by the huge thermalization time at low temper-
ature, mean-field and message-passing methods are not
expected to be efficient on such loopy lattices and the
Pseudo-Likelihood (PL) algorithm of [9] fails outside the
paramagnetic phase, even for M = 7 [10]. Our algo-
rithm successfully retrieves the network of interactions
at the critical point, in the low temperature phase, and
for much larger sizes (Fig. 3A). As Θ is lowered the error
on Jij first decreases and then saturates to a value close

to the Cramér-Rao bound,
√

1
B
χ

−1
ij,ij [13] (Fig. 3B). At

the cross-over threshold the largest selected clusters have
size 4, while ξ ∼ M as the system is critical (Fig. 3B).
The running time of the algorithm (at the cross-over Θ)
is ∼ 10 millisec on one core of an AMD Opteron dual-
core processor at 3 Ghz. The inference algorithm is also
applied to glassy frustrated Ising models [15], of various
sizes N (Fig. 3C). Performances do not seem to worsen
as N increases.

To better understand the saturation of the error and
the quality of the inference we compare the difference
δp between the frequencies calculated from the inferred
BM, 〈σ〉 [22], and the measures, p, to the fluctuations
expected from the sampling of B configurations at equi-
librium. The variance of these fluctuations are the di-
agonal elements of χ, divided by B. An estimate of
the relative error for the one-site frequencies is thus
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FIG. 3: A. Fraction of non-zero interactions recognized by our
procedure (squares) and by the PL algorithm (circles, from
[10]) vs. intensity J of couplings on a 7 × 7 grid with 30%
dilution; similar performances are obtained for 20× 20 grids.
The critical coupling is Jc ≃ 2.8 (units of kBT ) [14]. B. Error
on the inferred couplings vs. Θ for M×M grids at ’criticality’
(Jc = 1.778, no dilution) and B = 4500; the dependence on
M is reduced with periodic boundary conditions (not shown).
Inset: ǫc vs. Θ for M = 7. C. same as B for the Viana-
Bray spin glass model [15] (connectivity 5 and random Jij ,
uniform in [−J0; J0]; J0 = 4 is larger than the spin glass
critical coupling, J0

c ≃ 3.5 [15]). Inset: ǫc vs. Θ for N = 50.

ǫp =
√

B
N

∑

i
(δpi)2

χi,i
; a similar expression can be writ-

ten for the error on the correlations, ǫc. Values of ǫ ≫ 1
signal a poor inference, while overfitting corresponds to
ǫ ≪ 1. This criterion is justified if the Gibbs fluctua-
tions are comparable to the error bars that can be com-
puted using statistical methods such as bootstrap. We
find that ǫp and ǫc are close to 1 at the cross-over thresh-
old for which the error on the couplings saturates (Insets
of Fig. 3B&C). Lowering Θ further reduces ǫp, ǫc, but
does not increase the accuracy on the interactions and is
merely an overfitting of the data.

The running time of our algorithm depends on the
complexity of the underlying interaction network rather
than on the system size. We analyze in Fig. 4 a 3180
second-long recording of the retinal activity of a salaman-
der, previously studied in [2] using BM learning (N1 = 40
cells). As Θ is lowered, the number of selected clus-
ters and their maximal size increase, and the entropy
S reaches a plateau (Fig. 4B&C). For Θ∗ ≃ 6 10−6, the
errors are ǫ ∼ 1, and the inferred Ising model reproduces
the frequencies and correlations (Fig. 4D). We have also
applied our algorithm to recordings of other neurobiolog-
ical systems, including the cortical activity of N2 = 37
cells in a behaving rat [16] (not shown). While the am-
plitudes of the interactions found with both data sets are
similar, the maximal size of the selected clusters, which
is a measure of the neighborhood of a cell on the interac-
tion network, is much smaller for the cortical recording
(= 3) than for the retinal activity (= 8). The lower com-
plexity of the inferred network results in a lower CPU
time (t2 ≃ .1 sec vs. t1 ≃ 5 min on the computer above),



