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NONLINEAR QUASIMODES NEAR ELLIPTIC PERIODIC GEODESICS

PIERRE ALBIN, HANS CHRISTIANSON, JEREMY L. MARZUOLA, AND LAURENT THOMANN

Abstract. We consider the nonlinear Schrödinger equation on a compact manifold near an elliptic peri-
odic geodesic. Using a geometric optics construction, we construct quasimodes to a nonlinear stationary
problem which are highly localized near the periodic geodesic. We show the nonlinear Schrödinger evolu-
tion of such a quasimode remains localized near the geodesic, at least for short times.

1. Introduction

In this note, we study the Nonlinear Schrödinger Equation (NLS) on a compact, Riemannian manifold
with a periodic elliptic (or stable) geodesic, which we define and discuss in more detail in Appendix A.
Specifically, we study solutions to

{
i∂tψ = ∆gψ + σ|ψ|pψ,

ψ(x, 0) = ψ0,
(1.1)

where ∆g is the standard (negative semidefinite) Laplace-Beltrami operator and the solution is of the form

ψ(x, t) = e−iλtu(x).

To solve the resulting nonlinear elliptic equation, which can be analyzed using constrained variations, we
will use Fermi coordinates to construct a nonlinear quasimode similar to the one presented in [Tho08b] for
an arbitrary manifold with a periodic, elliptic orbit. To do so, we must analyze the metric geometry in a
neighbourhood of a periodic orbit, for which we use the presentation in [Gra90]. For further references to
construction of quasimodes along elliptic geodesics, see the seminal works Ralston [Ral82], Babič [Bab68],
Guillemin-Weinstein [GW76], Cardoso-Popov [CP02], as well as the thorough survey on spectral theory
by Zelditch [Zel08]. For experimental evidence of the existence of such Gaussian beam type solutions in
nonlinear optics as solutions to nonlinear Maxwell’s equations, see the recent paper by Schultheiss et al
[SBS+10].

Henceforward, we assume that (M, g) is a compact Riemannian manifold of dimension d ≥ 2 without
boundary, and that it admits an elliptic periodic geodesic Γ ⊂M . For β > 0, we introduce the notation

Uβ = {x ∈M : dist g(x,Γ) < β}.

Let L > 0 be the period of Γ. Throughout the paper, each time we refer to the small parameter h > 0,
this means that h takes the form

(1.2) h =
L

2πN
,

for some large integer N ∈ N.

Our first result is the existence, in the case of a smooth nonlinearity, of quasimodes which are highly
concentrated near the elliptic periodic geodesic Γ. More precisely :
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Theorem 1.1. Let (M, g) be a compact Riemannian manifold of dimension d ≥ 2, without boundary and
which has an elliptic periodic geodesic. Let p be an even integer, let s ≥ 0 and assume that

p
(d− 1

4
− s

)
< 1.

Then for h≪ 1 sufficiently small, and any δ > 0, there exists ϕh(x) ∈ H∞(M) satisfying

(i) Frequency localization : For all r ≥ 0, there exist C1, C2 independent of h such that

C1h
s−r ≤ ‖ϕh‖Hr(M) ≤ C2h

s−r.

(ii) Spatial localization near Γ :

‖ϕh‖Hs(M\U
h1/2−δ ) = O(h∞)‖ϕh‖Hs(M).

(iii) Nonlinear quasimode : There exists λ(h) ∈ R so that ϕh satisfies the equation

−∆gϕh = λ(h)ϕh − σ|ϕh|pϕh +O(h∞).

The quasimode ϕh and the nonlinear eigenvalue λ(h) will be constructed thanks to a WKB method,
this will give a precise description of these objects (see Section 7.3). For instance, λ(h) reads λ(h) =
h−2 − E0h

−1 + o(h−1), for some E0 ∈ R.

As a consequence of Theorem 1.1, and under the same assumptions, we can state :

Theorem 1.2. Consider the function ϕh given by Theorem 1.1. There exists c0 > 0, such that if we denote

by Th = c0h
p( d−1

4 −s) ln(
1

h
), the solution uh of the Cauchy problem (1.1) with initial condition ϕh satisfies

‖uh‖L∞([0,Th];Hs(M\U
h1/2−δ )) ≤ Ch(d+1)/4.

To construct a quasimode with O(h∞) error, we need that the nonlinearity is of polynomial type, that
is p ∈ 2N. However, in the special case where d = 2 and s = 0, we are able to obtain a result for any
0 < p < 4, which is a weaker version of Theorem 1.2.

Theorem 1.3. Let (M, g) be a compact Riemannian surface without boundary which admits an elliptic
periodic geodesic and let 0 < p < 4. Then for h ≪ 1 sufficiently small, and any δ, ǫ > 0, there exist
ϕh(x) ∈ H∞(M) and ν > 0 satisfying

(i) Frequency localization : For all r ≥ 0, there exist C1, C2 independent of h such that

C1h
−r ≤ ‖ϕh‖Hr(M) ≤ C2h

−r.

(ii) Spatial localization near Γ :

‖ϕh‖L2(M\U
h1/2−δ ) = O(h∞)‖ϕh‖L2(M),

such that the corresponding solution uh to (1.1) satisfies

‖uh‖L∞([0,Th];L2(M\U
h1/2−δ )) ≤ Chν ,

for Th = hp in the case p ∈ (0, 4)\{1}, and Th = h1+ǫ in the case p = 1.

Remark 1.1. In our current notations, the Ḣ1 critical exponent for (1.1) is

p =
4

d− 2
=

4

n− 1
,

where n is the dimension of the geodesic normal hypersurface to Γ. The L2 critical exponent is p = 4/d,

and the Ḣ1/2 critical exponent is p = 4/(d− 1).
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In general we construct highly concentrated solutions along an elliptic orbit, which is effectively a d− 1
dimensional soliton. Since stable soliton solutions exist on Rd for monomial Schrödinger of the type in
(1.1) precisely for p < 4

d , this numerology matches well that required for the expected local existence of
stable nonlinear states on these lower dimensional manifolds.

In addition, solving (1.1) on compact manifolds with the power p = 4/(d − 2) plays an important role
in the celebrated Yamabe problem, see [SY94]. The authors hope that the techniques here can give insight
into the energy minimizers of such a problem related to the geometry.

Remark 1.2. In [CM10], the existence of nonlinear bound states on hyperbolic space, Hd, was explored.
In that case, it was found that the geometry made compactness arguments at ∞ rather simple, hence the
only driving force for the existence of a nonlinear bound state was the local behavior of the nonlinearity.
Work in progress with the second author, third author, Michael Taylor and Jason Metcalfe is attempting
to generalize this observation to any rank one symmetric space. In this note, we find nonlinear quasimodes
based purely on the local geometry, where here the nonlinearity becomes a lower order correction, which is
a nicely symmetric result.

Remark 1.3. In a private conversation with Nicolas Burq, he has pointed out that in settings where one
assumes radial symmetry of the manifold, it is possible to construct exact nonlinear bound states.

Notations. In this paper c, C denote constants the value of which may change from line to line. We use
the notations a ∼ b, a . b if 1

C b ≤ a ≤ Cb, a ≤ Cb respectively.

Acknowledgments. P. A. was supported by an NSF joint institutes postdoctoral fellowship (NSF
grant DMS-0635607002) and a postdoctoral fellowship of the Foundation Sciences Mathématiques de Paris.
J.L.M. was supported in part by an NSF postdoctoral fellowship (NSF grant DMS-0703531) at Columbia
University and a Hausdorff Center Postdoctoral Fellowship at the University of Bonn. He would also
like to thank both the Institut Henri Poincaré and the Courant Institute for being generous hosts during
part of the completion of this work. H.C. was supported in part by NSF grant DMS-0900524, and would
also like to thank the University of Bonn, Columbia University, the Courant Institute, and the Institut
Henri Poincaré for their hospitality during part of this work. L.T. was supported in part by the grants
ANR-07-BLAN-0250 and ANR-10-JCJC 0109 of the Agence Nationale de la Recherche. In addition, the
authors with to thank Rafe Mazzeo and especially Colin Guillarmou for helpful conversations throughout
the preparation of this work.

2. Outline of Proof

The proof of Theorem 1.2 is to solve approximately the associated stationary equation. That is, by
separating variables in the t direction, we write

ψ(x, t) = e−iλtu(x),

from which we get the stationary equation

(λ+∆g)u = σ|u|pu.
For h≪ 1 of the form (1.2), the construction in the proof finds a family of functions

uh(x) = h−(d−1)/4g(h−1/2x)

such that g is rapidly decaying away from Γ, C∞, g is normalized in L2, and

(λ+∆g)uh = σ|uh|puh +Q(uh),

where λ ∼ h−2 and where the error Q(uh) is expressed by a truncation of an asymptotic series similar to
that in [Tho08b] and is of lower order in h.
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The point is that Theorem 1.2 (as well as Theorem 1.3) is an improvement over the trivial approximate
solution. It is well known that there exist quasimodes for the linear equation localized near Γ of the form

vh(x) = h−(d−1)/4eis/hf(s, h−1/2x), (0 < h≪ 1),

with f a function rapidly decaying away from Γ, and s a parametrization around Γ, so that vh(x) satisfies

(λ+∆g)vh = O(h∞)‖vh‖
in any seminorm, see [Ral82]. Then

(λ+∆g)vh = σ|vh|pvh +Q2(vh),

where the error Q2(vλ) = |vh|pvh satisfies

‖Q2(vh)‖Ḣs = O(h−s−p(d−1)/4).

3. A toy model

In this section we consider a toy model in two dimensions, and we give an idea of the proof of Theorem
1.3. For simplicity, we moreover assume that 2 ≤ p < 4. As it is a toy model, we will not dwell on error
analysis, and instead make Taylor approximations at will without remarking on the error terms. Consider
the manifold

M = Rx/2πZ× Rθ/2πZ,

equipped with a metric of the form

ds2 = dx2 +A2(x)dθ2,

where A ∈ C∞ is a smooth function, A ≥ ǫ > 0 for some ǫ. From this metric, we get the volume form

dVol = A(x)dxdθ,

and the Laplace-Beltrami operator acting on 0-forms

∆gf = (∂2x +A−2∂2θ +A−1A′∂x)f.

We observe that we can conjugate ∆g by an isometry of metric spaces and separate variables so that
spectral analysis of ∆g is equivalent to a one-variable semiclassical problem with potential. That is, let
S : L2(X, dVol) → L2(X, dxdθ) be the isometry given by

Su(x, θ) = A1/2(x)u(x, θ).

Then ∆̃ = S∆S−1 is essentially self-adjoint on L2(X, dxdθ) with mild assumptions on A. A simple
calculation gives

−∆̃f = (−∂2x −A−2(x)∂2θ + V1(x))f,

where the potential

V1(x) =
1

2
A′′A−1 − 1

4
(A′)2A−2.

We are interested in the nonlinear Schrödinger equation (1.1), so we make a separated Ansatz:

uλ(t, x, θ) = e−itλeikθψ(x),

where k ∈ Z and ψ is to be determined (depending on both λ and k). Applying the Schrödinger operator

(with ∆̃ replacing ∆) to uλ yields the equation

(Dt + ∆̃)eitλeikθψ(x) = (λ+ ∂2x − k2A−2(x) + V1(x))e
itλeikθψ(x) = σ|ψ|peitλeikθψ(x),
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where we have used the standard notation D = −i∂. We are interested in the behaviour of a solution or
approximate solution near an elliptic periodic geodesic, which occurs at a maximum of the function A. For
simplicity, let

A(x) =
√
(1 + cos2(x))/2,

so that in a neighbourhood of x = 0, A2 ∼ 1 − x2 and A−2 ∼ 1 + x2. The function V1(x) ∼ const. in
a neighbourhood of x = 0, so we will neglect V1. If we assume ψ(x) is localized near x = 0, we get the
stationary reduced equation

(−λ+ ∂2x − k2(1 + x2))ψ = −σ|ψ|pψ.
Let h = |k|−1 and use the rescaling operator Tψ(x) = Th,0ψ(x) = h−1/4ψ(h−1/2x) (see Lemma 4.5 below
with n = 1) to conjugate:

T−1(−λ+ ∂2x − k2(1 + x2))TT−1ψ = T−1(σ|ψ|pψ)
or

(−λ+ h−1∂2x − k2(1 + hx2)ϕ = σh−p/4|ϕ|pϕ,
where ϕ = T−1ψ. Let us now multiply by h:

(−∂2x + x2 − E)ϕ = σhq|ϕ|pϕ,
where

E :=
1− λh2

h
and

q := 1− p
d− 1

4
= 1− p

4
.

Observe the range restriction on p is precisely so that

0 < q ≤ 1/2.

