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Abstract:

This paper presents a survey on some recent advances fgpthedrror rate control in multiple testing method-
ology. We consider the problem of controlling tkdamily-wise error rate (KFWER, probability to makefalse
discoveries or more) and the false discovery proportionRFDoportion of false discoveries among the discoveries).
The FDP is controlled either via its expectation, which e $b-called false discovery rate (FDR), or via its uppdr-tai
distribution function. We aim at deriving general and umiffesults together with concise and simple mathematical
proofs. Furthermore, while this paper is mainly meant to lseraey paper, some new contributions for controlling
the KFWER and the upper-tail distribution function of theAFBre provided. In particular, we derive a new procedure
based on the quantiles of the binomial distribution thatids the FDP under independence.

AMS 2000 subject classification€2J15, 62G10
Keywords:multiple testing, type | error rate, false discovery prdjmor, family-wise error, step-up, step-down, posi-
tive dependence

Contents

1 Introduction . . . . . . . . . . . e 2
1.1 Multiple testing in microarray data . . . . . . .. ... ... .. ... 2
1.2 Examples of multiple testing settings . . . . . .. .. ... . ... ...... 3
1.3 General multiple testingsetting . . . . . . . . . .. .. . aa 5
1.4 Multiple testing procedures . . . . . . . . .. .. e e 5
15 Typelerrorrates . . . . . . . . . . e 6
1.6 Goal . . . . . . e 7
1.7 Overviewofthepaper. . . . .. ... .. .. .. .. . . . . . ... un 8
1.8 Quantile-binomial procedure . . . . . . . .. ... e 8

2 Keyconceptsandtools . . ... .. ... .. .. .. ... 9
2.1 Model assumptions . . . . . . .. e 9
2.2 Diracconfigurations. . . . . . . . . .. .. . . e 10
2.3 Algorithms . . . . . . 01
2.4 Adaptive control . . . . .. .. 10

3 FDRcontrol . . . . . . . e e 11
3.1 Thresholding based procedures . . . . . . ... .. .. .. ... «c.e.... 11
3.2 Linearstep-up procedures. . . . . . . ... e 13

1 UPMC University of Paris 6, LPMA.
E-mail: etienne.roquain@upmc. fr

Soumis au Journal de la Société Francaise de Statistique
File: Roquain-jsfds-version2.tex, compiled with jsfds, version : 2009/12/09
date: March 14, 2011



2 Etienne Roquain

3.3 Adaptive linear step-up procedures . . . . . . ... i 15
3.4 Case ofarbitrary dependencies . . . . . . .. .. . .. .. .. . weu... 18

4 k-FWERcoNtrol . . . . . . . . e 02
4.1 Subset-indexedfamily . . .. ... ... ... .. .. .. . e 20
4.2 Single-stepmethod . . . . . . . ... e 22
4.3 Step-downmethodfor FWER . . . .. .. .. .. .. ... ... ...... 22
4.4 Step-down method f&«FWER . . . . . .. ... ... ... ... .. .. ... 23

5 FDPcontrol . . . . . . . . e 25
5.1 Family indexed by rejectionnumbers . . . . . . .. .. ... . ... 25
5.2 Step-downmethod . ... ... ... . . ... 27
5.3 Theorem 3.1 of [36] and the quantile-binomial procedcgeorollaries . . . . . . 29
5.4 Theorem4.1(i)of[45]asacorollary. . . . . ... ... ... . ....... 29

6 DISCUSSION . . . . . . . e e 30
6.1 Complexity of th&k-FWER step-down approach . . . . . .. ... ... ... .. 30
6.2 FDRcontrolisnotFDP control . . . . . . .. ... ... ... ... .. ... 31
6.3 Quantile-binomial procedure and relation to previooskw. . . . . . . . . . .. 31
6.4 Conclusion . .. . . .. .. 13

Acknowledgements . . . . . . .. e 32

A Defining ap-value from ateststatistic . . . .. ... .. ... ... ......... 33

References . . . . . . . . . e e 35

1. Introduction

The problem of testing several null hypotheses has a lorigrigign the statistics literature. With
the high-resolution techniques introduced in the receatg;at has known a renewed attention
in many application fields where one aims to find significaatdees among several thousands
(or millions) of candidates. Classical examples are miteyaanalysis [58, 17, 19, 20], neuro-
imaging analysis [4, 42] and source detection [40]. FostHation, we detail below the case of
microarray data analysis.

1.1. Multiple testing in microarray data

In a typical microarray experiment, the level expressioha set of genes are measured under
two different experimental conditions and we aim at finding tjenes that are differentially ex-
pressed between the two conditions. For instance, wherettesgcome from tumor cells in the
first experimental condition, while they come from healti®jisin the second, the differentially
expressed genes may be involved in the development of timisrtand thus are genes of special
interest. Several techniques exist to perform a statldsafor a single gene, e.g. based on a dis-
tributional assumption or on permutations between the twaglabels. However, the number of
genean can be large (for instance several thousands), so thatiffenedtially expressed genes
can have a high score of significance by chance. In that cortgplying the naive, non-corrected
procedure (levetr for each gene) is unsuitable because it is likely to selectdiscover") a lot

of non-differentially expressed genes (usually calledsd#adiscoveries”). For instance, if the
m = 10,000 genes are not differentially expressed (no signal)ard0.1, the non-corrected
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Type | error rate control in multiple testing 3

procedure makes on average = 1,000 discoveries which are all false discoveries. In a more
favorable situation where there are omty = 5,000 non-differentially expressed genes among
them = 10,000 initial genes (50% of signal), the non-corrected pracedelects some genes,
sayr genes, for which the expected number of errorsje = 500. Since the number of discov-
eriesr is not designed to be much larger than the number of falsewsesmya, the final list
of discovered genes is likely to contain an unacceptablegbarrors. A multiple testing proce-
dure aims at correcting priori the level of the single tests in order to obtain a list of seléc
genes for which the “quantity” of false discoveries is bebonominal levekr. The “quantity” of
false discoveries is measured by usgigbal type | error ratesas for instance the probability to
make at leask errors among the discoveridsfamily-wise error ratek-FWER) or the expected
proportion of errors among the discoveries (false discovate, FDR). Finding procedures that
control type | error rates is challenging and is what we daliere the “multiple testing issue".
Furthermore, a feature that increases the complexity sfiskue is the presence of dependencies
between the single tests.

Note that the multiple testing issue can be met in microaaralysis under other forms, as
for instance when we search co-expressed genes or genegtexsovith clinical covariates or
outcomes, see Section 1.2 of [17].

1.2. Examples of multiple testing settings

Example 1.1 (Two-sample multiplet-tests) The problem of finding differentially expressed
genes in the above microarray example can be formalized agiayar case of a general two-
sample multiple testing problem. Let us observe a couplevofihdependent samples

X = (X X" = (Yh..,Ym Z L Z) e R™N,

where(Y1,...,Y™) is a family of n; i.i.d. copies of a random vectf in R™ and (Z%,...,Z"™)

is a family ofny i.i.d. copies of a random vecta in R™ (with n; +nz = n). In the context of
microarray data\,(iJ (resp.Zi‘), 1 <i < m, corresponds to the expression level measure of the
i-th gene for thg-th individual of the first (resp. second) experimental gtod. Typically, the
sample size is much smaller than the number of tests, thatdsm. Let the distributionP of

the observatiorX belong to a statistical model given by a distribution $ét Assume that#?

is such thaiX is an integrable random vector and gt (P) = EY; and i »(P) = EZ;, for any

i € {1,...,m}. The aim is to decide for allwhetherP belongs to the s&y; = {P € & : ti1(P) =
Hi2(P)} or not, that is, we aim at testing the hypothesis

Ho,i : “1i1(P) = mi2(P)" againstHy : “ i 1(P) # i 2(P)”,

simultaneously for ali € {1,...,m}. Given P, the null hypothesiddp; (sometimes called the
“null" for short) is said to be true (foP) if P € Og}, that is, if P satisfiesHy;. It is said false
(for P) otherwise. The index set corresponding to true nulls iotehby . 75(P) = {1 <i <

m: pi1(P) = i 2(P)}. Its complement invZ = {1,...,m} is denoted by’ (P). In the microar-
ray context,.771(P) = {1 <i <m: pu1(P) # wi2(P)} is thus the index set corresponding to
differentially expressed genes. The aim of a multiple mgstirocedure is thus to recover the (un-
observable) se# (P) given the observatioX. A multiple testing procedure is commonly based
on individual test statistics, by rejecting the null hypeghs with a “large" test statistic. Here, the
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4 Etienne Roguain

individual test statistic can be the (two-sided) two-saerpstatisticS (X) O |Y; — Zj|, rescaled
by the so-called “pooled" standard deviation. To provideidoum normalization for all tests, it
is convenient to transform tH&(X) into the p-value

pi(X) = sup Tri(S(X)), 1)

POy

whereTp;(s) = Pxp(S(X) > s) is the upper-tail distribution function & (X) for X ~ P € Og;.
Classically, assuming that andZ; are Gaussian variables with the same variance, we have for
anyP € O, Tpi(s) = 2P(Z > s), whereZ follows a Student distribution with — 2 degrees of
freedom. In that case, eaghvalue p;(X) has the property to be uniformly distributed @ 1)
when the corresponding null hypothesls; is true. Without making this Gaussian assumption,
p-values can still be built, as we discuss in Remark 1.3 bel@wus finally note that since the
Tp; are decreasing, a multiple testing procedure should raejétst with a “small” p-value.

Example 1.2(One-sided testing on the mean of a Gaussian veclarjive a further illustrating
example, we consider the very convenient mathematicaldvaork for multiple testing where we
observe a Gaussian vec®r= (X;)1<i<m ~ P, having an unknown megn(P) = (1;(P))1<i<m €

R™ and am x m covariance matrixx(P) with diagonal entries equal to 1. Let us consider the
problem of testing

Ho,i : “1i(P) < 0" againstHy; : “ i (P) > 07,

simultaneously for all€ {1,...,m}. We can define thp-valuesp; = ®(X;), where®(x) = P(Z >
x) for Z ~ .#°(0,1). Any p-value satisfies the following stochastic domination urtdernull: if
Ui (P) <0, we have for alli € [0,1],

P(pi(X) <u) <P(P(X — p(P)) <u) =u.

Additionally, more or less restrictive assumptionsXii®) can be considered to model different
types of dependency of the correspondmgalues. For instance, we can assume BR{&) has
only non-negative entries, that the non-diagonal entrfes(B) are equal (equi-correlation) or
thatZ(P) is diagonal. Finally, the value of the alternative means lmamsed for modeling the
“strength of the signal". For instance, to model that the @arsize available for each testns
we can sely; (P) = t./n for eachy;(P) > 0, wheret > 0 is some additional parameter.

Remark 1.3 (General construction gi-values) In broad generality, when testing the nuBg;

by rejecting for “large" values of a test statis&gX), we can always define the associaged
values by using (1). It is well known that thepevalues are always stochastically lower-bounded
by a uniform variable under the null, that I8, € 7%(P), Vu € [0,1], P(pi(X) < u) < u. This
property always holds, even wh&{(X) has a discrete distribution. For completeness, we pro-
vide this result with a proof in Appendix A. However, the adhtion of thep-values (1) is not
always possible, because it requires the knowledge of 8tghiition of the test statistics under
the null, which often relies on strong distributional asgtioms on the data. Fortunately, in some
situations, thep-values (1) can be approximated by using a randomizatidmtgae. The result-
ing p-values can be shown to enjoy the same stochastic dominaredgoae (see, e.g., [44] for
a recent reference). For instance, in the two-sample teptioblem, permutations of the group
labels can be used, which corresponds to use permutatitn(ties latter can be traced back to
Fisher [25]).
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Type | error rate control in multiple testing 5

1.3. General multiple testing setting

In this section, we provide the abstract framework in whialitiple testing theory can be inves-
tigated in broad generality.

