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Analysis of a diffusive effective mass model for nanowires

C. Jourdana∗† and N. Vauchelet‡

This work is dedicated to Naoufel Ben Abdallah, who was

a talented researcher, an enthusiastic supervisor and a generous person.

Abstract

We propose in this paper to derive and analyze a self-consistent model describing the

diffusive transport in a nanowire. From a physical point of view, it describes the elec-

tron transport in an ultra-scaled confined structure, taking in account the interactions of

charged particles with phonons. The transport direction is assumed to be large compared

to the wire section and is described by a drift-diffusion equation including effective quan-

tities computed from a Bloch problem in the crystal lattice. The electrostatic potential

solves a Poisson equation where the particle density couples on each energy band a two

dimensional confinement density with the monodimensional transport density given by the

Boltzmann statistics. On the one hand, we study the derivation of this Nanowire Drift-

Diffusion Poisson model from a kinetic level description. On the other hand, we present

an existence result for this model in a bounded domain.

Keywords. drift-diffusion system, relative entropy method, diffusive limit, Hamiltonian’s

spectrum.

AMS subject classifications. Primary: 35Q40, 76R99, 49K20, 82D80; Secondary: 81Q10.

1 Introduction

A quantum wire is an electronic component made of a periodic ion packing. The transport

direction is large compared to the wire section, which includes only few atoms. So, the

assumption of infinite periodic structure in the wire cross section, which allows to derive the

usual effective mass theorem [1, 20], cannot be used anymore.

In [5], a new quantum model for nanowires is derived. Using an envelope function de-

composition, [3] is extended to nanowires and a longitudinal effective mass model is obtained.

However, in many applications such that FETs (Field Effect Transistors) for example, semi-

conductor devices contains largely doped regions. In these regions, collisions play an important

role in the transport. Usually, quantum models do not include collisions of charged particles.

That is the reason why a diffusive model has to be developed.
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In this paper, a Nanowire Drift-Diffusion Poisson NDDP model is derived following [7]

by performing a diffusive limit from a sequence of 1d Boltzmann equations in the transport

direction, one for each energy band. Similarly to [5], this model takes into account the ultra-

scaled confinement and retains information of the nanowire cross section. Moreover, a self-

consistent model includes the resolution of the Poisson equation in the entire device.

1.1 Nanowire quantities

In order to define the effective masses and the other physical quantities used in the NDDP

model, we need to recall the model derived in [5]. We consider an infinite wire defined in a

physical domain R × ωza , where a is the typical spacing between lattice sites. The transport

is described by a scaled Schrödinger equation in R×ωza containing a potential WL generated

by the crystal lattice, fast oscillating in the scale defined by the crystal spacing, and a slowly

varying potential V computed self-consistently through the resolution of a Poisson equation

in the whole domain. Since the 2d cross section ωza comprises few ions, WL is considered

periodic only in the longitudinal x-direction, also called transport direction. The variable z

of the transverse section can be considered as fast variable, and it can be rescaled as z′ = z
a .

To simplify notations, we now omit the primes. Then, ωz will denote the scaled cross section

and we assume to work in rescaled quantities such that the periodicity is setted to 1 in the

transport direction.

The starting point is the definition of the generalized Bloch functions as the eigenfunctions

of the following problem in the 3d unit cell U = (−1/2, 1/2) × ωz :





−1
2∆χn +WLχn = Enχn.

χn(y, z) = 0 on ∂ωz, χn 1-periodic in y.
∫
U |χn|2dydz = 1.

(1.1)

We use here the notation y to emphasize we consider only one period (−1/2, 1/2). We point

out that the boundary conditions are representative of our nanowire problem. Indeed, we

consider the periodicity only in the transport direction and we choose homogeneous Dirichlet

conditions in other directions in order to impose confinement.

Assumption 1.1. We assume that WL is a nonnegative potential given in L∞(U).

Under Assumption 1.1, verified by physically relevant potentials, it is well-known that the

eigenfunctions χn, solutions of (1.1), form an orthonormal basis of L2(U) (see e.g. [10]), with

real eigenvalues which satisfies

E1 ≤ E2 ≤ ..., lim
n→+∞

En = +∞. (1.2)

Assumption 1.2. We assume that the eigenvalues En are all simple.

Once we compute the χn’s, we can define m∗
n which corresponds to the nth band effective

mass and which is given by
1

m∗
n

= 1− 2
∑

n′ 6=n

Pnn′Pn′n

En − En′

, (1.3)
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where

Pnn′ =

∫

U
∂yχn′(y, z)χn(y, z) dydz (1.4)

are the matrix elements of the gradient operator between Bloch waves. We also define the

quantities

Vnn(t, x) =

∫

ωz

V (t, x, z)gnn(z) dz = 〈V (t, x, ·), gnn〉, (1.5)

with

gnn(z) =

∫ 1/2

−1/2
χ2
n(y, z) dy, (1.6)

where we make use of the notation 〈f, g〉 =
∫
ωz
f(z)g(z) dz. We notice that gnn’s are quantities

that contain information of the cross section and they allow to link the one dimensional

transport direction to the entire nanowire. They play an important role not only in [5] but

also in the NDDP model presented in this paper.

Finally, the fully quantum longitudinal effective mass model obtained in [5] consists of a

sequence of one dimensional device dependent Schrödinger equations, one for each band :

ı∂tψn(t, x) = − 1

2m∗
n

∂xxψn(t, x) + Vnn(t, x)ψn(t, x).

The physical parameters, m∗
n and gnn, computed once for a given device by solving the gen-

eralized Bloch problem (1.1), are integrated in transport equations. Next, self-consistent

computations include the resolution of the Poisson equation.

Assumption 1.2 is restrictive. In [5], a more plausible assumption is discussed, related to

symmetry properties of the crystal. Then, to each multiple eigenvalue corresponds a system of

coupled Schrödinger equations with dimension equal to the multiplicity of the eigenvalue. The

kinetic part of the effective mass Hamiltonian is diagonal and the coupling occurs through the

potential. Nevertheless, the derivation of a diffusive model in this case is far from the scope

of this paper and is not discussed here.

1.2 Diffusive transport description

In this paper, we mainly consider a finite wire in the transport direction x defined in the

bounded domain ωx = [0, L] such that L >> a. We denote Ω = [0, L] × ωz this bounded

device. Since L is large compared to a, the crystal lattice can be assumed periodic only in

the transport direction as presented in the above subsection. Moreover, we will consider that

the evolution of charged particles is mainly driven by collisions with phonons which represent

lattice vibrations. A widely used model to describe such kind of transport in various area

such as plasmas or semiconductors is the drift-diffusion equation. It consists in a conservation

equation of the particle density in the transport direction which is called here the surface

density Ns(t, x) and which corresponds to the integral in the direction z of the total density.

The current is the sum of a drift term and of a diffusion term [11, 13, 15]. The equation reads

∂tNs − ∂x

(
D(∂xNs +Ns∂xVs)

)
= 0, (1.7)
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where D is a diffusion coefficient and Vs(t, x) is the effective potential. This potential is self-

consistant and takes into account the quantum confinement in the nanowire. Its derivation

will be specified in Section 2 ; in particular, we will show that its expression is given by

Vs = − logZ with Z =
+∞∑

n=1

e−
(
En+Vnn

)
, (1.8)

where En are the eigenvalues of the problem (1.1) and Vnn(t, x) are the potential energies

defined by (1.5). It is also usual to introduce the Fermi level EF (t, x) and the Slotboom

variable u(t, x) defined by

u = eEF = NSe
VS =

Ns

Z . (1.9)

Then, the current J(t, x) can be expressed as

J = D(∂xNs +Ns∂xVs) = DNs∂xEF = De−Vs∂xu.

