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INTRODUCTION

Chiari malformation type I (CM-I) is a cerebellar tonsillar herniation through the foramen 

magnum, leading to a cerebro-spinal fluid (CSF) obstruction at the craniocervical junction. To 

restore the CSF flow, most of the surgeons enlarge this anatomical area (cisterna magna) by a 

suboccipital craniectomy associated with a dural graft5,26,44. We prefer an extradural approach, 

described by Isu et al.20 in 1993, reducing the risks of CSF leak, in which the outer layer of the 

dura is separated from the inner layer and removed. Thus, a new cisterna magna is created, 

considering the dural inner part capability of expansion. From our clinical experience, we try 

to argue in this study the effectiveness of this technique using histological and biomechanical 

considerations. This work is divided in two parts : in the first one, we examine the posterior 

fossa dura mater (DM) composition and the orientation of its fibers; in the second one, we 

emphasize the difference of biomechanical behaviour between entire dura and split dura.
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MATERIAL AND METHODS

1) Histological study

We removed 3 specimens (A, B, C) of craniocervical junction DM on fresh human cadavers 

(2 females, one male; all over 70 years old). For each specimen, 15 samples at precise zones 

(figure 1) and numbered from 1 to 15 were observed on transversal sections. We added 6 

sagittal  sections  (from B and C specimens).  All  the  samples  were fixed in  formalin  and 

embedded  in  paraffin.  Microtome  sections  were  stained  with  hematoxylin-eosin,  Masson 

trichrome for collagen and orcein for elastin. Four sections were not interpretable because of a 

wrong section plan, so that we examined 47 sections.

The  characterisation  of  DM  consists  in  examination  of  four  criterions  under  optical 

microscopy: thickness, presence of two distinct layers with a define boundary, density and 

orientation of collagen and elastin fibers. 

2) Biomechanical study

We removed 22 posterior fossa dural samples from 10 donors (6 females and 4 males; all over 

70 years old). We took off 15 intact dural samples and 7 split dural samples (all the split 

samples had their intact equivalent from the same donor). For the latter, we removed the outer 

layer of the dura in condition of real surgery using a blade number 15 and a blunt dissector. 

No special direction was chosen. All samples were placed in physiological saline solution and 

kept refrigerated.
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Each specimen of DM was cut into strips using a metallic pattern (figure 2) of 30 mm length 

by 20 mm width. To estimate the cross-section of the sample, thickness was measured by a 

digital  micrometer gauge,  at  least  five times. A pseudo-regular  ink marking was made to 

assess the intrinsic deformation of the sample, by a  Digital Imaging Correlation technique 

(DIC). Each  mechanical  test  was  performed  at  room  temperature  (20°C)  on  a  uniaxial 

RAITH®  testing device at monotonic displacement rate that is imposed constant. The tissue 

was held between small screw-tightened grips and displacement data were measured by CCD 

camera (2048 x 2048 pixels) (figure 3). From the images, DIC allowed the determination of 

the displacement between the ink marks deposited on the specimen surface or between the 

two grips of the testing device1,19. Force was measured with a loading cell of 100 N with an 

accuracy of 0.1% and the stress in the tissue was defined as the force (F) on the tissue divided 

by the cross-sectional area of the tissue under that force. Data (in plane strain tensor and load) 

were collected by a PC and analysed using the softwares CORRELMANUV® and AGNES® 

from LMS, Ecole Polytechnique1. When it was possible, we preconditioned the tissue samples 

to facilitate reproducibility of results by cycling between 0 and approximately 5% strain until 

a stable stress versus strain curve resulted on successive cycles. Five cycles had always been 

enough to reach the stabilised cycle.

We carried out  two specific tests  series.  The  first  one focused on the  dural  macroscopic 

mechanical behaviour, at the scale of the whole sample. This allowed us to compare entire 

and  split  samples.  The  second  test  series  consisted  in  the  observation  of  the  structural 

modifications of the tissue under strain thanks to strain field analysis, in order to understand 

the local deformation mechanisms during the test.

