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Abstract

Structure comparison tools can be used to align related protein structures to identify structurally conserved and variable
regions and to infer functional and evolutionary relationships. While the conserved regions often superimpose well, the
variable regions appear non superimposable. Differences in homologous protein structures are thought to be due to
evolutionary plasticity to accommodate diverged sequences during evolution. One of the kinds of differences between 3-D
structures of homologous proteins is rigid body displacement. A glaring example is not well superimposed equivalent
regions of homologous proteins corresponding to a-helical conformation with different spatial orientations. In a rigid body
superimposition, these regions would appear variable although they may contain local similarity. Also, due to high spatial
deviation in the variable region, one-to-one correspondence at the residue level cannot be determined accurately. Another
kind of difference is conformational variability and the most common example is topologically equivalent loops of two
homologues but with different conformations. In the current study, we present a refined view of the ‘‘structurally variable’’
regions which may contain local similarity obscured in global alignment of homologous protein structures. As structural
alphabet is able to describe local structures of proteins precisely through Protein Blocks approach, conformational similarity
has been identified in a substantial number of ‘variable’ regions in a large data set of protein structural alignments; optimal
residue-residue equivalences could be achieved on the basis of Protein Blocks which led to improved local alignments. Also,
through an example, we have demonstrated how the additional information on local backbone structures through protein
blocks can aid in comparative modeling of a loop region. In addition, understanding on sequence-structure relationships
can be enhanced through our approach. This has been illustrated through examples where the equivalent regions in
homologous protein structures share sequence similarity to varied extent but do not preserve local structure.
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Introduction

Comparison of protein structures is an indispensable step in
understanding structure-function relationships. In most cases, first
reasonable impressions on function of a protein can be generated if
the protein shares high structural similarity to a protein of known
function [1]. It also gives hint on evolutionary relationships [2–5].
During evolution, fold of homologous proteins are conserved even
without detectable sequence similarity [6,7]. High structural
similarity associated to the very low sequence similarity is indicative
of either a common origin [4,6] or an independent origin with
convergence to a common fold [8]. During evolutionary process,
different regions of proteins are constrained differently; the regions
critical for functional and structural integrity are well preserved,
while the rest of the structure can diversify to accommodate
insertions, deletions and substitutions [9,10].
The 3-D superimposition of protein structures obtained by using

structure comparison tools is very useful in quantifying structural

dissimilarity and in analyzing structural divergence. Structural
comparison influences classification of proteins into protein
families, superfamilies etc [11,12], i.e., they allow a complete
representation of protein fold space. Hence, for a newly
determined protein structure, mining the structural databases
enables the identification of protein structures/sub-structures
similar to the given structure [13–18]. Proteins are not rigid
macromolecules and they exhibit certain degree of flexibility to
allow structural variations critical for functional mechanisms [19].
Thus comparison of structures corresponding to the active and
inactive states of a protein can further our understanding on the
conformational plasticity of protein structures and the insights
gained can improve the drug design process [20–22].
Alignment of proteins on the basis of their 3-D structures is

more complex than sequence-based alignment as the 3-D
structural information is more complex [23]. From a computa-
tional point of view, identifying the best match having least spatial
distance between the maximum numbers of equivalent regions is
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highly expensive. Heuristics is usually added to make the problem
tractable. The difficulty in aligning structures is compounded
when the structures share similar secondary structures with
different connectivity. In such cases, matching of equivalent
regions is not sequential. Due to its utility and the difficulties
mentioned before, innumerable methods to compare and align
protein structures have been developed, e.g., DALI [14], SSAP
[24], MAMMOTH [25], CE [26], COMPARER [27], FATCAT
[28] and Matt [29]. These methods seek to find maximum
correspondences between the structural elements (i.e., atoms,
residues or secondary structures), and compute a similarity
measure. They differ at the level of (i) representation of protein
structure (points, vectors, internal distances or graphs), (ii) measure
of similarity and (iii) the algorithm used for comparison, (for
reviews see [30–32]). The comparison algorithms are varied such
as dynamic programming, stochastic algorithms like Monte Carlo
methods and graph theory based methods.
The algorithms can be grouped into rigid body methods, that

view protein structures as rigid bodies, e.g., STAMP [33], DALI
[14], CE [26] and MAMMOTH [25] and flexible methods, that
connect series of aligned fragments or substructures, e.g., FATCAT
[28], FlexProt [34] and Matt [29]. The structural alignments
provided by flexible methods is believed to be better as they are
biologically more meaningful [35].
In this work, we attempt to add a component of flexible

alignment in local variable regions which are initially recognized
by rigid body superposition. Here, we focus on the ‘‘structurally
variable’’ (high spatial deviation) regions in the alignments of
three-dimensional structures of homologous protein domains in
PALI database [36]. PALI database comprises of protein families
from SCOP [11]. It contains structural alignments generated
using DALI [14], a well established structure comparison method
and subsequently superimposed using rigid body alignment
method. After such a rigid body superposition, the backbone
regions with highly similar structures are evident by good overlap
of Ca atoms. The structural differences in homologous proteins
could be due to structural re-ordering to accommodate
mutations. These differences vary from subtle variations in
backbone structure to large orientation differences to accommo-
date substitutions especially at the core [6,37–39]. Insertions are
accommodated as an extension to the existing secondary
structures or addition of new regular/irregular structures
[37,38,40]. These insertions may either act as embellishments
or promote functional diversity by presenting altered/new
binding site for ligand or macromolecule [38,40].
The current study pertains to those backbone regions of

homologous proteins that are not well superimposed in the rigid
body superposition. These structural differences between homo-
logues can be categorized into rigid body displacements and
conformational variations. However due to rigid body displace-
ments, an optimal superposition may not be obtained using a rigid
body superposition method. Through Protein Blocks [41], a
simplified representation of protein structures, we classify the
variable regions into conformationally dissimilar regions and
regions that share local structural similarity obscured in a global
fit. In the next step we refine the alignment between homologues
in PALI database, obtained through a recognized rigid body
method, using match of protein blocks in the local structurally
variable regions. Additionally, based on the similarity measure
used, the assignment of residue-residue equivalences for a
structural superposition may differ [23]. The discrepancies are
higher when the Ca-Ca deviation is high. An optimal local
alignment would help in the assignment of residue-residue
equivalences more precisely.

For this work, Protein Blocks (PBs) [41–44] is the major tool
used. They represent a higher level abstraction of protein
backbone conformation. This is a set of 16 prototype conformers,
denoted from a to p, which approximate the local protein structure
with an average root mean square deviation of 0.42 Å. Protein
Blocks have been used in comparison of protein structures [41,45]
and database mining [46]. PBs have been found to be useful in
prediction of short loops [47]. Protein blocks approach has also
been used to build trans-membrane protein structures [42], to
design peptides [48], to define reduced alphabets for designing
mutants [49], to analyze protein contacts [50], to find structural
motifs across protein families [18] and to identify Mg2+ binding
sites in proteins [51].

Results and Discussion

Superimposed proteins from PALI database have regions of
correspondence that exhibit high structural deviation, namely
‘‘Structurally Variable Regions’’ (SVRs). These regions may
appear ‘‘structurally variable’’ (not well superimposed) in a global
context but may exhibit local conformational similarity. For
example an a-helical region in a protein might correspond to an a-
helical region in the homologue; however if the helical regions in
the two proteins are in slightly different orientations they may not
appear superimposed if the two structures are superimposed as a
whole. Using PB Substitution Matrix (SM) coupled with
CLUSTALW [52] alignment approach, SVRs were re-aligned
to seek an improvement in the local alignment for these regions
(see Materials and Methods section). We investigated the differences
in alignments obtained after employing protein blocks approach
(aSVRs – ‘‘a’’ stands for ‘‘after’’) and alignments before employing
the approach (bSVRs – ‘‘b’’ stands for ‘‘before’’), to evaluate our
protocol in revealing similarities not identified using a global rigid-
body superposition method. For this purpose, we compared the
two alignments, referred to as bSVRs and aSVRs in the rest of this
paper, based on PB scores and values of root mean square
deviation (rmsd) or a similar measure, Structural Distance Metric
(SDM). An improvement in the values for these two parameters for
aSVR would reflect an improvement in the alignment obtained
using PBs. A total of 347,062 Structurally Variable Regions
(SVRs) and 542,610 Structurally Conserved Regions (SCRs) were
identified in the PALI database (Refer Materials and Methods).

Distribution of scores
Re-alignment of PB sequences of SVRs change the alignment

scores. Figure 1 shows the distribution of normalized score for
aligned pairs (SAP score) obtained for SCRs, bSVRs and aSVRs.
A normal distribution of scores was observed. Using two-sided
Kolmogorov-Smirnov statistic, the p value for each of the three
distributions is less than 2.2e-16. As expected, the values for SAP
are higher in SCRs as compared to bSVRs indicating higher
structural similarity in SCRs compared to bSVRs. However,
compared to bSVRs, a significant shift of SAP values towards
higher scores was observed for aSVRs (p value ,2.2e-16; Paired
student t test, see Figure 1). An analysis of the difference in SAP
values for aSVRs and bSVRs indicates an improvement for 56%
of SVRs and a decrease for 13% of SVRs. The scores remain
unchanged for the remaining 31% of the alignments. The trend
for the distribution of scores for complete alignment (SCA) was
similar to SAP scores; 59% aSVRs scored higher and 14% scored
lower than bSVRs (see Text S1 and Figure S1). SCA and SAP
scores have reasonable correlation in the two scores for both
bSVRs and aSVRs. A shift could be observed towards higher
scores; 55% of aSVRs scored above -1 for SCA and SAP

Protein Blocks-Based Alignment
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measurements as opposed to 41% of bSVRs, i.e., an increase in
number by 14% (see Text S2 and Figure S2). Thus, an increase in
the scores after realignment indicates that the regions concerned
are more similar in terms of conformation than previously
represented in the PALI database. Both measurements show
improvement indicating better alignment of SVRs.
Analysis of the distribution of SCA and SAP allowed us to

define a cutoff score of 20.42 to distinguish SVRs as conforma-
tionally similar and dissimilar (see Figure 1). The cutoff was chosen
such that 90% of the scores corresponding to the structurally
conserved regions score above this threshold. Based on this cutoff,
53% of the bSVRs and 74% of aSVRs were classified as
conformationally similar, i.e., an increase by 21% (45,343 SVR
segments). Thus, through our approach we have been able to
identify local structural similarity in a substantial number of SVRs
which was not known from classical approach.

PB substitutions in bSVRs and aSVRs
An improvement of scores is observed after re-alignment. This

increase is due to a higher number of PB-PB equivalences (i.e.,
number of PB aligned with another PB and not a gap), and/or a
change in the nature of PBs aligned at various positions in the
alignment. 76% of SVRs showed no change in the raw number of
correspondences after re-alignment. On an average, for each
segment, 0.5 more PB is aligned with a PB in aSVRs as compared
to bSVRs (see Figure S3). Figure 2 shows the difference in the
distribution of PB-PB substitutions between bSVRs and aSVRs.
Alignment of identical PBs (i.e., diagonal elements of the plot) is
increased for each PB. Among the non-identical substitutions, the
highest increase has been observed for the alignments of PB f (C
cap b strand), PB k and l (loop to N cap a helix). A lower increase
was observed in the alignments of PB a and c (N cap b strand), PB
d (b strand), PB m (a helix), PBs n to p (C cap a helix) and PB h

(loop). The alignments of PB m with each PB types except itself
shows a drop, the highest decrease being in the alignments with
PBs d, f, k, l and n. A lower decrease was observed for the
alignment of PB a and c with PBs corresponding to loops, PB d
with PBs corresponding to loops and capping regions of a helix,
PB f (C cap b strand) with PBs corresponding to N cap b strand
and loops, PB k with PBs corresponding to N and C caps of b
strand and PBs l with PBs c, e, k and p. In general, this decrease
concerns unrelated or dissimilar PBs and the increase is mainly
observed in highly similar or identical PBs. The increase in the
number of equivalences for PBs corresponding to N cap and C cap
regions of helices and strands as seen in Figure 2 suggests an
improved alignment of these regions. Similar conclusions were
drawn from the plots generated for data sets corresponding to
various SCOP classes.
Hence, the major contributing factor for the increase in scores is

the change in the type of equivalences rather than an increase in
the number of correspondences. In fact only 30% of SVRs share
more than 95% of the equivalences. In the rest 70% of SVRs (see
Figure S4A) the percentage of equivalence is shared to varied
extent. Nevertheless, a common PB pair found in the two
alignments could in fact come from different regions in the
sequences. 40% of SVRs have undergone changes in the
alignments to form new equivalences although the PB-PB
equivalences are preserved, while for 40% SVRs, the equivalences
are retained in the alignment (see Figure S4B).
A comparison of the difference in percentage of gaps between

bSVRs and aSVRs (Figure S5A) shows that 76.6% of the
alignments have no change in the number of gaps. A decrease
in the percentage number of gaps has been observed for 18.4%
SVRs and an increase is seen in 5.0% of SVRs. Although, a
decrease in the percentage of gaps is indicative of higher similarity
in terms of lengths of the protein structures aligned, the
introduction of gaps is sometimes favored as it reduces the
number of equivalences of dissimilar PBs. Another interesting
parameter compared was the number of gap openings in the
alignments. An accommodation of insertions and deletion would
require a re-adjustment in protein structures. We would expect
fewer insertion and deletion events during protein evolution to
preserve the three dimensional structure and thus intuitively less
number of gaps interspersed in the alignments especially in the
middle of helices and strands [37,38,53]. The difference in the
number of gap openings in aSVRs as compared to bSVRs is not
significant (mean value equals to 20.38) (see Figure S5B).
Nonetheless, some examples were observed where gaps in the
stretch of aligned PBs corresponding to a-helix and b-strand are
eliminated in aSVRs (see the section below).

Analysis of SVRs
Local structural similarity could be identified in terms of PB

sequence similarity. We have also analyzed it by comparing SDM
of bSVR and aSVR alignments. Profit software [54] was used to
perform the superimposition. Rmsds obtained from these superim-
positions were converted in SDMs (Structural Distance Metric)
[55,56] (see Materials and methods section).
With a global rigid body protein structure superposition, regions

corresponding high deviations usually correspond to regions (i)
that are spatially displaced although being structurally similar or
(ii) with genuine difference in local conformation. Protein Blocks
approach can distinguish these two scenarios. Indeed, a rigid body
displacement of a local region after superposition would result in a
high PB score and low SDM for the aligned regions. However,
when the regions are conformationally distinct, the PB score would
be low and SDM would be high.