The electrostatic potential V (t, x, z) is solution of the Poisson equation

−∆x,zV = ρ. (1.10)

The three dimensional macroscopic charge density ρ(t, x, z) takes into account the contribution

of all energy bands ; it is defined as follows

ρ =
+∞∑

n=1

Nngnn, (1.11)

where gnn(z) is given by (1.6) and Nn(t, x) is the charge density in the transport direction

which is expressed in the approximation of Boltzmann statistics by

Nn = eEF−
(
En+Vnn

)
=
Ns

Z e−
(
En+Vnn

)
. (1.12)

We point out that the link between the one dimensional densities Nn and the charge density

ρ is done using the gnn’s, as it is justified in [5]. We complete this system with the following

boundary conditions

Ns(t, x) = Nb for x ∈ ∂ωx, (1.13)

V (t, x, z) = Vb(z) for x ∈ ∂ωx, (1.14)

∂zV (t, x, z) = 0 for z ∈ ∂ωz. (1.15)

These boundary conditions do not correspond to the mixed type boundary conditions necessary

for physical applications (taking in account source and drain contacts, gate...). It is chosen

for the mathematical convenience and in particular for the elliptic regularity properties of the

Poisson equation (1.10) on our domain.

To simplify notations, we define the functional S[V ](t, x, z) such that

S[V ] =

+∞∑

n=1

e−
(
En+Vnn

)

Z gnn. (1.16)

With this notation, we have

ρ = NsS[V ]. (1.17)
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1.3 Main results

In [7, 9, 19], the authors propose transport models for confined structures using the subband

description which allows to reduce the 3d problem to a 2d transport equation. The transport

coefficients have then to be computed by solving eigenvalue problems for the steady-state

Schrödinger equation in the confinement direction, which is therefore one dimensional. Com-

pared to [7, 19], the NDDP model presented in this paper, involved the resolution of the Bloch

problem in all directions and the confinement is two-dimensional.

The main results in this paper concern the coupled Nanowire Drift-Diffusion Poisson NDDP

system (1.7)–(1.15) and are divided into two parts. In a first part we study the derivation of

the model (1.7)–(1.12) in a wire with infinite extension from a kinetic level description. This

latter model describes the interaction of charged particles with phonons at thermal equilibrium.

Assuming that the potential V is given, we are able to state in Theorem 2.6 the convergence

of this model towards the NDDP model.

In a second part, we focus on the study of the NDDP model in the bounded device

Ω = [0, L] × ωz. We will make the following assumptions :

Assumption 1.3. The function D is assumed to be a C1 function on Ω and there exists two

nonnegative constants D1 and D2 such that 0 < D1 ≤ D ≤ D2.

Assumption 1.4. The initial condition satisfies N0
s logN

0
s ∈ L1(ωx) and N0

s ≥ 0 a.e. And

we denote NI =
∫
ωx
N0

s dx.

Assumption 1.5. The boundary data for the surface density Nb is a positive constant. The

Dirichlet boundary condition for the potential satisfies Vb ∈ C2(∂ωx×ωz) and the compatibility

condition ∂zVb(z) = 0 for all z ∈ ∂ωz.

The main result is the following existence theorem :

Theorem 1.6. Let T > 0. Under Assumptions 1.3, 1.4 and 1.5, the Nanowire Drift-Diffusion

Poisson system (1.7)–(1.15) admits a weak solution such that

Ns logNs ∈ L∞([0, T ];L1(ωx)) and
√
Ns ∈ L2([0, T ];H1(ωx)),

V ∈ L∞([0, T ];H1(Ω)).

To prove this result, we follow the idea proposed in [19] which relies strongly on the estimate

on the relative entropy that we will prove in Section 3.3. The main difficulty is due to the

quantum confinement for which we need some sharp estimates on the quantities provided by

the Bloch problem. Such estimates are given in Section 3.1. Then a priori estimates give a

functional framework for the quantities Ns and V . Since Ns will be defined only in L logL,

we need to regularized the system. For the regularized system we obtain existence of solutions

such as in [19] and we recover a solution of the non-regularized system by passing to the limit

in the regularization.

This paper is organized as follows. In Section 2, we describe the derivation of the model

from a kinetic model taking into account the interactions of the charged particles with phonons.
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Section 3 is devoted to the proof of Theorem 1.6. We first state estimates on the eigen-elements

defining the Nanowire quantities. Then, we define the regularization of the model. We prove

a priori estimates for this regularized system. Next, the regularized Nanowire Poisson system

is analyzed. Finally, we prove Theorem 1.6 by passing to the limit in the regularization.

2 Diffusive limit

2.1 Kinetic description

The drift-diffusion model can be derived from kinetic theory when the mean free path related

to particle interactions with a thermal bath is small compared to the system length-scale

[4, 17]. In this section, we present the derivation of this model from the Boltzmann equation

describing collisions of charged particles with phonons at thermal equilibrium. This equation

governs the evolution of the distribution function fn(t, x, p) on the nth band whose energy is

given by En + Vnn. Here and in the following, we shall use the notation fn for a function

depending on the nth band, and the notation f = (fn)n≥1 when the entire set of bands is

taken into account. The time variable t is nonnegative, the position variable is denoted x and

the momentum variable p. The equation writes [17, 18]

∂tf
η
n +

1

η

(
vn∂xf

η
n − ∂xVnn∂pf

η
n

)
=

1

η2
QB(f

η)n, (2.1)

where η is the scaled mean free path, assumed to be small. In this equation, vn is the velocity

given by vn(p) =
p

m∗
n
, m∗

n the nth band effective mass (1.3) and Vnn(t, x) the effective potential

energy associated to the nth band (1.5). This equation is completed by the initial data denoted

f0.

The collision operator QB , describing the scattering between electrons and phonons, is

assumed in the linear BGK approximation for Boltzmann statistics. It reads

QB(f)n =

+∞∑

n′=1

∫

R

αn,n′(p, p′)
(
Mn(p)fn′(p′)−Mn′(p′)fn(p)

)
dp′ (2.2)

where the function Mn is the Maxwellian

Mn(t, x, p) =
1√

2πm∗
nZ(t, x)

e
−
(

p2

2m∗
n
+En+Vnn(t,x)

)
(2.3)

normalized such that
+∞∑

n=1

∫

R

Mndp = 1. (2.4)

The repartition function Z is thus given by

Z(t, x) =
+∞∑

n=1

e−
(
En+Vnn(t,x)

)
. (2.5)

The energies En correspond to the eigenvalues of the problem (1.1). We notice that Assump-

tion 1.1 allows us to give a sense to this definition of Z since Z ≤∑n e
−En ≤∑n e

−Λn <∞,

where Λn are the eigenvalues of the Laplacian operator (see Section 3.1).
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Assumption 2.1. The cross section α is symmetric and bounded from above and below :

∃α1, α2 > 0, 0 < α1 ≤ αn,n′(p, p′) ≤ α2, ∀n, n′ ≥ 1, ∀p ∈ R, ∀p′ ∈ R.

In the diffusion approximation, boundary layers appears at the frontier of the domain.

Since the study of this phenomena is far from the scope of this paper, we consider the limit in

the case where the spatial domain is R, assuming that there is no charged carriers at infinity

such that limx→±∞ fηn(t, x, p) = 0. For the rigorous analysis of boundary layers in the diffusion

approximation, we refer the reader to [17, 14].

Let us recall an existence result for our problem. It is a direct corollary of well known

existence results on the Boltzmann equation (see e.g. [8, 17] and references therein).

Theorem 2.2. Let us assume that the potential V ≥ 0 is given in L∞([0, T ];H2(R×ωz)) and

that the initial data satisfies f0 ∈ l1(L∞(R×R)) and f0 ≥ 0. For fixed η > 0, under Assump-

tion 2.1, the problem (2.1)-(2.5) admits a unique weak solution fη ∈ L∞
loc(R

+, l1(L1(R× R)))

and fη ≥ 0.