Let us consider a statistical model, defined by a measurablee$.2”, X) endowed with a
subset? of distributions orn(.2", X). LetX denote the observation of the model, with distribution
P e 2. Consider a family{©g;)1<i<m of m> 2 subsets of”. Based orX, we aim at testing the
null hypothesedo; : “P € ©g;” against the alternativel, : “P € Og;” simultaneously for all
i € {1,...,m}. ForanyP € 2, let #(P) = {1 <i <m:P € Qp;} be the set of the indexégor
which P satisfiesHp}, that is, the indexes corresponding to true null hypothdsesardinality
|#2(P)| is denoted bymy(P). Similarly, the sef1,...,m} is sometimes denoted b¥’. The set
of the false null hypotheses is denoted M (P) = 77\ .7%(P). The goal is to recover the set
21 (P) based orX, that is, to find the null hypotheses that are true/falsedasghe knowledge
of X. Obviously, the distributior® of X is unknown, and thus so i%7 (P).

The standard multiple testing setting includes the knogdedf p-values(p;(X))1<i<m Satis-
fying

VP e 2 Vi e s(P), Yue [0,1], P(pi(X) <u) <u. (2)

As a consequence, for eack {1,...,m}, rejectingHp; wheneverp;(X) < a defines a test of
level a. As we have discussed in the previous section, property d8)be fulfilled in many
situations. Also, in some cases, (2) holds with equalitgt i, thep; (X) are exactly distributed
like a uniform variable i(0, 1) whenHg; is true.

1.4. Multiple testing procedures

In the remainder of the paper, we use the observationly through thep-value familyp(X) =
{pi(X),1 <i<m}. Therefore, for short, we often drop the dependenck iim the notation and
define all quantities as functions pf= {p;,1 <i < m} € [0,1]™. However, one should keep
in mind that the underlying distributioP (the distribution of interest on which the tests are
performed) is the distribution of and not the one ab.

A multiple testing proceduris defined as a set-valued function

Riq= (qi)léiém € [07 1]m — R(Q) - {17"'7m}7

taking as input an element @, 1™ and returning a subset é1, ..., m}. For such a general pro-
cedureR, we add the technical assumption that for eaeh{1,...,m}, the mappingx € 2" —

1{i e R(p(x))} is measurable. The indexes selectedRy) correspond to the rejected null hy-
potheses, that is,c R(p) < “Ho; is rejected by the proceduR(p)". Thus, for eachp-value
family p, there are 2 possible outcomes fdR(p). Nevertheless, according to the stochastic
dominance property (2) of thp-values, a natural rejection region for eddh; is of the form

pi <tj, for somet; € [0,1]. In this paper, we mainly focus on the case where the thrdsaahe
same for allp-values. The corresponding procedures, calfedsholding based proceduresre

of the formR(p) = {1 <i <m: p <t(p)}, where the thresholt{-) € [0,1] can depend on the
data.
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6 Etienne Roquain

Example 1.4(Bonferroni procedure)The Bonferroni procedure (of level € (0,1)) rejects the
hypotheses with g-value smaller tharm /m. Hence, with our notation, it corresponds to the
procedureR(p) = {1<i<m:p < a/m}.

1.5. Type | error rates

To evaluate the quality of a multiple testing procedurejotar error rates have been proposed
in the literature. According to the Neyman-Pearson apgrogpe | error rates are of primary
interest. These rates evaluate the importance of the npithgses wrongly rejected, that is, of
the elements of the s&p) N % (P). Nowadays, the most widely used type | error rates are the
following. For a given procedurB,
— thek-family-wise error ratg k-FWER) (see e.g. [32, 44, 36]) is defined as the probability
that the procedur® makes at leas false rejections: for alP € &2,

KFWERR, P) = P(R(p) N.75(P)| > k). (3)

wherek € {1,...,m} is a pre-specified parameter. In the particular case wkerd, this
rate is simply called th&amily-wise error rateand is denoted by FWER, P).

— thefalse discovery proportio(FDP) (see e.g. [53, 5, 36]) is defined as the proportion of
errors in the set of the rejected hypotheses: foPail &7,

IR(p) N 74(P)|

RO)IVL )

FDP(R(p),P) =
where|R(p)| vV 1 denotes the maximum &R(p)| and 1. The role of the termvV1" in the
denominator is to prevent from dividing by zero wHemakes no rejection. Since the FDP
is a random variable, it does not define an error rate. Howéwerfollowing error rates
can be derived from the FDP. First, theupper-tail distribution of the FDP, defined as the
probability that the FDP exceeds a givgrthat is, for allP € &2,

P(FDAR(p),P) > ), (5)
wherey € (0,1) is a pre-specified parameter. Second, the false discoveryF®R) [5],
defined as the expectation of the FDP: forRl &7,

(6)

FDR(R,P) = E[FDP(R(p),P)] = E {W} .

IR(p)[ V1

Note that the probability in (5) is upper-bounded by a nomiieel a € (0,1) if and only if the
(1— a)-quantile of the FDP distribution is upper-boundedybyror instance, if the probability
in (5) is upper-bounded by = 1/2, this means that the median of the FDP is upper-bounded
by y. With some abuse, bounding the probability in (5) is calledritrolling the FDP" from now
on.
The choice of the type | error rate depends on the context.rébetrolling thek-FWER,
we tolerate a fixed numbék — 1) of erroneous rejections. By contrast, a procedure comtepll
(5) tolerates a small proportiop of errors among the final rejections (from an intuitive point
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Type | error rate control in multiple testing 7

of view, it choosek ~ y|R|). This allows to increase the number of erroneous rejestamnthe
number of rejections becomes large. Next, controlling tb&kFas become popular because it
is a simple error rate based on the FDP and because it cantbeogéth the simple Benjamini-
Hochberg FDR controlling procedure [5] (some dependenmckire assumptions are required,
see Section 3). As a counterpart, controlling the FDR doégravent the FDP from having
large variations, so that any FDR control does not necégs$eve a clear interpretation in terms
of the FDP (see the related discussion in Section 6.2).

Example 1.4(Continued) The Bonferroni procedurB(p) = {1 <i <m: p; < a/m} satisfies
the following:

EIR(p)NA#(P)|= 5 P(p<a/m <am(P)/m<a,
i€ (P)

which means that its expected number of false discovertesdsva. Using Markov's inequality,
this implies thatR(p) makes no false discovery with probability at least @, that is, for any
Pe 2, FWERR,P) < a. This is the most classical example of type | error rate @bntr

Remark 1.5 (Case wheres#p(P) = .7). For a distributionP satisfying.7(P) = .77, that is
when all null hypotheses are true, the FDP reduces to(RQP,P) = 1{|R(p)| > 0} and we
have FWERR, P) = FDR(R,P) =P(FDP(R(p),P) > y) =P(|R(p)| > 0). Controlling the FWER
(or equivalently the FDR) in this situation is sometimedearhh “weak" FWER control.

Remark 1.6(Case where all null hypotheses are egpalalue aggregation)The general frame-
work described in Section 1.3 includes the case where dllhyplotheses are identical, that is,
O = O for all i € {1,...,m}. In this situation, allp-values test the same nily : “P € ©p"
against some alternatives containeddf For instance, in the model selection framework of
[3, 18, 60], eaclp-value is built with respect to a specific model containechmalternativeo.
Since we have in that cas#(P) = .77 if P € ©p and.7#(P) = 0 otherwise, the three quantities
FWERR,P), FDR(R,P) andP(FDP(R(p),P) > y) are equal and take the valli€|R(p)| > 0)
whenP € ©g and 0 otherwise. As a consequence, in the case where allypdtieses are equal,
controlling the FWER, the FDR or the FDP at lewels equivalent to the problem of combining
p-values to build aingle testingor Hp which is of levela. In particular, from a proceduiethat
controls the FWER at leval we can derive a single testing procedure of lewdby rejecting

Ho wheneverR(p) is not empty (that is, whenev&(p) rejects at least one hypothesis). This
provides a way to aggregapevalues into one (single) test féty which is ensured to be of level
a. As an illustration, the FWER controlling Bonferroni prateeR= {1 <i <m: p; < a/m}
corresponds to the single test rejectiigwhenever mini<m{pi} < a/m. The Bonferroni com-
bination of individual tests is well known and extensivelsed for adaptive testing (see, e.g.,
[54, 3, 60]). Some other examples pfvalue aggregations will be presented further on, see Re-
mark 3.9.

1.6. Goal

Let a € (0,1) be a pre-specified nominal level (to be fixed once and for aduphout the
paper). The goal is to control the type | error rates definewalat levela, for a large subset of
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8 Etienne Roquain

distributions#?’ C &2. That is, by taking one of the above error ratéR, P), we aim at finding
a procedurdr such that

vPe &' £(RP)<a, (7)

for 2’ ¢ 2 as large as possible. ObviousRshould depend oo but we omit this in the no-
tation for short. Similarly to the single testing case, takik = 0 will always ensure (7) with
' = 2. This means that the type | error rate control is inseparfibia the problem of maxi-
mizing the power. The probably most natural way to extenchtiteon of power from the single
testing to the multiple testing setting is to consider theeested number of correct rejections, that
is, E|.#1(P) N R|. Throughout the paper, we often encounter the case whergrveedureR
andR satisfyR C R (almost surely) while they both ensure the control (7). Thiea procedure
Ris saidless conservativéhanR. Obviously, this implies thaR is more powerful tharR. This
can be the case when, e.B.andR are thresholding-based procedures using respectiventhres
oldst andt’ satisfyingt > t’ (almost surely). As a consequence, our goal is to find a ptoed?l
satisfying (7) with a rejection set as large as possible.

Finally, let us emphasize that, in this paper, we aim at odlittg (7) for any fixedm > 2 and
not only whenmtends to infinity. That is, the setting is non-asymptotichia parametem.

1.7. Overview of the paper

The remainder of the paper is organized as follows: in Se@jave present some general tools
and concepts that are useful throughout the paper. Sectiargl 5 present FDR;FWER and
FDP controlling methodology, respectively, where we tngiee a large overview of classical
methods in the literature. Besides, the paper is meant te aacholarly form, accessible to a
possibly non-specialist reader. In particular, all resate given together with a proof, which we
aim to be as short and meaningful as possible.

Furthermore, while this paper is mostly intended to be axeyiaper, some new contributions
with respect to the existing multiple testing literature given in Section 4 and 5, by extending
the results of [30] for thé&c-FWER control and the results of [45] for the FDP control pess
tively.