RESULTS
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1) Histological study

The thickness of the samples was measured between 0.625 and 1.475 mm (mean thickness 

1.106 mm, standard deviation 0.244 mm). The midline sections were thicker than the lateral 

ones  (table  1).  Sections  number  5  and  8  had  the  largest  average  thickness;  this  can  be 

explained  by  the  remains  of  the  posterior  atlanto-occipital  membrane,  even  if  it  was 

macroscopically removed during the dissection. 

Two different layers occurred objectively on only 10 sections (specimen A n°5,11,12,13 / 

specimen B n°1,6,12 / specimen C n°6,12 + one sagittal section). Among these, a well define 

boundary between the two layers was observed in 6 samples. It seemed to be more a capillary 

network than a real interface (figure 4a). In the others samples, we could not distinguish the 

two  layers  structure.  Moreover,  we  did  not  found  some  particular  relation  between  the 

localization of the sections of the posterior fossa and the presence of two layers. Thus, we 

think  that  the  classical  description  of  two  distinct  layers  constituting the  DM36 could be 

inconstant in the posterior fossa.

Concerning  the  DM  composition,  collagen  was  largely  dominant  with  few elastin  fibers 

(figure 4b).  The collagen fibers were dense and strongly organized,  distributed inside the 

tissue. However, we observed some degree of reciprocal density gradient between collagen 

and elastin, from one face of the dura to the other. There was a tendency of a decrease of 

collagen density, and conversely an increase of elastin fibers, from the inner to the outer layer 

(visible on 10 and 9 sections respectively). So the ratio collagen/elastin appeared higher in the 

inner dural part and lower in the outer one, but these considerations were inconstant. 

To define the orientation of the fibers, we compared the transversal sections with the 6 sagittal 

sections. The collagen fibers appeared in a main cranio-caudal direction with probably some 

little  degree  of  obliquity.  On the  10 sections  where  2  layers  were  identified,  we did  not 

observe a clear difference in collagen orientation between the inner part and the outer part.
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From a scanning electron microscopic study, DM seemed to be composed of a multilayer 

structure, with piled up leaves. Each leaf was composed of lined up “big cables” (about 1 

micrometer diameter) corresponding to collagen fibers and of a thinner spiderweb network 

with no preferential orientation corresponding to elastin fibers (figure 5). The observations of 

samples fracture surfaces obtained from liquid nitrogen fracture confirm that each leaf was 

separable from adjacent leaves. Therefore, we conclude that the dural splitting dissection does 

not  occur  between  two  macroscopic  leaflets:  it  splits  the  DM  between  two  layers  of  a 

microscopically divided multilayered structure.

2) Biomechanical study

a) Macroscopic tensile test

The first campaign consisted with twelve tensile tests. Figure 6 shows a typical mechanical 

response for tensile tests performed on entire and split DM (from the same donor) at room 

temperature and under a constant strain rate around 1.5 10-3 s-1. As in previous studies45,46, it 

appears  that  entire  DM  presents  a  large  elastic  domain  (until  some  10%)  followed  by 

occurrence of damage mechanisms what conducts to failure of the sample. For split DM, the 

mechanical behaviour is quite  different than for intact  one, with a smaller  elastic  domain 

followed by a larger irreversible strain domain. Partial unloadings were performed during the 

test to check the evolution of the Young modulus in the irreversible strain region. Decrease of 

the Young modulus could be considered as a signature of the damage occurrence inside the 

specimen: the more damaged is the specimen the weaker is the Young Modulus. So for the 

split dura the Young modulus evolves from 25 MPa to 19 MPa (corresponding to 0.78% of 

the initial value) even if the irreversible strain is quite large before failure: that means that 

damage occurs gradually inside the specimen during the test.  On the contrary, from entire 

dura mater the evolution of young modulus seems to be quite different with an increase of the 
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Young modulus in the first part of the test from 44 MPa to 91 Mpa - that could correspond to 

a rearrangement of the fibers along the stress axis - then a quite constant value is reached until 

final rupture occurs as observed in figure 6.