2.2 Properties of the collision operator

We present some well known properties of the collision operator QB defined by (2.2). In this

section, the time variable t and the position variable x are considered as parameters, thus we

omit to write the dependence on t and x. We define the weighted space

L2
M = {f = (fn)n≥1 such that

+∞∑

n=1

∫

R

f2n
Mn

dp < +∞}, (2.6)

which is a Hilbert space with the scalar product

〈f, g〉M =
+∞∑

n=1

∫

R

fngn
Mn

dp. (2.7)

We have the following properties for QB whose proofs can be found in [16] (section 3.1).

Proposition 2.3. We assume that the cross section α satisfies Assumption 2.1. Then the

following properties hold for QB :

(i)
∑

n≥1

∫
R
QB(f)ndp = 0.

(ii) QB is a linear, selfadjoint and negative bounded operator on L2
M.

(iii) Ker QB = {f ∈ L2
M, such that ∃Ns ∈ R, fn = NsMn} and (Ker QB)

⊥ = Im QB.

(iv) If P is the orthogonal projection on Ker QB with the scalar product 〈., .〉M, then

−〈QB(f), f〉M ≥ α1‖f − P(f)‖2M.

The third point of Proposition 2.3 implies that the equation QB(f) = h admits a solution

in L2
M iff h ∈ (Ker QB)

⊥. Moreover, this solution is unique if we impose f ∈ (Ker QB)
⊥

where (Ker QB)
⊥ = {f such that

∑+∞
n=1

∫
R
fndp = 0}. As a consequence, we can define :
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Definition 2.4. There exists Θ ∈ L2
M such that for all n ≥ 1,

QB(Θ)n = − p

m∗
n

Mn and

+∞∑

n=1

∫

R

Θndp = 0. (2.8)

We define the nonnegative diffusion coefficient by

D =

+∞∑

n=1

∫

R

p

m∗
n

Θndp. (2.9)

Remark 2.5. Particular case when α is constant.

Let us assume that for all n, n′, k, k′, α(n, n′, k, k′) = 1/τ , where τ is a relaxation time. After

calculations,

Θn(p) = τ
p

m∗
n

Mn(p) and D = τ
+∞∑

n=1

e−(En+Vnn)

m∗
n

∑+∞
m=1 e

−(Em+Vmm)
.

We emphasize that this expression is slightly different to the formula used in [16] for example

where D is defined as τ/m.

2.3 Asymptotic expansion for the diffusive limit

Let us consider a solution fηn of the Boltzmann equation (2.1) and assume that it admits a

Hilbert expansion

fηn = f0,n + ηf1,n + η2f2,n + ...

Inserting this decomposition in (2.1) and identifying with respect to powers of η, we obtain

QB(f0)n = 0. (2.10)

vn∂xf0,n − ∂xVnn∂pf0,n = QB(f1)n. (2.11)

∂tf0,n + vn∂xf1,n − ∂xVnn∂pf1,n = QB(f2)n. (2.12)

With (2.10), we get f0 ∈ Ker QB . Thus, (iii) of Proposition 2.3 gives

f0,n = NsMn. (2.13)

Injecting this expression in (2.11) it follows, after calculations

QB(f1)n = Hn := vnMn

(
∂xNs +Ns∂xVs

)
,

where Vs = − lnZ. By Proposition 2.3, f1 exists iff H ∈ (Ker QB)
⊥. Because we have∫

vnMndp = 0 (vnMn is an odd function), this condition is true. We choose Θ as proposed

in Definition 2.4. Thus,

f1,n = −Θn

(
∂xNs +Ns∂xVs

)
. (2.14)

By Proposition 2.3, (2.12) has a solution iff,

+∞∑

n=1

∫

R

(
∂tf0,n + vn∂xf1,n − ∂xVnn∂pf1,n

)
dp = 0.

Using (2.13), (2.14) and (2.9) we have formally obtained the drift-diffusion equation (1.7).
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2.4 A convergence proof of the derivation

In this Section, we investigate the rigorous diffusive limit of the Boltzmann equation (2.1)

as η → 0. This study is proposed in the simplified case where the potential V is given and

regular. The diffusive limit of a coupled Boltzmann transport equation with the Poisson

equation is studied in [14] and with quantum confinement in [18]. The main result is the

following theorem :

Theorem 2.6. Let us assume that the potential V ≥ 0 is given in L∞([0, T ];H2(R×ωz)) and

∂tV is bounded in L∞([0, T ]×R× ωz) and that the initial data satisfies f0 ∈ l1(L∞(R2)) and

f0 ≥ 0. Moreover, let T > 0 and let (fηn)n≥1 be a solution of the Boltzmann equation (2.1)-

(2.5). Then, under Assumption 2.1, Nη
s defined by Nη

s :=
∑

n≥1

∫
R
fηndp converges weakly

towards Ns ∈ L2([0, T ] × R) solution of the drift-diffusion equation :

∂tNs − ∂x

(
D(∂xNs +Ns∂xVs)

)
= 0,

where Vs(t, x) = − ln
(∑

n e
−
(
En+Vnn(t,x)

))
, with the initial data N0

s (x) =
∑

n

∫
R
f0n(x, p) dp.

Notations. For the proof, we introduce the function Mn = 1√
2πm∗

n
e
−
(

p2

2m∗
n
+En+Vnn

)
which is

such that

vn∂xMn − ∂xVnn∂pMn = 0.

Moreover, for T > 0, we consider the Banach spaces X = L∞([0, T ];L2
M(t)) and Y =

L2([0, T ];L2
M−1(t)).

Lemma 2.7. Assume f0 ∈ l1(L1
x,p)∩L2

M(t=0) and V is given such as in Theorem 2.6. Then,

the unique solution fη of the Boltzmann equations (2.1) in L∞([0, T ]; l1(L1
x,p)) is in X. More-

over, fη is bounded in X independently of η.

Proof. Assuming that all the functions are regular enough, we multiply (2.1) by fηn/Mn and

integrate. We obtain

d

dt

+∞∑

n=1

∫∫
(fηn)2

2Mn
dxdp−

+∞∑

n=1

∫∫
∂tVnn

(fηn)2

2Mn
dxdp =

1

η2

+∞∑

n=1

∫∫
QB(f

η)n
fηn
Mn

dxdp. (2.15)

By assumption there exists µ ≥ 0 such that |∂tVnn| ≤ µ on [0, T ] ×R. We define

Xη(t) =

+∞∑

n=1

∫∫
(fηn)2

2Mn
dxdp and Sη(t) = − 1

η2

+∞∑

n=1

∫∫
QB(f

η)n
fηn
Mn

dxdp. (2.16)

Since QB is negative, Sη(t) ≥ 0 ∀t ∈ [0, T ]. So, (2.15) gives

dXη

dt
− µXη ≤ −Sη. (2.17)

Integrating this inequality allows to conclude the proof.

To justify all calculations, we regularized the problem and consider fR a solution of the

regularized truncated problem, fR ∈ D([0, T ] × R
2). Thus fR satisfies (2.15) and

d

dt

+∞∑

n=1

∫∫
f2R
2Mn

dxdp ≤ µ

+∞∑

n=1

∫∫
f2R
2Mn

dxdp.
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Thus fR is bounded in X independently of R. We can extract a subsequence converging

towards a function g ∈ X in X-weak∗. We know moreover that fR satisfies the Cauchy

criterion in L∞([0, T ], l1(L1
x,p)) as a solution of the truncated problem. Thus, fR converges

strongly towards f in this space. By uniqueness of the weak∗ limit, g = f a.e.

Lemma 2.8. Under the assumption of Lemma 2.7, there exists f ∈ X and Ns ∈ L2([0, T ]×R)

such that, up to an extraction :

(i) fη ⇀ f in X-weak∗.