1.8. Quantile-binomial procedure

In section 5, we introduce a hovel procedure, calledjtemtile-binomial procedurthat controls
the FDP under independence of fhxwalues. This procedure can be defined as follows;

Algorithm 1.7 (Quantile-binomial procedure) et for any te [0,1] and for any/ € {1,...,m},
qc(t) = the(1— a)-quantile of Z(m— ¢+ |y(¢ —1)] +1,t), (8)

whereZ(-,-) denotes the binomial distribution angt(¢ — 1) | denotes the largest integer n such
that n< y(¢ —1). Let pa) < ... < pm) be the order statistics of the p-values. Then apply the
following recursion:

* Stepl:if g1(p(y)) > Y, stop and reject no hypothesis. Otherwise, go to &tep
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Type | error rate control in multiple testing 9

* Stepl € {2,...,m}: if g,(p)) > V¢, stop and reject the hypotheses corresponding i p
-+» Pr—1)- Otherwise, go to step+1;
» Step/ = m+ 1, stop and reject all hypotheses.

Equivalently, the above procedure can be defined as regddtinwhenever

p@jgﬁ{qf(p(@)/ﬁ} <y.

The rationale behind this algorithm is that at stepvhen rejecting the null hypotheses cor-
responding to thep-values smaller thamp,), the number of false discoveries behaves as if it
was stochastically dominated by a binomial variable of pegter(m— £+ |y(£—1)] +1,p ).
Hence, by controlling thél — o )-quantile of the latter binomial variable at lewgl, the(1—a)-
guantile of the FDP should be controlled pyThe rigorous proof of the corresponding FDP
control is given in Section 5, see Corollary 5.4. Finally,emtcontrolling the median of the FDP,
this procedure is related to the recent adaptive procedys} as discussed in Section 6.3.

2. Key concepts and tools
2.1. Model assumptions

Throughout this paper, we will consider several modelshHaodel corresponds to a specific
assumption on th@-value familyp = {p;,1 < i < m} distribution. The first model, called the
“independent model" is defined as follows:

P = {P € 2 (Pi(X))ics P is a family of mutually independent
variables and pi(X))ic.p) is independent ofp; (X))ieﬁ(p)}. 9)

The second model uses a particular notion of positive deggamedbetween thp-values, called
“weak positive regression dependency” (in short, “weak BRDwhich is a slightly weaker
version of the PRDS assumption of [8]. To introduce the weBKB property, let us define a
subseD C [0,1]™ asnondecreasingf for all g,q € [0,1]™ such thatvi € {1,...,m}, g < ¢, we
haveq € D whenq < D.

Definition 2.1 (Weak PRDSp-value family) The familyp is said to be weak PRDS o#j(P)
if for any iy € #(P) and for any measurable nondecreasing set [0, 1]™, the function u—
P(p € D| pi, < u) is nondecreasing on the sfi € [0,1] : P(pj, < u) > 0}.

The only difference between the weak PRDS assumption arfddfelar" PRDS assumption
defined in [8] is that the latter assumes+> P(p € D | pj, = u) nondecreasing”, instead of
“u— P(p € D| pi, < u) nondecreasing". Weak PRDS is a weaker assumption, as stwwn f
instance in the proof of Proposition 3.6 in [12]. We can novirdethe second model, where the
p-values have weak PRDS dependency:

PP ={Pe 2 :p(X)is weak PRDS oo (P)}. (10)

It is not difficult to see that?' C 2P because wheR € &', p;; is independent of pi)i_si,
for anyip € 4 (P). Furthermore, we refer to the general cas€ ef & (without any additional
restriction) as the “arbitrary dependence case".
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10 Etienne Roquain

As an illustration, in the one-sided Gaussian testing fiaonk of Example 1.2, the PRDS
assumption (regular and thus also weak) is satisfied as sotireaovariance matrix(P) has
nonnegative entries, as shown in [8] (note that this is na &nymore for two-sided tests, as
proved in the latter reference).

2.2. Dirac configurations

If we want to check whether a procedure satisfies a type | eater control (7), particularly
simple p-value distributions (or “configurations") are as follows:
- “Dirac configurations": thep-values of.771(P) are equal to zero (without any assumption
on thep-values of 7 (P));
- “Dirac-uniform configuration" (see [24]): the Dirac configition for which the variables
(Pi)icp) are i.i.d. uniform.
These configurations can be seen as the asympatidue family distribution where the sample
size available to perform each test tends to infinity, while humbem of tests is kept fixed
(see the examples of Section 1.2). This situation does fiahfa the classical multiple testing
framework where the number of tests is much larger than thpkasize. Besides, there is no
multiple testing problem in these configurations becausetriie nulls are perfectly separated
from the false null (almost surely). However, these spewigifigurations are still interesting,
because they sometimes have the property to be the digtrisuor which the type | error rate
is the largest. In that case, they are called the “least &blerconfigurations" (see [24]). This
generally requires that the multiple testing procedurethacerror rate under consideration have
special monotonic properties (see [23, 48]). In this casayipg the type | error rate control for
the Dirac configurations is sufficient to state (7) and thyseaps to be very useful.

2.3. Algorithms

To derive (7), a generic method that emerged from the maltigdting literature is as follows:
1. start with a family(Rx )« of procedures depending on an external parameter
2. find a set of values af for which Ry satisfies (7);
3. take among these values thé¢hat makedR, the “largest”.

The latter is designed to maintain the control of the typedrarate while maximizing the rejec-
tion set. As we will see in Section % (s a threshold), Section 4 g is a subse¥ of 2#°) and
Section 5 K is a rejection numbef), this gives rise to the so-called “step-up" and “step-dbwn
algorithms, which are very classical instances of typedreiaite controlling procedures.

2.4. Adaptive control

A way to increase the power of type | error rate controllinggadures is to learn (from the
data) part of the unknown distributio® in order to make more rejections. This approach is
called “adaptive type | error rate control". Since the résglprocedure uses the data twice, the
main challenge is often to show that it maintains the typedrazontrol (7). In this paper, we will
discuss adaptivity with respect to the parameig(iP) = |.7#(P)| for the FDR in Section 3.3. The
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Type | error rate control in multiple testing 11

procedures presented in Section 4 (resp. Section 5) forattng the k-FWER (resp. FDP) will
be also adaptive top(P), but in a maybe more implicit way. Some of them will be addititty
adaptive with respect to the dependency structure betvesprtalues. Let us finally note that
some other work studied the adaptivity to the alternatiatriiutions of thep-values (see [62,
49, 47)).

3. FDR control

After the seminal work of Benjamini and Hochberg [5], manydi¢s have investigated the FDR
controlling issue. We provide in this section a survey of emhthese approaches.

3.1. Thresholding based procedures
Let us start from thresholding type multiple-testing pichages
={l<i<m:p <t(p)},

with a threshold(-) € [0, 1] possibly depending on thevalues. We want to fintlsuch that the
corresponding multiple testing proceduRecontrols the FDR at levaed under the modeb?P°s,
by following the general method explained in Section 2.3. &téat with the following simple
decomposition of the false discovery rateRpf

Hpi <t(p)}

FDR(R.P)=am™* G ’
(R,P)=am ieZe) LaG(pt(p))V(a/m)

(11)

where @(p, u) =m1yM, 1{p < u} denotes the empirical c.d.f. of thevalue familyp =
{pi,1 < i< m}taken at a threshold € [0, 1].

In order to upper-bound the expectation in the RHS of (11)jdeconsider the following infor-
mal reasoning: if andG were deterministic, this expectation would be smaller thaa G(p,t))
and thus smaller than 1 by taking a threshiofaich that < a G(p t). This motivates the intro-
duction of the following set of thresholds:

7 (p)={ue0,1]:G(p,u) > u/a}. (12)

With different notation, the latter was introduced in [13].Here, any thresholtde .7 (p) is said
“self-consistent” because it corresponds to a proceBure {1 <i < m: p; <t} which is “self-
consistent" according to the definition given in [12], tatR C {1 <i<m: p < a|R|/m}.
It is important to note that the sef (p) only depends on thp-value family (and orr) so that
self-consistent thresholds can be easily chosen in peadlis an illustration, we depict the set
7 (p) in Figure 1 for a particular realization of thevalue family.

Now, let us choose a self-consistent thresh@f € .7 (p). By using the decomposition (11),
we obtain the following upper-bound:

1{pi <t(p)}

[ Hpi <t(p)}
e L)V (a/m)

gam_lie;o(m}z[ t(p) } 13)
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12 Etienne Roquain

FIGURE 1. The p-value e.c.d@(p, u) and W a are plotted as functions of@ [0, 1]. The points u belonging to the set
7 (p) lie on the X-axis of the gray area. ®10; a = 0.5.

with the conventiorg = 0. Since by (2 we havep;i(x) > 0 for P-almost everx wheni € 4 (P),
the denominator inside the expectation of the RHS ofgX3n only be zero when the numerator
is also zero and therefore when the ratio is zero. Next, th@afimg purely probabilistic lemma
holds (see a proof in Appendix A of [12] for instance):

Lemma 3.1. Let U be a nonnegative random variable which is stochadtidaiver bounded by
a uniform distribution, i.e.P(U < u) < u for any ue [0, 1]. Then the following inequality holds:

E{M] <1, (14)

for any nonnegative random variable V satisfying eithetheftwo following conditions:
(i) V =g(U) where g R" — R* is non-increasing,
(ii) the conditional distribution of V conditionally on Y u is stochastically decreasing in u,
that is,vv > 0, u— P(V < v|U <u) is nondecreasing ofu € [0,1] : P(U < u) > 0}.

A consequence of the previous lemma in combination with i8)at the FDR is controlled at
level amgy(P)/mas soon a¥ = t(p) satisfies (ii) withU = p;. For the latter to be true, we should
make the distributional assumptiéhe &?P°S and add the assumption that the threshoiilis
non-increasing with respect to eaptvalue, that is, for aly, g € [0,1]™, we havet(q) <t(d) as
soon as for all KX i <m, g < g;. By using the latter, we easily check that the set

D={qe[0,1™:t(q) <V}

is a nondecreasing measurable sefOl]™, for anyv > 0. Thus, the weak PRDS condition
defined in Section 2.1 provides (ii) with = p; andV =t(p) and thus also (14). Summing up,
we obtained the following result, which appeared in [12]:

Theorem 3.2. Consider a thresholding type multiple testing procedurddsed on a threshold
t(-) satisfying the two following conditions:
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Type | error rate control in multiple testing 13

- t(-) is self-consistent, i.e., such that for alkq0,1]™, t(q) € .7 (q) (where.7 (-) is defined
by (12))
- t(-) is coordinate-wise non-increasing, i.e., satisfying teaitall g,q € [0,1]™ with ¢ < g
forall 1 <i <m, we have(@m) <t(q).
Then, for any R= 27P°S, FDR(R;,P) < amy(P)/m< a.

Remark 3.3. If we want to state the FDR control of Theorem 3.2 onlyRog 22! without using
the PRDS property, we can use Lemma 3.Egixditionally onp_; = (pj, j #1i) € [0,1]™ %, by
takingV =t(U,p_;) andU = p;, becausey; is independent gb_; whenP ¢ &',

3.2. Linear step-up procedures

From Theorem 3.2, under the weak PRDS assumption op-tfedue dependence structure, any
algorithm giving as output a self-consistent and non-iasireg threshold(-) leads to a correct
FDR control. As explained in Section 1.6 and Section 2.3{liersame FDR control we want
to get a procedure with a rejection set as large as possildace it is natural to choose the
following threshold:

t%(p) = max{.7 (p)} (15)
—max{u e {ak/m0<k<m}:G(p,u) >u/a}
=a/mxmaxq0<k<m: py < ak/mj, (16)

wherep(y) < ... < pm) (Po) = 0) denote the order statistics of tpevalue family. This choice
was made in [5] and is usually calléidear step-upor “Benjamini-Hochberg" thresholding. One
should notice that the maximum in (15) exists because th&$p} contains 0, is upper-bounded
by 1 and because the e.c.d.f. is a non-decreasing functierright-continuity is not needed). It
is also easy to check that the maximure- t3Y(p) satisfies the equalit$(p,u) = u/a, so that
t>Y(p) can be seen as the largest crossing point between benvvee@(p,u) andu— u/a, see
the left-side of Figure 2. The latter equality also implieattsY(p) € {ak/m,0 < k < m}, which,
combined with the so-called switching relation

~

mMG(p, ak/m) > k<= py) < ak/m,

gives rise to the second formulation (16). The latter issillated in the right-side of Figure 2.
The formulation (16) corresponds to the original expressib[5] while (15) is to be found for
instance in [27]. Moreover, it is worth noticing that the pedureRsu using the thresholding
t3Y(p) is also equal tg{1 <i <m: p <t%(p)V a/m}, so that it can be interpreted as an in-
termediate thresholding between the non-corrected puveedsingt = a and the Bonferroni
procedure using= a/m.

Clearly,t3"(-) is coordinate-wise non-increasing and self-consistenerdfore, Theorem 3.2
shows that for anfp € #2P°S, FDR(Risu, P) < amp(P)/m. As a matter of fact, as soon as (2) holds
with an equality, we can prove that for aRye &', the equality FDRRsu, P) = armg(P) /mholds,
by using a surprisingly direct argument. Li_; denote thep-value family wherep; has been
replaced by 0, and observe that the following statementsdur&alent, for any realization of the
p-values:
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14 Etienne Roquain

. S
G(tSU)

[Rsu

FIGURE 2. The two dual pictorial representations of the BenjamimieHberg linear step-up procedure. Left: c.d.f.
of the p-values, the solid line has for slopel. Right: ordered p-values, the solid line has for slapém. In both
pictures, the filled points represent p-values that coroesis to the rejected hypotheses=i0; a = 0.5.

() P <t*(po.-i) R

(i) G(po,—i,t>(po,- )) < G(p,t(po—i))

i) tY%(poi)/a < G(p,tsu(pq_i))

(iv) t%(po-i) <t(p).
The equivalence between (i) and (ii) is straightforwardfrime defintion of@( -). The equiva-
lence between (ji) and (iii) follows fror (po.i, t%(po._i)) = t>(po,—i)/a, because=t>"(po,_;)
is a crossing point bet\Nee@(pQ_i,t) andt/a. The equivalence between (iii) and (iv) comes
from the definition oft>(p) together witht>(pg i) < t5Y(p) <= t>(po i) = t>Y(p), the latter
coming from the non-increasing propertyt&f(-). As a consequence,

{p <t%(po-i)} = {p <t%(p)}, (17)

with t%Y(po —i) = t°Y(p) on these events. Therefore, using (17) and the first decatigmogl1)
of the FDR, we derive the following equalities:

FDR(Ress, P) = a2 E_ Al{pigtsu(p)}
RevP)=am™ 2 FlaEmep) v (a/m

-1 g | 1P =t(p)}
icmP) L t54(p)

4 E [1{p < ts“(po,i)}}
ies(P) L tsu(pO fi)

=am

=am

—am! Z Etsu(po i)~ 1IE(l{p < t(po,— Hpo ]
iet(P)

(P)/m,
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where we assumed in the last equality both @ 2?' and condition (2) holds with equality.
To sum up, we have proved in this section the following result

Theorem 3.4. Consider the linear step-up procedurgsRising the threshold defined {i15).
Then, for any R= 2P FDR(Rsu, P) < amg(P)/m. Moreover, the latter is an equality if® %'
and (2) holds with equality.

This theorem is due to [5, 8]. The short proof mentioned altasebeen independently given
in [22, 47, 23]. Theorem 3.4 proves that the inequaliffp’c #7P%, FDR(Rsu,P) < a" is sharp
as soon as (2) holds with equality and there exits 2?' such thats#(P) = 7, that is,
Nier@oiN P + 0.

Other instances of self-consistent procedures includealtiristep-up-down" procedures as
defined in [50]. Theorem 3.2 establishes that the FDR coatsol holds for these procedures, as
proved in [12, 23].

3.3. Adaptive linear step-up procedures

In this section we denote bgp(P) the proportionmy(P)/m of hypotheses that are true fBr
Since we aim at controlling the FDR at leweeland not at levetr p(P), Theorem 3.4 shows that
there is a potential power loss when ustfigwhen the proportiorp(P) is small. A first idea is
to use the linear step-up procedure at lavel= min(a /m(P),1), that is, corresponding to the
threshold

t*(p) = max{u € [0,1] : G(p,u) > u/a*} (18)
=max{ue[0,1]: G(p,u) > um(P)/a}. (19)

Note that (18) and (19) are equal because wihenrp(P), the maximum is 1 in the two formulas.
From Theorem 3.4, threshold (19) provides a FDR smaller thap (P) < o for P € #2P°Sand

a FDR equal tax whenP ¢ &', (2) holds with equality andr < m(P). Unfortunately, sincé®

is unknown, so isp(P) and thus the threshold (19) is an unobservable “oracle$timie.

An interesting challenge is to estimatg(P) within (19) while still rigorously controlling the
FDR at levela, despite the additional fluctuations added by th@)-estimation. This problem,
called p(P)-adaptive FDR control, has received a growing attentioménlast decade, see e.qg.
[6, 56, 9, 28, 7, 41, 51, 13]. To investigate this issue, anahtidea is to consider a modified
linear step-procedure using the threshold

t84(p) = max{u € [0,1] : G(p,u) > u/(a f(p)) }. (20)

where f(p) > 0 is an estimator of(P)) ! to be chosen. The latter is calledaptive linear
step-up procedurdt is sometimes additionally said “plug in", because (2@esponds to (19)
in which we have “plugged" an estimator @f(P)) 1. Other types of adaptive procedures can
be defined, see Remark 3.6 below.

We describe now a way to choo$eso that the control FDHRtfsu, P) < a still holds. However,

we only focus on the case where thevalues are independent, thatisg 22'. This restriction
is usual in studies providing an adaptive FDR control. Fiskeep the non-increasing property
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16 Etienne Roquain

of the threshold?"(-), we assume that(-) is coordinate-wise non-increasing. Second, using
techniques similar to those of Section 3.2, we can write fiyrRic &',

. {pi <t3'(p)}
FDR(Rs:,P) < am ie};o(P)IE _—t?“(p) f(p)]
. [1{pi <t?'(p)} _
e 2 ElT e po-1)
R [ [He <)Y
- ie);o(P)E -f(po")E{ t7(p) po,.”
<am? > E[f(po-i)], (21)

it (P)

where we used Lemma 14 (i) in the last inequality (conditiignen the p-values of(p;, j # i),
becausef is coordinate-wise non-increasing). Additionally assugnthat f(-) is permutation
invariant, we can upper-bound the RHS of (21) by using tha®imiform configuration because
f(-) is non-increasing. This gives rise to the following result.

Theorem 3.5. Consider the adaptive linear step-up procedukg: Rith a threshold defined in
(20) using a(mp(P))~1-estimator f satisfying the following properties:
— f(+) is coordinate-wise non-increasing, that is, for allgge [0,1]™ with for all 1 <i < m,
0 < i, we have {q) < f(q);
— f(-) is permutation invariant, that is, for any permutatian of {1,...,m}, vVq € [0,1]™,
f(da,...,am) = f(do(1), -+ Ao(m));
— f satisfies
VlTb € {17 "'7m}7 IEp~DU(rT‘l—)—1,m)(f(p)) < m/lTb, (22)

where DUk, m) denotes the Dirac-uniform distribution d@, 1]™ for which the k first coor-
dinates are i.i.d. uniform o(0, 1) and the remaining coordinates are equalto
Then, for any e %', FDR(Rsv,P) < a.

The method leading to the upper-bound (21) was investigatéd] and described latter in
detail in [13]. The simpler result presented in Theorem $peared in [13]. It uses the Dirac-
uniform configuration as a least favorable configurationtfierFDR. This kind of reasoning has
been also used in [23].

Let us now consider the problem of finding a “correct" estondt of (1(P)) 2. This issue
has an interest in its own right and many studies investigétsince the first attempt in [52]
(see for instance the references in [14]). Here, we only détl this problem from the FDR
control point of view, by providing two families of estimatothat satisfy the assumptions of
Theorem 3.5. First, define the “Storey-type" estimatorsctviare of the form

m(1—A)

P = S am s Ay

for A € (0,1) (A not depending om). It is clearly non-increasing and permutation invariant.
Moreover, we can check thdt satisfies (22): for anyng € {1,...,m}, consideringU;)1<i<my—1
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i.i.d. uniform on(0, 1),

m mo(1-A) m
Eppu(my-1m(fL(p)) = —E = o’
pDWmlmﬂlm» Mo ETHﬂh>A}+l T Mg

because for ank > 2, q € (0,1) and forY having a binomial distribution with parametdis—
1,q), we haveE((1+Y) 1) < (gk)~1, as stated e.g. in [7]. This type of estimator has been
introduced in [55] and proved to lead to a correct FDR coritr¢b6, 7].

The second family of estimators satisfying the assumptairieheorem 3.5 is the “quantile-
type" family, defined by
falp) = e,

—ko+1

forko € {1,...,m} (ko not depending op). The latter may be seen as Storey-type estimators using
a data-dependeft = p. Clearly, fz(-) is non-increasing and permutation-invariant. Addition-
ally, fo(-) enjoys (22) because for amg € {1,...,m}, considering(U;)1<i<m,—1 i.i.d. uniform
on (0,1) ordered a¥)) < ... <Ump-1),

M(1—Ui-mime-1)]  ML—EUw, mim-1))

Ep-pume-1m(f2(p)) =E

m—ko+1 B m—ko+1
_ M- (o—m+my—1),/my) _ m
m—ko+1 T my’

by using the conventiobj) = 0 whenj < 0. These quantile type estimators have been proved
to lead to a correct FDR control in [7]. The simple proof abaxses given in [13].

Which choice should we make fdror kg? Using extensive simulations (including other type
of adaptive procedures), it was recommended in [13] to ah@ssestimatof; with A close
to a, because the corresponding procedure shows a “good" pawler independence while it
maintains a correct FDR control under positive dependsn@ethe equi-correlated Gaussian
one-sided model described in Example 1.2). Obviously, anédyic" choice ofA (i.e., using
the data) can increase the accuracy of(tiggP)) ! estimation and thus should lead to a better
procedure. However, proving that the corresponding FDRrobremains valid in this case is an
open issue to our knowledge. Also, outside the case of thepiar equi-correlated Gaussian
dependence structure, very little is known about adaptiv® Eontrol.