b) Displacement and Strain field analysis

From a more local point of view corresponding here to the effect of the fibers distribution, 

second tensile tests campaign is performed to follow, thanks to optical microscope and DIC, 

the evolution of the displacement field inside the sample during the test. This campaign has 

consisted with ten tensile tests performed under optical microscope with a spatial resolution 

equals to 0.9 µm at room temperature for the same strain rate that the macroscopic ones. It 

appears from figure 7, obtained from intact DM for two samples coming from two different 

areas presenting different microstructure’s configurations, that the displacement field seems to 

be homogeneous along the sample and quite independent on the fiber’s axis versus the tensile 

axis. That means that, at this mesoscopic scale (corresponding to a few hundred of microns), 

the mechanical behaviour of DM could be considered as being homogeneous, with no effect 

of the orientation of the fibers on the mechanical behaviour. So it seems that the mechanical 

behaviour of the DM could be considered at first approximation as being isotropic. 

c) Modeling of the DM expansion

We estimate the volume benefit from the DM splitting through estimation of the order of 

magnitude of its deformation. The geometry of the split dural zone is complex. As a first 

approximation,  we assume that  this  region  is  a  spherical  cap  with a  diameter  around 40 

millimeters (figure 8).

Prior to deformation (just after bone removal), the curvature radius Rc of the DM cap is about 

the one of the head, which can estimated at 5 cm. Thus, the geometrical characteristics of the 
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spherical cap are: volume of 2.6 cm3, surface of 13 cm2 and maximum height zmax (measured 

between the support line and the top of the cap) around 4 mm.

In order to estimate the deformation in the DM, we need to know the stress in the tissue. The 

highest component σθθ  of the stress tensor in the DM can be estimated from the mechanical 

equilibrium of the structure: if an inner pressure Pic (intra-cranial pressure) is applied on the 

DM cap, the stress on the border (the supporting line) of the membrane has to equilibrate this 

pressure. Therefore, the stress is related to the applied pressure by:

ic
c P
h

R

2
=θθσ

with h the thickness of the DM.

We assume that the DM splitting removes half of the thickness (h = 0.5 mm) and that the Pic is 

about 10 mmHg in CM-I.  In that  case,  the  σθθ  stress is around 70 kPa.  The deformation 

associated with this stress in our uniaxial traction experiments is between 2 to 5%, remaining 

small. Such deformations are not big enough to bring us in the domain of irreversible strains, 

which implies that there is no risk of leaking of the DM due to the tissue stretching.

The  DM membrane  is  under  a  biaxial  solicitation,  while  we performed an  uniaxial  test. 

Relating both approaches is not straightforward in the general case, but we can consider, in 

first approximation, that the relative surface deformation is of the same order of magnitude of 

the relative length deformation. Therefore, the surface after deformation Sdef is related to the 

initial surface Sinit by Sdef = Sinit(1+ε ), where ε  is the estimate of the deformation.

From this result, simple geometric considerations lead to the volume and to the maximum 

height after deformation.

A deformation of ε=2% (lowest estimate) leads to a volume of 3.3 cm3, an increase of 22% of 

the initial one, and the maximum height is about 6 mm, increasing by 45% the original one. 
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The highest estimate of the deformation of  ε=5% leads to a volume of 4 cm3 (increase of 

50%), and a maximum height of 9 mm, twice the initial one. This second estimate is more 

likely to be closer to the real case than the first one, considering the deformation data from 

our tensile experiments. This is also in agreement with the observation of the posterior fossa 

enlargement after dural splitting during surgery20.

 DISCUSSION

The dura mater is a connective tissue surrounding the nervous central system. It is known to 

be a membrane composed of collagen and elastin fibers with two different layers36. Actually, 

its structure remains controversial, especially concerning the orientation of its fibers. On the 

contrary of the lumbar DM32,34, the posterior fossa dura mater has not been studied yet. From 

our observations, we think that the presence of two distinct layers on the posterior fossa dura 

mater is inconstant. The limit between the inner and the outer dural part sometimes appears as 

a vascular plan (capillary network), but is more often virtual. Previous studies on dura mater 

in the spinal region38,48 have shown a well defined structure in two leaflets. We think that the 

difference may be due to the location, as the posterior fossa is making the transition between 

cerebral compartment, with a spherical shape, and the spinal one, with a cylindrical shape. 