4

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

1

100

10000

0 0.05 0.1
0

0.05

0.1

in
fe

rr
ed

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

Θ

3.0

3.2

3.4

3.6

0

5000

10000

15000

20000

25000

10
-5

10
-4

10
-3

10
-2

10
-1

10
0
0

2

4

6

8

0 0.01 0.02 0.03 0.04

data

0

0.01

0.02

0.03

0.04

in
fe

rr
ed

Maximal Size

Number

p
i

c
ij

ε
c

ε
p

S

A

B

C

D

Θ∗

FIG. 4: Performance of the inference procedure as a function
of the threshold Θ. A. errors ǫp and ǫc; B. number (bottom,
left scale) and maximal size (top, right scale) of clusters; C.

entropy S(Θ). D. reconstructed vs. experimental pi and cij
for Θ∗ (error bars are calculated from χ). Spin values are
σi = 1 if cell i is active in a 20 msec-time bin, 0 otherwise
[2]. Note that, while the correlations cij are small, the ratios
cij/(pipj) are of the order of unity, and so are the inferred
couplings Jij .

in spite of N2 ≃ N1.
While expanding S alone in (3) would be possible,

the cluster-entropies |∆SΓ| produced by the expansion
of S − S0 are generally smaller [17]. Therefore, less clus-
ters are needed to achieve an accurate inference, and the
fluctuations of ǫS (Fig. 1B) and of ǫp, ǫc (Figs. 3B&C and
4A) are smaller, see discussion about barriers above. As
S0 coincides with S for mean field models when N → ∞
[6], it is a good starting point for the expansion even for
systems with rather dense and weak interaction networks.
In the case of severe undersampling, regularized versions
of S0 including a penalty over the couplings based on the
L2 ([12]) or the L1 [18] norm can be used. Note that
(J0)ij ∝ −(ĉ−1)ij is regular even at criticality, i.e. even
if ĉ has a diverging eigenvalue.
Our work suggests that the BM problem can be solved

efficiently even when data exhibit strong correlations.

The contribution to χ
−1 due to a cluster Γ, −∂2∆SΓ

∂p∂p
,

is highly sparse since ∆SΓ depends on a few frequencies
only. The success of our algorithm relies on the property
that χ−1 can be accurately approximated by such an ex-
pansion (while χ cannot). We now list four examples for
which this property holds. In the 1D-Ising model, χ−1

ij is
of finite-range when Jij couples nearest neighbours only,
and decays exponentially with |i − j| in the presence of
longer-range interactions [19]. Next, consider the O(m)
model, where the binary spins σi are replaced with m-
dimensional spins σi of fixed norms, with interactions
Jij and zero fields. The model is exactly solvable in the
m → ∞ limit, with the result (χ−1)ij,kl = JikJjl+JilJjk

(diagonal elements Jii enforce the constraints on |σi|). If
J is sparse, so is χ−1, even if all correlations are strong.
In liquid theory, the Ornstein-Zernike direct correlation
function, a quantity closely related to χ

−1, is widely be-
lieved to be short-range [20]; this property is used in
closure schemes, e.g. Percus-Yevick, to obtain the equa-
tion of state. Even at the critical point of a ferromag-
net [11] the response of the field hi to changes in the
magnetizations mj of spins at distance larger than R,
∫

r>R
dr |χ−1(r)| ∼ R−(3−η), quickly decays with R [20].

Intuitively, the O(N2) correlations contain a highly re-
dundant information about the O(N) non-zero couplings
which have generated them. This redundancy is at the
origin of the ’locality’ ofχ−1 and of the cancellation prop-
erty of the cluster-entropies.
We thank D. Chatenay, D. Huse, J. Lebowitz, S. Leibler,
A. Montanari and V. Sessak for very useful discussions.
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