(ii) Nη
s ⇀ Ns in L2

t,x-weak.

(iii) If we define the current by

Jη =
1

η

+∞∑

n=1

∫

R

vnf
η
ndp, (2.18)

then Jη ⇀ J in L2
t,x-weak. Moreover, fn = NsMn a.e. for all n.

Proof. We integrate (2.17) between 0 and t, for all t ∈ [0, T ]. It gives

Xη(t)− µ

∫ t

0
Xη(s)ds +

∫ t

0
Sη(s)ds ≤ Xη(0).

Thus, there exists a constant C > 0 such that

0 ≤
∫ T

0
Sη(s)ds ≤ C. (2.19)

If P is the orthogonal projection on Ker QB defined as in Proposition 2.3, there exists

Nη(t, x) such that P(fη)n = NηMn. Moreover, fη − P(fη) ∈ (Ker QB)
⊥ that is to say

that
∑

n≥1

∫ (
fηn − P(fη)n

)
dp = 0. We conclude, using (2.4), that

Nη(t, x) =

+∞∑

n=1

∫

R

fηn(t, x, p)dp := Nη
s (t, x). (2.20)

We can easily show that (iv) of Proposition 2.3 is also true for the scalar product 〈., .〉M . We

obtain the bound

+∞∑

n=1

∫ T

0

∫∫
(fη −Nη

sMn)
2

Mn
dxdpdt ≤ η2

α1

∫ T

0
Sη(s) ds ≤ Cη2. (2.21)

We verify that ‖fη‖X is bounded. Thus, we can extract a subsequence satisfying (i).

Then, from (2.21), we have

+∞∑

n=1

∫ T

0

∫∫
(Nη

sMn)
2

Mn
dxdpdt =

+∞∑

n=1

∫ T

0

∫∫ (Nη
s

Z
)2
Mn dxdpdt ≤ C.

It provides that ‖Nη
s /Z‖Y is bounded. Thus there exists ρ ∈ Y such that, up to an extraction,

for all φ ∈ L2
tL

2
M−1 ,

+∞∑

n=1

∫ T

0

∫∫
Nη

s

Z Mnφn dxdpdt →
+∞∑

n=1

∫ T

0

∫∫
ρMnφn dxdpdt. (2.22)

10



For ξ ∈ L2([0, T ]×R) take φn(t, x, p) = ξ(t, x) for all n ≥ 1, we easily verify that φ ∈ L2
tL

2
M−1 .

So, if we define Ns := ρZ ∈ L2([0, T ]× R), we find

∫ T

0

∫
Nη

s ξ

(
+∞∑

n=1

∫
Mn

Z dp

)
dxdt →

∫ T

0

∫
ρZξ

(
+∞∑

n=1

∫
Mn

Z dp

)
dxdt.

This proves (ii). Moreover, from (2.22), Nη
s
Mn

Z = Nη
sMn ⇀ ρMn in X-weak∗. From (2.21),

fη and Nη
sMn have the same weak limit. So, for all n ≥ 1,

f = ρMn = NsMn a.e. (2.23)

Finally, we have

Jη =
1

η

+∞∑

n=1

∫

R

vnf
η
ndp =

1

η

+∞∑

n=1

∫

R

vn
(
fηn −NsMn

)
dp.

Applying the Cauchy-Schwarz inequality

Jη ≤
(

+∞∑

n=1

∫

R

v2nMndp

)1/2( +∞∑

n=1

∫

R

(fηn −NsMn)
2

η2Mn
dp

)1/2

. (2.24)

With (2.21), we deduce that Jη is bounded in L2
t,x.

Proof of Theorem 2.6. Integrating the Boltzmann equation (2.1) with respect to p, we

find the conservation law

∂tN
η
s + ∂xJ

η = 0 (2.25)

where Jη is the current defined in (2.18). Considering the function Θ defined in (2.8), we have

Jη =
1

η

+∞∑

n=1

∫

R

vnf
η
ndp =

1

η
〈vnMn, f

η
n〉M = −1

η
〈QB(Θ)n, f

η
n〉M.

The selfadjointness of QB gives

− Jη =
1

η
〈Θn,QB(f

η)n〉M =

+∞∑

n=1

∫

R

ΘnQB(f
η)n

ηMn
dp. (2.26)

Now, to establish the rigorous limit η → 0, we use the weak formulation of (2.1) and

(2.25) : for all ψ ∈ C1([0, T ] × R
2) compactly supported and for all φ ∈ C1([0, T ] × R)

compactly supported :

∫∫∫
fηn
(
− η∂tψ − vn∂xψ + ∂xVnn∂pψ

)
dxdpdt− 1

η

∫∫∫
QB(f

η)nψdxdpdt = 0, (2.27)

and

−
∫∫

Nη
s ∂tφdxdt−

∫∫
Jη∂xφdxdt = 0. (2.28)

At this point we use Lemmas of Appendix A. On the one hand, from Lemma A.1, we can

substitute ψ by φ in (2.27). Summing with respect to n, we immediately obtain (2.28). On

the other hand, Lemmas A.1 and A.2 prove that we can choose ψ = φ Θn

Mn
in (2.27) for all

11



φ ∈ C1([0, T ]×R) compactly supported. Summing with respect to n and using (2.26), we find

after calculations

−η
+∞∑

n=1

∫∫∫
fηn∂t

(
φ
Θn

Mn

)
dxdpdt−

+∞∑

n=1

∫∫∫
vn

fηn
Mn

∂x
(
Θnφ

)
dxdpdt

+

+∞∑

n=1

∫∫∫
φ
fηn
Mn

(
∂xVnn∂pΘn − vnΘn∂x lnZ

)
dxdpdt+

∫∫
Jηφdxdt = 0. (2.29)

Using Lemma 2.8, we have the weak convergence of fηn , N
η
s and Jη. Moreover, we have that

fηn ∈ L2
M thus the limit of the first term vanishes thanks to Lemma A.2. Moreover, this

same Lemma proves that vn
Θn

Mn
and vn

∂sΘn

Mn
(for s = t, x and p) are in X. Finally, since by

assumption Vnn is bounded in L∞([0, T ];H2(R)), we can pass to the limit and we obtain

∫∫
Jφdxdt =

+∞∑

n=1

∫∫∫ (
vnNs∂x

(
Θnφ

)
−Nsφ

(
∂xVnn∂pΘn − vnΘn∂x lnZ

)
)
dxdpdt,

which is the weak formulation of J = −D(∂xNs +Ns∂xVs).

3 Analysis of the Nanowire Drift-Diffusion-Poisson system

3.1 Spectral properties

In this Section, we investigate some technical Lemmas concerning spectral properties of the

Hamiltonian defined in (1.1). As in Section 2.1 we denote by Λn the eigenvalues of the

Laplacian, i.e.




−∆un = Λnun, on U = (−1/2, 1/2) × ωz,

un(−1/2, z′) = un(1/2, z
′), un(y, z

′) = 0 on (−1/2, 1/2) × ∂ωz.

From the min-max principle it is clear that for nonnegative potential WL, we have En ≥ Λn.

Moreover, the eigenfunctions un satisfy un = u1nu
2
n where (u1n)n∈N are eigenvectors of the Lapla-

cian in the y-direction with periodic boundary conditions and (u2n)n∈N are eigenvectors of the

Laplacian in the z-direction with Dirichlet boundary conditions. From well-known properties

of eigenvalues of the Laplacian-Dirichlet [10], we deduce that for all λ > 0,
∑

n≥1 e
−λΛn < +∞.