Based on our observations, we conclude that the structure is closer from a multilayer material, 

stacking many sheets of fibers. However, the understanding of the fibers orientations of the 

dura remains difficult. Histological studies indicate more or less a cranio-caudal orientation of 

the fibers, but we use also other imagery methods, such as scanning electron microscopy and 

second harmonic generation microscopy (SHG)10,47, which indicate that the different layers of 

fibers may have different orientations. SHG studies confirm histological studies about the fact 

that composition of the dura mater is inhomogeneous in the thickness, with more collagen 
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close from the inner face (figure 4b). Note that SEM and SHG were used in complement of 

the histological studies, and not in a systematic approach, due to the time they request. The 

difficulty of finding quantitative results based on histological approach indicates that more 

specific  methods should be  used in  the  future to  improve the  understanding of the  dural 

structure. 

Human DM has its own biomechanical properties, which have been studied in the past38,39,45 . 

Most of these works concern the lumbar DM and are applied to the comprehension of the post 

dural  puncture headache13,32.  Dura has  also  been tested as  a  potential  component of heart 

valves24. But, posterior fossa DM has not been examined until now.

In this work, we tried to highlight the difference of behaviour between the entire dura and the 

split dura, correlated to the surgical technique described by Isu  et al.20. This biomechanical 

work is the first to evaluate the posterior fossa dura mater mechanical properties. Also, it is 

the first investigation of the biomechanical behaviour of split dura mater in association to the 

specific surgical technique of splitting decompression in CM-I. Our tests compared one entire 

sample and one split sample from each donor when it was possible. For the intact DM, we 

found an elastic behaviour, with a small domain where deformation is reversible with stress 

followed after the yield point by a fragile behavior, as indicated by others authors on lumbar 

dura46. On split DM, we observe the same type of behaviour at small strain, with a slightly 

smaller stress level for the same strain. The main significant difference between entire dura 

and split dura is after the yield point: split DM presents a large domain where the mechanical 

behaviour is elasto-plastic, with permanent strain and a lower stress level, instead of a fragile 

behavior for the intact DM.

We must nuance in our observations since the tests were performed on samples from elderly 

fresh human cadavers (over 70 years old). So it is reasonable to think that tests on specimens 

from younger donors would have shown different results, although no study has been made to 
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compare dural biomechanical behaviour between children and adults for example. Also, we 

worked on donors from the Ecole de Chirurgie Assistance Publique - Hopitaux de Paris whom 

we considered to be free of CM-I. We know from Nakamura et al.30 that DM in CM-I can be 

thicker than  a normal  dura.  This implies of course that  the  neurosurgeon must  remove a 

significant  thickness  of  dura  to  obtain  a  visual  deformation  of  the  split  area  and  then  a 

satisfying decompression.  Also,  it  may modify the  mechanical  behaviour,  as the  tissue  is 

inhomogeneous in its thickness.

These experiments concern the instantaneous behaviour of the dura mater. To confirm that 

they are in agreement with the decompression in CM-I, we build a model of DM expansion. It 

shows that reasonable stresses due to  the malformation on the dura mater lead to  a large 

structural deformation: the volume increases about 50%. But, this model simplifies the real 

situation: in particular, we did not introduce the head muscles that could prevent the dural 

extension. However, it shows that the immediate deformation frees enough space to relax the 

neuraxis constrain and to restore the CSF flow. 

A  clear  extension  of  our  approach  should  be  to  study  the  time-dependent  extension  by 

studying the mechanical answer to a creep test. Radiological findings, where an increase of 

cisterna magna size is observed20,22, seems to support the hypothesis that the split dura could 

enlarge with time. 

Moreover, a more complex model, including creep tests, would be useful to the neurosurgeon 

to  plan  the  dural  splitting  decompression  and  to  anticipate  the  results  of  the  surgery. 

Pourquoi cette suppression ?

CONCLUSION

This original study demonstrates the capability of the split dura mater to enlarge for suitable 

stress  conditions and quantifies it  by biomechanical tests.  We have  built  an experimental 
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model that shows a significant volume benefit at the cranio-cervical junction after splitting. 

Thus,  dural  splitting  decompression  has  a  real  biomechanical  substrate  to  envision  the 

effectiveness of this Chiari type I malformation surgical technique.
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