We make a WKB type Ansatz, although in practice we will only take two terms (more is possible if the
nonlinearity is smooth as in the context of Theorems 1.1 and 1.2):

ϕ = ϕ0 + hqϕ1, E = E0 + hqE1.

The first two equations are

h0 : (−∂2x + x2 − E0)ϕ0 = 0,

hq : (−∂2x + x2 − E0 − hqE1)ϕ1 = E1ϕ0 + σ|ϕ0|pϕ0.

Observe we have included the hqE1ϕ1 term on the left hand side.

The first equation is easy:

ϕ0(x) = e−x
2/2, E0 = 1.

For the second equation, we want to project away from ϕ0 which is in the kernel of the operator on the
left hand side. That is, choose E1 satisfying

〈E1ϕ0 + σ|ϕ0|pϕ0, ϕ0〉 = 0,

so that the right hand side is in ϕ⊥
0 ⊂ L2. Then since the spectrum of the one-dimensional harmonic

oscillator is simple (and of the form (2m+ 1), m ∈ Z), the operator (−∂2x + x2 − E0 − hqE1) is invertible
on ϕ⊥

0 ⊂ L2 with inverse bounded by (2 − hq)−1. Hence for h > 0 sufficiently small, we can find ϕ1 ∈ L2

satisfying the second equation above (here we have used that ϕ0 is Schwartz with bounded Hs norms).
Further, since ϕ0 is Schwartz and strictly positive, so is |ϕ0|pϕ0, so by propagation of singularities, ϕ1 is
also Schwartz. In particular, both ϕ0 and ϕ1 are rapidly decaying away from x = 0.
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Let now ψ(x) = T (ϕ0(x) + hqϕ1(x)), and observe that by the above considerations, ψ(x) is O(h∞) in
any seminorm, outside an h1/2−δ neighbourhood of x = 0. Let u = eitλeikθψ(x) so that ‖u‖L2(dxdθ) ∼ 1,

and u is O(h∞) outside an h1/2−δ neighbourhood of x = 0. Furthermore, u satisfies the equation (again
neglecting smaller terms)

(Dt + ∆̃)u = h−1ThT−1(−λ+ ∂2x − k2A−2(x))TT−1u

= h−1T (σhq|T−1u|pT−1u+O(h|T−1u|p+1)

= σ|u|pu+Q,

where Q satisfies the pointwise bound

Q = O(hq|u|p+1).

We now let ũ be the actual solution to (1.1) with the same initial profile:
{
(Dt +∆)ũ = σ|ũ|pũ
ũ|t=0 = eikθψ(x).

Set Th = hp, then with the Strichartz estimates of Burq-Gérard-Tzvetkov [BGT04] we prove (see Proposi-
tion 8.2) that there exists ν > 0 so that

‖u− ũ‖L∞([0,Th];L2(M)) ≤ Chν ,

and therefore we can compute:

‖ũ‖L∞([0,Th];L2(M\U
h1/2−δ )) ≤ ‖u‖L∞([0,T ];L2(M\U

h1/2−δ )) + ‖ũ− u‖L∞([0,T ];L2(M\U
h1/2−δ ))

= O(h∞) +O(hν) = O(hν),

which gives the result.

Remark 3.1. It is very important to point out that the sources of additional error in this heuristic expo-
sition have been ignored, and indeed, to apply a similar idea in the general case, a microlocal reduction to
a tubular neighbourhood of Γ in cotangent space is employed. The function ϕ0 is no longer so simple, and
the nonlinearity |ϕ0|pϕ0 is no longer necessarily smooth. Because of this, the semiclassical wavefront sets
are no longer necessarily compact, so a cutoff in frequency results in a fixed loss.

Remark 3.2. We remark that the Strichartz estimates from [BGT04] are sharp on the sphere Sd for a
particular Strichartz pair, but this is not necessarily true on a generic Riemannian manifold. See [BSS08]
for a thorough discussion of this fact.

4. Preliminaries

4.1. Symbol calculus on manifolds. This section contains some basic definitions and results from semi-
classical and microlocal analysis which we will be using throughout the paper. This is essentially standard,
but we include it for completeness. The techniques presented have been established in multiple references,
including but not limited to the previous works of the second author [Chr07, Chr08], Evans-Zworski [EZ07],
Guillemin-Sternberg [GS77, GS10], Hörmander [Hör03, Hör05], Sjöstrand-Zworski [SZ02], Taylor [Tay81],
and many more.

To begin we present results from [EZ07], Chapter 8 and Appendix E. Let X be a smooth, compact
manifold. We will be operating on half-densities,

u(x)|dx| 12 ∈ C∞
(
X,Ω

1
2

X

)
,
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with the informal change of variables formula

u(x)|dx| 12 = v(y)|dy| 12 , for y = κ(x) ⇔ v(κ(x))|κ′(x)| 12 = u(x),

where |κ′(x)| has the canonical interpretation as the Jacobian | det(∂κ)|. By symbols on X we mean the
set

Sk,m
(
T ∗X,Ω

1
2

T∗X

)
:=

=
{
a ∈ C∞(T ∗X × (0, 1],Ω

1
2

T∗X) :
∣∣∣∂αx ∂

β
ξ a(x, ξ;h)

∣∣∣ ≤ Cαβh
−m〈ξ〉k−|β|

}
.

Essentially this is interpreted as saying that on each coordinate chart, Uα, of X , a ≡ aα where is aα ∈ Sk,m
in a standard symbol on Rd. There is a corresponding class of pseudodifferential operators Ψk,mh (X,Ω

1
2

X)
acting on half-densities defined by the local formula (Weyl calculus) in Rn:1

Opwh (a)u(x) =
1

(2πh)n

∫ ∫
a

(
x+ y

2
, ξ;h

)
ei〈x−y,ξ〉/hu(y)dydξ.

We will occasionally use the shorthand notations aw := Opwh (a) and A := Opwh (a) when there is no
ambiguity in doing so.

We have the principal symbol map

σh : Ψk,mh

(
X,Ω

1
2

X

)
→ Sk,m

/
Sk−1,m−1

(
T ∗X,Ω

1
2

T∗X

)
,

which gives the left inverse of Opwh in the sense that

σh ◦Opwh : Sk,m → Sk,m/Sk−1,m−1

is the natural projection. Acting on half-densities in the Weyl calculus, the principal symbol is actually
well-defined in Sk,m/Sk−2,m−2, that is, up to O(h2) in h (see, for example [EZ07], Appendix E).

We will use the notion of semiclassical wave front sets for pseudodifferential operators on manifolds, see

Hörmander [Hör05], [GS77]. If a ∈ Sk,m(T ∗X,Ω
1
2

T∗X), we define the singular support or essential support
for a:

ess-supp ha ⊂ T ∗X
⊔

S∗X,

where S∗X = (T ∗X \ {0})/R+ is the cosphere bundle (quotient taken with respect to the usual multipli-
cation in the fibers), and the union is disjoint. The ess-supp ha is defined using complements:

ess-supp ha :=

∁
{
(x, ξ) ∈ T ∗X : ∃ǫ > 0, (∂αx ∂

β
ξ a)(x

′, ξ′) = O(h∞), d(x, x′) + |ξ − ξ′| < ǫ
}

⋃
∁{(x, ξ) ∈ T ∗X \ 0 : ∃ǫ > 0, (∂αx ∂

β
ξ a)(x

′, ξ′) = O(h∞〈ξ〉−∞),

d(x, x′) + 1/|ξ′|+ |ξ/|ξ| − ξ′/|ξ′|| < ǫ}/R+.

We then define the wave front set of a pseudodifferential operator A ∈ Ψk,mh (X,Ω
1
2

X):

WFh(A) := ess-supp h(a), for A = Opwh (a).

1We use the semiclassical, or rescaled unitary Fourier transform throughout:

Fhu(ξ) = (2πh)−d/2

∫
e−i〈x,ξ〉/hu(x)dx.
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If u(h) is a family of distributional half-densities, u ∈ C∞((0, 1]h,D′(X,Ω
1
2

X)), we say u(h) is h-tempered

if there is anN0 so that h
N0u is bounded in D′(X,Ω

1
2

X). If u = u(h) is an h-tempered family of distributions,
we can define the semiclassical wave front set of u, again by complement:

WFh(u) :=

∁{(x, ξ) : ∃A ∈ Ψ0,0
h , with σh(A)(x, ξ) 6= 0,

and Au ∈ h∞C∞((0, 1]h, C∞(X,Ω
1
2

X))}.
For A = Opwh (a) and B = Opwh (b), a ∈ Sk,m, b ∈ Sk′,m′

we have the composition formula (see, for
example, [DS99])

A ◦B = Opwh (a#b) ,(4.1)

where

Sk+k′,m+m′ ∋ a#b(x, ξ) := e
ih
2 ω(Dx,Dξ;Dy,Dη) (a(x, ξ)b(y, η))

∣∣∣
x=y
ξ=η

,(4.2)

with ω the standard symplectic form.

We record some useful Lemmas.

Lemma 4.1. Suppose (x0, ξ0) /∈ WFh(u). Then ∀b ∈ C∞
c (T ∗Rn) with support sufficiently close to (x0, ξ0)

we have

b(x, hD)u = OS(h
∞).

Here OS(h
∞) means O(h∞) in any Schwartz semi-norm. The proof of this Lemma follows similarly to

that of Theorem 8.9 in [EZ07].

Theorem 4.2. (i) Suppose a ∈ S(m) and u(h) is h-tempered. Then

WFh(a
wu) ⊂ WFh(u) ∩ ess-supp h(a).

(ii) If a ∈ S(m) is real-valued, then also

WFh(u) ⊂ WFh(a
wu) ∪ ∁{ess-supp ha}.

Proof. Assertion 1 is straightforward. The proof of assertion 2 is standard, however we present it here so
we can use it for the analogous result for the blown-up wavefront set.

We will show if a(x0, ξ0) 6= 0 and awu = OL2(h∞) then there exists b, b(x0, ξ0) 6= 0 so that bwu =
OL2(h∞). There exists a neighbourhood U ∋ (x0, ξ0), a real-valued function χ, and a positive number
γ > 0 such that suppχ ∩ U = ∅ and

|a+ iχ| ≥ γ everywhere.

Then P = aw + iχw has an approximate left inverse cw so that

cwP = id + Rw,

where Rw = OL2→L2(h∞). Choose b ∈ S so that supp (b) ⊂ U and b(x0, ξ0) 6= 0. Then bwχw = O(h∞) as
an operator on L2. Hence

bwu =bwcwPu− bwRwu

=bwcwawu+ ibwcwχwu− bwRwu

=O(h∞),

where we have used the Weyl composition formula to conclude ess-supp h(c#χ) ∩ supp b = ∅. �
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4.2. Exotic symbol calculi. Following ideas from [SZ02], since rescaling often means dealing with sym-
bols with bad decay properties, we introduce weighted wave front sets as well. Let us first recall the
non-classical symbol classes:

Sk,mδ,γ
(
T ∗X,Ω

1
2

T∗X

)
:=

=
{
a ∈ C∞(T ∗X × (0, 1],Ω

1
2

T∗X) :
∣∣∣∂αx ∂

β
ξ a(x, ξ;h)

∣∣∣ ≤ Cαβh
−δ|α|−γ|β|−m〈ξ〉k−|β|

}
.

That is, symbols which lose δ powers of h upon differentiation in x and γ powers of h upon differentiation in
ξ. Note the simplest way to achieve this is to take a symbol a(x, ξ) ∈ S and rescale (x, ξ) 7→ (h−δx, h−γξ),
which then localizes on a scale hδ+γ in phase space. We thus make the restriction that 0 ≤ δ, γ ≤ 1,
0 ≤ δ+ γ ≤ 1, and to gain powers of h by integrations by parts, we usually also require δ+ γ < 1. We can
define wavefront sets using Sδ,γ = S0,0

δ,γ symbols, but the localization of the wavefront sets is stronger.

Definition 4.3. If u(h) is h-tempered and 0 ≤ δ, γ ≤ 1, 0 ≤ δ + γ ≤ 1,

WFh,δ,γ(u) =∁{(x0, ξ0) : ∃a ∈ Sδ,γ ∩ C∞
c , a(x0, ξ0) 6= 0, a(x, ξ) = ã(h−δx, h−γξ)

for some ã ∈ S and awu = OL2(h∞)}.

We have the following immediate corollary.

Corollary 4.4. If a ∈ Sδ,γ(m), 0 ≤ δ + γ < 1, and a is real-valued, then

WFh,δ,γ(u) ⊂ WFh,δ,γ(a
wu) ∪ ∁{ess-supp ha}.

