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Fast learning rates for plug-in classifiers

under the margin condition
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Abstract

It has been recently shown that, under the margin (or low noise) assump-

tion, there exist classifiers attaining fast rates of convergence of the excess

Bayes risk, i.e., the rates faster than n−1/2. The works on this subject sug-

gested the following two conjectures: (i) the best achievable fast rate is of the

order n−1, and (ii) the plug-in classifiers generally converge slower than the

classifiers based on empirical risk minimization. We show that both conjec-

tures are not correct. In particular, we construct plug-in classifiers that can

achieve not only the fast, but also the super-fast rates, i.e., the rates faster

than n−1. We establish minimax lower bounds showing that the obtained

rates cannot be improved.

AMS 2000 Subject classifications. Primary 62G07, Secondary 62G08, 62H05,

68T10.

Key words and phrases. classification, statistical learning, fast rates of conver-

gence, excess risk, plug-in classifiers, minimax lower bounds.

Short title. Fast Rates for Plug-in Classifiers

1 Introduction

Let (X, Y ) be a random couple taking values in Z , R
d × {0, 1} with joint distri-

bution P . We regard X ∈ R
d as a vector of features corresponding to an object and
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Y ∈ {0, 1} as a label indicating that the object belongs to one of the two classes.

Consider the sample (X1, Y1), . . . , (Xn, Yn), where (Xi, Yi) are independent copies of

(X, Y ). We denote by P⊗n the product probability measure according to which the

sample is distributed, and by PX the marginal distribution of X .

The goal of a classification procedure is to predict the label Y given the value

of X , i.e., to provide a decision rule f : Rd → {0, 1} which belongs to the set F of

all Borel functions defined on R
d and taking values in {0, 1}. The performance of a

decision rule f is measured by the misclassification error

R(f) , P (Y 6= f(X)).

The Bayes decision rule is a minimizer of the risk R(f) over all the decision rules

f ∈ F , and one of such minimizers has the form f ∗(X) = 1I{η(X)≥ 1
2
} where 1I{·}

denotes the indicator function and η(X) , P (Y = 1|X) is the regression function

of Y on X (here P (dY |X) is a regular conditional probability which we will use in

the following without further mention).

An empirical decision rule (a classifier) is a random mapping f̂n : Zn → F
measurable w.r.t. the sample. Its accuracy can be characterized by the excess risk

E(f̂n) = ER(f̂n)− R(f ∗)

where E is the sign of expectation. A key problem in classification is to construct

classifiers with small excess risk for sufficiently large n [cf. Devroye, Györfi and

Lugosi (1996), Vapnik (1998)]. Optimal classifiers can be defined as those having

the best possible rate of convergence of E(f̂n) to 0, as n→ ∞. Of course, this rate,

and thus the optimal classifier, depend on the assumptions on the joint distribution

of (X, Y ). A standard way to define optimal classifiers is to introduce a class of

joint distributions of (X, Y ) and to declare f̂n optimal if it achieves the best rate of

convergence in a minimax sense on this class.

Two types of assumptions on the joint distribution of (X, Y ) are commonly used:

complexity assumptions and margin assumptions.

Complexity assumptions are stated in two possible ways. First of them is to

suppose that the regression function η is smooth enough or, more generally, belongs

to a class of functions Σ having a suitably bounded ε-entropy. This is called a

complexity assumption on the regression function (CAR). Most commonly it is of

the following form.
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Assumption (CAR). The regression function η belongs to class Σ of functions

on R
d such that

H(ε,Σ, Lp) ≤ A∗ε
−ρ, ∀ε > 0,

with some constants ρ > 0, A∗ > 0. Here H(ε,Σ, Lp) denotes the ε-entropy of the

set Σ w.r.t. an Lp norm with some 1 ≤ p ≤ ∞.

At this stage of discussion we do not identify precisely the value of p for the

Lp norm in Assumption (CAR), nor the measure with respect to which this norm

is defined. Examples will be given later. If Σ is a class of smooth functions with

smoothness parameter β on a compact in R
d, for example, a Hölder class, as de-

scribed below, a typical value of ρ in Assumption (CAR) is ρ = d/β.

Assumption (CAR) is well adapted for the study of plug-in rules, i.e. of the

classifiers having the form

f̂PI
n (X) = 1I{η̂n(X)≥ 1

2
} (1.1)

where η̂n is a nonparametric estimator of the function η. Indeed, Assumption (CAR)

typically reads as a smoothness assumption on η implying that a good nonparametric

estimator (kernel, local polynomial, orthogonal series or other) η̂n converges with

some rate to the regression function η, as n → ∞. In turn, closeness of η̂n to η

implies closeness of f̂n to f : for any plug-in classifier f̂PI
n we have

ER(f̂PI
n )− R(f ∗) ≤ 2E

∫

|η̂n(x)− η(x)|PX(dx) (1.2)

(cf. Devroye, Györfi and Lugosi (1996), Theorem 2.2). For various types of estima-

tors η̂n and under rather general assumptions it can be shown that, if (CAR) holds,

the RHS of (1.2) is uniformly of the order n−1/(2+ρ), and thus

sup
P :η∈Σ

E(f̂PI
n ) = O(n−1/(2+ρ)), n→ ∞, (1.3)

[cf. Yang (1999)]. In particular, if ρ = d/β (which corresponds to a class of smooth

functions with smoothness parameter β), we get

sup
P :η∈Σ

E(f̂PI
n ) = O(n−β/(2β+d)), n→ ∞. (1.4)

Note that (1.4) can be easily deduced from (1.2) and standard results on the L1 or

L2 convergence rates of usual nonparametric regression estimators on β-smoothness

classes Σ. The rates in (1.3), (1.4) are quite slow, always slower than n−1/2. In (1.4)
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they deteriorate dramatically as the dimension d increases. Moreover, Yang (1999)

shows that, under general assumptions, the bound (1.4) cannot be improved in a

minimax sense. These results raised some pessimism about the plug-in rules.

The second way to describe complexity is to introduce a structure on the class

of possible decision sets G∗ = {x : f ∗(x) = 1} = {x : η(x) ≥ 1/2} rather than on

that of regression functions η. A standard complexity assumption on the decision

set (CAD) is the following.

Assumption (CAD). The decision set G∗ belongs to a class G of subsets of Rd

such that

H(ε,G, d△) ≤ A∗ε
−ρ, ∀ε > 0,

with some constants ρ > 0, A∗ > 0. Here H(ε,G, d△) denotes the ε-entropy of

the class G w.r.t. the measure of symmetric difference pseudo-distance between sets

defined by d△(G,G′) = PX(G△G′) for two measurable subsets G and G′ in R
d.

The parameter ρ in Assumption (CAD) typically characterizes the smoothness

of the boundary of G∗ [cf. Tsybakov (2004a)]. Note that, in general, there is no

connection between Assumptions (CAR) and (CAD). Indeed, the fact that G∗ has

a smooth boundary does not imply that η is smooth, and vice versa. The values of

ρ closer to 0 correspond to smoother boundaries (less complex sets G∗). As a limit

case when ρ→ 0 one can consider the Vapnik-Chervonenkis classes (VC-classes) for

which the ε-entropy is logarithmic in 1/ε.

Assumption (CAD) is suited for the study of empirical risk minimization (ERM)

type classifiers introduced by Vapnik and Chervonenkis (1974), see also Devroye,

Györfi and Lugosi (1996), Vapnik (1998). As shown in Tsybakov (2004a), for every

0 < ρ < 1 there exist ERM classifiers f̂ERM
n such that, under Assumption (CAD),

sup
P :G∗∈G

E(f̂ERM
n ) = O(n−1/2), n→ ∞. (1.5)

The rate of convergence in (1.5) is better than that for plug-in rules, cf. (1.3) –

(1.4), and it does not depend on ρ (respectively, on the dimension d). Note that the

comparison between (1.5) and (1.3) – (1.4) is not quite legitimate, because there is no

inclusion between classes of joint distributions P of (X, Y ) satisfying Assumptions

(CAR) and (CAD). Nevertheless, such a comparison have been often interpreted as

an argument in disfavor of the plug-in rules. Indeed, Yang’s lower bound shows that

the n−1/2 rate cannot be attained under Assumption (CAD) suited for the plug-in
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rules. Recently, advantages of the ERM type classifiers, including penalized ERM

methods, have been further confirmed by the fact that, under the margin (or low

noise) assumption, they can attain fast rates of convergence, i.e. the rates that are

faster than n−1/2 [Mammen and Tsybakov (1999), Tsybakov (2004a), Massart and

Nédélec (2003), Tsybakov and van de Geer (2005), Koltchinskii (2005), Audibert

(2004)].

The margin assumption (or low noise assumption) is stated as follows.

Assumption (MA). There exist constants C0 > 0 and α ≥ 0 such that

PX

(

0 < |η(X)− 1/2| ≤ t
)

≤ C0t
α, ∀ t > 0. (1.6)

The case α = 0 is trivial (no assumption) and is included for notational con-

venience. Assumption (MA) provides a useful characterization of the behavior of

regression function η in a vicinity of the level η = 1/2 which turns out to be crucial

for convergence of classifiers (for more discussion of the margin assumption see Tsy-

bakov (2004a)). The main point is that, under (MA), fast classification rates up to

n−1 are achievable. In particular, for every 0 < ρ < 1 and α > 0 there exist ERM

type classifiers f̂ERM
n such that

sup
P :(CAD),(MA)

E(f̂ERM
n ) = O(n− 1+α

2+α+αρ ), n→ ∞, (1.7)

where supP :(CAD),(MA) denotes the supremum over all joint distributions P of (X, Y )

satisfying Assumptions (CAD) and (MA). The RHS of (1.7) can be arbitrarily close

to O(n−1) for large α and small ρ. Result (1.7) for direct ERM classifiers on ε-nets is

proved by Tsybakov (2004a), and for some other ERM type classifiers by Tsybakov

and van de Geer (2005), Koltchinskii (2005) and Audibert (2004) (in some of these

papers the rate of convergence (1.7) is obtained with an extra log-factor).

Comparison of (1.5) and (1.7) with (1.2) and (1.3) seems to confirm the con-

jecture that the plug-in classifiers are inferior to the ERM type ones. The main

message of the present paper is to disprove this conjecture. We will show that there

exist plug-in rules that converge with fast rates, and even with super-fast rates, i.e.

faster than n−1 under the margin assumption (MA). The basic idea of the proof is

to use exponential inequalities for the regression estimator η̂n (see Section 3 below)

or the convergence results in the L∞ norm (see Section 5), rather than the usual
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L1 or L2 norm convergence of η̂n, as previously described (cf. (1.2)). We do not

know whether the super-fast rates are attainable for ERM rules or, more precisely,

under Assumption (CAD) which serves for the study of the ERM type rules. It

is important to note that our results on fast rates cover more general setting than

just classification with plug-in rules. These are rather results about classification

in the regression complexity context under the margin assumption. In particular, we

establish minimax lower bounds valid for all classifiers, and we construct a “hybrid”

plug-in/ ERM procedure (ERM based on a grid on a set regression functions η)

that achieves optimality. Thus, the point is mainly not about the type of procedure

(plug-in or ERM) but about the type of complexity assumption (on the regression

function (CAR) or on the decision set (CAD)) that should be natural to impose.

Assumption (CAR) on the regression function arises in a natural way in the anal-

ysis of several practical procedures of plug-in type, such as boosting and SVM [cf.

Blanchard, Lugosi and Vayatis (2003), Bartlett, Jordan and McAuliffe (2003), Scovel

and Steinwart (2003), Blanchard, Bousquet and Massart (2004), Tarigan and van de

Geer (2004)]. These procedures are now intensively studied but, to our knowledge,

only suboptimal rates of convergence have been proved in the regression complexity

context under the margin assumption. The results in Section 4 point out this fact

(see also Section 5), and establish the best achievable rates of classification that

those procedures should expectedly attain.

2 Notation and definitions

In this section we introduce some notation, definitions and basic facts that will be

used in the paper.

We denote by C,C1, C2, . . . positive constants whose values may differ from line

to line. The symbols P and E stand for generic probability and expectation signs,

and EX is the expectation w.r.t. the marginal distribution PX . We denote by B(x, r)
the closed Euclidean ball in R

d centered at x ∈ R
d and of radius r > 0.

For any multi-index s = (s1, . . . , sd) ∈ N
d and any x = (x1, . . . , xd) ∈ R

d, we

define |s| = ∑d
i=1 si, s! = s1! . . . sd!, x

s = xs11 . . . xsdd and ‖x‖ , (x21 + · · · + x2d)
1/2.

Let Ds denote the differential operator Ds , ∂s1+···+sd

∂x
s1
1 ···∂xsd

d

.

Let β > 0. Denote by ⌊β⌋ the maximal integer that is strictly less than β. For
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any x ∈ R
d and any ⌊β⌋ times continuously differentiable real valued function g on

R
d, we denote by gx its Taylor polynomial of degree ⌊β⌋ at point x:

gx(x
′) ,

∑

|s|≤⌊β⌋

(x′ − x)s

s!
Dsg(x).

Let L > 0. The
(

β, L,Rd
)

-Hölder class of functions, denoted Σ(β, L,Rd), is de-

fined as the set of functions g : Rd → R that are ⌊β⌋ times continuously differentiable

and satisfy, for any x, x′ ∈ R
d , the inequality

|g(x′)− gx(x
′)| ≤ L‖x− x′‖β.

Fix some constants c0, r0 > 0. We will say that a Lebesgue measurable set

A ⊂ R
d is (c0, r0)-regular if

λ
[

A ∩ B(x, r)
]

≥ c0λ
[

B(x, r)
]

, ∀ 0 < r ≤ r0, ∀ x ∈ A, (2.1)

where λ[S] stands for the Lebesgue measure of S ⊂ R
d. To illustrate this definition,

consider the following example. Let d ≥ 2. Then the set A =
{

x = (x1, . . . , xd) ∈
R

d :
∑d

j=1 |xj |q ≤ 1
}

is (c0, r0)-regular with some c0, r0 > 0 for q ≥ 1, and there are

no c0, r0 > 0 such that A is (c0, r0)-regular for 0 < q < 1.

Introduce now two assumptions on the marginal distribution PX that will be

used in the sequel.

Definition 2.1 Fix 0 < c0, r0, µmax < ∞ and a compact C ⊂ R
d. We say that the

mild density assumption is satisfied if the marginal distribution PX is supported

on a compact (c0, r0)-regular set A ⊆ C and has a uniformly bounded density µ w.r.t.

the Lebesgue measure: µ(x) ≤ µmax, ∀ x ∈ A.

Definition 2.2 Fix some constants c0, r0 > 0 and 0 < µmin < µmax < ∞ and a

compact C ⊂ R
d. We say that the strong density assumption is satisfied if the

marginal distribution PX is supported on a compact (c0, r0)-regular set A ⊆ C and

has a density µ w.r.t. the Lebesgue measure bounded away from zero and infinity on

A:

µmin ≤ µ(x) ≤ µmax for x ∈ A, and µ(x) = 0 otherwise.

We finally recall some notions related to locally polynomial estimators.
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Definition 2.3 For h > 0, x ∈ R
d, for an integer l ≥ 0 and a function K : Rd →

R+, denote by θ̂x a polynomial on R
d of degree l which minimizes

n
∑

i=1

[

Yi − θ̂x(Xi − x)
]2
K

(

Xi − x

h

)

. (2.2)

The locally polynomial estimator η̂LPn (x) of order l, or LP(l) estimator, of the

value η(x) of the regression function at point x is defined by: η̂LPn (x) , θ̂x(0) if θ̂x

is the unique minimizer of (2.2) and η̂LPn (x) , 0 otherwise. The value h is called

the bandwidth and the function K is called the kernel of the LP(l) estimator.

Let Ts denote the coefficients of θ̂x indexed by multi-index s ∈ N
d: θ̂x(u) =

∑

|s|≤l Tsu
s. Introduce the vectors T ,

(

Ts
)

|s|≤l
, V ,

(

Vs
)

|s|≤l
where

Vs ,
∑n

i=1 Yi(Xi − x)sK
(

Xi−x
h

)

, (2.3)

U(u) ,
(

us
)

|s|≤l
and the matrix Q ,

(

Qs1,s2

)

|s1|,|s2|≤l
where

Qs1,s2 ,
∑n

i=1(Xi − x)s1+s2K
(

Xi−x
h

)

. (2.4)

The following result is straightforward (cf. Section 1.7 in Tsybakov (2004b) where

the case d = 1 is considered).

Proposition 2.1 If the matrix Q is positive definite, there exists a unique poly-

nomial on R
d of degree l minimizing (2.2). Its vector of coefficients is given by

T = Q−1V and the corresponding LP(l) regression function estimator has the form

η̂LPn (x) = UT (0)Q−1V =
n

∑

i=1

YiK

(

Xi − x

h

)

UT (0)Q−1U(Xi − x).

3 Fast rates for plug-in rules: the strong density

assumption

We first state a general result showing how the rates of convergence of plug-in clas-

sifiers can be deduced from exponential inequalities for the corresponding regression

estimators.

In the sequel, for an estimator η̂n of η, we write

P
(
∣

∣η̂n(X)− η(X)| ≥ δ
)

,

∫

P⊗n
(
∣

∣η̂n(x)− η(x)| ≥ δ
)

PX(dx), ∀ δ > 0,
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i.e., we consider the probability taken with respect to the distribution of the sample

(X1, Y1, . . .Xn, Yn) and the distribution of the input X .

Theorem 3.1 Let η̂n be an estimator of the regression function η and P a set of

probability distributions on Z such that for some constants C1 > 0, C2 > 0, for some

positive sequence an, for n ≥ 1 and any δ > 0, and for almost all x w.r.t. PX , we

have

sup
P∈P

P⊗n
(

∣

∣η̂n(x)− η(x)| ≥ δ
)

≤ C1 exp
(

− C2anδ
2
)

. (3.1)

Consider the plug-in classifier f̂n = 1I{η̂n≥ 1
2
}. If all the distributions P ∈ P satisfy

the margin assumption (MA), we have

sup
P∈P

{

ER(f̂n)−R(f ∗)
}

≤ Ca
− 1+α

2
n

for n ≥ 1 with some constant C > 0 depending only on α, C0, C1 and C2.

Proof. Consider the sets Aj ⊂ R
d, j = 1, 2, . . . , defined as

A0 ,
{

x ∈ R
d : 0 < |η(x)− 1

2
| ≤ δ

}

,

Aj ,
{

x ∈ R
d : 2j−1δ < |η(x)− 1

2
| ≤ 2jδ

}

, for j ≥ 1.

For any δ > 0, we may write

ER(f̂n)− R(f ∗) = E
(

|2η(X)− 1|1I{f̂n(X)6=f∗(X)}
)

=
∑∞

j=0 E
(

|2η(X)− 1|1I{f̂n(X)6=f∗(X)}1I{X∈Aj}
)

≤ 2δPX

(

0 < |η(X)− 1
2
| ≤ δ

)

+
∑

j≥1E
(

|2η(X)− 1|1I{f̂n(X)6=f∗(X)}1I{X∈Aj}
)

.

(3.2)

On the event {f̂n 6= f ∗} we have |η − 1
2
| ≤ |η̂n − η|. So, for any j ≥ 1, we get

E
(

|2η(X)− 1|1I{f̂n(X)6=f∗(X)}1I{X∈Aj}
)

≤ 2j+1δE
[

1I{|η̂n(X)−η(X)|≥2j−1δ}1I{0<|η(X)− 1
2
|≤2jδ}

]

≤ 2j+1δ EX

[

P⊗n
(

|η̂n(X)− η(X)| ≥ 2j−1δ
)

1I{0<|η(X)− 1
2
|≤2jδ}

]

≤ C12
j+1δ exp

(

− C2an(2
j−1δ)2

)

PX

(

0 < |η(X)− 1
2
| ≤ 2jδ

)

≤ 2C1C02
j(1+α)δ1+α exp

(

− C2an(2
j−1δ)2

)

where in the last inequality we used Assumption (MA). Now, from inequality (3.2),

taking δ = a
−1/2
n and using Assumption (MA) to bound the first term of the right
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hand side of (3.2), we get

ER(f̂n)−R(f ∗) ≤ 2C0a
− 1+α

2
n + Ca

− 1+α
2

n

∑

j≥2 2
j(1+α) exp

(

− C22
2j−2

)

≤ Ca
− 1+α

2
n .

Inequality (3.1) is crucial to obtain the above result. This inequality holds true

for various types of estimators and various sets of probability distributions P. Here

we focus on a standard case where η belongs to the Hölder class Σ(β, L,Rd) and the

marginal law of X satisfies the strong density assumption. We are going to show

that in this case there exist estimators satisfying inequality (3.1) with an = n
2β

2β+d .

These can be, for example, locally polynomial estimators. Specifically, assume from

now on that K is a kernel satisfying

∃c > 0 : K(x) ≥ c1I{‖x‖≤c}, ∀x ∈ R
d, (3.3)

∫

Rd

K(u)du = 1, (3.4)
∫

Rd

(

1 + ‖u‖4β
)

K2(u)du <∞, (3.5)

sup
u∈Rd

(

1 + ‖u‖2β
)

K(u) <∞. (3.6)

Let h > 0, and consider the matrix B̄ ,
(

B̄s1,s2

)

|s1|,|s2|≤⌊β⌋ where B̄s1,s2 =
1

nhd

∑n
i=1

(

Xi−x
h

)s1+s2
K

(

Xi−x
h

)

. Define the regression function estimator η̂∗n as fol-

lows. If the smallest eigenvalue of the matrix B̄ is greater than (logn)−1 we set

η̂∗n(x) equal to the projection of η̂LPn (x) on the interval [0, 1], where η̂LPn (x) is the

LP(⌊β⌋) estimator with a bandwidth h > 0 and a kernel K satisfying (3.3) – (3.6).

If the smallest eigenvalue of B̄ is less than (logn)−1 we set η̂∗n(x) = 0.

Theorem 3.2 Let P be a class of probability distributions P on Z such that the

regression function η belongs to the Hölder class Σ(β, L,Rd) and the marginal law of

X satisfies the strong density assumption. Then there exist constants C1, C2, C3 > 0

such that for any 0 < h ≤ r0/c, any C3h
β < δ and any n ≥ 1 the estimator η̂∗n

satisfies

sup
P∈P

P⊗n
(

∣

∣η̂∗n(x)− η(x)
∣

∣ ≥ δ
)

≤ C1 exp
(

− C2nh
dδ2

)

(3.7)

for almost all x w.r.t. PX . As a consequence, there exist C1, C2 > 0 such that for

h = n− 1
2β+d and any δ > 0, n ≥ 1 we have

sup
P∈P

P⊗n
(

∣

∣η̂∗n(x)− η(x)
∣

∣ ≥ δ
)

≤ C1 exp
(

− C2n
2β

2β+d δ2
)

(3.8)
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for almost all x w.r.t. PX . The constants C1, C2, C3 depend only on β, d, L, c0, r0,

µmin, µmax, and on the kernel K.

Proof. See Section 6.1.

Remark 3.1 We have chosen here the LP estimators of η because for them the

exponential inequality (3.1) holds without additional smoothness conditions on the

marginal density of X. For other popular regression estimators, such as kernel or

orthogonal series ones, similar inequality can be also proved if we assume that the

marginal density of X is as smooth as the regression function.

Definition 3.1 For a fixed parameter α ≥ 0, fixed positive parameters

c0, r0, C0, β, L, µmax > µmin > 0 and a fixed compact C ⊂ R
d, let PΣ denote the

class of all probability distributions P on Z such that

(i) the margin assumption (MA) is satisfied,

(ii) the regression function η belongs to the Hölder class Σ(β, L,Rd),

(iii) the strong density assumption on PX is satisfied.

Theorem 3.1 and (3.8) immediately imply the next result.

Theorem 3.3 For any n ≥ 1 the excess risk of the plug-in classifier f̂ ∗
n = 1I{η̂∗n≥ 1

2
}

with bandwidth h = n− 1
2β+d satisfies

sup
P∈PΣ

{

ER(f̂ ∗
n)− R(f ∗)

}

≤ Cn−β(1+α)
2β+d

where the constant C > 0 depends only on α, C0, C1 and C2.

For αβ > d/2 the convergence rate n−β(1+α)
2β+d obtained in Theorem 3.3 is a fast

rate, i.e., it is faster than n−1/2. Furthermore, it is a super-fast rate (i.e., is faster

than n−1) for (α − 1)β > d. We must note that if this condition is satisfied, the

class PΣ is rather poor, and thus super-fast rates can occur only for very particular

joint distributions of (X, Y ). Intuitively, this is clear. Indeed, to have a very smooth

regression function η (i.e., very large β) implies that when η hits the level 1/2, it

cannot “take off” from this level too abruptly. As a consequence, when the density

of the distribution PX is bounded away from 0 at a vicinity of the hitting point,
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the margin assumption cannot be satisfied for large α since this assumption puts an

upper bound on the “time spent” by the regression function near 1/2. So, α and β

cannot be simultaneously very large. It can be shown that the cases of “too large”

and “not too large” (α, β) are essentially described by the condition (α− 1)β > d.

To be more precise, observe first that PΣ is not empty for (α − 1)β > d, so

that the super-fast rates can effectively occur. Examples of laws P ∈ PΣ under

this condition can be easily given, such as the one with PX equal to the uniform

distribution on a ball centered at 0 in R
d, and the regression function defined by

η(x) = 1/2−C‖x‖2 with an appropriate C > 0. Clearly, η belongs to Hölder classes

with arbitrarily large β and Assumption (MA) is satisfied with α = d/2. Thus, for

d ≥ 3 and β large enough super-fast rates can occur. Note that in this example the

decision set {x : η(x) ≥ 1/2} has the Lebesgue measure 0 in R
d. It turns out that

this condition is necessary to achieve classification with super-fast rates when the

Hölder classes of regression functions are considered.

To explain this and to have further insight into the problem of super-fast rates,

consider the following two questions:

• for which parameters α, β and d is there a distribution P ∈ PΣ such that the

regression function associated with P hits1 1/2 in the support of PX?

• for which parameters α, β and d is there a distribution P ∈ PΣ such that

the regression function associated with P crosses2 1/2 in the interior of the

support of PX?

The following result gives a precise description of the constraints on (α, β) leading

to possibility or impossibility of the super-fast rates.

Proposition 3.4 • If α(1∧β) > d, there is no distribution P ∈ PΣ such that the

regression function η associated with P hits 1/2 in the interior of the support

of PX .

• For any α, β > 0 and integer d ≥ α(1 ∧ β), any positive parameter L and any

compact C ