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Abstract:
This paper presents a survey on some recent advances for the type I error rate control in multiple testing method-

ology. We consider the problem of controlling thek-family-wise error rate (kFWER, probability to makek false
discoveries or more) and the false discovery proportion (FDP, proportion of false discoveries among the discoveries).
The FDP is controlled either via its expectation, which is the so-called false discovery rate (FDR), or via its upper-tail
distribution function. We aim at deriving general and unified results together with concise and simple mathematical
proofs. Furthermore, while this paper is mainly meant to be asurvey paper, some new contributions for controlling
the kFWER and the upper-tail distribution function of the FDP are provided. In particular, we derive a new procedure
based on the quantiles of the binomial distribution that controls the FDP under independence.
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1. Introduction

The problem of testing several null hypotheses has a long history in the statistics literature. With
the high-resolution techniques introduced in the recent years, it has known a renewed attention
in many application fields where one aims to find significant features among several thousands
(or millions) of candidates. Classical examples are microarray analysis [58, 17, 19, 20], neuro-
imaging analysis [4, 42] and source detection [40]. For illustration, we detail below the case of
microarray data analysis.

1.1. Multiple testing in microarray data

In a typical microarray experiment, the level expressions of a set of genes are measured under
two different experimental conditions and we aim at finding the genes that are differentially ex-
pressed between the two conditions. For instance, when the genes come from tumor cells in the
first experimental condition, while they come from healthy cells in the second, the differentially
expressed genes may be involved in the development of this tumor and thus are genes of special
interest. Several techniques exist to perform a statistical test for a single gene, e.g. based on a dis-
tributional assumption or on permutations between the two group labels. However, the number of
genesmcan be large (for instance several thousands), so that non-differentially expressed genes
can have a high score of significance by chance. In that context, applying the naive, non-corrected
procedure (levelα for each gene) is unsuitable because it is likely to select (or “discover") a lot
of non-differentially expressed genes (usually called “false discoveries”). For instance, if the
m= 10,000 genes are not differentially expressed (no signal) andα = 0.1, the non-corrected
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Type I error rate control in multiple testing 3

procedure makes on averagemα = 1,000 discoveries which are all false discoveries. In a more
favorable situation where there are onlym0 = 5,000 non-differentially expressed genes among
the m= 10,000 initial genes (50% of signal), the non-corrected procedure selects some genes,
sayr genes, for which the expected number of errors ism0α = 500. Since the number of discov-
eriesr is not designed to be much larger than the number of false discoveriesm0α , the final list
of discovered genes is likely to contain an unacceptable part of errors. A multiple testing proce-
dure aims at correctinga priori the level of the single tests in order to obtain a list of selected
genes for which the “quantity" of false discoveries is belowa nominal levelα . The “quantity" of
false discoveries is measured by usingglobal type I error rates, as for instance the probability to
make at leastk errors among the discoveries (k-family-wise error rate,k-FWER) or the expected
proportion of errors among the discoveries (false discovery rate, FDR). Finding procedures that
control type I error rates is challenging and is what we called here the “multiple testing issue".
Furthermore, a feature that increases the complexity of this issue is the presence of dependencies
between the single tests.

Note that the multiple testing issue can be met in microarrayanalysis under other forms, as
for instance when we search co-expressed genes or genes associated with clinical covariates or
outcomes, see Section 1.2 of [17].

1.2. Examples of multiple testing settings

Example 1.1 (Two-sample multiplet-tests). The problem of finding differentially expressed
genes in the above microarray example can be formalized as a particular case of a general two-
sample multiple testing problem. Let us observe a couple of two independent samples

X = (X1, ...,Xn) =
(
Y1, ...,Yn1,Z1, ...,Zn2

)
∈ R

m×n,

where(Y1, ...,Yn1) is a family of n1 i.i.d. copies of a random vectorY in R
m and (Z1, ...,Zn2)

is a family of n2 i.i.d. copies of a random vectorZ in R
m (with n1+ n2 = n). In the context of

microarray data,Y j
i (resp.Z j

i ), 1≤ i ≤ m, corresponds to the expression level measure of the
i-th gene for thej-th individual of the first (resp. second) experimental condition. Typically, the
sample size is much smaller than the number of tests, that is,n ≪ m. Let the distributionP of
the observationX belong to a statistical model given by a distribution setP. Assume thatP
is such thatX is an integrable random vector and letµi,1(P) = EYi andµi,2(P) = EZi, for any
i ∈ {1, ...,m}. The aim is to decide for alli whetherP belongs to the setΘ0,i = {P∈P : µi,1(P)=
µi,2(P)} or not, that is, we aim at testing the hypothesis

H0,i : “µi,1(P) = µi,2(P)" againstH1,i : “µi,1(P) 6= µi,2(P)”,

simultaneously for alli ∈ {1, ...,m}. Given P, the null hypothesisH0,i (sometimes called the
“null" for short) is said to be true (forP) if P ∈ Θ0,i , that is, if P satisfiesH0,i. It is said false
(for P) otherwise. The index set corresponding to true nulls is denoted byH0(P) = {1 ≤ i ≤
m : µi,1(P) = µi,2(P)}. Its complement inH = {1, ...,m} is denoted byH1(P). In the microar-
ray context,H1(P) = {1 ≤ i ≤ m : µi,1(P) 6= µi,2(P)} is thus the index set corresponding to
differentially expressed genes. The aim of a multiple testing procedure is thus to recover the (un-
observable) setH1(P) given the observationX. A multiple testing procedure is commonly based
on individual test statistics, by rejecting the null hypotheses with a “large" test statistic. Here, the
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4 Etienne Roquain

individual test statistic can be the (two-sided) two-sample t-statisticSi(X) ∝ |Yi −Zi|, rescaled
by the so-called “pooled" standard deviation. To provide a uniform normalization for all tests, it
is convenient to transform theSi(X) into thep-value

pi(X) = sup
P∈Θ0,i

TP,i(Si(X)), (1)

whereTP,i(s) = PX∼P(Si(X)≥ s) is the upper-tail distribution function ofSi(X) for X ∼ P∈ Θ0,i .
Classically, assuming thatYi andZi are Gaussian variables with the same variance, we have for
anyP∈ Θ0,i , TP,i(s) = 2P(Z ≥ s), whereZ follows a Student distribution withn−2 degrees of
freedom. In that case, eachp-value pi(X) has the property to be uniformly distributed on(0,1)
when the corresponding null hypothesisH0,i is true. Without making this Gaussian assumption,
p-values can still be built, as we discuss in Remark 1.3 below.Let us finally note that since the
TP,i are decreasing, a multiple testing procedure should rejectnulls with a “small"p-value.

Example 1.2(One-sided testing on the mean of a Gaussian vector). To give a further illustrating
example, we consider the very convenient mathematical framework for multiple testing where we
observe a Gaussian vectorX = (Xi)1≤i≤m∼P, having an unknown meanµ(P) = (µi(P))1≤i≤m∈
R

m and am×m covariance matrixΣ(P) with diagonal entries equal to 1. Let us consider the
problem of testing

H0,i : “µi(P)≤ 0" againstH1,i : “µi(P)> 0”,

simultaneously for alli ∈ {1, ...,m}. We can define thep-valuespi =Φ(Xi), whereΦ(x) =P(Z≥
x) for Z ∼ N (0,1). Any p-value satisfies the following stochastic domination underthe null: if
µi(P)≤ 0, we have for allu∈ [0,1],

P(pi(X)≤ u)≤ P(Φ(Xi −µi(P))≤ u) = u.

Additionally, more or less restrictive assumptions onΣ(P) can be considered to model different
types of dependency of the correspondingp-values. For instance, we can assume thatΣ(P) has
only non-negative entries, that the non-diagonal entries of Σ(P) are equal (equi-correlation) or
that Σ(P) is diagonal. Finally, the value of the alternative means canbe used for modeling the
“strength of the signal". For instance, to model that the sample size available for each test isn,
we can setµi(P) = τ

√
n for eachµi(P)> 0, whereτ > 0 is some additional parameter.

Remark 1.3 (General construction ofp-values). In broad generality, when testing the nullsΘ0,i

by rejecting for “large" values of a test statisticSi(X), we can always define the associatedp-
values by using (1). It is well known that thesep-values are always stochastically lower-bounded
by a uniform variable under the null, that is,∀i ∈ H0(P), ∀u ∈ [0,1], P(pi(X) ≤ u) ≤ u. This
property always holds, even whenSi(X) has a discrete distribution. For completeness, we pro-
vide this result with a proof in Appendix A. However, the calculation of thep-values (1) is not
always possible, because it requires the knowledge of the distribution of the test statistics under
the null, which often relies on strong distributional assumptions on the data. Fortunately, in some
situations, thep-values (1) can be approximated by using a randomization technique. The result-
ing p-values can be shown to enjoy the same stochastic dominance as above (see, e.g., [44] for
a recent reference). For instance, in the two-sample testing problem, permutations of the group
labels can be used, which corresponds to use permutation tests (the latter can be traced back to
Fisher [25]).
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Type I error rate control in multiple testing 5

1.3. General multiple testing setting

In this section, we provide the abstract framework in which multiple testing theory can be inves-
tigated in broad generality.

Let us consider a statistical model, defined by a measurable space(X ,X) endowed with a
subsetP of distributions on(X ,X). LetX denote the observation of the model, with distribution
P∈P. Consider a family(Θ0,i)1≤i≤m of m≥ 2 subsets ofP. Based onX, we aim at testing the
null hypothesesH0,i : “P ∈ Θ0,i” against the alternativeH1,i : “P ∈ Θc

0,i” simultaneously for all
i ∈ {1, ...,m}. For anyP∈ P, let H0(P) = {1≤ i ≤ m : P∈ Θ0,i} be the set of the indexesi for
which P satisfiesH0,i , that is, the indexes corresponding to true null hypotheses. Its cardinality
|H0(P)| is denoted bym0(P). Similarly, the set{1, ...,m} is sometimes denoted byH . The set
of the false null hypotheses is denoted byH1(P) = H \H0(P). The goal is to recover the set
H1(P) based onX, that is, to find the null hypotheses that are true/false based on the knowledge
of X. Obviously, the distributionP of X is unknown, and thus so isH1(P).

The standard multiple testing setting includes the knowledge of p-values(pi(X))1≤i≤m satis-
fying

∀P∈ P,∀i ∈ H0(P), ∀u∈ [0,1], P(pi(X)≤ u)≤ u. (2)

As a consequence, for eachi ∈ {1, ...,m}, rejectingH0,i wheneverpi(X) ≤ α defines a test of
level α . As we have discussed in the previous section, property (2) can be fulfilled in many
situations. Also, in some cases, (2) holds with equality, that is, thepi(X) are exactly distributed
like a uniform variable in(0,1) whenH0,i is true.

1.4. Multiple testing procedures

In the remainder of the paper, we use the observationX only through thep-value familyp(X) =
{pi(X),1≤ i ≤ m}. Therefore, for short, we often drop the dependence inX in the notation and
define all quantities as functions ofp = {pi ,1 ≤ i ≤ m} ∈ [0,1]m. However, one should keep
in mind that the underlying distributionP (the distribution of interest on which the tests are
performed) is the distribution ofX and not the one ofp.

A multiple testing procedureis defined as a set-valued function

R : q= (qi)1≤i≤m ∈ [0,1]m 7−→ R(q)⊂ {1, ...,m},

taking as input an element of[0,1]m and returning a subset of{1, ...,m}. For such a general pro-
cedureR, we add the technical assumption that for eachi ∈ {1, ...,m}, the mappingx ∈ X 7→
1{i ∈ R(p(x))} is measurable. The indexes selected byR(p) correspond to the rejected null hy-
potheses, that is,i ∈ R(p) ⇔ “H0,i is rejected by the procedureR(p)". Thus, for eachp-value
family p, there are 2m possible outcomes forR(p). Nevertheless, according to the stochastic
dominance property (2) of thep-values, a natural rejection region for eachH0,i is of the form
pi ≤ ti, for someti ∈ [0,1]. In this paper, we mainly focus on the case where the threshold is the
same for allp-values. The corresponding procedures, calledthresholding based procedures, are
of the formR(p) = {1≤ i ≤ m : pi ≤ t(p)}, where the thresholdt(·) ∈ [0,1] can depend on the
data.
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6 Etienne Roquain

Example 1.4(Bonferroni procedure). The Bonferroni procedure (of levelα ∈ (0,1)) rejects the
hypotheses with ap-value smaller thanα/m. Hence, with our notation, it corresponds to the
procedureR(p) = {1≤ i ≤ m : pi ≤ α/m}.

1.5. Type I error rates

To evaluate the quality of a multiple testing procedure, various error rates have been proposed
in the literature. According to the Neyman-Pearson approach, type I error rates are of primary
interest. These rates evaluate the importance of the null hypotheses wrongly rejected, that is, of
the elements of the setR(p)∩H0(P). Nowadays, the most widely used type I error rates are the
following. For a given procedureR,

– thek-family-wise error rate(k-FWER) (see e.g. [32, 44, 36]) is defined as the probability
that the procedureR makes at leastk false rejections: for allP∈ P,

k-FWER(R,P) = P(|R(p)∩H0(P)| ≥ k), (3)

wherek ∈ {1, ...,m} is a pre-specified parameter. In the particular case wherek = 1, this
rate is simply called thefamily-wise error rateand is denoted by FWER(R,P).

– the false discovery proportion(FDP) (see e.g. [53, 5, 36]) is defined as the proportion of
errors in the set of the rejected hypotheses: for allP∈ P,

FDP(R(p),P) =
|R(p)∩H0(P)|

|R(p)|∨1
, (4)

where|R(p)| ∨ 1 denotes the maximum of|R(p)| and 1. The role of the term “∨1" in the
denominator is to prevent from dividing by zero whenRmakes no rejection. Since the FDP
is a random variable, it does not define an error rate. However, the following error rates
can be derived from the FDP. First, theγ-upper-tail distribution of the FDP, defined as the
probability that the FDP exceeds a givenγ , that is, for allP∈ P,

P(FDP(R(p),P)> γ), (5)

whereγ ∈ (0,1) is a pre-specified parameter. Second, the false discovery rate (FDR) [5],
defined as the expectation of the FDP: for allP∈ P,

FDR(R,P) = E[FDP(R(p),P)] = E

[ |R(p)∩H0(P)|
|R(p)|∨1

]
. (6)

Note that the probability in (5) is upper-bounded by a nominal level α ∈ (0,1) if and only if the
(1−α)-quantile of the FDP distribution is upper-bounded byγ . For instance, if the probability
in (5) is upper-bounded byα = 1/2, this means that the median of the FDP is upper-bounded
by γ . With some abuse, bounding the probability in (5) is called “controlling the FDP" from now
on.

The choice of the type I error rate depends on the context. When controlling thek-FWER,
we tolerate a fixed number(k−1) of erroneous rejections. By contrast, a procedure controlling
(5) tolerates a small proportionγ of errors among the final rejections (from an intuitive point
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Type I error rate control in multiple testing 7

of view, it choosesk ≃ γ |R|). This allows to increase the number of erroneous rejections as the
number of rejections becomes large. Next, controlling the FDR has become popular because it
is a simple error rate based on the FDP and because it came together with the simple Benjamini-
Hochberg FDR controlling procedure [5] (some dependency structure assumptions are required,
see Section 3). As a counterpart, controlling the FDR does not prevent the FDP from having
large variations, so that any FDR control does not necessarily have a clear interpretation in terms
of the FDP (see the related discussion in Section 6.2).

Example 1.4(Continued). The Bonferroni procedureR(p) = {1≤ i ≤ m : pi ≤ α/m} satisfies
the following:

E|R(p)∩H0(P)|= ∑
i∈H0(P)

P(pi ≤ α/m)≤ αm0(P)/m≤ α ,

which means that its expected number of false discoveries isbelowα . Using Markov’s inequality,
this implies thatR(p) makes no false discovery with probability at least 1−α , that is, for any
P∈ P, FWER(R,P)≤ α . This is the most classical example of type I error rate control.

Remark 1.5 (Case whereH0(P) = H ). For a distributionP satisfyingH0(P) = H , that is
when all null hypotheses are true, the FDP reduces to FDP(R(p),P) = 1{|R(p)|> 0} and we
have FWER(R,P)=FDR(R,P)=P(FDP(R(p),P)> γ)=P(|R(p)|> 0). Controlling the FWER
(or equivalently the FDR) in this situation is sometimes called a “weak" FWER control.

Remark 1.6(Case where all null hypotheses are equal:p-value aggregation). The general frame-
work described in Section 1.3 includes the case where all null hypotheses are identical, that is,
Θ0,i = Θ0 for all i ∈ {1, ...,m}. In this situation, allp-values test the same nullH0 : “P ∈ Θ0"
against some alternatives contained inΘc

0. For instance, in the model selection framework of
[3, 18, 60], eachp-value is built with respect to a specific model contained in the alternativeΘc

0.
Since we have in that caseH0(P) = H if P∈ Θ0 andH0(P) = /0 otherwise, the three quantities
FWER(R,P), FDR(R,P) andP(FDP(R(p),P) > γ) are equal and take the valueP(|R(p)| > 0)
whenP∈ Θ0 and 0 otherwise. As a consequence, in the case where all null hypotheses are equal,
controlling the FWER, the FDR or the FDP at levelα is equivalent to the problem of combining
p-values to build asingle testingfor H0 which is of levelα . In particular, from a procedureR that
controls the FWER at levelα we can derive a single testing procedure of levelα by rejecting
H0 wheneverR(p) is not empty (that is, wheneverR(p) rejects at least one hypothesis). This
provides a way to aggregatep-values into one (single) test forH0 which is ensured to be of level
α . As an illustration, the FWER controlling Bonferroni procedureR= {1≤ i ≤ m : pi ≤ α/m}
corresponds to the single test rejectingH0 whenever min1≤i≤m{pi} ≤ α/m. The Bonferroni com-
bination of individual tests is well known and extensively used for adaptive testing (see, e.g.,
[54, 3, 60]). Some other examples ofp-value aggregations will be presented further on, see Re-
mark 3.9.

1.6. Goal

Let α ∈ (0,1) be a pre-specified nominal level (to be fixed once and for all throughout the
paper). The goal is to control the type I error rates defined above at levelα , for a large subset of
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8 Etienne Roquain

distributionsP ′ ⊂ P. That is, by taking one of the above error rateE (R,P), we aim at finding
a procedureRsuch that

∀P∈ P
′, E (R,P)≤ α , (7)

for P ′ ⊂ P as large as possible. Obviously,R should depend onα but we omit this in the no-
tation for short. Similarly to the single testing case, taking R= /0 will always ensure (7) with
P ′ = P. This means that the type I error rate control is inseparablefrom the problem of maxi-
mizing the power. The probably most natural way to extend thenotion of power from the single
testing to the multiple testing setting is to consider the expected number of correct rejections, that
is, E|H1(P)∩R|. Throughout the paper, we often encounter the case where twoproceduresR
andR′ satisfyR′ ⊂ R (almost surely) while they both ensure the control (7). Then, the procedure
R is saidless conservativethanR′. Obviously, this implies thatR is more powerful thanR′. This
can be the case when, e.g.,R andR′ are thresholding-based procedures using respective thresh-
oldst andt ′ satisfyingt ≥ t ′ (almost surely). As a consequence, our goal is to find a procedureR
satisfying (7) with a rejection set as large as possible.

Finally, let us emphasize that, in this paper, we aim at controlling (7) for any fixedm≥ 2 and
not only whenm tends to infinity. That is, the setting is non-asymptotic in the parameterm.

1.7. Overview of the paper

The remainder of the paper is organized as follows: in Section 2, we present some general tools
and concepts that are useful throughout the paper. Section 3, 4 and 5 present FDR,k-FWER and
FDP controlling methodology, respectively, where we try togive a large overview of classical
methods in the literature. Besides, the paper is meant to have a scholarly form, accessible to a
possibly non-specialist reader. In particular, all results are given together with a proof, which we
aim to be as short and meaningful as possible.

Furthermore, while this paper is mostly intended to be a review paper, some new contributions
with respect to the existing multiple testing literature are given in Section 4 and 5, by extending
the results of [30] for thek-FWER control and the results of [45] for the FDP control, respec-
tively.

1.8. Quantile-binomial procedure

In section 5, we introduce a novel procedure, called thequantile-binomial procedurethat controls
the FDP under independence of thep-values. This procedure can be defined as follows;

Algorithm 1.7 (Quantile-binomial procedure). Let for any t∈ [0,1] and for anyℓ ∈ {1, ...,m},

qℓ(t) = the(1−α)-quantile ofB(m− ℓ+ ⌊γ(ℓ−1)⌋+1, t), (8)

whereB(·, ·) denotes the binomial distribution and⌊γ(ℓ−1)⌋ denotes the largest integer n such
that n≤ γ(ℓ− 1). Let p(1) ≤ ... ≤ p(m) be the order statistics of the p-values. Then apply the
following recursion:

• Step1: if q1(p(1))> γ , stop and reject no hypothesis. Otherwise, go to step2;
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Type I error rate control in multiple testing 9

• Stepℓ ∈ {2, ...,m}: if qℓ(p(ℓ)) > γℓ, stop and reject the hypotheses corresponding to p(1),
. . . , p(ℓ−1). Otherwise, go to stepℓ+1;

• Stepℓ= m+1, stop and reject all hypotheses.

Equivalently, the above procedure can be defined as rejecting H0,i whenever

max
p(ℓ)≤pi

{qℓ(p(ℓ))/ℓ} ≤ γ .

The rationale behind this algorithm is that at stepℓ, when rejecting theℓ null hypotheses cor-
responding to thep-values smaller thanp(ℓ), the number of false discoveries behaves as if it
was stochastically dominated by a binomial variable of parameter(m− ℓ+ ⌊γ(ℓ−1)⌋+1, p(ℓ)).
Hence, by controlling the(1−α)-quantile of the latter binomial variable at levelγℓ, the(1−α)-
quantile of the FDP should be controlled byγ . The rigorous proof of the corresponding FDP
control is given in Section 5, see Corollary 5.4. Finally, when controlling the median of the FDP,
this procedure is related to the recent adaptive procedure of [26], as discussed in Section 6.3.

2. Key concepts and tools

2.1. Model assumptions

Throughout this paper, we will consider several models. Each model corresponds to a specific
assumption on thep-value familyp = {pi ,1 ≤ i ≤ m} distribution. The first model, called the
“independent model" is defined as follows:

P
I =

{
P∈ P : (pi(X))i∈H0(P) is a family of mutually independent

variables and(pi(X))i∈H0(P) is independent of(pi(X))i∈H1(P)

}
. (9)

The second model uses a particular notion of positive dependence between thep-values, called
“weak positive regression dependency" (in short, “weak PRDS"), which is a slightly weaker
version of the PRDS assumption of [8]. To introduce the weak PRDS property, let us define a
subsetD ⊂ [0,1]m asnondecreasingif for all q,q′ ∈ [0,1]m such that∀i ∈ {1, ...,m}, qi ≤ q′i , we
haveq′ ∈ D whenq∈ D.

Definition 2.1 (Weak PRDSp-value family). The familyp is said to be weak PRDS onH0(P)
if for any i0 ∈ H0(P) and for any measurable nondecreasing set D⊂ [0,1]m , the function u7→
P(p ∈ D | pi0 ≤ u) is nondecreasing on the set{u∈ [0,1] : P(pi0 ≤ u)> 0}.

The only difference between the weak PRDS assumption and the“regular" PRDS assumption
defined in [8] is that the latter assumes “u 7→ P(p ∈ D | pi0 = u) nondecreasing", instead of
“u 7→ P(p ∈ D | pi0 ≤ u) nondecreasing". Weak PRDS is a weaker assumption, as shown for
instance in the proof of Proposition 3.6 in [12]. We can now define the second model, where the
p-values have weak PRDS dependency:

P
pos=

{
P∈ P : p(X) is weak PRDS onH0(P)

}
. (10)

It is not difficult to see thatP I ⊂ P pos because whenP ∈ P I , pi0 is independent of(pi)i 6=i0
for any i0 ∈ H0(P). Furthermore, we refer to the general case ofP∈ P (without any additional
restriction) as the “arbitrary dependence case".
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10 Etienne Roquain

As an illustration, in the one-sided Gaussian testing framework of Example 1.2, the PRDS
assumption (regular and thus also weak) is satisfied as soon as the covariance matrixΣ(P) has
nonnegative entries, as shown in [8] (note that this is not true anymore for two-sided tests, as
proved in the latter reference).

2.2. Dirac configurations

If we want to check whether a procedure satisfies a type I errorrate control (7), particularly
simplep-value distributions (or “configurations") are as follows:

- “Dirac configurations": thep-values ofH1(P) are equal to zero (without any assumption
on thep-values ofH0(P));

- “Dirac-uniform configuration" (see [24]): the Dirac configuration for which the variables
(pi)i∈H0(P) are i.i.d. uniform.

These configurations can be seen as the asymptoticp-value family distribution where the sample
size available to perform each test tends to infinity, while the numberm of tests is kept fixed
(see the examples of Section 1.2). This situation does not fall into the classical multiple testing
framework where the number of tests is much larger than the sample size. Besides, there is no
multiple testing problem in these configurations because the true nulls are perfectly separated
from the false null (almost surely). However, these specialconfigurations are still interesting,
because they sometimes have the property to be the distributions for which the type I error rate
is the largest. In that case, they are called the “least favorable configurations" (see [24]). This
generally requires that the multiple testing procedure andthe error rate under consideration have
special monotonic properties (see [23, 48]). In this case, proving the type I error rate control for
the Dirac configurations is sufficient to state (7) and thus appears to be very useful.

2.3. Algorithms

To derive (7), a generic method that emerged from the multiple testing literature is as follows:

1. start with a family(Rκ)κ of procedures depending on an external parameterκ ;

2. find a set of values ofκ for which Rκ satisfies (7);

3. take among these values theκ that makesRκ the “largest".

The latter is designed to maintain the control of the type I error rate while maximizing the rejec-
tion set. As we will see in Section 3 (κ is a thresholdt), Section 4 (κ is a subsetC of H ) and
Section 5 (κ is a rejection numberℓ), this gives rise to the so-called “step-up" and “step-down"
algorithms, which are very classical instances of type I error rate controlling procedures.

2.4. Adaptive control

A way to increase the power of type I error rate controlling procedures is to learn (from the
data) part of the unknown distributionP in order to make more rejections. This approach is
called “adaptive type I error rate control". Since the resulting procedure uses the data twice, the
main challenge is often to show that it maintains the type I error control (7). In this paper, we will
discuss adaptivity with respect to the parameterm0(P)= |H0(P)| for the FDR in Section 3.3. The
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Type I error rate control in multiple testing 11

procedures presented in Section 4 (resp. Section 5) for controlling thek-FWER (resp. FDP) will
be also adaptive tom0(P), but in a maybe more implicit way. Some of them will be additionally
adaptive with respect to the dependency structure between the p-values. Let us finally note that
some other work studied the adaptivity to the alternative distributions of thep-values (see [62,
49, 47]).

3. FDR control

After the seminal work of Benjamini and Hochberg [5], many studies have investigated the FDR
controlling issue. We provide in this section a survey of some of these approaches.

3.1. Thresholding based procedures

Let us start from thresholding type multiple-testing procedures

Rt = {1≤ i ≤ m : pi ≤ t(p)},

with a thresholdt(·) ∈ [0,1] possibly depending on thep-values. We want to findt such that the
corresponding multiple testing procedureRt controls the FDR at levelα under the modelP pos,
by following the general method explained in Section 2.3. Westart with the following simple
decomposition of the false discovery rate ofRt :

FDR(Rt ,P) = αm−1 ∑
i∈H0(P)

E

[
1{pi ≤ t(p)}

α Ĝ(p, t(p))∨ (α/m)

]
, (11)

where Ĝ(p,u) = m−1∑m
i=11{pi ≤ u} denotes the empirical c.d.f. of thep-value family p =

{pi ,1≤ i ≤ m} taken at a thresholdu∈ [0,1].
In order to upper-bound the expectation in the RHS of (11), let us consider the following infor-

mal reasoning: ift andĜ were deterministic, this expectation would be smaller thant/(α Ĝ(p, t))
and thus smaller than 1 by taking a thresholdt such thatt ≤ α Ĝ(p, t). This motivates the intro-
duction of the following set of thresholds:

T (p) = {u∈ [0,1] : Ĝ(p,u)≥ u/α}. (12)

With different notation, the latter was introduced in [12, 23]. Here, any thresholdt ∈T (p) is said
“self-consistent" because it corresponds to a procedureRt = {1≤ i ≤ m : pi ≤ t} which is “self-
consistent" according to the definition given in [12], that is, Rt ⊂ {1 ≤ i ≤ m : pi ≤ α |Rt |/m}.
It is important to note that the setT (p) only depends on thep-value family (and onα) so that
self-consistent thresholds can be easily chosen in practice. As an illustration, we depict the set
T (p) in Figure 1 for a particular realization of thep-value family.

Now, let us choose a self-consistent thresholdt(p) ∈ T (p). By using the decomposition (11),
we obtain the following upper-bound:

FDR(Rt ,P)≤ αm−1 ∑
i∈H0(P)

E

[
1{pi ≤ t(p)}
t(p)∨ (α/m)

]
≤ αm−1 ∑

i∈H0(P)

E

[
1{pi ≤ t(p)}

t(p)

]
, (13)
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FIGURE 1. The p-value e.c.d.f̂G(p,u) and u/α are plotted as functions of u∈ [0,1]. The points u belonging to the set
T (p) lie on the X-axis of the gray area. m= 10; α = 0.5.

with the convention0
0 = 0. Since by (2),̆a we havepi(x)> 0 for P-almost everyx wheni ∈H0(P),

the denominator inside the expectation of the RHS of (13)ă can only be zero when the numerator
is also zero and therefore when the ratio is zero. Next, the following purely probabilistic lemma
holds (see a proof in Appendix A of [12] for instance):

Lemma 3.1. Let U be a nonnegative random variable which is stochastically lower bounded by
a uniform distribution, i.e.,P(U ≤ u)≤ u for any u∈ [0,1]. Then the following inequality holds:

E

[
1{U ≤V}

V

]
≤ 1, (14)

for any nonnegative random variable V satisfying either of the two following conditions:
(i) V = g(U) where g: R+ → R

+ is non-increasing,
(ii) the conditional distribution of V conditionally on U≤ u is stochastically decreasing in u,

that is,∀v≥ 0, u 7→ P(V < v|U ≤ u) is nondecreasing on{u∈ [0,1] : P(U ≤ u)> 0}.

A consequence of the previous lemma in combination with (13)is that the FDR is controlled at
levelαm0(P)/mas soon asV = t(p) satisfies (ii) withU = pi . For the latter to be true, we should
make the distributional assumptionP ∈ P pos and add the assumption that the thresholdt(·) is
non-increasing with respect to eachp-value, that is, for allq,q′ ∈ [0,1]m, we havet(q)≤ t(q′) as
soon as for all 1≤ i ≤ m, q′i ≤ qi . By using the latter, we easily check that the set

D = {q∈ [0,1]m : t(q)< v}

is a nondecreasing measurable set of[0,1]m, for any v ≥ 0. Thus, the weak PRDS condition
defined in Section 2.1 provides (ii) withU = pi andV = t(p) and thus also (14). Summing up,
we obtained the following result, which appeared in [12]:

Theorem 3.2. Consider a thresholding type multiple testing procedure Rt based on a threshold
t(·) satisfying the two following conditions:
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Type I error rate control in multiple testing 13

- t(·) is self-consistent, i.e., such that for all q∈ [0,1]m, t(q) ∈ T (q) (whereT (·) is defined
by (12))

- t(·) is coordinate-wise non-increasing, i.e., satisfying thatfor all q,q′ ∈ [0,1]m with q′i ≤ qi

for all 1≤ i ≤ m, we have t(q)≤ t(q′).
Then, for any P∈ P pos, FDR(Rt ,P)≤ αm0(P)/m≤ α .

Remark 3.3. If we want to state the FDR control of Theorem 3.2 only forP∈P I without using
the PRDS property, we can use Lemma 3.1 (i)conditionally onp−i = (p j , j 6= i) ∈ [0,1]m−1, by
takingV = t(U,p−i) andU = pi , becausepi is independent ofp−i whenP∈ P I .

3.2. Linear step-up procedures

From Theorem 3.2, under the weak PRDS assumption on thep-value dependence structure, any
algorithm giving as output a self-consistent and non-increasing thresholdt(·) leads to a correct
FDR control. As explained in Section 1.6 and Section 2.3, forthe same FDR control we want
to get a procedure with a rejection set as large as possible. Hence, it is natural to choose the
following threshold:

tsu(p) = max{T (p)} (15)

= max{u∈ {αk/m,0≤ k≤ m} : Ĝ(p,u)≥ u/α}
= α/m×max{0≤ k≤ m : p(k) ≤ αk/m}, (16)

wherep(1) ≤ ... ≤ p(m) (p(0) = 0) denote the order statistics of thep-value family. This choice
was made in [5] and is usually calledlinear step-upor “Benjamini-Hochberg" thresholding. One
should notice that the maximum in (15) exists because the setT (p) contains 0, is upper-bounded
by 1 and because the e.c.d.f. is a non-decreasing function (the right-continuity is not needed). It
is also easy to check that the maximumu= tsu(p) satisfies the equalitŷG(p,u) = u/α , so that
tsu(p) can be seen as the largest crossing point between betweenu 7→ Ĝ(p,u) andu 7→ u/α , see
the left-side of Figure 2. The latter equality also implies thattsu(p)∈ {αk/m,0≤ k≤ m}, which,
combined with the so-called switching relation

mĜ(p,αk/m)≥ k⇐⇒ p(k) ≤ αk/m,

gives rise to the second formulation (16). The latter is illustrated in the right-side of Figure 2.
The formulation (16) corresponds to the original expression of [5] while (15) is to be found for
instance in [27]. Moreover, it is worth noticing that the procedureRtsu using the thresholding
tsu(p) is also equal to{1 ≤ i ≤ m : pi ≤ tsu(p)∨α/m}, so that it can be interpreted as an in-
termediate thresholding between the non-corrected procedure usingt = α and the Bonferroni
procedure usingt = α/m.

Clearly, tsu(·) is coordinate-wise non-increasing and self-consistent. Therefore, Theorem 3.2
shows that for anyP∈P pos, FDR(Rtsu,P)≤αm0(P)/m. As a matter of fact, as soon as (2) holds
with an equality, we can prove that for anyP∈P I , the equality FDR(Rtsu,P)=αm0(P)/mholds,
by using a surprisingly direct argument. Letp0,−i denote thep-value family wherepi has been
replaced by 0, and observe that the following statements areequivalent, for any realization of the
p-values:
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FIGURE 2. The two dual pictorial representations of the Benjamini-Hochberg linear step-up procedure. Left: c.d.f.
of the p-values, the solid line has for slopeα−1. Right: ordered p-values, the solid line has for slopeα/m. In both
pictures, the filled points represent p-values that corresponds to the rejected hypotheses. m= 10; α = 0.5.

(i) pi ≤ tsu(p0,−i)

(ii) Ĝ
(
p0,−i , tsu(p0,−i)

)
≤ Ĝ

(
p, tsu(p0,−i)

)

(iii) tsu(p0,−i)/α ≤ Ĝ
(
p, tsu(p0,−i)

)

(iv) tsu(p0,−i)≤ tsu(p).
The equivalence between (i) and (ii) is straightforward from the defintion of̂G(·, ·). The equiva-
lence between (ii) and (iii) follows from̂G

(
p0,−i, tsu(p0,−i)

)
= tsu(p0,−i)/α , becauset = tsu(p0,−i)

is a crossing point between̂G(p0,−i , t) and t/α . The equivalence between (iii) and (iv) comes
from the definition oftsu(p) together withtsu(p0,−i) ≤ tsu(p) ⇐⇒ tsu(p0,−i) = tsu(p), the latter
coming from the non-increasing property oftsu(·). As a consequence,

{pi ≤ tsu(p0,−i)}= {pi ≤ tsu(p)}, (17)

with tsu(p0,−i) = tsu(p) on these events. Therefore, using (17) and the first decomposition (11)
of the FDR, we derive the following equalities:

FDR(Rtsu,P) = αm−1 ∑
i∈H0(P)

E

[
1{pi ≤ tsu(p)}

α Ĝ(p, tsu(p))∨ (α/m)

]

= αm−1 ∑
i∈H0(P)

E

[
1{pi ≤ tsu(p)}

tsu(p)

]

= αm−1 ∑
i∈H0(P)

E

[
1{pi ≤ tsu(p0,−i)}

tsu(p0,−i)

]

= αm−1 ∑
i∈H0(P)

E

[
tsu(p0,−i)

−1
E
(
1{pi ≤ tsu(p0,−i)}

∣∣p0,−i
)]

= αm0(P)/m,
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Type I error rate control in multiple testing 15

where we assumed in the last equality both thatP ∈ P I and condition (2) holds with equality.
To sum up, we have proved in this section the following result.

Theorem 3.4. Consider the linear step-up procedure Rtsu using the threshold defined in(15).
Then, for any P∈P pos, FDR(Rtsu,P)≤ αm0(P)/m. Moreover, the latter is an equality if P∈P I

and (2) holds with equality.

This theorem is due to [5, 8]. The short proof mentioned abovehas been independently given
in [22, 47, 23]. Theorem 3.4 proves that the inequality “∀P∈ P pos, FDR(Rtsu,P)≤ α" is sharp
as soon as (2) holds with equality and there existsP ∈ P I such thatH0(P) = H , that is,
∩i∈H Θ0,i ∩P I 6= /0.

Other instances of self-consistent procedures include linear “step-up-down" procedures as
defined in [50]. Theorem 3.2 establishes that the FDR controlalso holds for these procedures, as
proved in [12, 23].

3.3. Adaptive linear step-up procedures

In this section we denote byπ0(P) the proportionm0(P)/m of hypotheses that are true forP.
Since we aim at controlling the FDR at levelα and not at levelαπ0(P), Theorem 3.4 shows that
there is a potential power loss when usingtsu when the proportionπ0(P) is small. A first idea is
to use the linear step-up procedure at levelα⋆ = min(α/π0(P),1), that is, corresponding to the
threshold

t∗(p) = max
{

u∈ [0,1] : Ĝ(p,u)≥ u/α⋆
}

(18)

= max
{

u∈ [0,1] : Ĝ(p,u)≥ uπ0(P)/α
}
. (19)

Note that (18) and (19) are equal because whenα ≥ π0(P), the maximum is 1 in the two formulas.
From Theorem 3.4, threshold (19) provides a FDR smaller thanα⋆π0(P)≤ α for P∈ P pos and
a FDR equal toα whenP∈ P I , (2) holds with equality andα ≤ π0(P). Unfortunately, sinceP
is unknown, so isπ0(P) and thus the threshold (19) is an unobservable “oracle" threshold.

An interesting challenge is to estimateπ0(P) within (19) while still rigorously controlling the
FDR at levelα , despite the additional fluctuations added by theπ0(P)-estimation. This problem,
calledπ0(P)-adaptive FDR control, has received a growing attention in the last decade, see e.g.
[6, 56, 9, 28, 7, 41, 51, 13]. To investigate this issue, a natural idea is to consider a modified
linear step-procedure using the threshold

tsu
f (p) = max

{
u∈ [0,1] : Ĝ(p,u)≥ u/

(
α f (p)

)}
. (20)

where f (p) > 0 is an estimator of(π0(P))−1 to be chosen. The latter is calledadaptive linear
step-up procedure. It is sometimes additionally said “plug in", because (20) corresponds to (19)
in which we have “plugged" an estimator of(π0(P))−1. Other types of adaptive procedures can
be defined, see Remark 3.6 below.

We describe now a way to choosef so that the control FDR(Rtsu
f
,P)≤ α still holds. However,

we only focus on the case where thep-values are independent, that is,P∈ P I . This restriction
is usual in studies providing an adaptive FDR control. First, to keep the non-increasing property
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of the thresholdtsu
f (·), we assume thatf (·) is coordinate-wise non-increasing. Second, using

techniques similar to those of Section 3.2, we can write for any P∈ P I ,

FDR(Rtsu
f
,P)≤ αm−1 ∑

i∈H0(P)

E

[1{pi ≤ tsu
f (p)}

tsu
f (p)

f (p)
]

≤ αm−1 ∑
i∈H0(P)

E

[1{pi ≤ tsu
f (p)}

tsu
f (p)

f (p0,−i)

]

= αm−1 ∑
i∈H0(P)

E

[
f (p0,−i)E

[1{pi ≤ tsu
f (p)}

tsu
f (p)

∣∣∣∣p0,−i

]]

≤ αm−1 ∑
i∈H0(P)

E
[

f (p0,−i)
]
, (21)

where we used Lemma 14 (i) in the last inequality (conditionally on the p-values of(p j , j 6= i),
becausef is coordinate-wise non-increasing). Additionally assuming that f (·) is permutation
invariant, we can upper-bound the RHS of (21) by using the Dirac-uniform configuration because
f (·) is non-increasing. This gives rise to the following result.

Theorem 3.5. Consider the adaptive linear step-up procedure Rtsu
f

with a threshold defined in

(20) using a(π0(P))−1-estimator f satisfying the following properties:
– f(·) is coordinate-wise non-increasing, that is, for all q,q′ ∈ [0,1]m with for all 1≤ i ≤ m,

q′i ≤ qi , we have f(q)≤ f (q′);
– f(·) is permutation invariant, that is, for any permutationσ of {1, ...,m}, ∀q ∈ [0,1]m,

f (q1, ...,qm) = f (qσ(1), ...,qσ(m));
– f satisfies

∀m0 ∈ {1, ...,m}, Ep∼DU(m0−1,m)( f (p))≤ m/m0, (22)

where DU(k,m) denotes the Dirac-uniform distribution on[0,1]m for which the k first coor-
dinates are i.i.d. uniform on(0,1) and the remaining coordinates are equal to0.

Then, for any P∈ P I , FDR(Rtsu
f
,P)≤ α .

The method leading to the upper-bound (21) was investigatedin [7] and described latter in
detail in [13]. The simpler result presented in Theorem 3.5 appeared in [13]. It uses the Dirac-
uniform configuration as a least favorable configuration forthe FDR. This kind of reasoning has
been also used in [23].

Let us now consider the problem of finding a “correct" estimator f of (π0(P))−1. This issue
has an interest in its own right and many studies investigated it since the first attempt in [52]
(see for instance the references in [14]). Here, we only dealwith this problem from the FDR
control point of view, by providing two families of estimators that satisfy the assumptions of
Theorem 3.5. First, define the “Storey-type" estimators, which are of the form

f1(p) =
m(1−λ )

∑m
i=1 1{pi > λ}+1

,

for λ ∈ (0,1) (λ not depending onp). It is clearly non-increasing and permutation invariant.
Moreover, we can check thatf1 satisfies (22): for anym0 ∈ {1, ...,m}, considering(Ui)1≤i≤m0−1
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Type I error rate control in multiple testing 17

i.i.d. uniform on(0,1),

Ep∼DU(m0−1,m)( f1(p)) =
m
m0

E

[
m0(1−λ )

∑m0−1
i=1 1{Ui > λ}+1

]
≤ m

m0
,

because for anyk≥ 2, q∈ (0,1) and forY having a binomial distribution with parameters(k−
1,q), we haveE((1+Y)−1) ≤ (qk)−1, as stated e.g. in [7]. This type of estimator has been
introduced in [55] and proved to lead to a correct FDR controlin [56, 7].

The second family of estimators satisfying the assumptionsof Theorem 3.5 is the “quantile-
type" family, defined by

f2(p) =
m(1− p(k0))

m−k0+1
,

for k0 ∈{1, ...,m} (k0 not depending onp). The latter may be seen as Storey-type estimators using
a data-dependentλ = p(k0). Clearly, f2(·) is non-increasing and permutation-invariant. Addition-
ally, f2(·) enjoys (22) because for anym0 ∈ {1, ...,m}, considering(Ui)1≤i≤m0−1 i.i.d. uniform
on (0,1) ordered asU(1) ≤ ...≤U(m0−1),

Ep∼DU(m0−1,m)( f2(p)) = E

[
m(1−U(k0−m+m0−1))

m−k0+1

]
=

m(1−E[U(k0−m+m0−1)])

m−k0+1

=
m(1− (k0−m+m0−1)+/m0)

m−k0+1
≤ m

m0
,

by using the conventionU( j) = 0 when j ≤ 0. These quantile type estimators have been proved
to lead to a correct FDR control in [7]. The simple proof abovewas given in [13].

Which choice should we make forλ or k0? Using extensive simulations (including other type
of adaptive procedures), it was recommended in [13] to choose as estimatorf1 with λ close
to α , because the corresponding procedure shows a “good" power under independence while it
maintains a correct FDR control under positive dependencies (in the equi-correlated Gaussian
one-sided model described in Example 1.2). Obviously, a “dynamic" choice ofλ (i.e., using
the data) can increase the accuracy of the(π0(P))−1 estimation and thus should lead to a better
procedure. However, proving that the corresponding FDR control remains valid in this case is an
open issue to our knowledge. Also, outside the case of the particular equi-correlated Gaussian
dependence structure, very little is known about adaptive FDR control.

Remark 3.6. Some authors have proposed adaptive procedures that are notof the “plug-in"
form (20). For instance, we can define the class of “one-stagestep-up adaptive procedures", for
which the threshold takes the formtos(p) = max

{
u ∈ [0,1] : Ĝ(p,u) ≥ rα(u)

}
, whererα(·) is

a non-decreasing function that depends neither onp nor on π0(P), see, e.g., [41, 23, 13]. As
an illustration, Blanchard and Roquain (2009) have introduced the curve defined byrα(t) =
(1+m−1) t/(t +α(1−α)) if t ≤ α andrα(t) = +∞ otherwise, see [13]. They have proved that
the corresponding step-up procedureRtos controls the FDR at levelα in the independent model
(by using the property of Lemma 14 (i)). Furthermore, Finneret al. (2009) have introduced the
“asymptotically optimal rejection curve" (AORC) defined byrα(t) = t/(α + t(1−α)), see [23].
By contrast with the framework of the present paper, they considered the FDR control only in
an asymptotic manner where the numberm of hypotheses tends to infinity. They have proved
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18 Etienne Roquain

that the AORC enjoys the following (asymptotic) optimalityproperty: while several adaptive
procedures based on the AORC provide a valid asymptotic FDR control (under independence),
the AORC maximizes the asymptotic power among broad classesof adaptive procedures that
asymptotically control the FDR, see Theorem 5.1, 5.3 and 5.5in [23].

3.4. Case of arbitrary dependencies

Many corrections of the linear step-up procedure are available to maintain the FDR control when
the p-value family has arbitrary and unknown dependencies. We describe here the so-called
“Occam’s hammer" approach presented in [11]. Surprisingly, it allows to recover and extend
the well-known “Benjamini-Yekutieli" correction [8] by only using Fubini’s theorem. Let us
consider

tβsu(p) = max{u∈ [0,1] : Ĝ(p,β (u)) ≥ u/α} (23)

= max{u∈ {αk/m,1≤ k≤ m} : Ĝ(p,β (u)) ≥ u/α}
= α/m×max{0≤ k≤ m : p(k) ≤ β (αk/m)}, (24)

for a non-decreasing functionβ : R+ → R
+. Then the FDR ofRβ(tβsu) can be written as follows:

for anyP∈ P,

FDR(Rβ(tβsu),P) = αm−1 ∑
i∈H0(P)

E

[
1{pi ≤ β (tβsu(p))}

tβsu(p)

]

= αm−1 ∑
i∈H0(P)

E

[
1{pi ≤ β (tβsu(p))}

∫ +∞

0
u−21{tβsu(p)≤ u}du

]
.

Next, using Fubini’s theorem, we obtain

FDR(Rβ(tβsu),P) = αm−1 ∑
i∈H0(P)

∫ +∞

0
u−2

E
[
1{tβsu(p)≤ u}1{pi ≤ β (tβsu(p))}

]
du

≤ αm−1 ∑
i∈H0(P)

∫ +∞

0
u−2

P(pi ≤ β (u))du

= α
m0(P)

m

∫ +∞

0
u−2β (u)du. (25)

Therefore, choosing any non-decreasing functionβ such that
∫+∞

0 u−2β (u)du= 1 provides a
valid FDR control. This leads to the following result:

Theorem 3.7. Consider a functionβ : R+ → R
+ of the following form: for all u≥ 0,

β (u) = ∑
i:1≤i≤m,α i/m≤u

(α i/m)νi , (26)

where theνis are nonnegative withν1 + · · ·+ νm = 1. Consider the step-up procedure Rβ(tβsu)

using tβsu defined by(23). Then for any P∈ P, FDR(Rβ(tβsu),P)≤ αm0(P)/m.
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Type I error rate control in multiple testing 19

Note that the functionβ defined by (26) takes the value(α/m)ν1 + · · ·+(α i/m)νi in each
u = α i/m and is constant on each interval(α i/m,α(i + 1)/m) and on(α ,∞). Thus, it always
satisfies thatβ (u) ≤ u, for any u ≥ 0. This means that the procedureRβ(tβsu) rejects always
less hypotheses than the linear step-up procedureRtsu. Therefore, whileRβ(tβsu) provides a FDR
control under no assumption about thep-value dependency structure, it is substantially more
conservative thanRtsu under weak PRDS dependencies between thep-values.