Remark 3.6. Some authors have proposed adaptive procedures that aof tiwt “plug-in"
form (20). For instance, we can define the class of “one-stégeup adaptive procedures", for
which the threshold takes the fortf¥(p) = max{u € [0,1] : G(p,u) > rq(u)}, whererq(-) is

a non-decreasing function that depends neithep oror on ;(P), see, e.g., [41, 23, 13]. As
an illustration, Blanchard and Roquain (2009) have intoeduthe curve defined b (t) =
(L+mYHt/(t+a(l—a))if t <aandrg(t) = 4o otherwise, see [13]. They have proved that
the corresponding step-up proced&e controls the FDR at levat in the independent model
(by using the property of Lemma 14 (i)). Furthermore, Fingteal. (2009) have introduced the
“asymptotically optimal rejection curve" (AORC) defined by(t) =t/(a +t(1—a)), see [23].
By contrast with the framework of the present paper, theysitmmed the FDR control only in
an asymptotic manner where the numbeof hypotheses tends to infinity. They have proved
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18 Etienne Roquain

that the AORC enjoys the following (asymptotic) optimalfiyoperty: while several adaptive
procedures based on the AORC provide a valid asymptotic FidiR@ (under independence),
the AORC maximizes the asymptotic power among broad clasfsadaptive procedures that
asymptotically control the FDR, see Theorem 5.1, 5.3 andrig23].

3.4. Case of arbitrary dependencies

Many corrections of the linear step-up procedure are aMail® maintain the FDR control when
the p-value family has arbitrary and unknown dependencies. Veeridee here the so-called
“Occam’s hammer" approach presented in [11]. Surprisjniglgllows to recover and extend
the well-known “Benjamini-Yekutieli" correction [8] by dy using Fubini’s theorem. Let us
consider

tP¥(p) = max{u € [0,1) : G(p, B(u)) > u/a} (23)
=max{u e {ak/m1<k<m}:G(p,B(u)>u/a}
=a/mxmaxq0<k<m:pg < B(ak/m)}, (24)

for a non-decreasing functigh: R™ — R*. Then the FDR ORB(tpSU) can be written as follows:
foranyP e £,

FDR(Rg s, P) = am-L B Hpi < B(tﬁsu(p))}}

ic7%(P) [ ths¥(p)

—am* ¥ E[l{pi < B(tF(p))} /(;WU‘Zl{tBS“(p)su}du .

icst(P)

Next, using Fubini’s theorem, we obtain

FDR(Rg(tps),P) =am ™t 5 / R [1{tP4(p) < u}1{pi < B(tP(p))}]du
ic%(P)”0
+o00
<amt u~?P(pi < B(u))du
3. | uzr(e <)
_ g Mo(P)
m

+00
/0 u—2B(u)du. (25)

Therefore, choosing any non-decreasing funciosuch thatfo+°° u=?B(u)du = 1 provides a

valid FDR control. This leads to the following result:
Theorem 3.7. Consider a functior8 : R* — R* of the following form: for all u> 0,
Bu= 5 (ai/mw, (26)
i:1<i<m,ai/m<u
where thev;s are nonnegative witlr; + --- 4+ vy, = 1. Consider the step-up procedurq;(ﬁisu)

using £ defined by23). Then for any R &, FDR(Rg ypsu), P) < amg(P)/m.
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Note that the functior defined by (26) takes the valyer/m)vs +--- 4 (ai/m)y; in each
u= ai/mand is constant on each interv@i/m,a(i +1)/m) and on(a,). Thus, it always
satisfies thaf3(u) < u, for anyu > 0. This means that the procedlj@(tpsu) rejects always
less hypotheses than the linear step-up proceBureTherefore, whiIeRB(tgsu> provides a FDR
control under no assumption about thevalue dependency structure, it is substantially more
conservative thaRsu under weak PRDS dependencies betweerpthalues.

As an illustration, takingy, = i7" for § = 1+1/2+ ...+ 1/m, we obtainf(ai/m) =
& tai/m, which corresponds to the linear step-up procedure, exbepthe levela has been
divided byd ~ log(m). This is the so-called Benjamini-Yekutieli procedure grsgd in [8]. The-
orem 3.7 thus recovers Theorem 1.3 of [8]. We mention anakample, maybe less classical,
to illustrate the flexibility of the choice g8 in Theorem 3.7. By takingy,» = 1 andy; = 0O for
i #m/2 (assuming thah/2 is an integer), we obtaii(ai/m) = (a/2) 1{i > m/2}. In that case,
the final procedurRB(tgsu) rejects the hypotheses corresponding-ealues smaller thaor /2 if
2pm/2) < a and rejects no hypothesis otherwise. Theorem 3.7 ensuaethth procedure also
controls the FDR, under no assumption on the model depepdstany other choices g8 are
given in Section 4.2.1 of [12].

Finally, let us underline that any FDR control valid unddsitiary dependency suffers from a
lack of interpretability for the underlying FDP, as discegsn Section 6.2.

Remark 3.8 (Sharpness of the bound in Theorem 3.I/) Lemma 3.1 (ii) of [36] (see also
[31]), a specifically craftegh-value distribution was built ofD, 1]™ (depending o) for which
the FDR ofRB(tBsu) is equalto a (and my(P) = m). If the underlying model?” is such that
(pi(X))1<i<m can have this very specific distribution for sofe 27, the inequality P € &7,
FDR(RB(t,gsu>, P) < a"in Theorem 3.7 is sharp. However, for a “realistic" modé| this p-value
distribution is rarely attained because it assumes quitealistic dependencies between e
values. Related to that, several simulation experimerawetl that the standard LSU procedure
still provides a good FDR control under “realistic" depemdes, see e.g. [21, 35]. This means
that the corrections defined in this section are generally genservative for real-life data, be-
cause their actually achieved FDR is much smaller tnag(P) /m. Finally, another drawback of
the bound of Theorem 3.7 is that it is much smaller tbawhen p(P) = mg(P) /mis small. To
investigate this problem, we can think to apply techniqueslar to those of Section 3.3. How-
ever, the problem of adaptive FDR control is much more chgltey under arbitrary dependency.
The few results that are available in this framework are wernservative, see [13].

Remark 3.9 (Aggregation of dependemtvalues) Consider Theorem 3.7 in the particular case
where allp-values test the same null hypothesis, tha®is = O for anyi. According to Re-
mark 1.6, we obtain a new test of leve| by rejectingHg: “P € ©g" if the procedureRB(tBsu)
defined in Theorem 3.7 rejects at least one null hypothd®as g, if there existk > 1 such that
P < B(ak/m). As an illustration, taking/,m = 1 andyv; = 0 for i # ym, for a giveny < [0, 1]
such thatym € {1,...,m}, we obtainf(ai/m) = (ay) 1{i > ym}, which gives rise to a test re-
jectingHg wheneverp(mrl < a. This defines a new globakvalue

p=min(pymy *1)

for testingHp that can be seen as an aggregate of the originallues. Thus, Theorem 3.7 shows
that P(p < a) < a under the null, for arbitrary dependencies between theraig-values.
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Interestingly, this aggregation procedure was indepahddiscovered in [39] in a context where
one aims at combining-values that were obtained by different splits of the oadjsample. Also
note thaty = 1/m corresponds to the Bonferroni aggregation procedure. sdinally discuss
the choicey = 1/2 (assuming thai/2 is an integer). In that case, the aggregapedhlue is

P = min(2 pym/2),1). According to Remark 3.8, the factor “2" in the latter is neeédn theory
but may be over-estimated for a “realistic” distributiorttoé p-value family. As a matter of fact,
van de Wiel et al. (2009) have (theoretically) proved thé factor can be dropped as soon as
the p-value family has some underlying multivariate Gaussigmedeency structure, see [57].

4. k-FWER control

The methodology presented in this section for controllmektFWER under arbitrary dependen-
cies can probably be attributed to many authors, e.g. [3314315]. Here, we opted for a general
presentation which emphasizes the rationale of the matiieahargument. This approach has
been sketched in the talk [10] and investigated more deef$d] where it is referred to as the
“sequential rejection principle". While the latter poirftview allows to obtain elegant proofs, it
is also useful for developing new FWER controlling procedufe.g., hierarchical testing, Schaf-
ferimprovement), see [30, 29, 34]. This methodology has lrégally developed for the FWER.
We propose in Section 4.4 a new extension tokfaVER.

In this section, for simplicity, we drop the explicit depemde of the multiple testing proce-
dureRw.r.t. p in the notation. The parametkis fixed in{1,...,m}.

4.1. Subset-indexed family

As a starting point, we assume that there exists a subsexeddfamily{Ry } 4 of multiple
testing procedures satisfying the two following assummsio
* ¥ — Ry is non-increasing, that is,

V¢,¢ C # suchthats’ C €', we haveRy C Ry; (NI
* Ry controls thek-FWER when? is equal to the subset of true null hypotheses, that is,

VP e 2, k-FWERR 4p):P) < a. (FWCy)

A natural way of deriving such a family is to take a threshafdbased family of the form
R(g:{lﬁiﬁmipiﬁtg}, (27)

wherety € [0,1] is a threshold which possibly depends on the geta(pi)1<i<m. Assumption
(NI) then holds as soon as we talkkenon-increasing ir¥’ (if € c ¢’ thenty < ty). However,
tx should be carefully chosen in order to ensure (Ry@s we discuss below.

A first instance of a thresholding-based family satisfyit){(FWCp) is the “Bonferroni
family" that chooses, = min(ak/|%’|,1). Condition (FWG) results from Markov’s inequality:

P(|5%(P) Ry 2K) <kt 5 P(p <tygp) < [H(P)|tag(e) /k < @
i€ (P)
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This family is not adaptive w.r.t. the dependence structiréhe p-values. As an illustration,
when the trugp-values are all equal, say, ®,, io € 7%(P), we have

P(|7(P) NRygpy| = K) = P(|74(P)|1{piy <@} > K) <typ)-

Thus, under this extreme dependency structure, the Baomighreshold mifak/|¢’|,1) can be
replaced by (the only case which matters|ig’| > k, see Remark 4.2 below). Hence, there is a
potential loss when using the Bonferroni family. In pragtithe Bonferroni family is often used
as a “benchmark family" for evaluating the performance beofamilies.

In order to improve on the Bonferroni family, one can try tooke a thresholty, that captures
the dependencies between thgalues while still satisfying (NI)-(FWE). For this, first note that
for Ry defined by (27),

k-FWER(Ry,P) =P(3i1,...,ik € 75(P) : Vi € {i1, ...,ix}, pi <ty)
= P(k-min{pi,i € 74(P)} <ty),

where k-mi p;,i € 7%(P)} denotes thé&-th smallest element ofp;,i € 4 (P)}. Therefore,
a natural choice foty is the a-quantile of the distribution of k-mifp;,i € ¢’}. However, the
latter is generally unknown because the underlying distidin P is unknown. An idea is to
approximate it by using a randomized thresholding proaedLinis method can be applied when
the null hypothesis is invariant under the action of a finieug of transformations of the original
observation sef?” onto itself (such a transformation can be for instance a ptation or a sign-
flipping, see [44, 45, 1, 2]). For a recent and general desanipf this method, we refer the
reader to Theorem 2 of [30] (while [30] have developed thigshoé only fork = 1, it can
be directly generalized to the casekof 1). The resulting family satisfies (NI)-(FW{while

it is “adaptive" with respect to the-value dependence structure, in the sensetthat t,(p)
implicitly takes into account the potential relations ¢ixig between theg-values.

Remark 4.1. The monotonicity condition introduced in [30] can be rewerit with our notation
as follows:

V¢€,¢' C A suchthatsd C €', we haveRy N¢’ C Ry. (WNI)

Condition (wNI) is weaker than condition (NI). Thus, at fissght, the setting of [30] is more
general than ours. The next reasoning shows that the twiagsetire in fact equivalent. Since
the condition (FWG) only depends on the set &, N% (for ¥ = %), we can add the el-
ements of¢° in the rejection seRy, while still maintaining (FWG) true. Therefore, starting
from a subset-indexed famil{R, }» ,» satisfying the weaker assumptions (wNI)-(F@yCwve
may define a new subset-indexed famil, } s » satisfying our assumptions (NI)-(FW4E;
by letting R, = Ry U %, and then apply to this family the methodology describechanriext
sections. Moreover, by anticipating the definition of the ER¢controlling algorithm that will
be presented in Section 4.4, we can easily check that theitooftphis algorithm applied to the
family {R,}« . is the same than the algorithm of [30] applied to the faniR¢ }«». As a
consequence, our framework covers the original settin@@jt [

Remark 4.2. Any subset-indexed familfRy } 4, satisfying (NI)-(FW@) can be modified
in the following way: takeR, = . (reject all hypotheses) whef| < k and Ry = Ry oth-
erwise. This maintains the conditions (NI)-(F\§)Cbecause th&-FWER is always zero when
[ #6(P)| <k.
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In what follows, we investigate the problem of tkeFWER control once we have fixed a
subset-indexed familyRy } 4 satisfying (NI)-(FWG).

4.2. Single-step method

From assumption (FWg}, the procedur® ,; p) usingé’ = #5(P) controls thek-FWER. Clearly,
this procedure cannot be used beca#$€P) depends on the unknown underlying distribut®n
of the data. We can use insteldg with ¥’ = 27 because, from the two assumptions (NI)-(Fy¥yC
above, we have-FWER(R »,P) < k-FWER(R 4 p),P) < a. This implies thaR - always con-
trols thek-FWER at levela. The latter is generally called thsingle-stepgprocedure (associated
to the family {R }+»). However, we argue thd®,, could be often too conservative w.r.t.
R p), for the two following reasons:

— J(P) can be much smaller tha#’;

— the way the procedurd®R, } have been built implicitly assumed thét= % (P) and can

be very conservative whe#i is much larger than#g.

For instance, these behaviors have been extensively ditis [2] for particular Rademacher-
resampled thresholding procedures. Therefore, we seekgaycedure controlling the FWER
which is “close” toR ;) and which can be derived from the famiffR }« »» via a simple
algorithm.

4.3. Step-down method for FWER

We present in this section the special cas& ef 1, following the approach of [44] with the
presentation proposed in [10, 30]. Let us denotédpythe setgR, )¢ of non-rejected hypotheses
for the subset-indexed family. Consider the event

Qo = {Ryy(p) N H0(P) = 0} = {(P) C Axgp)}-

By assumption (FWg), we haveP(Qp) > 1— a. Since from (NI),As is non-decreasing i,
the following holds orQg: for any ¢ c 7,

%(P) C¥ = A%(p) CAy = %(P) C Ag. (28)

Thus, on the everdg, takingé = %o = ¢ in (28) gives thatzp(P) C Ag,, which in turn implies
J60(P) C Ay, by taking® = %1 = Ay, in (28), and so on. By recursion, this proves the following
result:

Theorem 4.3. Assume that a famifR, }« - ,» of multiple testing procedures satisfies conditions
(NI) and (FWCy) and consider the corresponding family of non-rejected bypses{As } o ».
Define? by the following “step-down" recursion:

* Initialization: % = J7;

 Step > 1:let €} = Ay _,. If € = €)1, leté = ¢; and stop. Otherwise go to step-jl,

Then the procedure R (%), which also equals R, controls the FWER at leved for any
Pe 2.
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Note that for allj > 0, we have%),1 C ¥, becausesy C ¢p and A, is non-decreasing
in . Thus, the set of rejected hypotheses can only increasegdilmé step-down algorithm. In
particular, the final procedufé’c =R is always less conservative than the single-step procedure
R, for the same FWER control. Thus, using a step-down alguorithalways more powerful

than the single-step method.

Example 4.4(Bonferroni step-down procedure for FWER controhheorem 4.3 can be used
with the Bonferroni familyRy = {1 <i <m: p; < a/|%|}. In that case, by reordering the

p-valuespy) < ...

< pm) (With p) = 0), the corresponding step-down procedure defined in

Theorem 4.3 can be reformulated as rejecting the nulls with o/(m— 7+ 1), where/ =
max{/ € {0,1,....m} :V¢' </, py < a/(m—£'+1)}. This is the well known step-dowHolm
procedurewhich was introduced and proved to control the FWER in [33]cBntrast with step-
up procedures, the step-down Holm procedure starts froomts significanip-value and stops
the first time that a (ordereg)-value exceeds the critical curve. This is illustrated igufe 3.

n n
S S
O
< <
S S O
o o
S S O
[qV] [qV]
S S
b i Q_Q _______. a/s
© © | ________ e et a/7
----- CD—_ T a/10
o o
O- T O- @ @ T T T T
10 2 4 6 8 10

FIGURE 3. lllustration of the two equivalent definitions of Holm'sopedure. The left picture is the classical step-

down representation: ordered p-values together with tHelsurve ¢ — o /(m— ¢+ 1). The filled points represent
p-values that corresponds to the rejected hypotheses. ighe picture illustrates the algorithm of Theorem 4.3:
ordered p-values with the three thresholnlg10 (step 1),a/7 (step 2) anda /5 (step 3). For i€ {1,2}, the points
filled with “i" are rejected in the ith step of the algorithmoBh pictures use the same p-values ang-0; a = 0.5.

4.4. Step-down method fd-FWER

We would like to generalize Theorem 4.3 to the case ofKHFWVER. This time, we should
consider the event

Qo = {|Ryg(p) N74(P)| < k—1} = {3lo C 2, |lo| =k—1:(P) C AygpyUlo},
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which satisfies by assumptid{Qo) > 1 — a. For any subse¥’ C .7, let

)= | A= U A (29)
| 1| =k—1 lcge,l|<k—1

Then we may prove that the following holds: on the ev@ptfor any¢ C 57,

N CcH N =k=1:56P)CEUl = N CH,|I|=k=1:A4p CAsu CQ(T)
= ' CcH,|I'|=k-1:54(P) C p(¢)Ul.

The first implication holds becauge, is non-decreasing it and the second implication holds
by considering’ = lo. Thus, on the ever®g, for any%¢ C 7,

6N HA(P)| <k—1=|(9(¥))°NA(P)| <k—1
This leads to the following result.

Theorem 4.5. Assume that a fami{R, } 4~ » of multiple testing procedures satisfies conditions
(NI) and (FWGC) and consider the corresponding family of non-rejected bypges{A } 4.~
and letg be defined by29). Define? by the following “step-down" recursion:

* |nitialization: 6 = 7

* Step > Lilet 6j = @(¢j-1). I 6j = Cj-1, Iet% ¢ and stop. Otherwise go to step-jl;
Then the procedure R (%)°, which also equal$g(%))¢ = = Njil=k-1 R » controls the k-FWER
at levela for any Pe £2.

From (29),¢(-) is non-decreasing, that i§¢ C ¢, (¢) < @(¢’). As a consequence, we
derive from% C %o that¢j C %j_1 forall j > 1. Therefore, the rejection set can only increase at
each step of the step-down algorithm. In particular, thd pnacedure% =j=k-1Ry is al-
ways less conservative than the single step mefhgdfor the samé&-FWER control. Therefore,
using the step-down algorithm always leads to a power ingrmant.

To illustrate Theorem 4.5, let us consider a thresholdiagel family of the forniR, = {1 <
i <m: p; <ty } with a non-increasing threshold functi@h— t, (i.e., such that foz’ C ¢”, we
havetys <ty) and such thafRs }+ satisfies (FWg). The recursion relatios” = (%) can be
rewritten in that case as follows:

(¢)°= () Reu
Icee,|l|<k-1
= () {1gismip<teu}
Icee,|l|<k-1
={1<i<m:p<  min  {tzu}}.

lc%C,|l]<k—1

This recovers the generic step-down method described iorfgn 2.1 of [45], which was
developed in the case where the subset-indexed familydshiiding based.

Example 4.6(Bonferroni step-down procedure fiiFWER control) When we choose the Bon-
ferroni family, i.e., the threshold familt, = ak/|¢’|, we have

fton} = ak
Ic(ﬁ°|l\<k VY T A (€ k—1)
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Therefore, in terms of the ordergmvalues 0= pg) < p(1) < ... < Pim), the procedure of The-
orem 4.5 can be reformulated as rejecting the Rigl whenp; < ak/(mA (m— {4 K)) where
{=max{( e {0,1,...m}: V¢ </, Py < ak/(mA (m—£'4-K))}. The latter is thegeneralized
Holm procedurewhich was introduced and proved to control tREWER in [36].

5. FDP control

The problem of controlling the FDP has been investigated amyrstudies, e.g., [36, 59, 43,
15, 45, 17, 46]. We follow here a methodology proposed by Ramand Wolf (2007), see [45].
They have proposed to use a famil§ }« of k-FWER controlling procedures and to choédbat
ensures that the corresponding rejection num8gris “sufficiently large". Roughly speaking,
choosingk such thatS| is larger thank — 1) /y implies that, with high probability,

FDR(S, P) = [SNAA(P)[/IS| < (k=1)/[S| <.

Obviously, as itis, the above reasoning is not rigorousabse the chosdndepends on the data.
Theorem 4.1 (i) of [45] establishes that the latter apprdeals to a correct FDP control in the
asymptotic setting where the sample size available for tssthends to infinity. This can be seen
as a Dirac configuration where eaptvalue corresponding to false nulls are equal to zero.

In this section, we propose to reformulate this approachsiyguas index the rejection number
instead ok. Roughly speaking, if we choog&; }, such that eacR, controls they? + 1)-FWER
and we choosé such thatR,| > ¢, we obtain that, with high probability,

FDP(R,,P) = [Re N 7#6(P)|/[Re| < yt/|Re| <y.

Similarly to the previous paragraph, this argument is rgndus because the chosédepends
of the data. The main task of this section is to rationaliige dipproach. This leads to a general
result (Theorem 5.2 given in Section 5.2), which covers bitteorem 4.1 (i) of [45] in the
“Dirac" setting (see Section 5.4) and the earlier result38] [(see Section 5.3). As additional
corollary, we derive the FDP control of the quantile-binahgrocedure described in Algorithm 8,
when the data are assumed to follow the ma@I(see Section 5.3).

In this section, the parametgiis fixed once and for all if0, 1).

5.1. Family indexed by rejection numbers

Assume that we have at hand a famflg, }1<,<m Of multiple testing procedures and a class of
distributions#?’ C £ satisfying the following properties:
* Ry is non-decreasing with respectdahat is,

vee{l,...m—1} R C Ryy1; (ND)

* Ry controls the(|y/] 4+ 1)-FWER at levela for any P € &’ such that less tham— ¢ +
|y(¢—1)] + 1 null hypotheses are true, that is,

Ve {1,..m}, YPe P st|#4(P)| <m—I+|y(l—1)] +1, .

P(IRN#(P)| > [yt +1) < a : (FWC)
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 foranyP € &, for any? € {1,...,m}, the false rejection number &, is independent of
the correct rejection numbers Bf/, for 1 < ¢ <m, that is,

VPe &' Ve {1,..,m},|R N #(P)| is independent of[Ry N 7 (P)[,1 < ¢ <m}.
(DA)

In condition (FWC), for ank > 0, | x| denotes the largest integesuch than < x. Condition
(ND) is natural because the indéxan be interpreted as a rejection number. It is easy to check
in the examples below.

For any 2’ ¢ &2, condition (FWC) is fulfilled by the (single-step or stepady k-FWER
controlling procedures of the previous section wken | y/| 4+ 1. As a first instance, we can use
the (single-step) Bonferroni famil, using the thresholdr (| y/] + 1)/m. Moreover, note that
|(P)| <m—{+ |y(£—1)]| +1in (FWC), thus we can consider the improved threshold

{IR _ a(lye]+1)
T m—lrye-1]+ 1

The threshold (30) is slightly larger than the thresholdduseTheorem 3.1 of [36] (they used
|y¢] instead of| y(¢ — 1) | in the denominator). As a second instance, we can subsgharitea
prove on the above threshold family when we additionallyuass that the distributiof of the
data lies in the smaller subset’ = ' for this, note that for anf € &' and for anyt € [0, 1],

the variable|{i € 4(P) : pi(X) <t}| is stochastically upper-bounded by a binomial distribu-
tion of parameter$7p(P)| andt, which in turn is stochastically upper-bounded by a bindmia
distribution of parametem— ¢+ | y(¢ — 1) | + 1 andt. Therefore, choosing the (deterministic)
quantile-based threshold famiqgég)lgggm defined by

(30)

t2 =max{t € [0,1] : P(Z > y¢) < a for Z~ B(m— L+ |y(f — 1) +1,1)} (31)
=max{t € [0,1] : q(t) < y¢},

whereq,(-) is defined by (8), we obtain a family of thresholding procedusatisfying (FWC)
with &' = 2'. Clearly, since}Rin (30) is only based upon Markov’s inequality, which is imge
eral not accurate for binomial variables, the thresholdilﬁam? defined by (31) is substantially
larger, as illustrated in Figure 4. Interestingly, we caa osre elaborate deviation inequalities
to obtain thresholds that are better ttgR while having a form more explicit tharj?, see Re-
mark 5.1.

Assumption (DA) is a dependence assumption which is tylgicattisfied in the two following
cases:

— each procedur®, uses a deterministic threshold and fhealues associated to true nulls

are independent of the-values associated to false nulls, for all distributions#f that is,

Vee{l,...mR ={ie{1,...m}: p <t} for a deterministid, € [0,1] |

o ; DA
andvP € 2, (pi(X))ic.p) is independent ofpi (X))ic x4 p) (DA)

— for all distributions of#?’, the number of correct rejections of edghis deterministic, that
is,

VP e 2 {|IRy N (P)|,1 < ¢ < m} is deterministic (DA)
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Condition (DA") is satisfied for instance whe#3(P) C Ry, for any ¢, which is the case
for procedures of the forr®, = {i € {1,....m} : p < ty(p)} using a possibly data-dependent

thresholdt,(p) € [0,1], when we assume that tigevalues are in the Dirac configuration, that is,
when they are equal to zero under the alternative.

Remark 5.1. Using Hoeffding’s and Bennett’s inequalities (see, e.gppBsition 2.7 and 2.8 in
[38]), we can derive a family of thresholding proceduress$gng (FWC) with 2’ = 2!, by
using the threshold

(t9), = max(ttR tH°,t2¢), (32)

where we let
o lye] +1 log(1/a) sk
t _<m—f+LV(€—1)J+1_<2(m—€+Lv(€—l)J+1)> )VO

e_ lyt]+1 _1(log(/a)
v Tl -1 41" 1<Lv€J+1>’

with h(u) =u—log(u) —1,u € (0,1].

FIGURE 4. Threshold? in (31) for model 2! (solid line), thresholdt?)) in (32) for model #' (dotted line) and
threshold }R in (30) for model# (dashed line) in function of € {1,...,m}. m= 100 y = 0.2. Right: a = 0.5; left:
a =0.05.

5.2. Step-down method

The approach described in this section is an adaptationegptbof of Theorem 3.1 in [36] to
our setting. Let us consider a famiyR, }1</<m and a class of distributions?”’ C & satisfying
(ND)-(FWC)-(DA). We aim at selecting= ¢ that provides/P € &', FDRR;,P) < a.
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First note that, by definition of the FDP, we have for d@ny {1, ..., m} such thaiR,| = ¢:
{FDP(R,,P) >y} = {|-#6(P) NR| > yt}
= {l#6(P)NR| > [y¢] +1}
={le 2}, (33)
where.? = {¢ € {1,....m} : £ — |71 (P)NRy| > | y¢] + 1} is a set which only depends on the set
{|[7A4(P)NRy|, 1 < ¢ < m}.
Second, note that for arfye {1,...,m} such thaiR,| > ¢,
{te 2} C{|H(P)NRA = |ve] +1}. (34)
Let us consider” = min{.Z’} (with £* = m+1 when. = 0). From (33) and (34), taking
¢ e {1,...,m} such tha{R;| = ¢ and such that for ang < ¢, |R;| > ¢, we obtain
{FDP(R;,P) >y} C {¢* <7}
C{lA(P) MRy > [ye| +1}.
Moreover, if¢* > 2, by definition of¢*, we have/* — 1 ¢ . Hence, we obtain the following
upper-bound fof.75(P)|:
[#6(P)| = m—[A4(P)| <m—|JAP) "R 1| <m—L"+ [y(£" = 1) + 1.
Since the above bound is also true wienr- 1, it holds for any possible value éf.
Finally noting that’* only depends on the variable $ét# (P) "Ry|,1 < ¢ <m} and using
(FWC)-(DA), we have proved that for arye {1,...,m},
P(FDP(Ry,P) > y[ " =€) <P(|7(P)NR| = |yf] +1]¢" =¢)
=P(|%(P)NR| > yt] +1)
<a.

Also, the probabilityP(FDP(R;,P) > y|¢* = m+ 1) is zero, because it is smaller thal e
Z |0 =m+1). This leads to the following result.

Theorem 5.2. Assume that there exists a famflg, }1</<m of multiple testing procedures and a
class of distributions?’ C &7 satisfying the condition@\D)-(FWC)-(DA) defined in Section 5.1.
Consider the procedure;Rvhere

¢ =max{¢ € {0,...m} : V¢ € {0,....0}, |Ro| > ¢'}, (35)
(with the convention = 0). Then R controls the FDP in the following sense:
VP e #', P(FDP(R;,P) >y) <a. (36)

The algorithm performed to find (35) is a step-down algorithitrstarts from small rejection
numbers and stops the first time the| is below ¢. Note that the maximum in (35) is well
defined because= 0 satisfiegR,| > ¢. Furthermore, using (ND), relation (35) impliég Ry <
IR, 4| < {+1, so that Ril =R = 7 holds. As a consequence, the procedure of Theorem 5.2
can be equivalently defined I8 where

{=min{¢ e {1,..m+1}:|R| < (-1}, (37)

with the conventiorRy 1 = Ry, (S0 that the minimum in (37) is well defined).
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5.3. Theorem 3.1 of [36] and the quantile-binomial proceduas corollaries

Going back to the specific setting (DA described in Sectioh, we may derive from Theo-
rem 5.2 the following corollary.

Corollary 5.3. Let us consider the deterministic threshold fan(ﬁb?)lggm defined by30)and
consider

{=max{¢ € {0,...m} : V¢ € {0,....0}, pyy <R}, (38)

where0 = p) < pr1) < ... < pm) denote the ordered p-values and by conventigh=t 0.
Then the procedure R= {i € {1,....m} : pi < 7"} satisfies the FDP contrc(36) for the sub-
set2’ of distributions Pc & such that the familypi(X))ic. ) is independent of the family
(Pi(X))icmP)-

By reproducing the end of the proof of Theorem 5.2 in the paldir setting of Corollary 5.3,
we may increase a bit the distribution s&t in Corollary 5.3 to the set d® € 2 such that for
anyi € #(P), Yue [0,1], P(pi(X) < ul(pi(X))icssp)) < U. This s the distributional setting of
Theorem 3.1 of [36]. Hence, we are able to recover the lagtgult (with a slight improvement
in the threshold family).

Furthermore, if we want to ensure the FDP control (36) onhytlie smaller distribution set
@' = ', we may consider the larger threshold fan(rl?)lggm defined by (31). This gives
rise to the step-down procedure

RO={ie{l..m:p<t3}, (39)

where! = max{/ € {0,...,m} : V' € {0,...,}, pip) < t7} (with t§ = 0). The latter is the proce-
dure described in Algorithm 1.7, becaygg < tf if and only if g (p,)) < y¢, with g (-) defined
by (8). As a consequence, Theorem 5.2 provides the reswaced in Section 1.7.

Corollary 5.4. For any y,a < (0,1), the quantile-binomial procedure Rdescribed in Algo-
rithm 1.7, or equivalently if39), controls the FDP in the following way:

vPe 2' P(FDP(R,P)>y) <a.

In particular, the median-binomial proceduredRusinga = 1/2) provides that the median of
the distribution of FDPRM, P) is controlled at level for any Pc &',

To our knowledge, the above result is a new finding. It estabE a FDP control which is
substantially more suitable to the case of indepengaratiues in comparison with the procedure
of [36]. Further comments on this procedure can be found ati@e6.3.

5.4. Theorem 4.1 (i) of [45] as a corollary

In Section 4 of [45], a step-down procedugeis defined from a generic familyS,}1<x<m of
thresholding based procedures. The latter family is asdumbe such that eack controls the
kK-FWER for 1< k< mandS C S, for 1 <k <m-—1. The index is obtained as follows:

k=min{ke {1,...m+1} : y|S| <k—y}, (40)
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where we use here the conventip, 1 = Sy (so that the above set always contdins m+ 1).
Theorem 4.1 (i) of [45] states th& controls the FDP in the asymptotic sense, as the sample
size available to perform each test tends to infinity. Thisloa seen as a (non-asymptotic) FDP
control in a Dirac configuration where tipevalues corresponding to false nulls are equal to zero.
Set under this form, Theorem 4.1 (i) of [45] can be derivedfibheorem 5.2.

For this, letR, = S 4| 11, for £ € {1,...,m}, and note that the familyR, }1<¢<m satisfies (ND)-
(FWC) and (DA"), by taking the distribution se¥’ corresponding to Dirac configurations for
the p-values. Hence, Theorem 5.2 establishes the FDP contrtiiéddirac configurations of the
procedureR; where/ is defined by (35), or equivalently by (37). Thus, it only rénsato show
that the step-down algorithms (40) and (37) lead to the saweedure, that is,

R =3S.

To prove the latter, we establigh= |y7| + 1. First, using (37)/ satlsflesy|SM 1l < yl —

y. Sincey? < |y/| + 1, we deduce from the definition &fthat Lyfj +1 > k. Conversely, by
considering the unique integée {1,...,m} sat|sfy|ngk/y 1</< k/yand thus alsoy?| +1=
k, we have that for any integgr yj < k=<t Applying the latter forj = |§| + 1, we obtain
from y(|§]+1) < k that || < ¢—1 and thug > 7, by using the definition of. This in turn
impliesk > Lyﬂj +1. We thus have proved the following result, which can be ssérheorem 4.1
(i) of [45] in the Dirac setting.