The proof is exactly the same as in Theorem 4.2 only all symbols must scale the same, so they must
be in Sδ,γ . In order to conclude the existence of approximate inverses, we need the restriction δ + γ < 1,

and the rescaling operators from §4.3 which can be used to reduce to the familiar h−δ
′

calculus, where
δ′ = (δ + γ)/2, by replacing h with hδ−γ .

4.3. Rescaling operators. We would like to introduce h-dependent rescaling operators. The rescaling
operators should be unitary with respect to natural Schrödinger energy norms, namely the homogeneous
Ḣs spaces. Let us recall in Rn, the Ḣs space is defined as the completion of S with respect to the topology
induced by the inner product

〈u, v〉Ḣs =

∫

Rn

|ξ|2sû(ξ)v̂(ξ)dξ,

where as usual û denotes the Fourier transform. The Ḣ0 norm is just the L2 norm, and the Ḣ1 norm is

‖u‖Ḣ1 ≃ ‖|∇u|‖L2.

The purpose in taking the homogeneous norms instead of the usual Sobolev norms is to make the rescaling
operators in the next Lemma unitary.

Lemma 4.5. For any s ∈ R, h > 0, the linear operator Th,s defined by

Th,sw(x) = hs/2−n/4w(h−1/2x)

is unitary on Ḣs(Rn), and for any r ∈ R,

‖Th,sw‖Ḣr = h(s−r)/2‖w‖Ḣr ,

‖Th,0w‖Ḣs = h−s/2‖w‖Ḣs .

Moreover, for any pseudodifferential operator P (x,D) in the Weyl calculus,

T−1
h,sP (x,D)Th,s = P (h1/2x, h−1/2D).
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Remark 4.1. Observe that for this lemma, the usual assumption that h be small is not necessary.

Proof. The proof is simple rescaling, but we include it here for the convenience of the reader. To check
unitarity, we just change variables:

〈u, Th,sw〉Ḣs =
〈
|ξ|sû, |ξ|sT̂h,sw

〉

= hs/2+n/4
∫

|ξ|2sû(ξ)ŵ(h1/2ξ)dξ

= h−n/4−s/2
∫

|ξ|2sû(h−1/2ξ)ŵ(ξ)dξ

= hn/4−s/2
∫

|ξ|2s ̂u(h1/2·)(ξ)ŵ(ξ)dξ

=
〈
T−1
h,su,w

〉

Ḣs
.

To check the conjugation property, we again compute

T−1
h,sP (x,D)Th,sw(x) = T−1

h,s (2π)
−nhs/2−n/4

∫
ei〈x−y,ξ〉P (

x+ y

2
, ξ)w(h−1/2y)dydξ

= T−1
h,s (2π)

−nhs/2+n/4
∫
ei〈x−h1/2y,ξ〉P (x+ h1/2y

2
, ξ)w(y)dydξ

= T−1
h,s (2π)

−nhs/2−n/4
∫
ei〈x−h1/2y,h−1/2ξ〉P (x+ h1/2y

2
, h−1/2ξ)w(y)dydξ

= (2π)−n
∫
ei〈x−y,ξ〉P (

h1/2(x+ y)

2
, h−1/2ξ)w(y)dydξ

= P (h1/2x, h−1/2D)w(x).

�

The purpose of using the rescaling operators Th,s is that if u ∈ Ḣs has h-wavefront set

WFh,δ,γ(u) ⊂ {|x| ≤ α(h) and |ξ| ≤ β(h)},
where, according to the uncertainty principle, α(h)β(h) ≥ h, then Th,su has h-wavefront set

WFh,δ−1/2,γ+1/2(Th,su) ⊂ {|x| ≤ α(h)h1/2 and |ξ| ≤ β(h)h−1/2},
provided, of course, that δ ≥ 1/2. To see this, we just observe that for any ψ ∈ C∞

c (R2n), ψ ≡ 0 on
{|x| ≤ 1, |ξ| ≤ 1}, we have

ψ(x/α(h), D/β(h))u = O(h∞)‖u‖L2,

or any other semi-norm, and hence

ψ(h−1/2x/α(h), h1/2D/β(h))Th,su = Th,sψ(x/α(h), D/β(h))T
−1
h,sTh,su

= Th,sψ(x/α(h), D/β(h))u

= hs/2O(h∞)‖u‖L2

= O(h∞)‖u‖L2.

Finally, we note that the symbol of the operator on the left-hand side is zero on the set

{|x| ≤ h1/2α(h), and |ξ| ≤ h−1/2β(h)},
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and any such symbol in Sδ−1/2,γ+1/2, elliptic at a point outside this set, can be locally obtained in this
fashion.

5. Geometry near an elliptic geodesic

Suppose Γ is a geodesic in a n + 1 dimensional Riemannian manifold. Following [MP05, §2.1] (cf.
[Gra90]) we fix an arclength parametrization γ(t) of Γ, and a parallel orthonormal frame E1, . . . , En for
the normal bundle NΓ to Γ in M . This determines a coordinate system

x = (x0, x1, . . . , xn) 7→ expγ(x0)(x1E1 + . . . xnEn) = F (x).

We write x′ = (x1, . . . , xn) and use indices j, k, ℓ ∈ {1, . . . , n}, α, β, δ ∈ {0, . . . , n}. We also use Xα =
F∗(∂xα).

Note that r(x) =
√
x21 + . . . x2n is the geodesic distance from x to Γ and ∂r is the unit normal to the

geodesic tubes {x : d(x,Γ) = cst}. Let p = F (x0, 0), q = F (x0, x
′), and r = r(q) = d(p, q) then we have

[MP05, Proposition 2.1], which states

gjk(q) = δij +
1

3
g(R(Xs, Xj)Xℓ, Xk)pxsxℓ +O(r3),

g0k(q) = O(r2),

g00(q) = 1− g(R(Xk, X0)X0, Xℓ)pxkxℓ +O(r3),

Γδαβ = O(r),

Γk00 = −
n∑

j=1

g(R(Xk, X0)Xj , X0)pxj +O(r2),

(5.1)

where Γδαβ = 1
2g
δη(Xαgηβ +Xβgαη −Xηgαβ).

In these coordinates, the Laplacian has the form

∆g :=
1√
det g

div(
√
det gg−1∇)

= gjkXjXk − gjkΓℓjkXℓ

= g00X0X0 + 2gk0XkX0 − gjkΓ0
jkX0 + 2g0jΓk0jXk +∆Γ⊥ ,

(5.2)

where ∆Γ⊥ is the Laplacian in the directions transverse to Γ.

Denote the geodesic flow on SM , the unit tangent bundle, by ϕt. Let γ(0) = p ∈ Γ and ζ = γ′(0) ∈ SM .
Associated to Γ is a periodic orbit ϕtζ of the geodesic flow on SM . This orbit ϕtζ is called stable if, whenever
V is a tubular neighbourhood of ϕtζ, there is a neighbourhood U of ζ such that ζ′ ∈ U implies ϕtζ

′ ⊆ V .
Given a hypersurface Σ in SM containing ζ and transverse to ϕtζ, we can define a Poincaré map P near
ζ, by assigning to each ζ′ the next point on ϕt(ζ

′) that lies in Σ. Two Poincaré maps of ϕtζ are locally
conjugate and hence the eigenvalues of dP at ζ are invariants of the periodic orbit ϕtζ.

The Levi-Civita connection allows us to identify TTM with the sum of a horizontal space and a vertical
space, each of which can be identified with TM . Thus we can choose Σ so that TζΣ is equal to E ⊕ E,
where E is the orthogonal complement of ζ in TpM . The linearized Poincaré map is then given by

E ⊕ E
dP

// E ⊕ E,

(V,W )
�

// (J(length(γ)),∇X0J(length(γ)))

,



12 P. ALBIN, H. CHRISTIANSON, J.L. MARZUOLA, AND L. THOMANN

where J is the unique Jacobi field along γ with J(0) = V and ∇X0J(0) =W , i.e., J solves
{
∇X0∇X0J +R(J,X0)X0 = 0

J(0) = V, ∇X0J(0) =W.

The linearized map dP = dP|ζ preserves the symplectic form on E ⊕ E,

ω((V1,W1), (V2,W2)) = 〈V1,W2〉 − 〈W1, V2〉,
and so its eigenvalues come in complex conjugate pairs. We say that Γ is a non-degenerate elliptic closed
geodesic if the eigenvalues of dP have the form {e±iαj : j = 1, . . . , n} where each αj is real and the set
{α1, . . . , αn, π} is linearly independent over Q.

From (5.1), the Hessian of the function g00(q) as a function of x′ is (minus) the transformation appearing
in the Jacobi operator

E ∋ V 7→ R(V,X0)X0 ∈ E.

Notice that if V is a normalized eigenvector for this operator, with eigenvalue λ, then

secp(X0, V ) = gp(R(V,X0)X0, V ) = λgp(V, V ) = λ.

The very useful property

(5.3) p ∈ Γ, V ∈ E =⇒ secp(X0, V ) > 0,

holds for any elliptic closed geodesic.

Remark 5.1. One can verify (5.3) by means of the Birkhoff normal form (see [Zel08, §10.3]). Indeed,
if one of the sectional curvatures were negative, then the Birkhoff normal form of the linearized Poincare
map (in T ∗M) must have an eigenvalue off the unit circle. If so, then there is at least one nearby orbit
which does not stay nearby, hence the periodic geodesic is not elliptic. Similarly, if one of the curvatures
vanishes, then the linearized Poincare map has a zero eigenvalue, and hence the logs of the eigenvalues are
not independent from π over the rationals (in other words, the Poincare map is degenerate, and not even
symplectic).

6. Compact Solitons: The nonlinear Ansatz

We are interested in finding quasimodes for the non-linear Schrödinger equation

−∆gu = λu− σ|u|pu,
where σ = ±1 determines if we are in the focussing or defocussing case. We will construct u approximately
solving this equation with u concentrated near Γ in a sense to be made precise below.

We take as Ansatz

F (x, h) = eix0/hf(x, h), h−1 =
2πN

L
,

where L > 0 is the period of Γ, and assume for the time being that the function f is concentrated in an
h-dependent neighbourhood of Γ. We are going to employ a semiclassical reduction, and we are interested
in fast oscillations (h→ 0), so we assume WFh,1/2−δ,0f(x, h) ⊂ {|x′| ≤ ǫh1/2−δ, |ξ′| ≤ ǫ} for some ǫ, δ > 02.

2The reason for the weaker concentration in frequency |ξ′| is that the nonlinearity forces working with non-smooth functions,
so some decay at infinity in frequency is lost.



NONLINEAR QUASIMODES 13

The localization property of f as constructed later will be verified in Section 7. We compute from (5.2),
with ∆ the non-positive Laplacian,

(6.1) ∆F = eix0/h

[
g00

(
− 1

h2
f +

2i

h
X0f +X0X0f

)
+ 2gk0Xk

(
i

h
f +X0f

)

−gkjΓ0
kj

(
i

h
f +X0f

)
+ 2g0jΓk0jXkf +∆Γ⊥f

]
.

Remark 6.1. One may initially be inclined to use the Ansatz of the original Gaussian beam from Ralston
[Ral82], which is

eiψ(x)/h(a0 + a1h+ · · ·+ aNh
N),

the standard geometric optics quasimode construction. After all, Ralston is able to make very nice use
of the geometry to construct a phase function of the form i/h(x0 +

1
2x

′B(x0)x
′) with ImB(x0) > 0 (for

x0 6= 0, vanishing otherwise). In such a regime, however, the non-linear term in the Schrödinger equation
(1.1) vanishes to infinite order in h. Thus while such a solution always exists, it fails to capture the effects
of the nonlinearity that we are interested in.