Thus

∀λ > 0,

+∞∑

n=1

e−λEn <∞. (3.1)

In the following we will make use of the notation : Lp
zL

q
x(Ω) = {u ∈ L1

loc(Ω) s.t. ‖u‖Lp
zL

q
x(Ω) =

(
∫
ωz

‖u(·, z)‖pLq (ωx)
dz)1/p < +∞}. We recall that we have the Sobolev embedding H1(Ω) →֒

L2
zL

∞
x (Ω) where Ω = ωx × ωz ⊂ R× R

2 (see [6]).

Lemma 3.1. Under Assumption 1.1 we have that for all n ∈ N

‖χn‖L∞(Ω) ≤ C(En + ‖WL‖L∞), (3.2)

where C stands for a nonnegative constant. Therefore we have

‖gnn‖L∞(ωz) ≤ C(En + ‖WL‖L∞)2, (3.3)
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‖Vnn‖L∞(ωx) ≤ C‖V ‖H1(Ω)(En + ‖WL‖L∞)2. (3.4)

Proof. We notice first that since WL (and χn) is 1-periodic in x, we have that ‖WL‖L∞(U) =

‖WL‖L∞(Ω). From (1.1), we deduce that ∆χn ∈ L2(Ω) and

‖∆χn‖L2 ≤ 2(En + ‖WL‖L∞).

Using the elliptic regularity for the Laplacian operator, we deduce (3.2) thanks to the Sobolev

embedding H2(Ω) →֒ L∞(Ω). The estimates (3.3) and (3.4) follows directly from a Cauchy-

Schwarz inequality and the Sobolev embedding H1(Ω) →֒ L2
zL

∞
x (Ω).

Lemma 3.2. Properties of S[V ]. Let us assume that V ∈ H1(Ω) with V ≥ 0. Then the

function S[V ], defined in (1.16), satisfies :

(i) S[V ] is bounded i.e. |S[V ]| < +∞.

(ii) If moreover Ṽ ∈ H1(Ω) with Ṽ ≥ 0, then there exists a nonnegative constant C such that :

‖S[V ]− S[Ṽ ]‖L2(Ω) ≤ C‖V − Ṽ ‖L2(Ω). (3.5)

Proof. (i) First, we study the coefficient Z. We have

Z(x) =

+∞∑

n=1

e−
(
En+Vnn(x)

)
≥ e−

(
E1+‖V11‖L∞(ωx)

)
.

Then from Lemma 3.1, when V ∈ H1(Ω), there exists a constant C > 0 such that Z(x) > C.

Using the fact that Vnn ≥ 0 when V ≥ 0, we get

|S[V ](x, z)| ≤ C

+∞∑

n=1

e−En‖gnn‖L∞(ωz) ≤ C

+∞∑

n=1

e−En(En + ‖WL‖L∞)2,

where we use (3.3) for the last inequality. A direct consequence of (3.1) is that
∑

n≥1E
2
ne

−En

is finite. Then S[V ] is bounded.

(ii) We use the fact that

S[V ]− S[Ṽ ] =

∫ 1

0
∂sS[Ṽ + s(V − Ṽ )]ds.

We define E(s) = e−
(
En+〈Ṽ +s(V−Ṽ ),gnn〉

)
. So,

∂sS[Ṽ + s(V − Ṽ )] =

(∑
n≥1 E ′(s)gnn

)(∑
n≥1 E(s)

)
−
(∑

n≥1 E(s)gnn
)(∑

n≥1 E ′(s)
)

(∑
n≥1 E(s)

)2 .

We have E ′(s) = −〈V − Ṽ , gnn〉E(s). The first term becomes

∣∣∣
∑

n≥1 E ′(s)gnn∑
n≥1 E(s)

∣∣∣ =
∣∣∣
∑

n≥1 E(s)〈V − Ṽ , gnn〉gnn∑
n≥1 E(s)

∣∣∣ ≤ C
+∞∑

n=1

e−Engnn|〈V − Ṽ , gnn〉|.

Finally,

∣∣∣
∑

n≥1 E ′(s)gnn∑
n≥1 E(s)

∣∣∣ ≤ C‖V − Ṽ ‖L2(ωz)

+∞∑

n=1

e−Engnn‖gnn‖L2(ωz) ≤ C‖V − Ṽ ‖L2(ωz),
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where we use (3.3) and (3.1) for the last inequality. We can treat the second term in a similar

way

∣∣∣∣∣

(∑
n≥1 E(s)gnn

)(∑
n≥1 E(s) < V − Ṽ , gnn >

)

(∑
n≥1 E(s)

)2

∣∣∣∣∣ ≤ C
+∞∑

n=1

e−En |〈V − Ṽ , gnn〉|.

Consequently, we deduce (3.5).

3.2 Regularized system

We define the linear regularization operator by

Rǫ : L1(Ω) → C∞(Ω)

V 7→ Rǫ[V](x, z) = (V ∗ ξǫ,x ∗ ξǫ,z)|Ω, (3.6)

where V is the extension of V by zero outside Ω and ξǫ,x and ξǫ,z are C
∞ nonnegative compactly

supported even approximations of the unity, respectively on R and R
2. We can prove the

following properties, using convolution results :

Lemma 3.3. Properties of Rǫ :

(i) Rǫ is a bounded operator on Lp
xL

q
z(Ω) for 1 ≤ p, q ≤ +∞ and satisfies for all V ∈ Lp

xL
q
z(Ω),

‖Rǫ[V]‖Lp
xL

q
z(Ω) ≤ ‖V‖Lp

xL
q
z(Ω) and lim

ǫ→0
‖Rǫ[V]− V‖Lp

xL
q
z(Ω) = 0.

(ii) Rǫ is selfadjoint on L2(Ω).

(iii) For all V ∈ H1(Ω),

∇xRǫ[V] = Rǫ[∇xV] and lim
ǫ→0

‖∇xRǫ[V]−∇xV‖L2(Ω) = 0.

Then the regularized Nanowire Drift-Diffusion Poisson NDDPǫ system is defined for ǫ ∈ [0, 1]

by

∂tN
ǫ
s − ∂x

(
D(∂xN

ǫ
s +N ǫ

s∂xV
ǫ
s )
)
= 0 (3.7)

and

−∆V ǫ = Rǫ
[N ǫ

s

Zǫ

+∞∑

n=1

e−
(
En+V ǫ

nn

)
gnn

]
= Rǫ

[
N ǫ

sSǫ
]

(3.8)

where the regularized quantities are defined by

V ǫ
nn(x) =

∫

ωz

Rǫ[V ǫ(x, z)]gnn(z)dz =< Rǫ[V ǫ], gnn >, (3.9)

V ǫ
s = − logZǫ with Zǫ[V ǫ] =

+∞∑

n=1

e−
(
En+V ǫ

nn

)
, (3.10)

and

Sǫ[V ǫ] =
∑

n≥1

e−
(
En+V ǫ

nn

)

Zǫ
gnn. (3.11)
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As above, we denote N ǫ
n = uǫe−(En+V ǫ

nn) where uǫ is the Slotboom variable uǫ = N ǫ
s/Zǫ.

The initial regularized density N ǫ,0
s is chosen such that N ǫ,0

s = min(N0
s , ǫ

−1). Moreover, the

regularized boundary conditions are

N ǫ
s(t, x) = Nb for x ∈ ∂ωx, (3.12)

V ǫ(t, x, z) = Vb(z) for x ∈ ∂ωx, (3.13)

∂zV
ǫ(t, x, z) = 0 for z ∈ ∂ωz. (3.14)

Remark 3.4. When ǫ → 0, Rǫ → Id and the regularized system (1.7)–(1.15) tends to the

unregularized problem (3.7)–(3.14).

3.3 A priori estimates

Let us consider a weak solution (N ǫ
s , V

ǫ) of the regularized problem (3.7)–(3.11). We introduce

two extensions Ns and V of the boundary data. These extensions are respectively defined on

ωx and Ω and chosen such that :

• Ns ∈ C2(ωx), 0 < N1 ≤ Ns(x) ≤ N2 where N1 and N2 are two constants, and Ns|∂ωx
=

Nb.