Figure 1. Distribution of scores for aligned PBs in structurally
conserved regions (SCRs, solid line), structurally variable
regions before re-alignment (bSVRs, broken lines,blue) and
SVRs which have been re-aligned using PB approach (aSVRs,
red).
doi:10.1371/journal.pone.0017826.g001
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Figure 3 shows a plot indicating the variation of difference in
SDM values with respect to the difference in PB SAP scores for
segments before and after re-alignment, i.e., aSVRs and bSVRs.

The results on the assessment of approach in terms of SDM and
PB scores have been tabulated (see Table 1). On an average 36.2%
of SVRs showed an improvement in SDM values. For 32.7% no
change has been observed while for 31.0% a decrease has been
observed. In the last category of cases, often superimposition is not
relevant as the mean PB scores for these SVRs is 0.02 after re-
alignment (20.49 before re- alignment). 28.9% of the SVRs in the
dataset showed an improvement both in PB scores as well as SDM
values. Improvements were due to re-alignment of segments which
were displaced/oriented differently in previous alignments.
Figure 4A shows an illustrative example highlighting improved
alignment of an a-helix displaced in alignment obtained by
superposition of gross structures. The figure on the left shows a
superposition of SVR segments based on alignment obtained by
using DALI. Superposition of the segments obtained after re-
alignment is shown on the right. Below each superposition, are

Figure 2. Difference in distribution of nature of aligned PBs observed after re-alignment of SVRs compared to the original
alignment. Various colors indicate the extent of differences in the number of various PB-PB equivalences between bSVRs and aSVRs. Blue color
indicates a decrease and red color indicates an increase in the number of corresponding PB equivalences in aSVRs compared to bSVRs. The other
colors indicate intermediate values.The values in the top diagonal of the matrix have been normalized by the number of PBs as denoted in x axis.
Similarly, the values in the bottom diagonal have been normalized by the number of PBs as denoted in the y axis.
doi:10.1371/journal.pone.0017826.g002

Figure 3. Difference in scores of aligned PBs (SAP score) and of
SDM values between aSVRs and bSVRs. A negative difference in
SDM values and a positive difference in scores indicate an improve-
ment.
doi:10.1371/journal.pone.0017826.g003

Table 1. Results on assessment of aSVRs in terms of PB scores
and SDM*.

DSDM

better equal Worse Sum

DSCA better 19457 (28.9) 12 (0.02) 14654 (21.8) 34,123 (50.8)

equal 1158 (1.7) 21989 (32.7) 1024 (1.5) 24,171 (36.0)

worse 3755 (5.6) 2 (0.003) 5183 (7.7) 8,940 (13.2)

Sum 24370 (36.2) 22003
(32.7)

20861
(31.0)

67,234 (100.0)

*The numbers outside brackets correspond to the number of SVRs. These
numbers expressed as percentage are shown in brackets.
doi:10.1371/journal.pone.0017826.t001
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shown the alignments, PB scores and SDM values for alignments,
bSVRs and aSVRs. With appropriate placement of gaps, PBs k, l,
m, n, o, p and a are aligned in aSVR thus identifying local structural
similarity previously unknown. Similarly, a b-strand oriented
differently in the homologue could be aligned with a lower SDM
using PB approach as shown in the Figure 4B. Figure 4C shows
the superposition of regions corresponding to loops. Although the
loop conformations are identical, as indicated by the identical PBs
in the two structures, the SDM is high due to difference in the
orientation (superposition on the left). An optimal superimposition
and residue-residue equivalences could be obtained using PB
approach (superposition on the right). As exemplified above, the
local structural similarity was unidentified previously due to rigid
body shifts. In other cases, improvements were observed in
alignment of segments with differing lengths but with local
structural similarity. The region of similarity was found to lie at
either ends in the alignments or in the middle of alignment flanked
by gaps. Figure 4D shows an example of a region similar at one
end. Moreover, the continuity in helix in the new alignment is
evident bringing the PBs f, k, l and series of m in the two sequences
in register. As mentioned in the previous section, insertions and
deletions in the middle of a helix or a strand are tolerated to a
lesser extent as compared to the rest of the structure. Through our
approach, gaps in the middle of a helix or a strand have been
reduced/eliminated. Figure 4E shows an example of a region of
local similarity in the middle of alignment. The PBs a, c and d
correspond to a small strand with a transition to coil-like region
denoted by PBs k and l in the variable segment of CD4
glycoprotein (PDB code: 1cid, chain A; shown in red; [57]). This
region is aligned with the C terminal end of the b-strand in the
homologue (in blue). The example highlights an improvement in
the capping region of b-strand transiting to coils. The improve-
ment in scores could also be attributed to a decrease in the
equivalences of PBs corresponding to PB m (i.e., helical state) with
PBs associated to strands and capping regions (i.e., PBs d, b, c and
f,) as illustrated in Figure 4F. An alignment of a helix and a strand
is meaningless in structural context as these regions, though
equivalent in homologous proteins, do not share structural
similarity. Hence the alignment of PBs corresponding to helices
and strands would be insignificant.
32.7% of the alignments showed no difference in PB scores and

SDM. The plausible reasons are the already existing optimal
equivalences in SVRs which could not be improved further using
PB approach and/or the regions that are aligned are conforma-
tionally different. Equivalences were preserved in majority of
aSVRs. One quarter of these alignments correspond to confor-
mationally different segments (according to the cutoff determined
previously, see the first section in Results and discussion). An example
where the scores for aSVRs fall below the cutoff and the sequences
aligned are conformationally different is presented in one of the
subsequent sections.
21.8% of the aSVRs have better PB scores but SDM value

differences were slightly higher (3.7Å on average) than bSVRs.
25.5% of these SVRs correspond to conformationally dissimilar
regions based on the cutoff previously determined; hence such
regions cannot be superimposed well. In general, changes in PB-
PB equivalences were observed due to re-distribution of gaps

which improved the scores; however this increase is not reflected
in SDM values. The short stretches of local similarity in segments
of overall different conformations led to an increase in the PB
scores but with a slight increase in SDM values due to poor
similarity in the remaining segment presenting complex cases of
superposition. This has been explained though an example
illustrated in Figure 4G. The PBs k, l and m are aligned in aSVR,
hence improving the score though the remaining segment shares
low similarity. A similar observation can be made from the
example in Figure 4H. The PBs a, c, f and k align in the aSVR and
improve the score. Therefore where the conformations of the
segments superposed are very different with similar region being
very short, overall PB score may improve but the SDM values may
increase slightly.
In contrast to the above scenario, 5.6% of the aSVRs have a

lower PB scores but improved SDM values. 42.02% of these
segments aligned are conformationally distinct. In the remaining
cases, a redistribution of gaps led to different equivalences. Here,
the mean difference in SDM is 216.77 for conformationally
similar segments (SAP .20.42). Small regions of similarity are
preserved while the rest of alignment undergoes a change in
equivalences. In certain cases, this results in an improvement of
overall superposition but a decrease in PB scores. An example is
presented (Figure S6A). The region of alignment of identical PBs is
small (PBs k and l at the C terminal end). The rearrangement of
PB equivalences in the remaining region decreases the score.
For 14 cases (0.023%) of alignments, no differences in SDM

values were observed but a difference in scores for aligned PBs
was found. For 12 out of 14 cases the PB score improved and for
2 cases PB score did not improve. 21.43% of these segments
exhibit conformational dissimilarity. The mean difference in
scores for the remaining segments corresponds to 0.52. The
change in scores indicates change in PB-PB equivalences. In two-
thirds of the cases, number of equivalences before and after
realignment remains same without a change in overall atomic
superposition. In the remaining one-thirds, the number of
equivalent PBs (or % gaps in the alignment) has changed without
changing the SDM values.
More surprisingly, for a limited number of cases, i.e., 3.2% of

SVRs, no difference in PB scores were observed, but a change in
SDM was seen. It is a consequence of new equivalences without a
change in the nature of PBs aligned, which improved the SDM in
1.7% of these SVRs but did not improve in the rest 1.5% of SVRs.
Finally, 7.7% of the aSVRs showed a decrease both in PB scores as
well as higher deviation at Ca positions. It is mainly due to repeats
of PBs which leads to the possibility of alternate alignments
analogous to alignment of low complexity regions in amino acid
sequences. The local similarity is observed at the ends of the
alignment. PBs at the end come close while eliminating the gap
which results in poor SDM and poor score (see Figure S6B).
Structural alphabets m and f are repeated. As a result, many
alternate alignments are possible. The PBs c, f and k in the segment
of protein cytochrome P450 (PDB code: 1io7, chain A;[58]) could
align to PBs c, f, b or d, f and k.
The application of the approach in modeling loop regions and

in analyzing structure-function relationships has been discussed in
the next two sections.