We analyze (6.1) by applying the operator T−1
h,s in the variables transversal to Γ. We normalize every-

thing in the L2 sense, so we take here s = 0. Let z = h−1/2x′ and set v(x0, z, h) = T−1
h,0f(x0, z, h) =

hn/4f(x0, h
1/2z, h). Notice that the distance to the geodesic r = |x′| is scaled to ρ = |z| = h−1/2r, as

described above. In particular, now

(6.2) WFh,0,1/2v ⊂ {|z| ≤ h−δǫ, |ζ| ≤ h1/2ǫ},
if ζ is the (semiclassical) Fourier dual to z. We conjugate (6.1) to get

T−1
h,0∆Th,0T

−1
h,0F = eix0/h

[
g00

(
− 1

h2
v +

2i

h
X0v +X0X0v

)
+ 2gk0h−1/2∂zk

(
i

h
v +X0v

)

−gkjΓ0
kj

(
i

h
v +X0v

)
+ 2g0jΓk0jh

−1/2∂zkv + h−1∆Γ⊥v

]
,

where the metric components and Christoffel symbols are evaluated at (x0, h
1/2z). On the other hand,

from (5.1), expanding in Taylor polynomials, we know that

g00(x) = 1 +R2(x) +R3(x) +R4(x) +O(r5)

= 1 + hR2(z) + h3/2R3(z) + h2R4(z) +O(h5/2ρ5)

g0k(x) = hg̃0k2 (z) +O(h3/2ρ3)

gjk(x) = δjk +O(hρ2)

Γ0
jk(x) = h1/2Γ̃0

jk1(z) + hΓ̃0
jk2(z) +O(h3/2ρ3)

Γk0j(x) = h1/2Γ̃k0j1(z) +O(hρ2),

for some smooth functions Rℓ, g̃
0k
ℓ , Γ̃αjkℓ homogeneous of degree ℓ respectively. Hence

(6.3) T−1
h,0∆Th,0T

−1
h,0F = eix0/h

[
− 1

h2
v − 1

h
R2(z)v −

1

h1/2
R3(z)v −R4(z)v +

2i

h
X0v +

2i

h1/2
g̃k02 (z)∂zkv

− i

h1/2
gjkΓ̃0

jk1(z)v − igjkΓ̃0
jk2(z)v +

1

h
∆Γ⊥v

]
+ Pv,

where P contains the remaining terms from the Taylor expansion. Let us record the following Lemma.
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Lemma 6.1. The operator P has the following expansion:

P = O(h1/2|z|5) +X0X0 +O(h|z|2)h−1/2∂zkX0 +O(|z|3)∂zk +O(h1/2|z|3)
+O(h1/2|z|)X0 +O(h3/2|z|3)h−1/2∂zk .

In particular, if v satisfies (6.2), then

‖Pv‖L2 ≤ C‖v‖L2 + C‖X0X0v‖L2 + Ch1/2−δ‖X0v‖L2 .

Remark 6.2. We will show later that for the particular choice of v we construct, the operators X0 and
X2

0 are bounded operators, so that the error Pv is bounded in L2 by v (see Remark 7.3).

For the purposes of exposition, let us then assume for now that the term Pv is bounded and proceed
(this will be justified later). Applying T−1

h,0 to the equation −∆F = λF − σ|F |pF yields

−T−1
h,0∆Th,0T

−1
h,0F = λT−1

h,0F − σT−1
h,0(|F |pF )

= λT−1
h,0F − σh−pn/4|T−1

h,0F |pT−1
h,0F,

so that multiplying (6.3) by he−ix0/h, we get

(6.4) (2iX0 +∆Γ⊥ −R2(z))v

=
1− h2λ

h
v + h1/2

(
igjkΓ̃0

jk1 − 2ig̃k0(z)∂zk +R3(z)
)
v + h(R4(z) + igjkΓ̃0

jk2)v

+ h1−pn/4σ|v|pv + he−ix0/hPv,

where P is the same as above.

Remark 6.3. In order to ensure that the nonlinearity appears here as a lower order term, we require

(6.5) q := 1− pn/4 > 0, or p <
4

n
=

4

d− 1

as stated in the theorems.

We want to think of the left hand side as similar to a time-dependent harmonic oscillator where x0 plays
the role of the time variable.

Let q = 1 − pn/4, 0 < q < 1. We would like to assume that v and λ have expansions in hq, however
the spreading of wavefront sets due to the nonlinearity allows us to only take the first two terms when
0 < q ≤ 1/2 and the first three terms otherwise.

Case 1: 0 < q ≤ 1/2. Assume that v has a two-term expansion

v = v0 + hqv1

and moreover that there exist Ek, k = 0, 1, satisfying

1− h2λ

h
= E0 + hqE1 +O(h2q).

Since q ≤ 1/2, then the O(h1/2) term in (6.4) is of equal or lesser order than the nonlinear term, and
substituting into (6.4) we get the following equations according to powers of h:

h0 : (2iX0 +∆Γ⊥ −R2(z)− E0)v0 = 0,

hq : (2iX0 +∆Γ⊥ −R2(z)− E0 − hqE1)v1 = E1v0 + σ|v0|pv0 + h1/2−qLv0,
(6.6)

where

Lv0 =
(
igjkΓ̃0

jk1 − 2ig̃k0(z)∂zk +R3(z) + h1/2R4(z) + ih1/2gjkΓ̃0
jk2 + h1/2e−ix0/hP

)
v0.
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We will show the error terms are O(h2q) in the appropriate Hs space. See §7.2.1.
Case 2: 1/2 < q < 1. In the case q > 1/2, the O(h1/2) term becomes potentially larger than the

nonlinearity, so we take three terms in the expansions of v and E = 1−h2λ
h :

v = v0 + h1/2v1 + hqv2, E = E0 + h1/2E1 + hqE2 +O(h).

We then want to solve

h0 : (2iX0 +∆Γ⊥ −R2(z)− E0)v0 = 0,

h1/2 : (2iX0 +∆Γ⊥ −R2(z)− E0)v1 = E1v0 + Lv0

hq : (2iX0 +∆Γ⊥ −R2(z)− E0 − h1/2E1 − hqE2)v2 = E2v0 + h1−qE1v1 + h1/2E2v1

+ σ|v0|pv0 + h1−qLv1.

(6.7)

In this case we will show the error is O(h1/2+q) in the appropriate Hs space. See §7.2.2.

7. Quasimodes

We begin by approximately solving the h0 equation by undoing our previous rescaling. That is, let
w0(x0, x, h) = Th.0v0(x0, x, h) = h−n/4v0(x0, h

−1/2x, h), and conjugate the h0 equation by Th,0 to get:

0 = Th,0(2iX0 +∆Γ⊥ − R2(z)− E0)T
−1
h,0Th,0v0

= (2iX0 + h∆Γ⊥ − h−1R2(x) − E0)w0,

where now the coefficients in ∆Γ⊥ are independent of h, and we have used the homogeneity of R2 in the x
variables. Multiplying by h, we have the following equation:

(7.1) (2ihX0 + h2∆Γ⊥ −R2(z)− hE0)w0 = 0,

Hence, (7.1) is a semiclassical equation in a fixed neighbourhood of Γ with symbols in the h0 calculus (i.e.
no loss upon taking derivatives). The principal symbol of the operator in (7.1) is

p = τ − |ζ|2g̃ −R2(z),

where g̃ is the metric in the transversal directions to Γ, and τ is the dual variable to the x0 direction. If
we let Γ̃ be the (unit speed) lift of Γ to T ∗M , and if exp(sHp) is the Hamiltonian flow of p, then

Γ = {ζ = z = 0, x0 = s ∈ R/Z}.
Since, in the transversal directions, p is a negative definite quadratic form, the linearization of the Poincaré
map S is easy to compute:

S = exp(Hq),

where

q = −|ζ|2g̃ −R2(z),

so that

Hq = −2a(x0, z)
j,kζj∂zk + 2bj,k(x0)zj∂ζk ,

where a and b are symmetric, positive definite matrices. Linearizing S about, say, x0 and z = ζ = 0 we get
that dS(0, 0) has all eigenvalues on the unit circle, in complex conjugate pairs. That is, Γ is still a periodic
elliptic orbit of the classical flow of p.

Since p is defined on a fixed scale, we can glue p together with an operator which is elliptic at infinity
so that p is of real principal type so that we can apply Theorem A.1 in the appendix to construct linear
quasimodes. Note that since we have quasi-eigenvalue of order O(h), Theorem A.1 implies the quasimodes
are concentrated on a scale |z| ≤ h1/2, |ζ| ≤ h1/2.
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This is made precise in the following proposition.

Proposition 7.1. There exists w0 ∈ L2, ‖w0‖L2 = 1, and E0 = O(1) such that

(2ihX0 + h2∆Γ⊥ −R2(z)− hE0)w0 = e0(h).

Here the error e0(h) = O(h∞) ∈ L2 (or in any other seminorm), and w0 has h-wavefront set sharply
localized on Γ in the sense that if ϕ ∈ Ψ0

1/2−δ,1/2−δ is 1 near Γ, then for any δ > 0, ϕw0 = w0 +O(h∞),

and if δ = 0, ‖ϕw0‖ ≥ c0‖w0‖ for some positive c0 depending on the support of ϕ.

Moreover, w0 ∈ H∞(M) and satisfies the estimate

‖w0‖Hs(M) = O(h−s/2).

Proof. The construction follows from Theorem A.1, and is well-known in other settings, see for instance
[Ral82], [Bab68], and [CP02]. To get the sharp localization, apply Lemmas B.1 and B.2 from the appendix
to get the localization on w0. Once we know that w0 is so localized, we can replace w0 with ϕw0, where
ϕ ∈ Ψ0

1/2−δ is as in the proposition. Then ϕw0 satisfies

(2ihX0 + h2∆Γ⊥ −R2(z)− hE0)ϕw0 = ẽ0(h),

where
ẽ0(h) = ϕe0(h) + [(2ihX0 + h2∆Γ⊥ −R2(z)), ϕ]w0.

But now ϕe0(h) = O(h∞), while the commutator is supported outside of an h1/2−δ neighbourhood of Γ,
so by the localization of w0 is O(h∞) and localized in a slightly larger set on the scale h1/2−δ. �

Now recalling v0 = T−1
h,0w0, then v0 satisfies

(2iX0+∆Γ⊥ −R2(z)− E0)v0

= h−1T−1
h,0(2ihX0 + h2∆Γ⊥ −R2(z)− E0)Th,0v0

= h−1T−1
h,0(2ihX0 + h2∆Γ⊥ −R2(z)− E0)w0

= h−1T−1
h,0e0(h).

The error h−1T−1
h,se0(h) = O(h∞) in any seminorm still, but the function v0 is now localized on a scale h−δ

in space. That is,
WFh,0,1−δv0 ⊂ {|x| ≤ ǫh−δ, |ξ| ≤ ǫh1−δ}.

7.1. The inhomogeneous equation. We are now in a position to solve the lower order inhomogeneous
equations in (6.6). The quasimode v0 has been constructed as a “Gaussian beam” (see [Ral82]); it is a
harmonic oscillator eigenfunction extended in the x0 direction by the quantum monodromy operator from
[SZ02], which is defined in (7.4) below. From this construction, the boundedness of the error term Pv0
as stated in Lemma 6.1. In what follows we construct v1 in the case 0 ≤ q ≤ 1

2 and v1, v2 in the case
1
2 < q < 1 and show that a similar bound holds for hqPv1 and h

1
2Pv1 + hqPv2 respectively.

We want to solve

(7.2) (2iX0 +∆Γ⊥ −R2(z)− Ẽ0)v1 = E1v0 +G,

where Ẽ0 = E0 + hηE1 for some η > 0, E0 and v0 have been fixed by the previous construction, and
G = G(x0, x) is a given function (periodic in x0) with

WFh,0,1/2G ⊂ {|x| ≤ ǫh−δ, |ξ| ≤ ǫh1/2}.
Note, the localization of G follows from the nonlinearity as well as geometric multipliers in the operator
L, see Appendix E and (6.2).
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Conjugating by Th,0 as before, we get the equation

(7.3) (2ihX0 + h2∆Γ⊥ −R2(x) − hẼ0)w1 = G2,

where

G2 = hTh,0(E1v0 +G).

We observe then that

WFh,1/2−δ,0G2 ⊂ {|x| ≤ ǫh1/2−δ, |ξ| ≤ ǫ}.
Specifically, let M(x0) be the deformation family to the quantum monodromy operator defined as the

solution to: {
(2ihX0 + h2∆Γ⊥ −R2(x)− hẼ0)M(x0) = 0,

M(x0) = id ,
(7.4)

which exists microlocally in a neighbourhood of Γ ⊂ T ∗X (for further discussion see also Appendix A and
references therein). By the Duhamel formula, we write

w1 =M(x0)w1,0 +
i

h

∫ x0

0

M(x0)M(y0)
∗G2(y0, ·)dy0.

We have to choose w1,0 and E1 (implicit in G2) in such a fashion to make w1 periodic in x0; in other
words, to solve the equation (approximately) around Γ. Let L be the primitive period of Γ, so that x0 = 0
corresponds to x0 = L. Then we require

w1(L, ·) = w1(0, ·),
or

w1,0 =M(L)w1,0 +
i

h

∫ L

0

M(L)M(y0)
∗G2(y0, ·)dy0.

In other words, we want to be able to invert the operator (1 − M(L)). The problem is that w0,0 :=
w0(0, ·) = Th,0v0(0, ·) is in the kernel of (1−M(L)), so we need to choose E1 in such a fashion to kill the
contribution of G2 in the direction of w0,0.

Recall that

G2 = hTh,0(E1v0 +G)

= h(E1w0 + G̃),

where

G̃ = Th,0G.