• V ∈ C2(Ω) and satisfies the boundary conditions V |∂ωx×ωz
= Vb(z) and ∂zV |ωx×∂ωz

= 0.

For regular enough domains, these functions exist. From (1.5) with V instead of V ǫ, we define

Vnn[V ] denoted by Vnn. In the same way, we denote Z, S, Nn, ρ, u and EF the quantities

associated to Ns and V .

Proposition 3.5. Let T > 0 and ǫ ∈ [0, 1]. Let (N ǫ
s , V

ǫ) be a weak solution of the regularized

system NDDPǫ (3.7)–(3.14), such that N ǫ
s logN

ǫ
s ∈ L∞([0, T ], L1(ωx)), V

ǫ ∈ L∞([0, T ],H1(Ω))

and
√
N ǫ

s ∈ L2([0, T ],H1(ωx)). Then, there exists a nonnegative constant CT depending only

on T such that

∀t ∈ [0, T ], 0 ≤W (t) ≤ CT , (3.15)

where W is the relative entropy defined by

W =

+∞∑

n=1

∫

ωx

(
N ǫ

n ln
(N ǫ

n

Nn

)
−N ǫ

n +Nn

)
dx+

1

2

∫

Ω
|∇(V ǫ − V )|2dxdz. (3.16)

Proof. We remark that

d

dt

+∞∑

n=1

∫

ωx

(
N ǫ

n ln
(N ǫ

n

Nn

)
−N ǫ

n +Nn

)
dx =

+∞∑

n=1

∫

ωx

∂tN
ǫ
n ln

(N ǫ
n

Nn

)
dx.

By definition, we have lnN ǫ
n = lnuǫ − En − V ǫ

nn. Using (3.7), it leads to

+∞∑

n=1

∫

ωx

∂tN
ǫ
n ln

(N ǫ
n

Nn

)
dx =

∫

ωx

∂x
(
De−V ǫ

s ∂xu
ǫ
)
ln
(uǫ
u

)
dx

− d

dt

+∞∑

n=1

∫

ωx

N ǫ
n

(
V ǫ
nn − Vnn

)
dx+

+∞∑

n=1

∫

ωx

N ǫ
n∂t(V

ǫ
nn − Vnn)dx.
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Integrating by parts, the first right hand side term gives
∫

ωx

∂x
(
De−V ǫ

s ∂xu
ǫ
)
ln
(uǫ
u

)
dx = −

∫

ωx

De−V ǫ
s
(∂xu

ǫ)2

uǫ
dx+

∫

ωx

De−V ǫ
s
∂xu

ǫ∂xu

u
dx.

Using the definition (3.9) of V ǫ
nn, the last right hand side term gives

+∞∑

n=1

∫

ωx

N ǫ
n∂t(V

ǫ
nn − Vnn)dx =

+∞∑

n=1

∫

ωx

N ǫ
n∂t < Rǫ[V ǫ]−Rǫ[V ], gnn > dx.

At this point, the linearity and the selfadjointness of the regularization operator Rǫ and the

regularized Poisson equation (3.8) imply

+∞∑

n=1

∫

Ω
N ǫ

n∂tRǫ[V ǫ − V ]gnndxdz =
1

2

d

dt

∫

Ω
|∇(V ǫ − V )|2dxdz.

In the same way, we can write

d

dt

+∞∑

n=1

∫

ωx

N ǫ
n(V

ǫ
nn − Vnn)dx =

d

dt

∫

Ω
|∇(V ǫ − V )|2dxdz.

Thus, defining W as in (3.16), we finally find

dW

dt
= −

∫

ωx

De−V ǫ
s
(∂xu

ǫ)2

uǫ
dx+

∫

ωx

De−V ǫ
s
∂xu

ǫ∂xu

u
dx. (3.17)

We denote

Dǫ(t) =

∫

ωx

De−V ǫ
s
(∂xu

ǫ)2

uǫ
dx (3.18)

the term which can be seen as an entropy dissipation rate. We also define β = ‖∂xu/u‖L∞(ωx),

β < +∞. Consequently,

dW

dt
+Dǫ ≤ β‖De−V ǫ

s ∂xu
ǫ‖L1(ωx) ≤ β

√
Dǫ
√
D‖N ǫ

s‖L1(ωx).

Using the inequality 2ab ≤ κ2a2 + b2

κ2 for κ > 0 small enough and Assumption 1.3, we get,

dW

dt
≤ dW

dt
+ C1Dǫ ≤ C2‖N ǫ

s‖L1(ωx), (3.19)

where C1 and C2 are two nonnegative constants. Finally, using the inequality ln(x)− x+1 ≥
x+ (1− e), for x > 0, we have

W ≥
+∞∑

n=1

∫

ωx

Nn

(N ǫ
n

Nn
+ 1− e

)
dx ≥

∫

ωx

N ǫ
sdx− (e− 1)

∫

ωx

Nsdx.

With (3.19), it leads to
dW

dt
≤ C2‖N ǫ

s‖L1(ωx) ≤ C(W + C0),

where C and C0 are two nonnegative constants. We conclude thanks to a Gronwall’s inequality

and the fact that Assumption 1.4 and V ∈ H1(Ω) imply that the initial entropy W (0) is

bounded. Moreover, we get the bound on the mass

∀ t ∈ [0, T ],

∫

ωx

N ǫ
s dx ≤ C. (3.20)
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Corollary 3.6. Let T > 0 and ǫ ∈ [0, 1]. Under assumptions of Proposition 3.5, there exist

C1 and C2 two nonnegative constants such that

∀t ∈ [0, T ],

∫ t

0

∫

ωx

|∂x
√
N ǫ

s |2dxds ≤ C1, (3.21)

∀t ∈ [0, T ], ∀p ∈ [1,+∞)

∫ t

0
‖N ǫ

s‖Lp(ωx)ds ≤ C2. (3.22)

Proof. In this proof, the letter C is used to denote nonnegative constants. We can express the

coefficient Dǫ defined in (3.18) in terms of N ǫ
s and V ǫ

s

Dǫ(t) =

∫

ωx

D
(
4|∂x

√
N ǫ

s |2 + 2∂xN
ǫ
s∂xV

ǫ
s +N ǫ

s |∂xV ǫ
s |2
)
dx.

After an integration by parts on the second term of the right hand side, we deduce

4‖∂x
√
N ǫ

s‖2L2(ωx)
≤ C

(
Dǫ(t) + 2

∫

ωx

N ǫ
s∂xxV

ǫ
s dx− 2

(
N ǫ

s(L)∂xV
ǫ
s (L) +N ǫ

s(0)∂xV
ǫ
s (0)

))
.

(3.23)

On the one hand, after calculations, we find

∂xxV
ǫ
s =

∑
n e

−
(
En+V ǫ

nn

)
∂xxV

ǫ
nn

Zǫ
+

(∑
n e

−
(
En+V ǫ

nn

)
∂xV

ǫ
nn

Zǫ

)2

−
∑

n e
−
(
En+V ǫ

nn

)
(∂xV

ǫ
nn)

2

Zǫ
.

By the Cauchy-Schwarz inequality, the sum of the last two terms is nonpositive. Moreover,

from the regularized Poisson equation (3.8)

∂xxV
ǫ
nn =< ∂xxRǫ[V ǫ], gnn > = < −∆zRǫ[V ǫ], gnn > − < Rǫ[ρǫ], gnn >

≤ ‖Rǫ[V ǫ]‖L2(ωz)‖χn‖L∞(Ω)‖χn‖H2(Ω).