Corollary 5.5. Assume that there exists a famfl§ } 1<k<m Oof multiple testing procedures (with
the convention .1 = Sy) satisfying

- for each ke {1,...,m}, & is of the form{i € {1,....m} : pi < tk(p)} for a possibly data-

dependent threshold(t) € [0, 1];

- foreach ke {1,....m—1}, S C Sc11;

- for each ke {1,...,m}, VP € &, k-FWERS,P) < a.
Considerk defined in(40) and the subse®?’ of distributions P & corresponding to a Dirac
configuration, i.e., such thatP € &7, Vi € J#(P), pi(x) = 0 for P-almost every x 2". Then
we havevP € &', P(FDP(§,P) >y) <a.

6. Discussion
6.1. Complexity of th&-FWER step-down approach

One major limitation of th&-FWER approach presented in Section 4 is that the compatafio
@(+) in (29) can become cumbersome wHeis large because we should consider all subkets
of #° of cardinalityk — 1 (say thai%™®| > k— 1). However, we may modify this algorithm by
considering only the sdtequals to thé&k — 1 indexes of¢’ corresponding to th& — 1 largest
p-values in{p;,i € €°}. As noted in [45], this “streamlined" step-down proceduit ntrols
thek-FWER in the Dirac model where each false null hgsalue equals to zero. The latter is
true because in this model, as soon@8n 4 (P)| < k—1, we know that the st N .75 (P)

is included in the set of indexes corresponding to the- 1 largestp-values in{p;,i € ¢°}
(because th@-values of{ p;,i € ¥°N .74 (P)} are zero). Nevertheless, no proof of tkiEWER
control stands without this Dirac assumption.
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6.2. FDR control is not FDP control

Since the only interpretable variable is the FDP and nobipeetation, controlling the FDR is
meaningful only when the FDP concentrates well around thR .3 the hypothesis number
grows, Neuvial (2008) showed that the latter holds for stpplype procedures when a Donsker
type theorem for the e.c.d.f. is valid, so for instance undgependence or “weak" dependence,
see [41]. However, under some unspecified dependencies; wat ¢know how the FDP concen-
trates. For instance, even under a very singelequi-correlated Gaussian model (corresponding
to Example 1.2, where the non-diagonal entrieZ (@) are all equal tg), its was shown in [16]
that the convergence rate of the FDP to the FDR can be ailyitsdww whenp = pn, tends to
zero agntends to infinity. Additionally, it was proved in [24] that moncentration phenomenon
occurs wherp is kept fixed withm. Also, as shown in [48], the “sparsityT§(P) = Tom(P)
tends to 1 asntends to infinity) is one other feature that can slow down tBé Eonvergence.
Therefore, in all these cases, the FDP convergence is sldwartrolling the FDR does not lead
to a clear interpretation for the underlying FDP. The latt@wback does not arise while control-
ling the FDP upper-tail distribution: for instance, the FEontrol P(FDP > 0.01) < 0.5 ensures
that, with a probability at least 0.5, the FDP is belo®X) and this interpretation holds whatever
the FDP distribution is. However, the FDR stays useful, bseahis is a simpler criterion for
which the controlling methodology is (for now) much more eleyped in comparison with the
FDP controlling methodology.

6.3. Quantile-binomial procedure and relation to previowgork

Let us consider the quantile-binomial procedure definedgarghm 1.7 and the quantile func-
tion g, (-) defined by (8). In the particular case where we take 1/2, the procedure is called
the median-binomial procedure and Corollary 5.4 showsitt@introls the median of the FDP
at level y under independence of thevalues. Interestingly, in the “Gaussian regime" where
the underlying binomial variable is close to a Gaussianadei (say,y not too small, many re-
jections), the median is close to the expectation and ¢at$ ~ (m— ¢+ |y({ —1)] + 1)t ~
(m—(1—y)¢+ 1)t. Hence, in this case, the median-binomial procedure idm¢he step-down
procedure using the thresholdibg= y//(m— (1— y)¢+ 1). As matter of fact, the latter proce-
dure has been recently introduced by Gavrilov et al. (200@) iehas been proved to control
the FDR under independence, see [26]. Roughly speakindatiee may be interpreted in our
framework as a “mean-binomial procedure". However, in this$on regime (say small, few
rejections), the median-binomial procedure can be sutisligndifferent from the procedure of
Gavrilov et al. (2009). Hence, we should keep in mind thatweeprocedures do not control the
same error rate. These different remarks are illustratédguare 5, where we have also reported
the Benjamini-Hochberg threshold.

6.4. Conclusion

In this paper, we have recovered some of the classical stdte-art multiple testing procedures
for controlling the FDRk-FWER and the FDP. Additionally, some new contributions eveiso
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FIGURE 5. Comparison between Benjamini-Hochberg thresholdjng ¥¢/m (dashed-dotted), the Gavrilov et al.
thresholding t = y¢/(m— (1—y)¢+1) (dashed) and the quantile thresholdir;%defined by(31) with o = 0.5 (solid)

in function of¢. m= 100, Top: y = 0.01; Bottom: y = 0.1. Each right picture is a zoom of the left picture into the
region/ € {1,...,80} (top) or¢ € {1,...,50} (bottom).

given for k-FWER and FDP control, by extending and unifying some previavork of multi-
ple testing literature and by finding a novel procedure, thamethe quantiles of the binomial
distribution, which controls the FDP under independence.

The type | error rate control research area still has manglued issues. Among the major
concerns, the FDP control in Section 5 needs a very strotigbgitional assumption on the test
statistics, namely independence or “Dirac" assumptiormufknowledge, no procedure adaptive
to dependencies is proved to control the FDP without assyisuch a strong requirement. This
is a room left for future developments, which would have argirimpact on high-dimensional
data analysis.
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Appendix A: Defining a p-value from a test statistic

Let us consider the problem of testing a (single) hypothEgis“P € @y" from a test statistic
S(X). Assume thaHy should be rejected for “large” values$({X ). We letTp(s) = Px.p(S(X) >
s), Fp(s) = Pxp(S(X) < s) andFs }(v) = min{s€ RU{—w} : Fp(S) > v}. The following result
is elementary and can be considered as well known. It is gliyaelated to Theorem 10.12 in
[61], Lemma 3.3.1 in [37] (see also Problem 3.23 therein) Rraposition 1.2 in [17].

Proposition A.1. The p-value pX) = supcg, Tr(S(X)) satisfies the following:
(i) p(X) is stochastically lower-bounded by a uniform variable urithe null, that is,

VP € Op, Yue [0,1], Px.p(p(X)<u)<u.
(i) if for any P € ©g, Fp is continuous, we have for any realization x of X,

p(x) = min{a € [0,1]: S(x) > supFs(1—a)}.
Pe®g
If additionally ©q is a singleton, pX) ~ U (0,1) whenever R Q.

(iii) if for any P € Oy, the variable $X) takes its values in a discrete set with probabillty
we have for any realization x of X,

p(x) = min{a € [0,1] : S(x) > supFs }(1—a)}.
Pe®g

In particular, if S(X) is an integer random variable, we have for any x such th{aj 8 N,

p(x) = min{a € [0,1] : S(x) > supFs *(1—a)+1}.
Pe®g

A conseguence is that the two classical definitions phalue are compatible in the following
way.

Corollary A.2. Assume that there exists€)X® such that for any = O, for all s€ R, Fp(s) >
Fo(s). Let pX) = To(S(X)) and consider the families of tesigy } o 0,1 and{ @ }acpo,1), Where
@ (X) = H{S(X) > Fy*(1—a)} and ¢ (X) = 1{S(x) > F;*(1—a)}. Then the following holds.

(i) if Fq is continuous, the tests, and ¢, are of levela for all a < [0,1] and we have for
any realization x of X,

[p(x),1] = {a €[0,1] : g (x) = 1}.
and for Q-almost every X,
(P(x),1] = {a €[0,1] : ¢ (x) = 1}.
(i) iffor X ~ Q the variable §X) takes its values in a discrete set with probabilitythe test

@, is of levela while the testy, is not of levela, for all a € [0,1], and we have for any
realization x of X,

[P0, 1] = {a € [0,1] : ¢ (x) = 1}.
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In particular, we have both in the continuous and discretsecthat for Q-almost every x,

p(x) =inf{a € [0,1] : ¢, (x) = 1}.

Proof. From Proposition A.1 (ii) and (iii), the only assertion to peoved is that for alla €
[0,1], for Q-almost everyx, S(x) > Fo*(1—a) < p(x) < a. Let us denote2 = {Fy*(1 -
a),a € [0,1]}. SinceFg is increasing onZ, the desired relation is provided f&x) € 2. We
can conclude becau&..qo(S(X) € 2) =1. O

Example A.3. To illustrate (i) and (iii) of Proposition A.1, let us considthe following simple
discrete testing setting (coming from Example 3.3.2 in J3Zkt Hp : “P = Ry" where Py is
the uniform distribution on{1,...,10} and consider the test statistgX) = X. We easily see
that thep-value Tp,(X) is p(X) = (11— X)/10. It satlsfles]P(p(X) u) < u, with equality iff
u can be written under the forny10 for some integer, 1 <i < 10. Furthermore, rejecting
Ho for p(X) < a is equivalent to rejedtly wheneverX > k(a) wherek(a) is the unique integer
satisfying(11—k(a))/10< a < (12—k(a))/10. We merely check th&{a) = (1— a)+1.

Finally, we provide a proof for Proposition A.1.

Proof. Let pr(s) =Px.p(S(X) < s) and let us first state the following result: for aRyfor any
a€[0,1],
S1-a)) ifF(Fl-a)=1-a

(To(S(X)) < a} = { {SX) > Fp

{S(X) >FsY(1—a)} otherwise (41)

To establish (41), first note théTp(S(X)) < a} = {pr(S(X)) >1-a}c{SX)>F1-a)},
by definition of F5 (1 — a). On the one hand, IFOP( Y1-a))=1-a, we have{S(X) >
F,;l(l a)} C {Fp(S(X)) > Fp(FP (1 a)t = {Fp(S(X)) >1-— or} On the other hand, if
Fe(Fot(1—a)) <l-a,we have{Fp SX)) =1-a} C{SX) >Fs Y1-a)} and{S(X) >
Fol(l-a)}c {Fp(S(X)) > F(Fot(1—a))} C {Fp(S(X)) >1— or} This proves (41).

Let us now prove (i). We have for arfy € O, Px.p(p(X) < a) < Px.p(Tp(S(X)) < a).
Next, applying (41), we have Iip(Fp‘l(l— a)=1-a,

Px-p(P(X) < ) <Pxp(SX) > Fp'(1—-0a)) =1-Fp(Fp Y(1-a)) =a
and |pr( 1-a))<1-a,
Px~p(P(X) < ) <Px-p(S(X) > Fa ' (1-a)) = 1-Fp(Fs Y(1-a)) < a.

Assume now that for anl € ©g, Fp is continuous, and prove (ii). In this caS%;(F,;l(l—
a)) =Fp(Fo}(1—a)) =1—a foranya € [0,1], so that (41) provides thdfp(S(X)) < a} =
{S(X) > F51(1—a)}. Hence, we obtain for any realizatiorof X,

p(x) =min{a € [0,1] : VP € O, Tp(S(x)) < a}
=min{a €[0,1] : VP € ©p,S(x) > F }(1—a)},
which leads to the desired result.

For (iii), the proof is similar by noting thdfp(Fp‘l(l— a)) < 1—a in the case where the
distribution ofS(X) has a discrete support under the null. O
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