We want to solve microlocally

(1 −M(L))w1,0 =
i

h

∫ L

0

M(L)M(y0)
∗(h(E1w0 + G̃))dy0

= i

∫ L

0

M(L)M(y0)
∗(E1M(y0)w0,0 + G̃)dy0

= iLM(L)E1w0,0 + i

∫ L

0

M(L)M(y0)
∗G̃dy0.(7.5)

Let

E1 = − 1

L

〈∫ L

0

M(y0)
∗G̃dy0, w0,0

〉
,

so that (7.5) is orthogonal to w0,0.
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If we denote

L2
w⊥

0,0
= {u ∈ L2 : 〈u,w0,0〉 = 0},

then by the nonresonance assumption (since E0 + hηE1 is a small perturbation of E0), and the fact that
M(L) is unitary on L2, (I −M(L))−1 is a bounded operator (see [Chr08])

(1 −M(L))−1 : L2
w⊥

0,0
→ L2

w⊥

0,0
.

Hence

w1,0 = (1−M(L))−1 i

h

∫ L

0

M(L)M(y0)
∗G2(y0, ·)dy0

satisfies

‖w1,0‖L2 ≤ Ch−1

∥∥∥∥∥

∫ L

0

M(y0)
∗G2(y0, ·)dy0

∥∥∥∥∥
L2

≤ CL1/2h−1‖G2‖L2(x0)L2

and

w1,0 ∈ L2
w⊥

0,0
.

Furthermore, we have the estimate

‖w1,0‖Ḣs ≤ Ch−1h−s/2

∥∥∥∥∥

∫ L

0

M(y0)
∗G2(y0, ·)dy0

∥∥∥∥∥
L2

≤ CL1/2h−1−s/2‖G2‖L2(x0)L2 ,

that is, the Ḣs norm is controlled, but not by the homogeneous Sobolev norm.

We have proved the following Proposition, which follows simply from tracing back the definitions.

Proposition 7.2. Let v0 be as constructed in the previous section, and let G ∈ Hs for s ≥ 0 sufficiently
large satisfy

WFh,0,1/2G ⊂ {|x| ≤ ǫh−δ, |ξ| ≤ ǫh1/2}.
Then for any η > 0, there exists v1 ∈ L2 and E1 = O(‖G‖L2) such that

(2iX0 +∆Γ⊥ −R2(z)− E0 − hηE1)v1 = E1v0 +G,

and moreover

‖v1‖Ḣs ≤ C(‖G‖Hs + ‖v0‖Hs).

Remark 7.3. We note here that by construction of v1 we have implicitly microlocalized into a periodic
tube in the x0 variable. Using the fact that the Quantum Monodromy Operator is a microlocally unitary
operator (see [SZ02, Chr08]), the bound

‖Xj
0v1‖L2 . ‖v1‖L2

follows easily for any j, which is required for proof of Lemma 6.1.

7.2. Construction of quasimodes in the context of Theorem 1.3. We now have all the tools to
construct the quasimodes which will be used to prove Theorem 1.3. Let d ≥ 2 and 0 < p < 4/(d− 1). As
previously, denote by q = 1 − p(d − 1)/4. The main results of this part will be stated in Propositions 7.1
and 7.2.
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7.2.1. The case 0 < q ≤ 1/2, i.e. 2
d−1 ≤ p < 4

d−1 . In this subsection, we see how to apply Proposition 7.2

in the case 0 < q ≤ 1/2. As described previously, in this case, the nonlinearity is the next largest term,
and we have only one inhomogeneous equation so solve (see (6.6)).

According to Propostion E.2 and Corollary E.3 from Appendix E, if

G = σ|v0|pv0 − h1/2−qLv0

is the nonlinear term on the right-hand side, then G is sharply localized in space but weakly localized in
frequency. That is, if χ ∈ C∞

c (T ∗X) is equal to 1 in a neighbourhood of Γ, then for any 0 ≤ δ < 1/2 and
any 0 ≤ γ ≤ 1,

χ(hδx, h1−γDx)G(x0, x) = G(x0, x) + E,

where for any 0 ≤ r ≤ 3/2,

‖E‖Ḣr ≤ Ch(1−γ)(3/2+p−r).

We are interested in the case where γ = 1/2, since in that case G is weakly concentrated in frequencies
comparable to h1/2, so by cutting off, satisfies the assumptions of Proposition 7.2. That is, take γ = 1/2,

and replace G with G̃ = χ(hδx, h1−γDx)G, and apply Proposition 7.2 to get v1 and E1 satisfying

(2iX0 +∆Γ⊥ −R2(z)− E0 − hqE1)v1 = E1v0 + G̃,

or in other words

(2iX0 +∆Γ⊥ −R2(z)− E0 − hqE1)v1 = E1v0 + σ|v0|pv0 + h1/2−qLv0 + Q̃1,

where
‖Q̃1‖Ḣr ≤ Ch(1/2)(3/2+p−r).

Now letting v = v0 + hqv1 and E = E0 + hqE1, we have solved

(2iX0 +∆Γ⊥ −R2(z)− E)v = hqσ|v0|pv0 + h1/2Lv0 + hqQ̃1

= hqσ|v|pv + h1/2Lv + Q̃2,

where
Q̃2 = hqQ̃1 − h1/2+qLv1 +O(h2q|v|p+1).

The remainder Q̃2 satisfies

‖Q̃2‖Ḣs ≤ Ch−s/2+min{2q,1/2+q,q+3/4+p/2} = Ch−s/2+2q,

since q ≤ 1/2. Recalling the definitions, ϕ = eix0/hTh,0v satisfies

(i)

WFh,1/2−δ,0 ϕ ⊂ {|x| ≤ ǫh1/2−δ, |ξ| ≤ ǫ};
(ii)

‖ϕ‖L2 ∼ 1, ‖Dℓ
x0
ϕ‖L2 ∼ h−ℓ,

and
‖Dℓ

x′ϕ‖L2 ≤ Ch−ℓ/2;

(iii)

(∆ + λ)ϕ = h−1eix0/hTh,0he
−ix0/hT−1

h,0∆Th,0T
−1
h,0ϕ

= h−1eix0/hTh,0(2iX0 +∆Γ⊥ −R2 − E − h1/2L)v

= h−1eix0/hTh,0(σh
q |v|pv +Q2),

or
(∆ + λ)ϕ = σ|ϕ|pϕ+ hα(p)Q,
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where Q = h−1eix0/hTh,0Q̃2 satisfies ‖Q‖Ḣs ≤ Ch−s and where

(7.6) α(p) := −1 + 2q = 1− p

(
d− 1

2

)
.

We now sum up what we have proven in a proposition. Consider the objects we have just defined :
v = v0 + hqv1, ϕh = eix0/hTh,0v and λ(h) = h−2 − E0h

−1 − E1h
−1+q. Then we can state

Proposition 7.1. Let 2/(d−1) ≤ p < 4/(d−1) and α(p) be given by (7.6). Then the function ϕh satisfies
the equation (

∆+ λ(h)
)
ϕh = σ|ϕh|pϕh + hα(p)Q(h),

where Q(h) is an error term which satisfies ‖Q(h)‖Ḣs . h−s, for all s ≥ 0.

7.2.2. The case 1/2 < q ≤ 1, i.e. 0 ≤ p < 2
d−1 . We again construct v0 as a Gaussian beam using the

quantum monodromy operator. We then set

G1 = E1v0 + Lv0,

which is smooth with compact wavefront set contained in the wavefront set of v0, so no phase space cutoff
is necessary to apply the inhomogeneous argument to get v1 with wavefront set contained in the wavefront
set of v0.

Now let

G2 = E2v0 + h1−qE1v1 + h1/2E2v1 + σ|v0|pv0 + h1−qLv1,

and solve for v2 as in the previous subsection. This is possible since v1 is orthogonal to v0 by construction.
We then have

(2iX0 +∆Γ⊥ −R2(z)− E0 − hqE1)v2 = E2v0 + h1−qE1v1 + h1/2E2v1 + σ|v0|pv0 + h1−qLv1 + Q̃1,

where

‖Q̃1‖Ḣr ≤ Ch(1/2)(3/2+p−r).

Letting v = v0 + h1/2v1 + hqv2 and E = E0 + h1/2E1 + hqE2, we have solved

(2iX0 +∆Γ⊥ −R2(z)− E)v = hqσ|v0|pv0 + h1/2Lv0 + hLv1 + Q̃1

= hqσ|v|pv + h1/2Lv + Q̃2,

where

Q̃2 = hqQ̃1 − h1/2+qLv2 +O(h1/2+q|v|p+1).

We now have the remainder estimate

‖Q̃2‖Ḣs ≤ Ch−s/2+min{1/2+q,q+3/4+p/2} = Ch−s/2+1/2+q .

Recalling the definitions, ϕ := eix0/hTh,0v satisfies

(i)

WFh,1/2−δ,0 ϕ ⊂ {|x| ≤ ǫh1/2−δ, |ξ| ≤ ǫ};
(ii)

‖ϕ‖L2 ∼ 1, ‖Dℓ
x0
ϕ‖L2 ∼ h−ℓ,

and

‖Dℓ
x′ϕ‖L2 ≤ Ch−ℓ/2;



NONLINEAR QUASIMODES 21

(iii)

(∆ + λ)ϕ = h−1eix0/hTh0he
−ix0/hT−1

h0
∆Th0T

−1
h0
ϕ

= h−1eix0/hTh0(2iX0 +∆Γ⊥ −R2 − E − h1/2L)v

= h−1eix0/hTh0(σh
q|v|pv + Q̃2),

or

(∆ + λ)ϕ = σ|ϕ|pϕ+ hα(p)Q,

where Q = h−1eix0/hTh0Q̃2 satisfies ‖Q‖Ḣs ≤ Ch−s and where

(7.7) α(p) := −1/2 + q =
1

2
− p

(
d− 1

4

)
.

Once again, by construction we have

‖Xj
0vj‖L2 . ‖vj‖L2

for j = 0, 1, 2.

Consider v = v0 + h
1
2 v1 + hqv2, ϕh = eix0/hTh,0v and λ(h) = h−2 −E0h

−1 −E1h
− 1

2 −E2h
−1+q defined

previously, then we have proven

Proposition 7.2. Let 0 < p ≤ 2/(d − 1) and α(p) be given by (7.7). Then the function ϕh satisfies the
equation

(
∆+ λ(h)

)
ϕh = σ|ϕh|pϕh + hα(p)Q(h),

where Q(h) is an error term which satisfies ‖Q(h)‖Ḣs . h−s, for all s ≥ 0.

7.3. Higher order expansion and proof of Thereorem 1.1.

7.3.1. The two dimensional cubic equation. We first deal with the simpler case d = 2, p = 2 and s = 0.
As in the previous section, we define q = 1 − p(d − 1)/4, thus for this choice we have q = 1

2 allowing us
to match powers of the asymptotic parameters in a canonical way. The general algorithm for any smooth
nonlinearity arising when rescaling in the appropriate Hs space will follow similarly.

Using (6.4) and the Taylor expansions of the geometric components gij and Γijk for i, j, k = 0, . . . , d in

(6.3), we look for an asymptotic series solution of the form

v = v0 + h
1
2 v1 + h1v2 + · · ·+ hm

1
2 vm + · · ·+ hN

1
2 vN + ṽ,

for N sufficiently large.
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Then, we have the following equations:

h0 : (2iX0 +∆Γ⊥ −R2(z)− E0)v0 = 0,

h
1
2 : (2iX0 +∆Γ⊥ −R2(z)− E0)v1 = E1v0 + (iδjkΓ̃

0
jk1 − 2ig̃k0∂zk +R3(z))v0 + σ|v0|2v0,

h1 : (2iX0 +∆Γ⊥ −R2(z)− E0)v2 = E2v0 + E1v1 + (iδjkΓ̃
0
jk1 − 2ig̃k0∂zk +R3(z))v1

+(iδjkΓ̃
0
jk2 +R4)v0 + σ(2|v0|2v1 + v20 v̄1),

...

h
m
2 : (2iX0 +∆Γ⊥ −R2(z)− E0)vm =

m−1∑

j=0

Em−jvj + σ(

m−1∑

j,k,l=0

(cmjklvjvkv̄l))

+

m−1∑

j=0

(f
∂zk
j,m (z)∂zk + fX0

j,mX0 + f1
j,m(z))vj ,

... ,

h
N
2 : (2iX0 +∆Γ⊥ −R2(z)− E0 −

N∑

j=1

h
j
2Ej)vN =

N∑

j=0

EN−jvj + σ(

N−1∑

j,k,l=0

(cNjklvjvkv̄l))

+
N−1∑

j=0

(f
∂zk
j,N (z)∂zk + fX0

j,NX0 + f1
j,N (z))vj + PNv,

where

f
∂zk
j,m = ON (|z|m−j),

fX0

j,m = ON (|z|m−j),

f1
j,m = ON (|z|m−j)

for j,m = 0, . . . , N and

PN = O(hN/2−2|z|N) +X0X0 +O(hN/2|z|N)h−1/2∂zkX0

+O(hN/2−3/2|z|N)∂zk +O(hN/2−1|z|N ) +O(hN/2|z|N)X0 +O(hN/2|z|N)h−1/2∂zk .