To obtain the last inequality, we remark that the second term is nonpositive and to treat the

first term, we make an integration by parts and we use the fact that

‖∆zgnn‖L2(ωz) ≤ 2‖χn‖L∞(Ω)‖χn‖H2(Ω).

Using the property (i) of Lemma 3.3 and (3.1), we conclude that
∫

ωx

N ǫ
s∂xxV

ǫ
s dx ≤ C‖N ǫ

s‖L2(ωx)‖V ǫ‖L2(Ω). (3.24)

On the other hand, we have

N ǫ
s∂xV

ǫ
s |∂ωx

= Nb

∑
n < ∂xRǫ[V ǫ], gnn > e−(En+V ǫ

nn)

∑
n e

−(En+V ǫ
nn)

≤ CNb

∫

ωz

|∂xRǫ[V ǫ]|∂ωx
|dz.

Thanks to the trace Theorem and Lemma 3.3, we obtain

N ǫ
s∂xV

ǫ
s |∂ωx

≤ CNb‖V ǫ‖H2(Ω) ≤ CNb‖N ǫ
s‖L2(ωx),

where we use the elliptic regularity and Lemma 3.2 and 3.3 for the last inequality. With (3.23)

and (3.24), we conclude that

4‖∂x
√
N ǫ

s‖2L2(ωx)
≤ C

(
Dǫ(t) + ‖N ǫ

s‖L2(ωx)

)
.
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Applying the Gagliardo-Nirenberg inequality to the function
√
N ǫ

s and using the bound on

‖N ǫ
s‖L1(ωx) (3.20), we obtain

∀t ∈ [0, T ],

∫

ωx

|∂x
√
N ǫ

s |2dx ≤ C(1 +Dǫ(t)).

With (3.19), we can say that
∫ t
0 Dǫ(s)ds ≤ C(W (0) +NIt) for all t ∈ [0, T ] and consequently

we obtain (3.21). Finally, (3.22) is a consequence of (3.21) with the Gagliardo-Nirenberg

inequality.

3.4 Analysis of the regularized Nanowire Poisson system

In this section, the surface density Ns is assumed to be given and we only consider the

resolution of the regularized Nanowire Poisson equation (3.8) with boundary conditions (3.13)–

(3.14) for ǫ ∈ [0, 1].

We introduce the functional space

H1
ωx

= {V ∈ H1(Ω), s. t. ∀x ∈ ∂ωx, ∀z ∈ ωz, V (x, z) = 0}.

Let us also take V0 ∈ H1(Ω) such that V0 = Vb on ∂ωx×ωz and ∂zV0(x, z) = 0 for all z ∈ ∂ωz.

A possibility is to take V0 = V . Most of the results presented here can be obtained by a

straightforward adaptation of [7, 19]. Thus we will not detail the proofs. We first state the

following existence result :

Proposition 3.7. Let T > 0 and ǫ ∈ [0, 1]. We assume Ns ∈ L∞([0, T ];L1(ωx)) such that

Ns ≥ 0 a.e. Then the regularized Nanowire Poisson equation (3.8) with boundary conditions

(3.13)–(3.14) admits a unique solution V ǫ ∈ V0 +H1
ωx

with a bound independent of ǫ.

Proof. Using the selfadjointness of the regularization operator, a weak solution of (3.8) is a

critical point in the space V0 +H1
ωx

of the functional

J(V,Ns) = J0(V ) + J1(V,Ns)

=
1

2

∫

Ω
|∇V |2dxdz +

∫

ωx

Ns ln
( +∞∑

n=1

e−
(
En+<Rǫ[V ],gnn>

))
dx. (3.25)

Following the proof of Proposition 3.1 in [19] and using Lemma 3.1, we show that J is a

continuous, convex and coercive functional on V0 +H1
ωx
. Thus J admits a unique minimizer

V and we have a bound on V in H1 only depending on the L1 norm of Ns.

Then, we have the following continuity result :

Proposition 3.8. Let T > 0 and ǫ ∈ [0, 1]. Assume Ns and Ñs are given in L∞([0, T ];L1(ωx))

such that Ns ≥ 0 and Ñs ≥ 0 a.e. Then, the corresponding solutions V ǫ and Ṽ ǫ of the

regularized Nanowire Poisson equation (3.8) with boundary conditions (3.13)–(3.14) verify

∀t ∈ [0, T ], ‖V ǫ − Ṽ ǫ‖H1(Ω) ≤ C‖Ns − Ñs‖L1(ωx). (3.26)

Moreover, if Ns and Ñs belongs to L∞([0, T ];L2(ωx)), we have

∀t ∈ [0, T ], ‖V ǫ − Ṽ ǫ‖H2(Ω) ≤ C‖Ns − Ñs‖L2(ωx), (3.27)

where C stands for a nonnegative constant not depending on ǫ.
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Proof. Multiplying the regularized Poisson equation (3.8) by V ǫ − Ṽ ǫ and integrating, we

obtain
∫

Ω
|∇(V ǫ − Ṽ ǫ)|2dxdz =

∫

Ω

((
Ns − Ñs

)
Sǫ[V ǫ] + Ñs

(
Sǫ[V ǫ]− Sǫ[Ṽ ǫ]

))
Rǫ[V ǫ − Ṽ ǫ]dxdz.

Because the functional V 7→ S[V ] is decreasing with respect to V , term (Sǫ[V ǫ]−Sǫ[Ṽ ǫ])Rǫ[V ǫ−
Ṽ ǫ] is nonpositive. We deduce

∫

Ω
|∇(V ǫ − Ṽ ǫ)|2dxdz ≤ ‖Ns − Ñs‖L1(ωx)‖ < Rǫ[V ǫ − Ṽ ǫ],Sǫ[V ǫ] > ‖L∞(ωx). (3.28)

Then, (i) of Lemma 3.2 and a Cauchy-Schwarz inequality gives

∫

Ω
|∇(V ǫ − Ṽ ǫ)|2dxdz ≤ C‖Ns − Ñs‖L1(ωx)‖Rǫ[V ǫ − Ṽ ǫ]‖L2

zL
∞
x (Ω).

We use the property (i) of Lemma 3.3 and the embedding H1 →֒ L2
zL

∞
x . We obtain

∫

Ω
|∇(V ǫ − Ṽ ǫ)|2dxdz ≤ C‖Ns − Ñs‖L1(ωx)‖V ǫ − Ṽ ǫ‖H1(Ω).

Finally, thanks to the Poincaré inequality, we get (3.26).

For the H2 estimate, we have

−∆(V ǫ − Ṽ ǫ) = ρǫ − ρ̃ǫ = Rǫ
[(
Ns − Ñs

)
Sǫ[V ǫ] + Ñs

(
Sǫ[V ǫ]− Sǫ[Ṽ ǫ]

)]
.

Then we bound the L2 norm of the right hand side as above using the spectral properties in

Section 3.1. We finally get the H2 estimate (3.27) from the elliptic regularity.

Finally, a straightforward adaptation of Proposition 3.2 of [19] gives the following conver-

gence result as ǫ goes to 0.

Proposition 3.9. As ǫ → 0, the solution V ǫ of the regularized Nanowire Poisson system

converges, uniformly with respect to Ns ∈ L∞([0, T ];L1(ωx)) such that Ns ≥ 0 a.e, to the

solution V of the unregularized problem in L∞([0, T ];H1(Ω)).

3.5 Existence of solutions for the regularized system

Proposition 3.10. Let T > 0 and ǫ ∈ [0, 1] be fixed. Then the regularized problem NDDPǫ

admits a unique solution (N ǫ
s , V

ǫ) with N ǫ
s ∈ C([0, T ];L2(ωx)) ∩ L2([0, T ];H1(ωx)) and V ǫ ∈

L∞([0, T ];H1(Ω)).