Figure 4. Illustrative examples of superposition of SVRs before and after realignment using PB approach. The global superposition of
protein structures before re-alignment is shown as cartoons in blue and red. The regions which were re-aligned locally are encircled. The local
superposition is shown in ribbon representation. PB equivalences, scores and SDM values for bSVRs and aSVRs are also shown. This Figure and other
figures showing an overlay of protein structures have been generated using Pymol software [82]. A–F: Examples of improved PB scores and SDM
values using PB approach. G and H: Improved PB scores but an increase in SDM. Refer text for further details.
doi:10.1371/journal.pone.0017826.g004
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Loop modeling
One of the most challenging tasks in comparative modeling

[59,60] is to obtain an accurate model of protein loops as they often
hold the functional site [61,62]. Errors in modeling loops are high as
they are structurally variable regions and may not be conserved
even among the closely related proteins [63,64]. Modeling loop
regions is difficult as the conformations also depend on length of the
loop and certain key residues [65]. If the sequence similarity among
the homologues is low or the regions are variable in length, the
problem is compounded. Additionally, the number of geometrically
possible loop conformations increases exponentially with loop
length. Consequently, it becomes a daunting task to obtain an
accurate model of loop regions. The conformation of a loop can be
predicted by identifying a loop template from homologous structure
or by searches in databases of loop conformations of various lengths
obtained from known three-dimensional structures [59,66–68]. It
has been shown previously that the modeling of loops is more
accurate if a homologue is used as one of the templates [69].
However, finding a homologue as a template for loop modeling is
not always possible and in most cases a template is obtained from
database search. The alternate approach, ab initio modeling of loop
region is based on the potential or scoring function and works best
for short segments [59,70–72].
Having known that loop modeling is non-trivial and is most

accurate when the equivalent regions are obtained from
homologues, we have explored the use of information on local

conformation through representation of templates as Protein
Blocks in obtaining clues on comparative modeling. This has been
exemplified through modeling exercise of a segment of Alpha-l-
arabinofuranosidase protein (from Bacillus stearothermophilus, PDB
code 1qw9 [73]) using Beta-D-xylosidase structure (PDB code
1w91 [74]) as the template which share overall sequence identity
of 7.7% with the target. A number of models (100 each) were
generated using Modeller 9v7 with classical approach [60] based
on alignments from bSVRs and aSVRs of the target and template
sequences. Figure 5A shows the variation in rmsd values for various
models with respect to the template structure. Rmsd values are
lower when models are generated based on the equivalences from
aSVRs (red, Figure 5A) as compared to bSVRs (blue, Figure 5A).
This indicates an improvement in models of the target segments
when new equivalences based on PB approach were used. The two
alignments: bSVR and aSVRs along with the corresponding PBs
are shown in Figure 5B. For further analysis, the best models
having lowest rmsd with respect to the template structure from each
set of 100 models were selected (model 8: lower plot for aSVRs;
and model 74: upper plot for SVRs). Figure 5C shows the
superposition of the modeled segments with the known crystal
structure (green) based on the alignment from bSVRs (blue) and
aSVRs (red), respectively. The model generated based on the
equivalences from PB approach produces lower rmsd (1.98 Å) when
superposed on the crystal structure as compared to the model
generated using the original approach (rmsd: 3.50 Å).

Figure 5. Illustrative example to highlight the utility of Protein Blocks in comparative modeling. A. Plot shows the variation in RMSD
values of the models with respect to the template structure generated based on the new equivalences (aSVRs, dark red) and previousequivalences
(bSVRs, blue). B. The alignments used in modeling the template fragment. The top panel shows the alignment of model and template structures (PB
alignment and the corresponding amino acid sequences) based on previous equivalences. The bottom panel shows the new equivalences as
obtained using our approach. C. The superposition of crystal structure for the target (green), modeled structure based on previous equivalences
(blue) and new equivalences (red).
doi:10.1371/journal.pone.0017826.g005
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Understanding sequence-structure relationships
Sequences of homologous proteins may evolve and diverge

beyond recognition by simple homology searches. Usually, the
extent of difference exhibited by sequences is higher compared to
structures. In this section we show how the current analysis of
consideration of PB-based alignment of SVRs can be taken to the
next level of understanding of sequence-structure relationships.
Here we present two examples where the local structures are very
different in the pairs of homologous protein structures. Figure 6A
shows the superposition of 3-D structures of two homologous
elongation factors 1d2e [75] (from cow) and 2c78 [76] (from
Thermus thermophilus) belonging to SCOP family c.37.1.8. The
regions, encircled in Figure 6A are identical in terms of amino acid
sequence but adopt very different structures. The PB score after
optimal PB-based alignment of SVRs (aSVR) is 22.07. Figure 6B
shows an example of homologous protein structures (PDB code
1nkr [77] and 1cvs [78]; SCOP family b.1.1.4, I-set domains) with
poor sequence and structural similarity in a local region. Although
the rest of the structures superimpose well, regions encircled in
Figure 6B have very different local structures. The PB-score after
the optimal PB-based alignment of SVRs is -2.07. As illustrated in
two examples above, the regions are conformationally different.
In the example of elongation factors shown in Figure 6A one

might expect almost identical structure for the local regions with
identical sequences of two closely related proteins However the
PB-based alignment of SVRs shows that this is not a spatial
difference of conformationally similar SVRs. Indeed the low PB-
score indicates very different conformations of identical amino
acid sequence regions. In fact the extent of conformational
difference between SVRs of homologues is comparable to that

shown for another pair of homologous proteins in Figure 6B where
the amino acid sequences in SVRs is very different [79]. Thus PB-
based alignment of local regions (SVRs) are very helpful in
cautioning us on unexpected structural differences even among
‘‘equivalent’’ SVRs of homologous proteins with highly similar or
even identical amino acid sequences. Further, the example of
elongation factor suggests that prediction of secondary structures
based on sequence composition and sequence similarity to a
‘homologue’ should be exercised with caution. Such conforma-
tional differences are often possible in the functional regions of
homologous proteins when the homologues are crystallized in
different functional forms such as active and inactive forms of
enzymes.