Note that all constants have implicit dependence upon N relating the number of terms in the expansion
at each order. The expansion is valid provided first of all that

N∑

j=1

h
j
2Ej < E0

in order to justify the solvability of the O(hN/2) equation.

Remark 7.4. We note here that in this expansion, the sign of σ can effect the sign and value of E1,
which will impact the remaining asymptotic expansion and in particular the order of quasimode expansion
possible. It is possible that the focussing/defocussing problem enters in to the stability analysis of these
quasimodes through this point.

Applying Proposition 7.2 at each asymptotic order and bounds similar to those in Lemma 6.1 at order
hN/2 as in Section 7.2.1, we have by a simple calculation that v is a quasimode for the nonlinear elliptic
equation with remainder QN such that

‖QN‖Ḣs ≤ CNh
−s−1+N/2.
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As a result, for sufficiently smooth nonlinearities, one is capable of constructing higher order asymptotic
expansions and hence a quasimode of higher order accuracy.

7.3.2. The general case. Let d ≥ 2, p ∈ 2N and s ≥ 0. We define here qs = 1 + p(s − d−1
4 ). Assume that

p(d−1
4 − s) < 1, or equivalently that qs > 0. Firstly, write w = hsv. Then v has to satisfy (6.4) but where

the power in front of the nonlinearity is hqs . Hence, we can look for v and E of the form

v =

N∑

j,ℓ=0

hj/2+ℓqs vj,ℓ + ṽ and E =

N∑

j,ℓ=0

hj/2+ℓqs Ej,ℓ + Ẽ.

Since qs > 0, the nonlinearity does not affect the equation giving v0,0, and we have

(2iX0 +∆Γ⊥ −R2(z)− E0,0)v0,0 = 0,

which is the same equation as before. Then, using Taylor expansions, we write all the equations, similarly
to the previous case, in powers of hj/2+ℓqs . Again, we can solve each equation and obtain bounds of the
solutions and of the error terms. Moreover, it is clear that we can go as far as we want in the asymptotics,
so that we can construct a O(h∞) quasimode, and this proves Theorem 1.1.

8. Error estimates

8.1. The regular case. In this section, we assume that p is an even integer.

Fix an integer k > d/2 (the fact that k is an integer is not necessary). We then define the semiclassical
norm

‖f‖Hk
h
= ‖

(
1− h2∆

)k/2
f‖L2(M).

In the previous section we have shown the following : Given α ∈ R, there exist two functions ϕh ∈ Hk(M)
and Q(h) ∈ Hk(M) and λ(h) ∈ R so that

(
∆+ λ(h)

)
ϕh + σ|ϕh|pϕh + hαQ(h).

Moreover, microlocally the function ϕh takes the form

(8.1) ϕh(σ, x
′, h) = h−

d−1
4 +seiσ/hf(σ, h−1/2x′, h),

and we have ‖Q(h)‖Hk
h
≤ C.

We set uapp(t, ·) = e−itλ(h)ϕh. Then if we denote by Q̃(h) := e−itλQ(h), the following equation is satisfied

(8.2) i∂tuapp −∆uapp = σ|uapp|puapp + hαQ̃(h).

Proposition 8.1. Let s ≥ 0. Consider the function ϕh given by (8.1). Let u be the solution of

(8.3)

{
i∂tu−∆u = σ|u|pu,
u(0, ·) = ϕh.

Assume that α >
d+ 1

4
+ s+ p(−d− 1

4
+ s). Then there exists C > 0 and c0 > 0 independent of h so that

‖u− uapp‖L∞([0,Th];Hs(M)) ≤ Ch(d+1)/4,

for 0 ≤ Th ≤ c0 h
p( d−1

4 −s) ln( 1h ).

This result shows that uapp is a good approximation of u, provided that the quasimode ϕh has been
computed at a sufficient order α.
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Proof. Here we follow the main lines of [Tho08a, Corollary 3.3]. With the Leibniz rule and interpolation
we check that for all f ∈ Hk(M) and g ∈W k,∞(M)

(8.4) ‖f g‖Hk
h
. ‖f‖Hk

h
‖g‖L∞(M) + ‖f‖L2(M)‖

(
1− h2∆

)k/2
g‖L∞(M).

Moreover, as k > d/2, for all f1, f2 ∈ Hk(M)

(8.5) ‖f1 f2‖Hk
h
. h−d/2‖f1‖Hk

h
‖f2‖Hk

h
.

Let u be the solution of (8.3) and define w = u− uapp. Then, by (8.2), w satisfies

(8.6)

{
i∂tw −∆w = σ

(
|w + uapp|p(w + uapp)− |uapp|puapp

)
− hαQ̃(h)

w(0, x) = 0.

We expand the r.h.s. of (8.6), apply the operator
(
1 − h2∆

)k/2
to the equation, and take the L2- scalar

product with
(
1− h2∆

)k/2
w. Then we obtain

(8.7)
d

dt
‖w‖Hk

h
.

p+1∑

j=1

‖wj up+1−j
app ‖Hk

h
+ hα.

We now have to estimate the terms ‖wj up+1−j
app ‖Hk

h
, for 1 ≤ j ≤ p+ 1. From (8.4) we deduce

(8.8) ‖wj up+1−j
app ‖Hk

h
. ‖wj‖Hk

h
‖up+1−j

app ‖L∞(M) + ‖wj‖L2(M)‖
(
1− h2∆

)k/2
up+1−j
app ‖L∞(M).

By (8.5), and as we have

(8.9) ‖up+1−j
app ‖L∞(M) . h(p+1−j)(− d−1

4 +s), ‖
(
1− h2∆

)k/2
up+1−j
app ‖L∞(M) . h(p+1−j)(− d−1

4 +s),

thus inequality (8.8) yields

‖wj up+1−j
app ‖Hk

h
. h−d(j−1)/2h(p+1−j)(− d−1

4 +s)‖w‖j
Hk

h

.

Therefore, from (8.7) we have

d

dt
‖w‖Hk

h
. hp(−

d−1
4 +s)‖w‖Hk

h
+ h−dp/2‖w‖p+1

Hk
h

+ hα.

Observe that ‖w(0)‖Hk
h
= 0. Now, for times t so that

(8.10) h−dp/2‖w‖p+1

Hk
h

. hp(−
d−1
4 +s)‖w‖Hk

h
,

i.e. ‖w‖Hk
h
≤ Ch(d+1)/4+s, we can remove the nonlinear term in (8.8), and by the Gronwall Lemma,

(8.11) ‖w‖Hk
h
≤ Chα−p(−

d−1
4 +s)eCh

p(− d−1
4

+s)t.

If c0 > 0 is small enough, and t ≤ c0h
p( d−1

4 −s) ln 1
h , then

Chα−p(−
d−1
4 +s)eCh

p(−d−1
4

+s)t ≤ Ch(d+1)/4+s,

so that inequality (8.10) is satisfied. By the usual bootstrap argument, we infer that for all

t ≤ c0h
p( d−1

4 −s) ln
1

h

we have
‖w‖Hk

h
≤ Ch(d+1)/4+s.

Finally, by interpolation we get ‖w‖Hs ≤ h−s‖w‖Hk
h
, hence the result. �
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We are now ready to complete the proof of Theorem 1.2. Consider uh, the exact solution to (1.1) with
initial condition ϕh, then by the previous proposition and the description of uapp, we can write

‖uh‖L∞([0,Th];L2(M\U
h1/2−δ )) ≤ ‖uapp‖L∞([0,T ];L2(M\U

h1/2−δ )) + ‖uh − uapp‖L∞([0,T ];L2(M\U
h1/2−δ ))

= O(h∞) +O(h(d+1)/4) = O(h(d+1)/4),(8.12)

which was the claim.

8.2. The non regular case and d = 2.

In this section we compute the error estimate in the case of a non smooth nonlinearity in dimension
d = 2. Moreover we restrict ourselves to the case s = 0 in (8.1) (case of an L2-normalized initial condition).

Proposition 8.2. Let ϕh be the function given by (8.1) with s = 0. Let u be solution of
{
i∂tu−∆u = σ|u|pu,
u(0, ·) = ϕ.

Let ǫ > 0. For p ∈ (0, 4)\{1}, we set Th = hp, and in the case p = 1, Th = h1+ǫ. Then there exists C > 0
and ν > 0 independent of h so that

‖u− uapp‖L∞([0,Th];L2(M)) ≤ Chν .

Remark 8.3. Note the difference between the results of Propositions (8.1) (when s = 0 and d = 2) and
(8.2). In the first case, we have Th of order hp/4, which is better than Th ∼ hp obtained in the second
result. However, in this latter result, there is no restrictive condition on the size of the error term in the
equation.

Proof. First, we follow the strategy of Burq-Gérard-Tzvetkov [BGT04, Section 3.] Let 0 < p < 4, choose

r > max(p, 2) and take 1 − 1

r
< s < 1 (there will be an additional constraint on s in the sequel). Then

take q so that 1
r +

1
q = 1

2 and s1 = s− 1
r . For T > 0 define the space

Y s = C
(
[0, T ];Hs(M)

)
∩ Lr

(
[0, T ];W s1,q(M)

)
,

which is endowed with the norm

‖u‖Y s = max
0≤t≤T

‖u(t)‖Hs + ‖(1−∆)s1/2u‖Lr([0,T ];Lq).

By the Sobolev embeddings, we have Y s ⊂ Lr
(
[0, T ], L∞

)
. Now, define w = u−uapp. Then w satisfies the

equation

(8.13)

{
i∂tw −∆w = σ

(
|w + uapp|p(w + uapp)− |uapp|puapp

)
− hα(p)Q̃(h),

w(0, x) = 0,

with α(p) = 1 − p/2 when 2 ≤ p ≤ 4 and α(p) = 1/2 − p/4 when 0 ≤ p ≤ 2 (see (7.6) and (7.7)) and

‖Q̃(h)‖Hs ≤ Ch−s.

• Case 0 < p < 1. In [CFH, Estimate (2.25)], Cazenave, Fang and Han prove that for all 0 ≤ s < 1

(8.14)
∥∥|w + uapp|p(w + uapp)− |uapp|puapp

∥∥
Hs ≤ C‖uapp‖Hs‖w‖pL∞ + C‖w‖Hs

(
‖uapp‖pL∞ + ‖w‖pL∞

)
.

Indeed, in [CFH], the estimate is not stated exactly with these indices, but the proof still holds true.
Moreover, in [CFH], (8.14) is proved for x ∈ Rd, but the inequality can be adapted to the case of a
compact manifold thanks to a partition of unity argument.
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Assume that w satisfies the equation

i∂tw −∆w = F, w(0, x) = 0,

then with the Strichartz estimates of [BGT04], the estimate ‖w‖Y s ≤ C‖F‖L1
TH

s holds true. Thus, with

the notation γ = 1− p

r
, with (8.13) and (8.14) we have

‖w‖Y s ≤ C

∫ T

0

‖uapp‖Hs‖w‖pL∞ + C

∫ T

0

‖w‖Hs

(
‖uapp‖pL∞ + ‖w‖pL∞

)
+ CThα(p)‖Q̃‖L∞

T H
s

≤ CT γ‖uapp‖L∞

T H
s‖w‖pY s + C‖w‖Y s

(
T ‖uapp‖pL∞

T L
∞ + T γ‖w‖pY s

)
+ CThα(p)‖Q̃‖L∞

T H
s

≤ CT γh−s‖w‖pY s + C‖w‖Y s

(
Th−p/4 + T γ‖w‖pY s

)
+ CTh−s+1/2−p/4.(8.15)

Similarly, we obtain

(8.16) ‖w‖L∞

T L
2 ≤ CT γ‖w‖pY s + C‖w‖L∞

T L
2

(
T ‖uapp‖pL∞

T L
∞ + T γ‖w‖pY s

)
+ CTh1/2−p/4.

Therefore, if we define the semiclassical norm ‖ ‖Y s
h
by

(8.17) ‖u‖Y s
h
= h−s‖u‖L∞

T L
2 + ‖u‖Y s ,

thanks to (8.15) and (8.16) we infer

(8.18) ‖w‖Y s
h
≤ CT γh−s‖w‖pY s

h
+ C‖w‖Y s

h

(
Th−p/4 + T γ‖w‖pY s

h

)
+ CTh−s+1/2−p/4.

Next we use the inequality ab ≤ 1

p1
ǫp1ap1 +

1

p2
ǫ−p2bp2 which holds for a, b, ǫ > 0 and

1

p1
+

1

p2
= 1. With

a suitable choice of ǫ and p1 (here we use that 0 < p ≤ 1) we get

(8.19) CT γh−s‖w‖pY s
h
≤ 1

2
‖w‖Y s

h
+ C(T γh−s)1/(1−p).

Now, re-inject (8.19) into (8.18) and obtain

(8.20) ‖w‖Y s
h
≤ C‖w‖Y s

h

(
Th−p/4 + T γ‖w‖pY s

h

)
+ C(T γh−s)1/(1−p) + CTh−s+1/2−p/4.

We now perform a bootstrap argument : Fix ǫ > 0 and set Th = hp. Fix 1 − 1

r
< s < 1 − p

r
. Then it is

possible to pick ν > 0 small enough so that γ = 1− p

r
> s+

ν(1 − p)

p
. Assume that

(8.21) ‖w‖Y s
h
≤ h−s+ν .

Then

Thh
−p/4 + T γh ‖w‖

p
Y s
h
≤ h3p/4 + hp(γ−s+ν),

which tends to 0 with h, thanks to the assumption made on γ. Hence, for h > 0 small enough, with (8.20)
we get

‖w‖Y s
h
≤ C(T γh h

−s)1/(1−p) + CThh
−s+1/2−p/4 ≤ Ch(pγ−s)/(1−p) + Ch−s+3p/4+1/2.

Finally, observe that −s + 3p/4 + 1/2 > −s + ν, and the assumption γ > s +
ν(1 − p)

p
is equivalent

to (pγ − s)/(1 − p) > −s + ν. Hence for h > 0 small enough, we recover ‖w‖Y s
h

≤ 1

2
h−s+ν , and by

the usual bootstrap argument, the condition (8.21) holds for Th = hp. Now we can deduce the bound
‖u‖L∞

T L
2 ≤ hs‖w‖Y s

h
≤ hν , which was the claim.
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• Case 1 < p < 4. Here we have, by [CFH, Estimate (2.25)], for all 0 ≤ s < 1
∥∥|w + uapp|p(w + uapp)− |uapp|puapp

∥∥
Hs ≤

C‖uapp‖Hs(‖uapp‖p−1
L∞ + ‖w‖p−1

L∞ )‖w‖L∞ + C‖w‖Hs

(
‖uapp‖pL∞ + ‖w‖pL∞

)
.

With the same arguments as for (8.15) we get, with γ̃ = 1− 1/r

‖w‖Y s ≤ CT γ̃‖uapp‖L∞

T H
s‖uapp‖p−1

L∞

T L
∞‖w‖Y s + CT γ‖uapp‖L∞

T H
s‖w‖pY s +

+C
(
T ‖uapp‖pL∞

T L
∞ + T γ‖w‖pY s

)
‖w‖Y s + CThα(p)‖Q‖L∞

T H
s

≤ C
(
T γ̃h−s−(p−1)/4 + Th−p/4

)
‖w‖Y s + CT γh−s‖w‖pY s + CT γ‖w‖p+1

Y s + CTh−s+α(p),

with α(p) = 1− p/2 when 2 ≤ p ≤ 4 and α(p) = 1/2− p/4 when 1 ≤ p ≤ 2 (see (7.6) and (7.7)). Then, by
the same manner, we get the following a priori estimate with the semiclassical norm ‖ ‖Y s

h
(recall definition

(8.17) )

(8.22) ‖w‖Y s
h
≤ C

(
T γ̃h−s−(p−1)/4 + Th−p/4

)
‖w‖Y s

h
+ CT γh−s‖w‖pY s

h
+ CT γ‖w‖p+1

Y s
h

+ CTh−s+α(p).

We now perform the bootstrap : Let r > max (2, p) (there will be an additional constraint on r). Fix 1− 1

r
<

s < 1 and set Th = hp. Then if r is large enough (recall that γ̃ = 1−1/r), the term T γ̃hh
−s−(p−1)/4+Thh

−p/4

tends to 0 with h, therefore if h > 0 is small enough, from (8.22) we deduce that

(8.23) ‖w‖Y s
h
≤ CT γh h

−s‖w‖pY s
h
+ CT γh ‖w‖

p+1
Y s
h

+ CThh
−s+α(p).

Choose 0 < ν < p+ α(p). As previously we assume that

(8.24) ‖w‖Y s
h
≤ h−s+ν .

Then with (8.23) we get

‖w‖Y s
h
≤ Chγp−s+p(−s+ν) + Chγp+(p+1)(−s+ν) + Chp−s+α(p).

Next when r > 0 is large enough (and under the assumption 0 < ν < p+α(p)), we have γp−s+p(−s+ν)>
−s+ν, γp+(p+1)(−s+ν)> −s+ν and p−s+α(p) > −s+ν. To see this, observe that γ −→ 1 and s −→ 1

when r −→ +∞. Therefore for h > 0 small enough, we recover ‖w‖Y s
h
≤ 1

2
h−s+ν , hence the condition

(8.24) holds for Th = hp, and similarly to the previous part, we deduce that ‖u‖L∞

T L
2 ≤ hs‖w‖Y s

h
≤ hν .

• Case p = 1. By (8.22) we have

‖w‖Y s
h
≤ C

(
T 1− 1

r h−s + Th−1/4
)
‖w‖Y s

h
+ CT 1− 1

r ‖w‖2Y s
h
+ CTh−s+

1
4 .

here we set Th = h1+ǫ with ǫ > 0, and we perform the same argument as in the previous case. �

Thanks to this proposition and the same argument as (8.12), we can conclude the proof of Theorem 1.3.

Appendix A. Quasimodes for linear equations near Elliptic Orbits

In this section, we state, without proof, a theorem on existence of quasimodes near elliptic periodic
orbits of the Hamiltonian flow. A proof can be found in [Chr08].

Let X be a smooth, compact manifold, dimX = n, and suppose P ∈ Ψk,0(X), k ≥ 1, be a semiclassical
pseudodifferential operator of real principal type which is semiclassically elliptic outside a compact subset
of T ∗X . Let Φt = exp tHp be the classical flow of p and assume there is a closed elliptic orbit γ ⊂ {p = 0}.



28 P. ALBIN, H. CHRISTIANSON, J.L. MARZUOLA, AND L. THOMANN

That γ is elliptic means if N ⊂ {p = 0} is a Poincaré section for γ and S : N → S(N) is the Poincaré map,
then dS(0, 0) has eigenvalues all of modulus 1. We will also need the following non-resonance assumption:

{
if e±iα1 , e±iα2 , . . . , e±iαk are eigenvalues of dS(0, 0), then
α1, α2, . . . , αk are independent over πZ.

(A.1)

Under these assumptions, it is well known that there is a family of elliptic closed orbits γz ⊂ {p = z} for
z near 0, with γ0 = γ. In this work we consider the following eigenvalue problem for z in a neighbourhood
of z = 0: {

(P − z)u = 0;
‖u‖L2(X) = 1.

(A.2)

We prove the following Theorem.

Theorem A.1. For each m ∈ Z, m > 1, and each c0 > 0 sufficiently small, there is a finite, distinct
family of values

{zj}N(h)
j=1 ⊂ [−c0h1/m, c0h1/m]

and a family of quasimodes {uj} = {uj(h)} with

WFhuj = γzj ,

satisfying
{

(P − zj)uj = O(h∞)‖uj‖L2(X);
‖uj‖L2(X) = 1.

(A.3)

Further, for each m ∈ Z, m > 1, there is a constant C = C(c0, 1/m) such that

C−1h−n(1−1/m) ≤ N(h) ≤ Ch−n.(A.4)

Remark A.1. The proof is essentially to construct quasimodes on the Poincaré section as eigenfunctions
for the semiclassical harmonic oscillator, and then to propagate them around the orbit Γ. This shows that
the quasimodes have the localization property as in Lemmas B.1 and B.2.

Appendix B. Some commutator estimates

In this section, we prove two results which we have used in the above computations. Specifically, we
have constructed approximate solutions to the homogeneous and inhomogeneous equations associated to a
semiclassical operator of the form

Q = hDt − P (t, x, hDx),

where P is a “time-dependent” harmonic oscillator,

P (t, x, hDx) = −h2∆(t) + V,

where
V = bij(t)xixj

is a positive definite quadratic form. Both ∆(t) and V have t-periodic coefficients of period T (the same
as Γ), and we seek periodic solutions to equations

Qv = Ev, (Q− E)v = f,

where E is an eigenvalue to be determined and f is periodic in t. The constant-coefficient semiclassical
harmonic oscillator is well-known to have eigenfunctions of a semiclassically scaled Hermite polynomial
times a semiclassical Gaussian. These eigenfunctions, for small eigenvalues, have semiclassical wavefront
set at (0, 0). Moreover, for any ǫ, δ > 0, if |(x, ξ)| ≥ ǫh1/2−δ, these eigenfunctions are O(h∞) in the
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Schwartz space. The purpose of this section is to prove that for the periodic orbit case, similar localization
occurs.

Lemma B.1. Suppose v solves




Qv = Ev +O(h∞)‖v‖, E = O(h),

‖v‖ = 1,

v(0) = v(T ) = v0,

where v0 satisfies the localization property:




∀δ, ǫ > 0, ∃ψ ∈ C∞
c (R), ψ ≡ 1 on {|(x, ξ)| ≤ ǫh1/2−δ},

with suppψ ⊂ {|(x, ξ)| ≤ 2ǫh1/2−δ}, we have

Op h(ψ)v0 = v0 +O(h∞)‖v0‖.
Then there exists ǫ1 > 0, ǫ1 → 0 as ǫ → 0, such that for all 0 ≤ t ≤ T , if ψ ∈ C∞

c (R), ψ(r) ≡ 1 for
{|r| ≤ 1} with suppψ(r) ⊂ {|r| ≤ 2}, then

Op h(ψ(p(t, x, ξ)/(ǫ
2
1h

1−2δ)))v(t) = v(t) +O(h∞)‖v(t)‖.

Proof. Let ψ(r) ≡ 1 for |r| ≤ 1. Then for any ǫ, δ > 0,

Op h(ψ(p(0, x, ξ)/(ǫ
2h1−2δ)))v0 = v0 +O(h∞),

since p(0, x, ξ) is comparable to |(x, ξ)|2. Let I(t) be the forward propagator for P :
{
(hDt + P (t, x, hD))I(t) = 0,

I(0) = id L2→L2 .

Let Ψ = Op h(ψ(p(0, x, ξ)/(ǫ
2h1−2δ))), and set

Γ(t) = I(t)ΨI(t)−1.

We have hDtΓ = [P (t, x, hD),Γ(t, x, hD)], and by Egorov’s theorem, WFhΓ is contained in the flowout
by exp(tHp) of {p(0, x, ξ) ≤ 2ǫ2h1−2δ}. Now the flowout of exp(tHp) no longer preserves the level set of p
because p depends on t, however, if (x(t), ξ(t)) is an integral curve, then

d

dt
p(t, x(t), ξ(t)) = pt(t, x(t), ξ(t)),

so that there is a constant C > 0, independent of h so that

−Cp ≤ d

dt
p(t, x(t), ξ(t)) ≤ Cp,

by the homogeneity of p for (x, ξ) in a neighbourhood of (0, 0). Hence there is a constant c0 so that

c−1
0 p(0, x(0), ξ(0)) ≤ p(t, x(t), ξ(t)) ≤ c0p(0, x(0), ξ(0))

on the flowout for 0 ≤ t ≤ T . Hence a neighbourhood of (0, 0) of order h1/2−δ stays of the same order,
although the size of ǫ > 0 may increase.

We have yet to show the asserted identity property acting on v. But for this, we simply note that
v(t) = I(t)v0, and I(t)

∗ = I(t)−1 to write

Γv(t) = I(t)Ψv0 = I(t)(v0 +O(h∞)L2) = v(t) + I(t)O(h∞)L2 ,

and since I(t) is unitary, we have proved the Lemma.

�
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We now know that modes and quasimodes are concentrated on a scale of h1/2−δ for any δ > 0. We can
measure the distance to Γ in the transversal direction at the point t on Γ using p(t, x, ξ), so it is convenient
to have cutoffs which in a sense depend only on p, and more specifically nearly commute with P (t, x, hD).