Proof. The proof of this result follows closely the proof of Theorem 1.2 of [7]. Thus we will

not detail it and only give the main steps. The proof relies on a fixed point argument on the

map F defined by :

Step 1 : For a given N ǫ
s ≥ 0, we solve the regularized Nanowire Poisson equation (3.8) with

boundary conditions (3.13)–(3.14) and we define V ǫ
s by (3.10) which belongs to L∞([0, T ];H1(ωx)).
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Step 2 : The effective potential V ǫ
s being known, we solve the following drift-diffusion equation

for the unknown N̂ ǫ
s

∂tN̂
ǫ
s − ∂x

(
D(∂xN̂

ǫ
s + N̂ ǫ

s∂xV
ǫ
s )
)
= 0,

with the boundary condition N̂ ǫ
s |∂ωx

= Nb and the initial value N̂ ǫ
s(0, x) = N0

s (x). The map

F is then defined after these two steps by F (N ǫ
s) = N̂ ǫ

s .

Then we can prove that for T small enough, F is a contraction on the space Ma,T defined

by Ma,T = {n, ‖n‖T ≤ a} where the norm is

‖n‖T =
[
max
0≤t≤T

‖n(t)‖2L2(ωx)
+

∫ T

0
‖n(t)‖2H1(ωx)

dt
]1/2

. (3.29)

We have then constructed a unique solution on a small time interval [0, T0]. Using the a priori

estimate, we can iterate this procedure to construct a solution on [T0, 2T0] that extend the

previous one. We iterate this construction until covering the interval [0, T ].

3.6 Passing to the limit ǫ → 0

We construct a solution of the non-regularized Nanowire drift-diffusion Poisson system by

passing to the limit ǫ → 0 in the regularization. First, we recall a statement of an Aubin-

Lions lemma [2, 12] :

Lemma 3.11. Take T > 0, q ∈ (1,+∞) and let (fn)n∈N be a bounded sequence of functions

in Lq([0, T ];H) where H is a Banach space. If (fn)n∈N is bounded in Lq([0, T ];V ) where V

is compactly embedded in H and ∂fn/∂t is bounded in Lq([0, T ];V ′) uniformly with respect to

n ∈ N, then, (fn)n∈N is relatively compact in Lq([0, T ];H).

Proof of Theorem 1.6. We fix T > 0. From Proposition 3.10, there exists N ǫ
s and

V ǫ solution of the regularized system NDDPǫ with the initial data N ǫ,0
s . The bound on

‖N ǫ
s‖L1(ωx) (3.20) and the dissipation estimate (Corollary 3.6) furnish a bound of

√
N ǫ

s in

L∞([0, T ];L2(ωx)) and in L2([0, T ];H1(ωx)). Thus, N ǫ
s is bounded uniformly with respect to

ǫ in L2([0, T ];W 1,1(ωx)) (since we have the equality ∂xN
ǫ
s = 2

√
N ǫ

s∂x
√
N ǫ

s). Next, using the

Cauchy-Schwarz inequality and Assumption 1.3, we obtain
∫ T

0

(∫

ωx

|∂xN ǫ
s +N ǫ

s∂xV
ǫ
s |dx

)2
dt ≤ C

∫ T

0
Dǫ(t)dt

where Dǫ is the entropy dissipation rate defined in (3.18) which is bounded in L1([0, T ])

uniformly with respect to ǫ. From the drift-diffusion equation (3.7), we conclude that ∂tN
ǫ
s

is bounded in L2([0, T ];W−1,1(ωx)) uniformly with respect to ǫ. Therefore, we can apply the

Aubin Lemma 3.11 for q = 2, H = L1(ωx) and V = W 1,1(ωx). There exists a subsequence

(that we still denote abusively N ǫ
s) such that N ǫ

s → Ns strongly in L2([0, T ];L1(ωx)). Finally,

for this function Ns, we solve the unregularized Nanowire Poisson system and construct V

such that V ∈ L∞([0, T ];H1(Ω)) (Proposition 3.7) and limǫ→0 ‖V ǫ − V ‖L2([0,T ];H1(Ω)) = 0

(thanks to Proposition 3.9).

The last step is to pass to the limit ǫ→ 0 in the drift-diffusion equation. We have
∫ T

0

∫

ωx

N ǫ
s∂xV

ǫ
s dxdt ≤ C‖N ǫ

s‖L1([0,T ];L2(ωx))‖V ǫ‖L∞([0,T ];H1(Ω)).
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Corollary 3.6 shows that ‖N ǫ
s‖L1([0,T ];L2(ωx)) is bounded independently of ǫ and we conclude

that there exists a nonnegative constant C independent of ǫ such that
∫ T

0

∫

ωx

N ǫ
s∂xV

ǫ
s dxdt ≤ C. (3.30)

It gives a sense to the drift-diffusion equation when ǫ→ 0. Finally, using (3.4), we immediately

deduce that V ǫ
nn → Vnn in L2([0, T ];H1(ωx)) and that

∂xV
ǫ
s =

∑
n ∂xV

ǫ
nne

−
(
En+V ǫ

nn

)

Zǫ

converges in L2([0, T ] × ωx). It is enough to prove that

N ǫ
s∂xV

ǫ
s ⇀ Ns∂xVs in D′([0, T ] × ωx).

Thus, up to an extraction, (Ns, V ) is a solution of the NDDP system. Moreover, by semicon-

tinuity, we can pass in the limit in the a priori estimates such that we still have the relative

entropy estimation of Proposition 3.5 for (Ns, V ).

Appendix : Technical Lemmas for the diffusive limit

Lemma A.1. For all function p 7→ γ(p) polynomially increasing as well as all its derivative

and for all φ ∈ C∞([0, T ] × R) compactly supported, the function ψ = γφ can be taken as test

function in the weak formulation (2.27) of the Boltzmann equation.

Proof. Let p 7→ ξR(p) such that ξR ∈ D([−R,R]), 0 ≤ ξR ≤ 1, |∂pξR| ≤ 1 and ξR → 1 a.e.

when R → +∞. We set ψR = φγξR, function with which we can write the weak formulation

(2.27). To pass to the limit R → +∞, it suffices from a Lebesgue theorem that γfηn ∈ L1
p(R)

and pγfηn ∈ L1
p(R) as well as for ∂pγ. However, with the Cauchy-Schwarz inequality,

∫

R

|γfηn |(1 + |p|)dp ≤
(∫

R

(1 + |p|)2Mn(p)γ
2(p)dp

)1/2(∫

R

(fηn)2

Mn(p)
dp

)1/2

<∞,

because γ is polynomially increasing.

Lemma A.2. Let Θ be defined in (2.8). There exist nonnegative constants C0, C1 and C2

such that ∀(t, x) ∈ [0, T ]× R :

C1(1 + |p|) ≤
∣∣∣ Θn

Mn

∣∣∣ ≤ C2(1 + |p|), (A.1)

∣∣∣∂sΘn

Mn

∣∣∣ ≤ C0(1 + |p|2) for s=t, x and p. (A.2)

Proof. By the definition (2.8), we have

λnΘn = Q+
B(Θ)n +

p

m∗
n

Mn. (A.3)

where we denote Q+
B(Θ)n = Mn

∑
n′≥1

∫
αn,n′Θn′dp′ and λn =

∑
n′≥1

∫
αn,n′Mn′dp′. Using

Assumption 2.1, we immediately find α1 ≤ λn ≤ α2. Applying a Cauchy-Schwarz inequality,

|Q+
B(Θ)n| ≤ α2Mn

+∞∑

n′=1

∫
|Θn′(p′)|dp′ ≤ α2Mn

(
+∞∑

n′=1

∫ (
Θn′(p′)

)2

Mn′(p′)
dp′
)1/2

.

Since Θ ∈ L2
M, (A.1) follows directly from (A.3) and we differentiate it to obtain (A.2).
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