Conclusions
In the current work, we have presented a refined view of the

regions of homologous protein structures that exhibit apparent
high deviation on global structural superposition. When the
deviation is high, the equivalences assigned through atomic
superimposition are inaccurate. Through representation of protein
structures as PB sequence, conformational similarity could be
identified for 159,780 (74%) variable segments, based on PB
scores, an increase by 21%, compared to a classical structural
alignment approach in the database of structurally aligned
homologous protein structures. The improvement was also
reflected in the lower SDM in 3D superposition based on new
equivalences after re-alignment of SVRs. The equivalences could
be refined for the capping regions of helices and strands and loops.
Regions of high similarity could be located in homologous pairs of
protein structures even when the aligned regions were of different

Figure 6. Superposition of homologous pairs of protein structures. The equivalent regions that have adopted a different structure are
encircled. The inset shows the local alignment of the conformationally distinct regions. The amino acid residues and the corresponding PBs (in
brackets) are shown in a box alongside. A. An illustrative example where the encircled region exhibit high sequence similarity but low structural
similarity. B. A classical scenario, where the encircled region has poor sequence similarity and poor structural similarity.
doi:10.1371/journal.pone.0017826.g006
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lengths. Also segments which were spatially displaced could be
identified and aligned efficiently. All these cases have been
explained through appropriate examples. For the cases where
the approach does not perform as well, the best (most optimal)
alignment can be chosen based on the global context in the protein
structures following the principles governing protein structure; for
example, regions flanking the variable segment could be
considered. The best alignment could be the one with continuous
helix or strand uninterrupted by gaps in the alignment. The
approach can be used in identifying equivalent regions in
homologous structures that do not share structural similarity and
in the understanding of sequence-structure relationship. It can aid
in providing clues to model loops for which homologue of similar
length is unavailable. The approach can be extended to
understand the effect of amino acid substitutions on the local
structural alterations in the homologous protein structures. As the
approach is quite general, it can be used in conjunction with any
structural alignment algorithm.
With an improvement in structural alignments which are

central in understanding of protein structure-function and
evolutionary relationships, the applications of the approach are
manifold. The approach can be extended to refine regions of high
deviation obtained using simultaneous superposition of multiple
protein structures. The method can be improved by using gap
penalties specific to PB types with respect to major secondary
structures. In the near future, we propose to develop a web server
based on our refinement approach. This comprehensive data set
on homologous structures would serve as a valuable resource to
study the extent and nature of alterations/structural rearrange-
ments in backbone conformation of homologous structures as a
consequence of substitutions (conservative as well as non
conservative) and indels during the course of evolution.

Materials and Methods

Protein Data set
The protein data set was obtained from PALI [36] (Phylogeny

and Alignment of homologous protein structures) v2.7 database
which contains structure-based sequence alignments for protein
domain families defined by SCOP database (v 1.73). The data set of
74,705 pairwise alignments, generated through DALI [14] software
followed by rigid body superimposition, correspond to 1,664 protein
domain families. The structural alignments were analyzed to
identify topologically equivalent and non equivalent residues. A
stretch of three or more contiguous residues with Ca–Ca deviation
at every position lower than 3.0 Å is considered as topologically
equivalent segment or Structurally Conserved Region (SCR). The
other regions are considered Structurally Variable Regions (SVRs).
This rule, classically used in PALI, categorizes regions as
Structurally Conserved Regions or Structurally Variable Regions.
Based on this criterion, 542,610 SCRs and 347,062 SVRs were
identified. These SVRs correspond to 49% of the alignment
positions in the data set. Of these, 215,920 complete SVRs with
more than three aligned PBs have been considered for further
analyses. Our entire analysis is confined to alignment of SVRs.

Protein Blocks
Protein Blocks (PBs) correspond to a set of 16 local prototypes,

labeled from a to p (see Figure 1 of ref [43]), of 5 residues length
based on (w, y)dihedral angles description. They were obtained by
an unsupervised classifier similar to Kohonen maps [80] and
hidden Markov models [81]. The PBs m and d can be roughly
described as prototypes for central a-helix and central b-strand,
respectively. PBs a through c primarily represent b-strand N-caps

and PBs e and f, C-caps; PBs g through j are specific to coils, PBs k
and l to a -helix N-caps, and PBs n through p to C-caps. This
structural alphabet allows a reasonable approximation of local
protein 3D structures with a root mean square deviation (rmsd)
now evaluated at 0.42 Å [42,43]. PBs have been assigned using in-
house software. It follows rules similar to assignment done by PBE
web server (http://bioinformatics.univ-reunion.fr/PBE/) [41].

Re-alignment of structurally variable region
To re-align SVRs in quest of improvement of alignments, we

have adapted our previous approach [41,45]. We had proposed a
PB substitution matrix (PB SM) similar to a matrix used for
sequence alignment. A novel refined version of PB SM optimized
for mining databases and improving the alignment quality has been
generated (Joseph et al., submitted). In this work, we have used the
refined PB SM coupled with classical CLUSTALW approach [52]
to realign protein structures. The parameters used in CLUSTALW
were tuned to make it specific for PBs instead of amino acid residues.
All residue-specific and position-specific gap penalties were turned
off. A range of gap penalty values were evaluated systematically for
generating alignments. Finally, a gap opening penalty of 10 and a
uniform gap extension penalty of 0.2 were chosen based on the
alignment scores. It must be noted that PB substitution matrix
values were scaled between 0 and 10 to make it compatible with the
alignment software. Newly aligned SVRs are named aSVR while
previous alignments are named simply bSVR.

Calculation of alignment scores
To evaluate the quality of new alignments of SVRs over the

previous alignments, scores were computed for both alignments.
Two scores were calculated for each alignment, based on inclusion
or exclusion of gaps in the alignment. Calculation of these scores
would reflect the differences in two alignments of a pair of segments
in terms of the substitution of PB at an alignment position as well as
the lengths of the alignment. The aligned PB positions were scored
based on the values from PB SM. Summation of these values was
normalized by the number of PB pairs to compute the Scores for
Aligned Pairs (SAP) for an alignment. To calculate scores for
complete alignment (SCA), including gaps, every alignment position
with a gap was given a score of -3. The scores were normalized by
the length of the alignment.

Calculation of SDM values
To assess the improvement of alignments using our approach,

SDM of SVR before and after re-alignment were compared.
PROFIT software [54] was used to calculate rmsd values. The
SVRs corresponding to N and C termini were removed from the
analysis. 67,234 SVRs were considered for this analysis. Rmsds for
the remaining SVRs were converted into structural distance
metric (SDM) as proposed by Blundell and coworkers [55,56].

SDM ~ -100 ! ln (W1 ! PFTEzW2 ! SRMS)

Where,

PFTE ~

Number of equivalent residues in alignment = Length of smallest segment

RMS ~ 1-(RMSD (in Å)
.

Highest RMSD from all alignments)

W1 ~ (1-PFTEz1-SRMS) = 2

W2 ~ (PFTEzSRMS) = 2

Suitable modifications have been done in SDM calculations to
make it suitable for the data we present here. i.e., in RMS
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calculation instead of dividing rmsd by 3.0 we are dividing rmsd by
the highest rmsd (24.97) from all the alignments for SVRs to get
the values of RMS in the range of 0 to 1.

Supporting Information

Figure S1 The distribution of scores for bSVRs (A and
C) and aSVRs (B and D). (A) and (B) show the distribution of
scores for bSVRs and aSVRs respectively, calculated by
considering only the aligned PBs (SAP scores). (C) and (D) show
the distribution of scores after including gaps in scoring (SCA) for
bSVRs and aSVRs, respectively.
(TIF)

Figure S2 The variation of scores for aligned PBs (SAP)
and scores for complete alignment (SCA) for bSVRs (A)
and aSVRs (B).
(TIF)

Figure S3 Difference of PBs aligned before and after re-
alignment. Positive values correspond to an improvement.
(TIF)

Figure S4 PB correspondences. A. Histogram of percentage
of PB correspondences common in bSVRs and aSVRs. The plot
depicts that about 30% of SVRs in the dataset share .95% of PB
correspondences. B. Histogram of the percentage conservation of
PB correspondences in bSVRs and aSVRs out of the common PB
correspondences. The plot indicates that about 40% of SVRs
exhibit very low and over 40% exhibit very high conservation of
PB correspondences.
(TIF)

Figure S5 Distribution of gaps. A. The plot shows the
difference in the percentage of gaps observed after re-alignment as
compared to the percentage of gaps before re-alignment for a
variable segment. B. The plot shows the distribution of difference
in gap openings in the aSVRs as compared to the bSVRs.
(TIF)

Figure S6 Illustrative examples of superposition of
SVRs before and after alignment using PBs. A: Reduced
PB score and improved SDM B: Reduced PB scores and increased
SDM.
(TIF)

Text S1 Comparison of the distribution of SAP and SCA
scores in bSVRs and aSVRs.
(DOC)

Text S2 Correlation of SAP and SCA scores in bSVRs
and aSVRs.
(DOC)
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