As an illustration, takingνi = i−1δ−1 for δ = 1+ 1/2+ ...+ 1/m, we obtainβ (α i/m) =
δ−1α i/m, which corresponds to the linear step-up procedure, exceptthat the levelα has been
divided byδ ≃ log(m). This is the so-called Benjamini-Yekutieli procedure proposed in [8]. The-
orem 3.7 thus recovers Theorem 1.3 of [8]. We mention anotherexample, maybe less classical,
to illustrate the flexibility of the choice ofβ in Theorem 3.7. By takingνm/2 = 1 andνi = 0 for
i 6=m/2 (assuming thatm/2 is an integer), we obtainβ (α i/m) = (α/2)1{i ≥ m/2}. In that case,
the final procedureRβ(tβsu) rejects the hypotheses corresponding top-values smaller thanα/2 if
2p(m/2) ≤ α and rejects no hypothesis otherwise. Theorem 3.7 ensures that this procedure also
controls the FDR, under no assumption on the model dependency. Many other choices ofβ are
given in Section 4.2.1 of [12].

Finally, let us underline that any FDR control valid under arbitrary dependency suffers from a
lack of interpretability for the underlying FDP, as discussed in Section 6.2.

Remark 3.8 (Sharpness of the bound in Theorem 3.7). In Lemma 3.1 (ii) of [36] (see also
[31]), a specifically craftedp-value distribution was built on[0,1]m (depending onβ ) for which
the FDR ofRβ(tβsu) is equal to α (and m0(P) = m). If the underlying modelP is such that
(pi(X))1≤i≤m can have this very specific distribution for someP ∈ P, the inequality “P ∈ P,
FDR(Rβ(tβsu),P)≤ α" in Theorem 3.7 is sharp. However, for a “realistic" modelP, this p-value
distribution is rarely attained because it assumes quite unrealistic dependencies between thep-
values. Related to that, several simulation experiments showed that the standard LSU procedure
still provides a good FDR control under “realistic" dependencies, see e.g. [21, 35]. This means
that the corrections defined in this section are generally very conservative for real-life data, be-
cause their actually achieved FDR is much smaller thanαm0(P)/m. Finally, another drawback of
the bound of Theorem 3.7 is that it is much smaller thanα whenπ0(P) = m0(P)/m is small. To
investigate this problem, we can think to apply techniques similar to those of Section 3.3. How-
ever, the problem of adaptive FDR control is much more challenging under arbitrary dependency.
The few results that are available in this framework are veryconservative, see [13].

Remark 3.9 (Aggregation of dependentp-values). Consider Theorem 3.7 in the particular case
where allp-values test the same null hypothesis, that isΘ0,i = Θ0 for any i. According to Re-
mark 1.6, we obtain a new test of levelα , by rejectingH0: “P ∈ Θ0" if the procedureRβ(tβsu)

defined in Theorem 3.7 rejects at least one null hypothesis, that is, if there existsk≥ 1 such that
p(k) ≤ β (αk/m). As an illustration, takingνγm = 1 andνi = 0 for i 6= γm, for a givenγ ∈ [0,1]
such thatγm∈ {1, ...,m}, we obtainβ (α i/m) = (αγ)1{i ≥ γm}, which gives rise to a test re-
jectingH0 wheneverp(γm)γ−1 ≤ α . This defines a new globalp-value

p̃= min(p(γm)γ−1,1)

for testingH0 that can be seen as an aggregate of the originalp-values. Thus, Theorem 3.7 shows
that P(p̃ ≤ α) ≤ α under the null, for arbitrary dependencies between the original p-values.
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20 Etienne Roquain

Interestingly, this aggregation procedure was independently discovered in [39] in a context where
one aims at combiningp-values that were obtained by different splits of the original sample. Also
note thatγ = 1/m corresponds to the Bonferroni aggregation procedure. Let us finally discuss
the choiceγ = 1/2 (assuming thatm/2 is an integer). In that case, the aggregatedp-value is
p̃ = min(2 p(m/2),1). According to Remark 3.8, the factor “2" in the latter is needed in theory
but may be over-estimated for a “realistic" distribution ofthe p-value family. As a matter of fact,
van de Wiel et al. (2009) have (theoretically) proved that this factor can be dropped as soon as
the p-value family has some underlying multivariate Gaussian dependency structure, see [57].

4. k-FWER control

The methodology presented in this section for controlling thek-FWER under arbitrary dependen-
cies can probably be attributed to many authors, e.g. [33, 63, 44, 45]. Here, we opted for a general
presentation which emphasizes the rationale of the mathematical argument. This approach has
been sketched in the talk [10] and investigated more deeply in [30] where it is referred to as the
“sequential rejection principle". While the latter point of view allows to obtain elegant proofs, it
is also useful for developing new FWER controlling procedures (e.g., hierarchical testing, Schaf-
fer improvement), see [30, 29, 34]. This methodology has been initially developed for the FWER.
We propose in Section 4.4 a new extension to thek-FWER.

In this section, for simplicity, we drop the explicit dependence of the multiple testing proce-
dureRw.r.t. p in the notation. The parameterk is fixed in{1, ...,m}.

4.1. Subset-indexed family

As a starting point, we assume that there exists a subset-indexed family{RC }C⊂H of multiple
testing procedures satisfying the two following assumptions:

• C 7→ RC is non-increasing, that is,

∀C ,C ′ ⊂ H such thatC ⊂ C
′, we haveRC ′ ⊂ RC ; (NI)

• RC controls thek-FWER whenC is equal to the subset of true null hypotheses, that is,

∀P∈ P, k-FWER(RH0(P),P)≤ α . (FWC0)

A natural way of deriving such a family is to take a thresholding-based family of the form

RC = {1≤ i ≤ m : pi ≤ tC }, (27)

wheretC ∈ [0,1] is a threshold which possibly depends on the datap = (pi)1≤i≤m. Assumption
(NI) then holds as soon as we taketC non-increasing inC (if C ⊂ C ′ thentC ′ ≤ tC ). However,
tC should be carefully chosen in order to ensure (FWC0), as we discuss below.

A first instance of a thresholding-based family satisfying (NI)-(FWC0) is the “Bonferroni
family" that choosestC = min(αk/|C |,1). Condition (FWC0) results from Markov’s inequality:

P(|H0(P)∩RH0(P)| ≥ k)≤ k−1 ∑
i∈H0(P)

P(pi ≤ tH0(P))≤ |H0(P)|tH0(P)/k≤ α .
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Type I error rate control in multiple testing 21

This family is not adaptive w.r.t. the dependence structureof the p-values. As an illustration,
when the truep-values are all equal, say, topi0, i0 ∈ H0(P), we have

P(|H0(P)∩RH0(P)| ≥ k) = P(|H0(P)|1{pi0 ≤ tH0(P)} ≥ k)≤ tH0(P).

Thus, under this extreme dependency structure, the Bonferroni threshold min(αk/|C |,1) can be
replaced byα (the only case which matters is|C | ≥ k, see Remark 4.2 below). Hence, there is a
potential loss when using the Bonferroni family. In practice, the Bonferroni family is often used
as a “benchmark family" for evaluating the performance of other families.

In order to improve on the Bonferroni family, one can try to choose a thresholdtC that captures
the dependencies between thep-values while still satisfying (NI)-(FWC0). For this, first note that
for RC defined by (27),

k-FWER(RC ,P) = P(∃i1, ..., ik ∈ H0(P) : ∀i ∈ {i1, ..., ik}, pi ≤ tC )

= P(k-min{pi , i ∈ H0(P)} ≤ tC ),

where k-min{pi , i ∈ H0(P)} denotes thek-th smallest element of{pi , i ∈ H0(P)}. Therefore,
a natural choice fortC is theα-quantile of the distribution of k-min{pi , i ∈ C }. However, the
latter is generally unknown because the underlying distribution P is unknown. An idea is to
approximate it by using a randomized thresholding procedure. This method can be applied when
the null hypothesis is invariant under the action of a finite group of transformations of the original
observation setX onto itself (such a transformation can be for instance a permutation or a sign-
flipping, see [44, 45, 1, 2]). For a recent and general description of this method, we refer the
reader to Theorem 2 of [30] (while [30] have developed this method only for k = 1, it can
be directly generalized to the case ofk ≥ 1). The resulting family satisfies (NI)-(FWC0) while
it is “adaptive" with respect to thep-value dependence structure, in the sense thattC = tC (p)
implicitly takes into account the potential relations existing between thep-values.

Remark 4.1. The monotonicity condition introduced in [30] can be rewritten with our notation
as follows:

∀C ,C ′ ⊂ H such thatC ⊂ C
′, we haveRC ′ ∩C

′ ⊂ RC . (wNI)

Condition (wNI) is weaker than condition (NI). Thus, at firstsight, the setting of [30] is more
general than ours. The next reasoning shows that the two settings are in fact equivalent. Since
the condition (FWC0) only depends on the set ofRC ∩C (for C = H0), we can add the el-
ements ofC c in the rejection setRC while still maintaining (FWC0) true. Therefore, starting
from a subset-indexed family{RC }C⊂H satisfying the weaker assumptions (wNI)-(FWC0), we
may define a new subset-indexed family{R′

C
}C⊂H satisfying our assumptions (NI)-(FWC0),

by letting R′
C
= RC ∪C c, and then apply to this family the methodology described in the next

sections. Moreover, by anticipating the definition of the FWER-controlling algorithm that will
be presented in Section 4.4, we can easily check that the output of this algorithm applied to the
family {R′

C
}C⊂H is the same than the algorithm of [30] applied to the family{RC }C⊂H . As a

consequence, our framework covers the original setting of [30].

Remark 4.2. Any subset-indexed family{RC }C⊂H satisfying (NI)-(FWC0) can be modified
in the following way: takeR̃C = H (reject all hypotheses) when|C | < k and R̃C = RC oth-
erwise. This maintains the conditions (NI)-(FWC0), because thek-FWER is always zero when
|H0(P)|< k.
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22 Etienne Roquain

In what follows, we investigate the problem of thek-FWER control once we have fixed a
subset-indexed family{RC }C⊂H satisfying (NI)-(FWC0).

4.2. Single-step method

From assumption (FWC0), the procedureRH0(P) usingC =H0(P) controls thek-FWER. Clearly,
this procedure cannot be used becauseH0(P) depends on the unknown underlying distributionP
of the data. We can use insteadRC with C =H because, from the two assumptions (NI)-(FWC0)
above, we havek-FWER(RH ,P)≤ k-FWER(RH0(P),P)≤ α . This implies thatRH always con-
trols thek-FWER at levelα . The latter is generally called thesingle-stepprocedure (associated
to the family {RC }C⊂H ). However, we argue thatRH could be often too conservative w.r.t.
RH0(P), for the two following reasons:

– H0(P) can be much smaller thanH ;
– the way the procedures{RC } have been built implicitly assumed thatC = H0(P) and can

be very conservative whenC is much larger thanH0.
For instance, these behaviors have been extensively discussed in [2] for particular Rademacher-
resampled thresholding procedures. Therefore, we seek fora procedure controlling thek-FWER
which is “close" toRH0(P) and which can be derived from the family{RC }C⊂H via a simple
algorithm.

4.3. Step-down method for FWER

We present in this section the special case ofk = 1, following the approach of [44] with the
presentation proposed in [10, 30]. Let us denote byAC the sets(RC )

c of non-rejected hypotheses
for the subset-indexed family. Consider the event

Ω0 = {RH0(P)∩H0(P) = /0}= {H0(P)⊂ AH0(P)}.

By assumption (FWC0), we haveP(Ω0) ≥ 1−α . Since from (NI),AC is non-decreasing inC ,
the following holds onΩ0: for anyC ⊂ H ,

H0(P)⊂ C =⇒ AH0(P) ⊂ AC =⇒ H0(P)⊂ AC . (28)

Thus, on the eventΩ0, takingC =C0 =H in (28) gives thatH0(P)⊂AC0, which in turn implies
H0(P)⊂ AC1 by takingC =C1 = AC0 in (28), and so on. By recursion, this proves the following
result:

Theorem 4.3.Assume that a family{RC }C⊂H of multiple testing procedures satisfies conditions
(NI) and (FWC0) and consider the corresponding family of non-rejected hypotheses{AC }C⊂H .
DefineĈ by the following “step-down" recursion:

• Initialization: C0 = H ;
• Step j≥ 1: let C j = AC j−1. If C j = C j−1, let Ĉ = C j and stop. Otherwise go to step j+1;

Then the procedure R= (Ĉ )c, which also equals R̂
C

, controls the FWER at levelα for any
P∈ P.
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Type I error rate control in multiple testing 23

Note that for all j ≥ 0, we haveC j+1 ⊂ C j , becauseC1 ⊂ C0 and AC is non-decreasing
in C . Thus, the set of rejected hypotheses can only increase during the step-down algorithm. In
particular, the final procedurêC c =R

Ĉ
is always less conservative than the single-step procedure

RH , for the same FWER control. Thus, using a step-down algorithm is always more powerful
than the single-step method.