Lemma B.2. Let P (t, x, hD) be as above and fix N > 0. Fix ǫ > 0 sufficiently small and fix 0 ≤ a < b < ǫ,
and suppose ϕ0 ∈ C∞

c (R) has support suppϕ0 ⊂ [a, b]. Then for each δ > 0 and for each 1 ≤ j ≤ N , there
exist symbols ϕj ∈ S1/2−δ such that

i If ϕ̃0(t, x, ξ, h) = ϕ0(p(t, x, ξ)/h1−2δ), then ϕ̃0 ∈ S1/2−δ and ψ0 = Op h(ϕ̃
0) satisfies

[P, ψ0] = O(h1/2+δ)L2→L2 ,

ii suppϕj ⊂ {ah1/2−δ ≤ p ≤ bh1/2−δ} ∩ supp∇ψ̃0, for each 1 ≤ j ≤ N , and
iii if ψj = Op h(ϕ

j), then

ψ = ψ0 +

N∑

j=1

hj(1/2+δ)ψj

satisfies
[P, ψ] = hN(1/2+δ)R,

with R : L2 → L2 bounded with compact h-wavefront set.

Proof. The proof is relatively standard, however the addition of the periodic “boundary conditions” in t
adds a small difficulty, so we reproduce the basic argument here.

The principal symbol of P is

p(t, x, ξ) = aij(t, x)ξiξj + bij(t)xixj ,

with both aij , bij positive definite matrices. By the homogeneity of the quadratic forms, we clearly have
ϕ̃0 ∈ S1/2−δ. The symbol calculus then implies the assertion (i), once we observe that ψ̃0 cuts off to a
compact region, and hence p is bounded there.

We now proceed to construct the ϕj satisfying (ii)-(iii). For notation simplicity, denote

A = {ah1/2−δ ≤ p ≤ bh1/2−δ} ∩ supp∇ψ̃0 ⊂ T ∗M.

From (i) and the symbol calculus, we have

[P, ψ0] =
h

i
Op h({p, ϕ̃0}) +R0,

where R0 = h1+2δOp h(r0) + R0,N , where r0 ∈ S1/2−δ with supp r0 ⊂ A, and R0,N = O(hN(1/2+δ))L2→L2

has compact h-wavefront set. We now compute for an arbitrary choice of ψj ∈ S1/2−δ with compact
support:

[P, hj(1/2+δ)ψj ] = hj(1/2+δ)
h

i
Op h({p, ϕj}) + hj(1/2+δ)Rj ,

where Rj = h1+2δOp h(rj)+Rj,N . As in the case of ϕ0, here rj ∈ S1/2−δ has support contained in supp∇ϕj
and Rj,N = OL2→L2(hN(1/2+δ)) has compact h-wavefront set.

We observe that {p, ϕj} has a prefactor of h−1/2+δ since ϕj ∈ S1/2−δ but p ∈ S0, so we want to construct

ϕj so that hj(1/2+δ)h{p, ϕj}/i cancels the term of order h(j+1)(1/2+δ). Assume for 1 ≤ k ≤ j − 1 we have
found ϕk satisfying (ii) such that

ih1/2−δ{p, ϕk} − rk−1 = O(h1/2−δ)

with the rk−1 and the error in S1/2−δ with support in A. Then if Γj−1 =
∑j−1

k=0 h
k(1/2+δ)ψk satisfies

[P,Γj−1] = h(j−1)(1/2+δ)R̃j−1,
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where R̃j−1 = h1+2δOp h(r̃j−1) +Rj−1,N with rj−1 ∈ S1/2−δ, supp rj−1 ⊂ A, and Rj−1,N = O(hN(1/2+δ))
with compact h-wavefront set. Then we want to solve

ih1/2−δ{p, ϕj} − rj−1 = O(h1/2−δ).

If rj−1,0 is the principal symbol of rj−1, we apply the Frobenius theorem to find such a ϕj . The support
properties follow from the assumed support properties on rj−1 and the observation that we can always
multiply ϕj by a function of p to ensure it is supported in A, at the expense of another compactly supported
error of order h1/2+δ. The symbolic properties follow from the assumed symbolic properties of rj−1.

�

Appendix C. Real principal type

Let us quickly show that our local principal symbol near Γ can be glued into a symbol of real principal
type. Let us recall that a symbol p is of real principal type if the principal symbol is real valued, smooth,
has compact level sets, is elliptic outside a compact set, and dp 6= 0 on {p = 0}. Our local model near Γ is
of the form

p1(t, x, ξ) = −τ + aij(t, x)ξiξj + bij(t)xixj ,

aij and bij are positive definite symmetric matrices, t ∈ S1 and τ is the dual variable to t. Let p0 =
aij(t, x)ξiξj + bij(t)xixj , which is a suitable measure of the distance squared to Γ. Fix δ > 0, and let
χ(r) ∈ C∞

c (R) be equal to 1 for |r| ≤ δ, and χ(r) ≡ 0 for |r| ≥ 2δ. Let q = τ2 + p0, which is elliptic outside
a compact set, and set

p2 = χ(p0)p1 + (1− χ(p0))q.

The function p2 satisfies all the requirements of real principal type, once we show that dp2 6= 0 on {p2 = 0}.
For this, first note that

{p2 = 0} ⊂ ({τ = p0} ∩ {p0 ≤ 2δ}) ∪ ({q = 0} ∩ {p0 ≥ δ}).
The latter set is empty, but the first is not. We observe that

dp2 = (1 + χ′(p0)(−τ − τ2))dp0 + (2(1− χ)τ − χ)dτ,

and that dp0 = 0 only if x = ξ = 0. Now χ is a non-increasing function of p0, so on {τ = p0} ∩ {p0 ≤ 2δ},
χ′(p0)(−τ − τ2) ≥ 0. Hence if (x, ξ) 6= (0, 0), dp2 6= 0. If x = ξ = 0, we have p0 = 0, so on {τ = p0}∩{p0 ≤
2δ}, τ = 0 also. But

(2(1− χ)τ − χ)dτ 6= 0

for τ in a neighbourhood of 0, which shows dp2 6= 0 on {p2 = 0}.

Appendix D. Rescaled wavefront sets: an example

In this section, we provide for the reader’s convenience an example where one encounters the rescaled
wavefront sets. Let us consider the quantum harmonic oscillator

P = (hDx)
2 + x2.

The eigenfunctions Puj = Ejuj, are semiclassical Hermite polynomials times semiclassical Gaussians. If

u0(x) = c0h
−1/4e−x

2/2h is the (L2-normalized) semiclassical Gaussian, and if χ(x) ∈ C∞
c (R) is equal to 1

near 0, then clearly
‖(1− χ(h−δx))u0‖ = O(h∞)

in any seminorm, provided δ < 1/2. On the other hand, a simple computation shows that the semiclassical
Fourier transform of u0

Fh(u0)(ξ) = c′0h
−1/4e−ξ

2/2h,
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so that Fh(u0) has the same localization in ξ as u0 did in x. In other words, for any 0 ≤ δ < 1/2,

WFh,δ,γ(u0) = {(0, 0)}.
A similar argument implies the same is true for any uj provided Ej = O(h).

On the other hand, let us see how to use Corollary 4.4 to prove the same localization. If Ej = O(h),
then the principal of P − Ej is p = ξ2 + x2. By homogeneity, we can rescale

p = h2δ((h−δξ)2 + (h−δx)2),

which is a symbol in S2,−2δ
δ . As this symbol is O(h∞) only at (x, ξ) = (0, 0), we get the same result as

above.

Appendix E. Harmonic oscillator eigenfunctions

Let P0 = −d2/dx2 + x2 be the one-dimensional quantum harmonic oscillator operator. The theory of
the eigenfunctions of P0 is well established, however we need several important facts recalled here.

Proposition E.1. Each eigenfunction un, n = 0, 1, 2, . . ., of P0 is a polynomial times a Gaussian:

un(x) = Hn(x)e
−x2/2,

with eigenvalue λn = 2n+ 1.

The un can be taken to be real-valued, they form a complete orthonormal basis of L2(R), and the zeros
of un are simple.

Proof. The proof as usual is by creation and annihiliation operators. Let

A± = Dx ± ix,

so that A± = A∗
∓ and

A+A− = P0 − 1 = A−A+ − 2.

A computation shows

A−e
−x2/2 = 0,

so that

A+A−e
−x2/2 = 0 = (P0 − 1)e−x

2/2.

The other eigenfunctions are constructed with the creation operator:

un = An+e
−x2/2,

and a simple computation shows the un is a polynomial times the Gaussian e−x
2/2. The creation operator

A+ = −i(∂x−x) is −i times a real-valued operator, so the polynomials can be taken to be real-valued. By
induction, we have

P0un = (A+A− + 1)un

= A+(A−A
n
+)u0 + un

= A+(P0 + 1)An−1
+ u0 + un

= A+(2(n− 1) + 2)un−1 + un

= (2n+ 1)un.

A simple computation shows the eigenfunctions {un} form a complete orthnormal set.



NONLINEAR QUASIMODES 33

To show the zeros are simple, we again assume for induction that un has only simple zeros, and suppose
un+1(x0) = 0. Then

A−un+1 = A−A+un

= (P0 + 1)un

= (2n+ 2)un,

so

u′n+1(x) + xun+1(x) = i(2n+ 2)un(x),

and if un+1(x0) = u′n+1(x0) = 0, then x0 is a zero of un as well. Differentiating again, and using the fact
that un+1 is an eigenfunction, we get

i(2n+ 2)u′n(x) = u′′n+1(x) + un+1(x) + xu′n+1(x)

= −(2n+ 2)un+1(x) + x2un+1(x) + xu′n+1(x),

so if un+1(x0) = u′n+1(x0) = 0, then u′n(x0) = 0 as well, which contradicts the induction hypothesis. Hence
un+1(x) has only simple zeros.

�

We are interested in these properties of the quantum harmonic oscillator eigenfunctions because, for the
nonlinear problem studied in this note, we will take a non-smooth function of these eigenfunctions, and we
want to understand the singularities. Let p > 0, let un(x) be an eigenfunction of the quantum harmonic
oscillator, and set

v(x) = |un(x)|pun(x).

Proposition E.2. The function v(x) is rapidly decaying, v(x) ∈ C1 ∩H1, and

v̂(ξ) ∈ Scl
−2−p,

where Scl
−2−p is the space of classical symbols of order −2− p.

In particular, we are interested in semiclassical rescaling, and to what extent v is localized in phase
space. The function v is not smooth, so it does not have compact semiclassical wavefront set, but because
of the symbolic assertion in the previous proposition, there is some decay at infinity, as described in the
next corollary.

Corollary E.3. For any δ > 0, the function v(x) satisfies:

‖v(x)‖H1(B(0,h−δ)∁) = O(h∞).

Moreover, for any 0 ≤ γ ≤ 1 and 0 ≤ s ≤ 3/2, the semiclassical Fourier transform satisfies

‖|ξ/h|sFhv‖L2(B(0,hγ)∁) ≤ Ch(1−γ)(3/2+p−s).

In particular, if χ(x, ξ) ∈ C∞
c (R2) is 1 in a neighbourhood of (0, 0), then

χ(hδx, h1−γDx)v = v + E,

where for any 0 ≤ s ≤ 3/2,

‖E‖Ḣs ≤ Ch(1−γ)(3/2+p−s).
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Proof of Proposition E.2. Each zero of un is a simple zero, so we can write

v(x) =

n∑

l=0

vl(x),

with v0 ∈ S, and for 1 ≤ l ≤ n, vl has compact support containing a single zero of un. If xl is a zero of un
contained in the support of vl, then

vl(x+ xl) ∼ |x|px
near x = 0, and vl(x + xl) is smooth and compactly supported away from from x = 0. Then vl(x + xl) is
conormal at x = 0, which implies v̂l is a symbol in class Scl

−2−p. Summing in l, and using that v̂0 ∈ Scl
−∞,

we get v̂ ∈ Scl
−2−p as claimed.

�
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[SZ02] Johannes Sjöstrand and Maciej Zworski. Quantum monodromy and semi-classical trace formulae. J. Math. Pures
Appl. (9), 81(1):1–33, 2002.

[Tay81] Michael E. Taylor. Pseudodifferential operators, volume 34 of Princeton Mathematical Series. Princeton University
Press, Princeton, N.J., 1981.

[Tho08a] Laurent Thomann. Instabilities for supercritical Schrödinger equations in analytic manifolds. J. Differential Equa-
tions, 245(1):249–280, 2008.

[Tho08b] Laurent Thomann. The WKB method and geometric instability for nonlinear Schrödinger equations on surfaces.
Bull. Soc. Math. France, 136(2):167–193, 2008.

[Zel08] Steve Zelditch. Local and global analysis of eigenfunctions on Riemannian manifolds. In Handbook of geometric
analysis. No. 1, volume 7 of Adv. Lect. Math. (ALM), pages 545–658. Int. Press, Somerville, MA, 2008.

E-mail address: albin@math.jussieu.fr
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