Example 4.4(Bonferroni step-down procedure for FWER control). Theorem 4.3 can be used
with the Bonferroni familyRC = {1 ≤ i ≤ m : pi ≤ α/|C |}. In that case, by reordering the
p-valuesp(1) ≤ ... ≤ p(m) (with p(0) = 0), the corresponding step-down procedure defined in
Theorem 4.3 can be reformulated as rejecting the nulls withpi ≤ α/(m− ℓ̂+ 1), where ℓ̂ =
max{ℓ ∈ {0,1, ...,m} : ∀ℓ′ ≤ ℓ, p(ℓ′) ≤ α/(m− ℓ′+1)}. This is the well known step-downHolm
procedurewhich was introduced and proved to control the FWER in [33]. By contrast with step-
up procedures, the step-down Holm procedure starts from themost significantp-value and stops
the first time that a (ordered)p-value exceeds the critical curve. This is illustrated in Figure 3.
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FIGURE 3. Illustration of the two equivalent definitions of Holm’s procedure. The left picture is the classical step-
down representation: ordered p-values together with the solid curve ℓ 7→ α/(m− ℓ+1). The filled points represent
p-values that corresponds to the rejected hypotheses. The right picture illustrates the algorithm of Theorem 4.3:
ordered p-values with the three thresholdsα/10 (step 1),α/7 (step 2) andα/5 (step 3). For i∈ {1,2}, the points
filled with “i" are rejected in the ith step of the algorithm. Both pictures use the same p-values and m= 10; α = 0.5.

4.4. Step-down method fork-FWER

We would like to generalize Theorem 4.3 to the case of thek-FWER. This time, we should
consider the event

Ω0 = {|RH0(P)∩H0(P)| ≤ k−1}= {∃I0 ⊂ H , |I0|= k−1 : H0(P)⊂ AH0(P)∪ I0},
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which satisfies by assumptionP(Ω0)≥ 1−α . For any subsetC ⊂ H , let

φ(C ) =
⋃

I⊂H ,|I |=k−1

AC∪I =
⋃

I⊂C c,|I |≤k−1

AC∪I . (29)

Then we may prove that the following holds: on the eventΩ0, for anyC ⊂ H ,

∃I ⊂ H , |I |= k−1 : H0(P)⊂ C ∪ I =⇒ ∃I ⊂ H , |I |= k−1 : AH0(P) ⊂ AC∪I ⊂ φ(C )

=⇒ ∃I ′ ⊂ H , |I ′|= k−1 : H0(P)⊂ φ(C )∪ I ′.

The first implication holds becauseAC is non-decreasing inC and the second implication holds
by consideringI ′ = I0. Thus, on the eventΩ0, for anyC ⊂ H ,

|C c∩H0(P)| ≤ k−1=⇒ |(φ(C ))c∩H0(P)| ≤ k−1.

This leads to the following result.

Theorem 4.5.Assume that a family{RC }C⊂H of multiple testing procedures satisfies conditions
(NI) and (FWC0) and consider the corresponding family of non-rejected hypotheses{AC }C⊂H

and letφ be defined by(29). DefineĈ by the following “step-down" recursion:
• Initialization: C0 = H ;
• Step j≥ 1: let C j = φ(C j−1). If C j = C j−1, let Ĉ =C j and stop. Otherwise go to step j+1;

Then the procedure R= (Ĉ )c, which also equals(φ(Ĉ ))c =
⋂

|I |=k−1 R
Ĉ∪I , controls the k-FWER

at levelα for any P∈ P.

From (29),φ(·) is non-decreasing, that is,∀C ⊂ C ′, φ(C ) ≤ φ(C ′). As a consequence, we
derive fromC1 ⊂C0 thatC j ⊂C j−1 for all j ≥ 1. Therefore, the rejection set can only increase at
each step of the step-down algorithm. In particular, the final procedureĈ c =

⋂
|I |=k−1 R

Ĉ∪I is al-
ways less conservative than the single step methodRH , for the samek-FWER control. Therefore,
using the step-down algorithm always leads to a power improvement.

To illustrate Theorem 4.5, let us consider a thresholding-based family of the formRC = {1≤
i ≤ m : pi ≤ tC } with a non-increasing threshold functionC 7→ tC (i.e., such that forC ⊂ C ′, we
havetC ′ ≤ tC ) and such that{RC }C satisfies (FWC0). The recursion relationC ′ = φ(C ) can be
rewritten in that case as follows:

(C ′)c =
⋂

I⊂C c,|I |≤k−1

RC∪I

=
⋂

I⊂C c,|I |≤k−1

{1≤ i ≤ m : pi ≤ tC∪I}

=
{

1≤ i ≤ m : pi ≤ min
I⊂C c,|I |≤k−1

{tC∪I}
}
.

This recovers the generic step-down method described in Algorithm 2.1 of [45], which was
developed in the case where the subset-indexed family is thresholding based.

Example 4.6(Bonferroni step-down procedure fork-FWER control). When we choose the Bon-
ferroni family, i.e., the threshold familytC = αk/|C |, we have

min
I⊂C c,|I |≤k−1

{tC∪I}=
αk

m∧ (|C |+k−1)
.
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Type I error rate control in multiple testing 25

Therefore, in terms of the orderedp-values 0= p(0) ≤ p(1) ≤ ... ≤ p(m), the procedure of The-
orem 4.5 can be reformulated as rejecting the nullH0,i when pi ≤ αk/(m∧ (m− ℓ̂+ k)) where
ℓ̂= max{ℓ ∈ {0,1, ...,m} : ∀ℓ′ ≤ ℓ, p(ℓ′) ≤ αk/(m∧ (m− ℓ′+k))}. The latter is thegeneralized
Holm procedure, which was introduced and proved to control thek-FWER in [36].

5. FDP control

The problem of controlling the FDP has been investigated in many studies, e.g., [36, 59, 43,
15, 45, 17, 46]. We follow here a methodology proposed by Romano and Wolf (2007), see [45].
They have proposed to use a family{Sk}k of k-FWER controlling procedures and to choosek that
ensures that the corresponding rejection number|Sk| is “sufficiently large". Roughly speaking,
choosingk such that|Sk| is larger than(k−1)/γ implies that, with high probability,

FDP(Sk,P) = |Sk∩H0(P)|/|Sk| ≤ (k−1)/|Sk| ≤ γ .

Obviously, as it is, the above reasoning is not rigorous, because the chosenk depends on the data.
Theorem 4.1 (i) of [45] establishes that the latter approachleads to a correct FDP control in the
asymptotic setting where the sample size available for eachtest tends to infinity. This can be seen
as a Dirac configuration where eachp-value corresponding to false nulls are equal to zero.

In this section, we propose to reformulate this approach by using as index the rejection number
instead ofk. Roughly speaking, if we choose{Rℓ}ℓ such that eachRℓ controls the(γℓ+1)-FWER
and we chooseℓ such that|Rℓ| ≥ ℓ, we obtain that, with high probability,

FDP(Rℓ,P) = |Rℓ∩H0(P)|/|Rℓ| ≤ γℓ/|Rℓ| ≤ γ .

Similarly to the previous paragraph, this argument is not rigorous because the chosenℓ depends
of the data. The main task of this section is to rationalize this approach. This leads to a general
result (Theorem 5.2 given in Section 5.2), which covers bothTheorem 4.1 (i) of [45] in the
“Dirac" setting (see Section 5.4) and the earlier result of [36] (see Section 5.3). As additional
corollary, we derive the FDP control of the quantile-binomial procedure described in Algorithm 8,
when the data are assumed to follow the modelP I (see Section 5.3).

In this section, the parameterγ is fixed once and for all in(0,1).

5.1. Family indexed by rejection numbers

Assume that we have at hand a family{Rℓ}1≤ℓ≤m of multiple testing procedures and a class of
distributionsP ′ ⊂ P satisfying the following properties:

• Rℓ is non-decreasing with respect toℓ, that is,

∀ℓ ∈ {1, ...,m−1}, Rℓ ⊂ Rℓ+1 ; (ND)

• Rℓ controls the(⌊γℓ⌋+1)-FWER at levelα for any P ∈ P ′ such that less thanm− ℓ+
⌊γ(ℓ−1)⌋+1 null hypotheses are true, that is,

∀ℓ ∈ {1, ...,m}, ∀P∈ P ′ s.t.|H0(P)| ≤ m− ℓ+ ⌊γ(ℓ−1)⌋+1,
P(|Rℓ∩H0(P)| ≥ ⌊γℓ⌋+1)≤ α ; (FWC)
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26 Etienne Roquain

• for anyP∈ P ′, for anyℓ ∈ {1, ...,m}, the false rejection number ofRℓ is independent of
the correct rejection numbers ofRℓ′ , for 1≤ ℓ′ ≤ m, that is,

∀P∈ P
′,∀ℓ ∈ {1, ...,m}, |Rℓ ∩H0(P)| is independent of{|Rℓ′ ∩H1(P)|,1≤ ℓ′ ≤ m} .

(DA)

In condition (FWC), for anyx≥ 0, ⌊x⌋ denotes the largest integern such thatn≤ x. Condition
(ND) is natural because the indexℓ can be interpreted as a rejection number. It is easy to check
in the examples below.

For anyP ′ ⊂ P, condition (FWC) is fulfilled by the (single-step or step-down) k-FWER
controlling procedures of the previous section whenk= ⌊γℓ⌋+1. As a first instance, we can use
the (single-step) Bonferroni familyRℓ using the thresholdα(⌊γℓ⌋+ 1)/m. Moreover, note that
|H0(P)| ≤ m− ℓ+ ⌊γ(ℓ−1)⌋+1 in (FWC), thus we can consider the improved threshold

tLR
ℓ =

α(⌊γℓ⌋+1)
m− ℓ+ ⌊γ(ℓ−1)⌋+1

. (30)

The threshold (30) is slightly larger than the threshold used in Theorem 3.1 of [36] (they used
⌊γℓ⌋ instead of⌊γ(ℓ− 1)⌋ in the denominator). As a second instance, we can substantially im-
prove on the above threshold family when we additionally assume that the distributionP of the
data lies in the smaller subsetP ′ = P I : for this, note that for anyP∈ P I and for anyt ∈ [0,1],
the variable|{i ∈ H0(P) : pi(X) ≤ t}| is stochastically upper-bounded by a binomial distribu-
tion of parameters|H0(P)| andt, which in turn is stochastically upper-bounded by a binomial
distribution of parametersm− ℓ+ ⌊γ(ℓ−1)⌋+1 andt. Therefore, choosing the (deterministic)
quantile-based threshold family(tQ

ℓ )1≤ℓ≤m defined by

tQ
ℓ = max{t ∈ [0,1] : P

(
Z > γℓ

)
≤ α for Z ∼ B(m− ℓ+ ⌊γ(ℓ−1)⌋+1, t)} (31)

= max{t ∈ [0,1] : qℓ(t)≤ γℓ},

whereqℓ(·) is defined by (8), we obtain a family of thresholding procedures satisfying (FWC)
with P ′ =P I . Clearly, sincetLR

ℓ in (30) is only based upon Markov’s inequality, which is in gen-
eral not accurate for binomial variables, the threshold family tQ

ℓ defined by (31) is substantially
larger, as illustrated in Figure 4. Interestingly, we can use more elaborate deviation inequalities
to obtain thresholds that are better thantLR

ℓ while having a form more explicit thantQ
ℓ , see Re-

mark 5.1.
Assumption (DA) is a dependence assumption which is typically satisfied in the two following

cases:
− each procedureRℓ uses a deterministic threshold and thep-values associated to true nulls

are independent of thep-values associated to false nulls, for all distributions ofP ′, that is,

∀ℓ ∈ {1, ...,m},Rℓ = {i ∈ {1, ...,m} : pi ≤ tℓ} for a deterministictℓ ∈ [0,1]
and∀P∈ P ′,(pi(X))i∈H0(P) is independent of(pi(X))i∈H1(P)

; (DA’)

− for all distributions ofP ′, the number of correct rejections of eachRℓ is deterministic, that
is,

∀P∈ P
′, {|Rℓ′ ∩H1(P)|,1≤ ℓ′ ≤ m} is deterministic. (DA”)
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Type I error rate control in multiple testing 27

Condition (DA”) is satisfied for instance whenH1(P) ⊂ Rℓ′, for any ℓ′, which is the case
for procedures of the formRℓ = {i ∈ {1, ...,m} : pi ≤ tℓ(p)} using a possibly data-dependent
thresholdtℓ(p) ∈ [0,1], when we assume that thep-values are in the Dirac configuration, that is,
when they are equal to zero under the alternative.

Remark 5.1. Using Hoeffding’s and Bennett’s inequalities (see, e.g., Proposition 2.7 and 2.8 in
[38]), we can derive a family of thresholding procedures satisfying (FWC) withP ′ = P I , by
using the threshold

(tQ)′ℓ = max(tLR
ℓ , tHo

ℓ , tBe
ℓ ), (32)

where we let

tHo
ℓ =

( ⌊γℓ⌋+1
m− ℓ+ ⌊γ(ℓ−1)⌋+1

−
(

log(1/α)

2(m− ℓ+ ⌊γ(ℓ−1)⌋+1)

)1/2)
∨0

tBe
ℓ =

⌊γℓ⌋+1
m− ℓ+ ⌊γ(ℓ−1)⌋+1

h−1
(

log(1/α)

⌊γℓ⌋+1

)
,

with h(u) = u− log(u)−1, u∈ (0,1].

0 20 40 60 80 100

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0 20 40 60 80 100

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

FIGURE 4. Threshold tQℓ in (31) for modelP I (solid line), threshold(tQ)′ℓ in (32) for modelP I (dotted line) and
threshold tLR

ℓ in (30) for modelP (dashed line) in function ofℓ ∈ {1, ...,m}. m= 100; γ = 0.2. Right:α = 0.5; left:
α = 0.05.

5.2. Step-down method

The approach described in this section is an adaptation of the proof of Theorem 3.1 in [36] to
our setting. Let us consider a family{Rℓ}1≤ℓ≤m and a class of distributionsP ′ ⊂ P satisfying
(ND)-(FWC)-(DA). We aim at selectingℓ= ℓ̂ that provides∀P∈ P ′, FDP(Rℓ̂,P)≤ α .
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28 Etienne Roquain

First note that, by definition of the FDP, we have for anyℓ ∈ {1, ...,m} such that|Rℓ|= ℓ:

{FDP(Rℓ,P)> γ}= {|H0(P)∩Rℓ|> γℓ}
= {|H0(P)∩Rℓ| ≥ ⌊γℓ⌋+1}
= {ℓ ∈ L }, (33)

whereL = {ℓ ∈ {1, ...,m} : ℓ−|H1(P)∩Rℓ| ≥ ⌊γℓ⌋+1} is a set which only depends on the set
{|H1(P)∩Rℓ′|,1≤ ℓ′ ≤ m}.

Second, note that for anyℓ ∈ {1, ...,m} such that|Rℓ| ≥ ℓ,

{ℓ ∈ L } ⊂ {|H0(P)∩Rℓ| ≥ ⌊γℓ⌋+1}. (34)

Let us considerℓ⋆ = min{L } (with ℓ⋆ = m+ 1 whenL = /0). From (33) and (34), taking
ℓ̂ ∈ {1, ...,m} such that|Rℓ̂|= ℓ̂ and such that for anyℓ≤ ℓ̂, |Rℓ| ≥ ℓ, we obtain

{FDP(Rℓ̂,P)> γ} ⊂ {ℓ⋆ ≤ ℓ̂}
⊂ {|H0(P)∩Rℓ⋆| ≥ ⌊γℓ⋆⌋+1}.

Moreover, if ℓ⋆ ≥ 2, by definition ofℓ⋆, we haveℓ⋆− 1 /∈ L . Hence, we obtain the following
upper-bound for|H0(P)|:

|H0(P)|= m−|H1(P)| ≤ m−|H1(P)∩Rℓ⋆−1| ≤ m− ℓ⋆+ ⌊γ(ℓ⋆−1)⌋+1.

Since the above bound is also true whenℓ⋆ = 1, it holds for any possible value ofℓ⋆.
Finally noting thatℓ⋆ only depends on the variable set{|H1(P)∩Rℓ′|,1≤ ℓ′ ≤ m} and using

(FWC)-(DA), we have proved that for anyℓ ∈ {1, ...,m},

P(FDP(Rℓ̂,P)> γ | ℓ⋆ = ℓ)≤ P(|H0(P)∩Rℓ| ≥ ⌊γℓ⌋+1| ℓ⋆ = ℓ)

= P(|H0(P)∩Rℓ| ≥ ⌊γℓ⌋+1)

≤ α .

Also, the probabilityP(FDP(Rℓ̂,P) > γ | ℓ⋆ = m+ 1) is zero, because it is smaller thanP(ℓ̂ ∈
L | ℓ⋆ = m+1). This leads to the following result.

Theorem 5.2. Assume that there exists a family{Rℓ}1≤ℓ≤m of multiple testing procedures and a
class of distributionsP ′ ⊂P satisfying the conditions(ND)-(FWC)-(DA) defined in Section 5.1.
Consider the procedure Rℓ̂ where

ℓ̂= max
{
ℓ ∈ {0, ...,m} : ∀ℓ′ ∈ {0, ..., ℓ}, |Rℓ′ | ≥ ℓ′

}
, (35)

(with the convention R0 = /0). Then R̂ℓ controls the FDP in the following sense:

∀P∈ P
′, P(FDP(Rℓ̂,P)> γ)≤ α . (36)

The algorithm performed to find (35) is a step-down algorithm; it starts from small rejection
numbers and stops the first time that|Rℓ| is below ℓ. Note that the maximum in (35) is well
defined becauseℓ= 0 satisfies|Rℓ| ≥ ℓ. Furthermore, using (ND), relation (35) impliesℓ̂≤ |Rℓ̂| ≤
|Rℓ̂+1|< ℓ̂+1, so that|Rℓ̂|= |Rℓ̂+1|= ℓ̂ holds. As a consequence, the procedure of Theorem 5.2
can be equivalently defined byRℓ̃ where

ℓ̃= min{ℓ ∈ {1, ...,m+1} : |Rℓ| ≤ ℓ−1}, (37)

with the conventionRm+1 = Rm (so that the minimum in (37) is well defined).
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Type I error rate control in multiple testing 29

5.3. Theorem 3.1 of [36] and the quantile-binomial procedure as corollaries

Going back to the specific setting (DA’) described in Section5.1, we may derive from Theo-
rem 5.2 the following corollary.

Corollary 5.3. Let us consider the deterministic threshold family(tLR
ℓ )1≤ℓ≤m defined by(30)and

consider

ℓ̂= max
{
ℓ ∈ {0, ...,m} : ∀ℓ′ ∈ {0, ..., ℓ}, p(ℓ′) ≤ tLR

ℓ′
}
, (38)

where0 = p(0) ≤ p(1) ≤ ... ≤ p(m) denote the ordered p-values and by convention tLR
0 = 0.

Then the procedure R̂ℓ = {i ∈ {1, ...,m} : pi ≤ tLR
ℓ̂
} satisfies the FDP control(36) for the sub-

setP ′ of distributions P∈ P such that the family(pi(X))i∈H0(P) is independent of the family
(pi(X))i∈H1(P).

By reproducing the end of the proof of Theorem 5.2 in the particular setting of Corollary 5.3,
we may increase a bit the distribution setP ′ in Corollary 5.3 to the set ofP∈ P such that for
any i ∈ H0(P), ∀u∈ [0,1], P(pi(X)≤ u| (pi(X))i∈H1(P))≤ u. This is the distributional setting of
Theorem 3.1 of [36]. Hence, we are able to recover the latter result (with a slight improvement
in the threshold family).

Furthermore, if we want to ensure the FDP control (36) only for the smaller distribution set
P ′ = P I , we may consider the larger threshold family(tQ

ℓ )1≤ℓ≤m defined by (31). This gives
rise to the step-down procedure

RQ = {i ∈ {1, ...,m} : pi ≤ tQ
ℓ̂
}, (39)

whereℓ̂= max{ℓ ∈ {0, ...,m} : ∀ℓ′ ∈ {0, ..., ℓ}, p(ℓ′) ≤ tQ
ℓ′ } (with tQ

0 = 0). The latter is the proce-

dure described in Algorithm 1.7, becausep(ℓ) ≤ tQ
ℓ if and only if qℓ(p(ℓ))≤ γℓ, with qℓ(·) defined

by (8). As a consequence, Theorem 5.2 provides the result announced in Section 1.7.

Corollary 5.4. For any γ ,α ∈ (0,1), the quantile-binomial procedure RQ described in Algo-
rithm 1.7, or equivalently in(39), controls the FDP in the following way:

∀P∈ P
I , P(FDP(RQ,P)> γ)≤ α .

In particular, the median-binomial procedure RM (usingα = 1/2) provides that the median of
the distribution of FDP(RM,P) is controlled at levelγ for any P∈ P I .

To our knowledge, the above result is a new finding. It establishes a FDP control which is
substantially more suitable to the case of independentp-values in comparison with the procedure
of [36]. Further comments on this procedure can be found in Section 6.3.

5.4. Theorem 4.1 (i) of [45] as a corollary

In Section 4 of [45], a step-down procedureŜk is defined from a generic family{Sk}1≤k≤m of
thresholding based procedures. The latter family is assumed to be such that eachSk controls the
k-FWER for 1≤ k≤ m andSk ⊂ Sk+1 for 1≤ k≤ m−1. The index̂k is obtained as follows:

k̂= min{k∈ {1, ...,m+1} : γ |Sk|< k− γ}, (40)
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30 Etienne Roquain

where we use here the conventionSm+1 = Sm (so that the above set always containsk = m+1).
Theorem 4.1 (i) of [45] states thatŜk controls the FDP in the asymptotic sense, as the sample
size available to perform each test tends to infinity. This can be seen as a (non-asymptotic) FDP
control in a Dirac configuration where thep-values corresponding to false nulls are equal to zero.
Set under this form, Theorem 4.1 (i) of [45] can be derived from Theorem 5.2.

For this, letRℓ = S⌊γℓ⌋+1, for ℓ ∈ {1, ...,m}, and note that the family{Rℓ}1≤ℓ≤m satisfies (ND)-
(FWC) and (DA”), by taking the distribution setP ′ corresponding to Dirac configurations for
the p-values. Hence, Theorem 5.2 establishes the FDP control forthe Dirac configurations of the
procedureRℓ̃ whereℓ̃ is defined by (35), or equivalently by (37). Thus, it only remains to show
that the step-down algorithms (40) and (37) lead to the same procedure, that is,

Rℓ̃ = Ŝk.

To prove the latter, we establisĥk = ⌊γ ℓ̃⌋+ 1. First, using (37),ℓ̃ satisfiesγ |S⌊γ ℓ̃⌋+1| ≤ γ ℓ̃−
γ . Sinceγℓ < ⌊γℓ⌋+ 1, we deduce from the definition ofk̂ that ⌊γ ℓ̃⌋+ 1 ≥ k̂. Conversely, by
considering the unique integerℓ∈{1, ...,m} satisfyingk̂/γ−1≤ ℓ< k̂/γ and thus also⌊γℓ⌋+1=
k̂, we have that for any integerj, γ j < k̂⇒ j ≤ ℓ. Applying the latter forj = |Ŝk|+1, we obtain
from γ(|Ŝk|+ 1) < k̂ that |Ŝk| ≤ ℓ− 1 and thusℓ ≥ ℓ̃, by using the definition of̃ℓ. This in turn
impliesk̂≥⌊γ ℓ̃⌋+1. We thus have proved the following result, which can be seenas Theorem 4.1
(i) of [45] in the Dirac setting.

Corollary 5.5. Assume that there exists a family{Sk}1≤k≤m of multiple testing procedures (with
the convention Sm+1 = Sm) satisfying

- for each k∈ {1, ...,m}, Sk is of the form{i ∈ {1, ...,m} : pi ≤ tk(p)} for a possibly data-
dependent threshold tk(·) ∈ [0,1];

- for each k∈ {1, ...,m−1}, Sk ⊂ Sk+1;
- for each k∈ {1, ...,m}, ∀P∈ P, k-FWER(Sk,P)≤ α .

Considerk̂ defined in(40) and the subsetP ′ of distributions P∈ P corresponding to a Dirac
configuration, i.e., such that∀P∈ P ′, ∀i ∈ H1(P), pi(x) = 0 for P-almost every x∈ X . Then
we have∀P∈ P ′, P(FDP(Ŝk,P)> γ)≤ α .

6. Discussion

6.1. Complexity of thek-FWER step-down approach

One major limitation of thek-FWER approach presented in Section 4 is that the computation of
φ(·) in (29) can become cumbersome whenk is large because we should consider all subsetsI
of C c of cardinalityk− 1 (say that|C c| ≥ k− 1). However, we may modify this algorithm by
considering only the setI equals to thek− 1 indexes ofC c corresponding to thek− 1 largest
p-values in{pi , i ∈ C c}. As noted in [45], this “streamlined" step-down procedure still controls
thek-FWER in the Dirac model where each false null has ap-value equals to zero. The latter is
true because in this model, as soon as|C c∩H0(P)| ≤ k−1, we know that the setC c∩H0(P)
is included in the setI of indexes corresponding to thek− 1 largestp-values in{pi , i ∈ C c}
(because thep-values of{pi , i ∈ C c∩H1(P)} are zero). Nevertheless, no proof of thisk-FWER
control stands without this Dirac assumption.
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6.2. FDR control is not FDP control

Since the only interpretable variable is the FDP and not its expectation, controlling the FDR is
meaningful only when the FDP concentrates well around the FDR. As the hypothesis numberm
grows, Neuvial (2008) showed that the latter holds for step-up type procedures when a Donsker
type theorem for the e.c.d.f. is valid, so for instance underindependence or “weak" dependence,
see [41]. However, under some unspecified dependencies, we do not know how the FDP concen-
trates. For instance, even under a very simpleρ-equi-correlated Gaussian model (corresponding
to Example 1.2, where the non-diagonal entries ofΣ(P) are all equal toρ), its was shown in [16]
that the convergence rate of the FDP to the FDR can be arbitrarily slow whenρ = ρm tends to
zero asm tends to infinity. Additionally, it was proved in [24] that noconcentration phenomenon
occurs whenρ is kept fixed withm. Also, as shown in [48], the “sparsity" (π0(P) = π0,m(P)
tends to 1 asm tends to infinity) is one other feature that can slow down the FDP convergence.
Therefore, in all these cases, the FDP convergence is slow and controlling the FDR does not lead
to a clear interpretation for the underlying FDP. The latterdrawback does not arise while control-
ling the FDP upper-tail distribution: for instance, the FDPcontrolP(FDP> 0.01) ≤ 0.5 ensures
that, with a probability at least 0.5, the FDP is below 0.01, and this interpretation holds whatever
the FDP distribution is. However, the FDR stays useful, because this is a simpler criterion for
which the controlling methodology is (for now) much more developed in comparison with the
FDP controlling methodology.

6.3. Quantile-binomial procedure and relation to previouswork

Let us consider the quantile-binomial procedure defined in algorithm 1.7 and the quantile func-
tion qℓ(·) defined by (8). In the particular case where we takeα = 1/2, the procedure is called
the median-binomial procedure and Corollary 5.4 shows thatit controls the median of the FDP
at level γ under independence of thep-values. Interestingly, in the “Gaussian regime" where
the underlying binomial variable is close to a Gaussian variable (say,γ not too small, many re-
jections), the median is close to the expectation and thusqℓ(t) ≃ (m− ℓ+ ⌊γ(ℓ− 1)⌋+ 1)t ≃
(m− (1− γ)ℓ+1)t. Hence, in this case, the median-binomial procedure is close to the step-down
procedure using the thresholdingtℓ = γℓ/(m− (1− γ)ℓ+1). As matter of fact, the latter proce-
dure has been recently introduced by Gavrilov et al. (2009) and it has been proved to control
the FDR under independence, see [26]. Roughly speaking, thelatter may be interpreted in our
framework as a “mean-binomial procedure". However, in the Poisson regime (say,γ small, few
rejections), the median-binomial procedure can be substantially different from the procedure of
Gavrilov et al. (2009). Hence, we should keep in mind that thetwo procedures do not control the
same error rate. These different remarks are illustrated inFigure 5, where we have also reported
the Benjamini-Hochberg threshold.

6.4. Conclusion

In this paper, we have recovered some of the classical state-of-the-art multiple testing procedures
for controlling the FDR,k-FWER and the FDP. Additionally, some new contributions were also
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FIGURE 5. Comparison between Benjamini-Hochberg thresholding tℓ = γℓ/m (dashed-dotted), the Gavrilov et al.
thresholding tℓ = γℓ/(m−(1−γ)ℓ+1) (dashed) and the quantile thresholding tQ

ℓ defined by(31)with α = 0.5 (solid)
in function ofℓ. m= 100; Top: γ = 0.01; Bottom: γ = 0.1. Each right picture is a zoom of the left picture into the
regionℓ ∈ {1, ...,80} (top) or ℓ ∈ {1, ...,50} (bottom).

given for k-FWER and FDP control, by extending and unifying some previous work of multi-
ple testing literature and by finding a novel procedure, based on the quantiles of the binomial
distribution, which controls the FDP under independence.

The type I error rate control research area still has many unsolved issues. Among the major
concerns, the FDP control in Section 5 needs a very strong distributional assumption on the test
statistics, namely independence or “Dirac" assumption. Toour knowledge, no procedure adaptive
to dependencies is proved to control the FDP without assuming such a strong requirement. This
is a room left for future developments, which would have a strong impact on high-dimensional
data analysis.
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Appendix A: Defining a p-value from a test statistic

Let us consider the problem of testing a (single) hypothesisH0 : “P ∈ Θ0" from a test statistic
S(X). Assume thatH0 should be rejected for “large" values ofS(X). We letTP(s) =PX∼P(S(X)≥
s), FP(s) = PX∼P(S(X)≤ s) andF−1

P (v) = min{s∈R∪{−∞} : FP(s)≥ v}. The following result
is elementary and can be considered as well known. It is strongly related to Theorem 10.12 in
[61], Lemma 3.3.1 in [37] (see also Problem 3.23 therein) andProposition 1.2 in [17].

Proposition A.1. The p-value p(X) = supP∈Θ0
TP(S(X)) satisfies the following:

(i) p(X) is stochastically lower-bounded by a uniform variable under the null, that is,

∀P∈ Θ0, ∀u∈ [0,1], PX∼P(p(X)≤ u)≤ u.

(ii) if for any P∈ Θ0, FP is continuous, we have for any realization x of X,

p(x) = min{α ∈ [0,1] : S(x)≥ sup
P∈Θ0

F−1
P (1−α)}.

If additionally Θ0 is a singleton, p(X)∼U(0,1) whenever P∈ Θ0.
(iii) if for any P ∈ Θ0, the variable S(X) takes its values in a discrete set with probability1,

we have for any realization x of X,

p(x) = min{α ∈ [0,1] : S(x)> sup
P∈Θ0

F−1
P (1−α)}.

In particular, if S(X) is an integer random variable, we have for any x such that S(x) ∈N,

p(x) = min{α ∈ [0,1] : S(x) ≥ sup
P∈Θ0

F−1
P (1−α)+1}.

A consequence is that the two classical definitions of ap-value are compatible in the following
way.

Corollary A.2. Assume that there exists Q∈ Θ0 such that for any P∈ Θ0, for all s∈R, FP(s)≥
FQ(s). Let p(X) =TQ(S(X)) and consider the families of tests{φα}α∈[0,1] and{φ ′

α}α∈[0,1], where

φα(x) = 1{S(x) ≥ F−1
Q (1−α)} andφ ′

α(x) = 1{S(x) > F−1
Q (1−α)}. Then the following holds.

(i) if FQ is continuous, the testsφα and φ ′
α are of levelα for all α ∈ [0,1] and we have for

any realization x of X,

[p(x),1] = {α ∈ [0,1] : φα(x) = 1}.

and for Q-almost every x,

(p(x),1] = {α ∈ [0,1] : φ ′
α(x) = 1}.

(ii) if for X ∼ Q the variable S(X) takes its values in a discrete set with probability1, the test
φ ′

α is of levelα while the testφα is not of levelα , for all α ∈ [0,1], and we have for any
realization x of X,

[p(x),1] = {α ∈ [0,1] : φ ′
α(x) = 1}.
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In particular, we have both in the continuous and discrete case that for Q-almost every x,

p(x) = inf{α ∈ [0,1] : φ ′
α(x) = 1}.

Proof. From Proposition A.1 (ii) and (iii), the only assertion to beproved is that for allα ∈
[0,1], for Q-almost everyx, S(x) > F−1

Q (1− α) ⇔ p(x) < α . Let us denoteQ = {F−1
Q (1−

α),α ∈ [0,1]}. SinceFQ is increasing onQ, the desired relation is provided forS(x) ∈ Q. We
can conclude becausePX∼Q(S(X) ∈ Q) = 1.

Example A.3. To illustrate (i) and (iii) of Proposition A.1, let us consider the following simple
discrete testing setting (coming from Example 3.3.2 in [37]). Let H0 : “P = P0" where P0 is
the uniform distribution on{1, ...,10} and consider the test statisticS(X) = X. We easily see
that thep-valueTP0(X) is p(X) = (11−X)/10. It satisfiesP(p(X) ≤ u) ≤ u, with equality iff
u can be written under the formi/10 for some integeri, 1 ≤ i ≤ 10. Furthermore, rejecting
H0 for p(X)≤ α is equivalent to rejectH0 wheneverX ≥ k(α) wherek(α) is the unique integer
satisfying(11−k(α))/10≤ α < (12−k(α))/10. We merely check thatk(α) = F−1

P0
(1−α)+1.

Finally, we provide a proof for Proposition A.1.

Proof. Let F̊P(s) = PX∼P(S(X)< s) and let us first state the following result: for anyP, for any
α ∈ [0,1],

{TP(S(X))≤ α}=
{

{S(X)≥ F−1
P (1−α)} if F̊P(F

−1
P (1−α)) = 1−α

{S(X)> F−1
P (1−α)} otherwise

. (41)

To establish (41), first note that{TP(S(X))≤α}= {F̊P(S(X))≥ 1−α} ⊂ {S(X)≥ F−1
P (1−α)},

by definition ofF−1
P (1−α). On the one hand, if̊FP(F

−1
P (1−α)) = 1−α , we have{S(X) ≥

F−1
P (1−α)} ⊂ {F̊P(S(X)) ≥ F̊P(F

−1
P (1−α))} = {F̊P(S(X)) ≥ 1−α}. On the other hand, if

F̊P(F
−1
P (1−α)) < 1−α , we have{F̊P(S(X)) ≥ 1−α} ⊂ {S(X) > F−1

P (1−α)} and{S(X) >
F−1

P (1−α)} ⊂ {F̊P(S(X))≥ FP(F
−1
P (1−α))} ⊂ {F̊P(S(X))≥ 1−α}. This proves (41).

Let us now prove (i). We have for anyP ∈ Θ0, PX∼P(p(X) ≤ α) ≤ PX∼P(TP(S(X)) ≤ α).
Next, applying (41), we have if̊FP(F−1

P (1−α)) = 1−α ,

PX∼P(p(X)≤ α)≤ PX∼P(S(X)≥ F−1
P (1−α)) = 1− F̊P(F

−1
P (1−α)) = α

and if F̊P(F
−1
P (1−α))< 1−α ,

PX∼P(p(X)≤ α)≤ PX∼P(S(X)> F−1
P (1−α)) = 1−FP(F

−1
P (1−α))≤ α .

Assume now that for anyP∈ Θ0, FP is continuous, and prove (ii). In this case,F̊P(F
−1
P (1−

α)) = FP(F
−1
P (1−α)) = 1−α for anyα ∈ [0,1], so that (41) provides that{TP(S(X))≤ α}=

{S(X)≥ F−1
P (1−α)}. Hence, we obtain for any realizationx of X,

p(x) = min{α ∈ [0,1] : ∀P∈ Θ0,TP(S(x)) ≤ α}
= min{α ∈ [0,1] : ∀P∈ Θ0,S(x) ≥ F−1

P (1−α)},

which leads to the desired result.
For (iii), the proof is similar by noting that̊FP(F−1

P (1−α)) < 1−α in the case where the
distribution ofS(X) has a discrete support under the null.
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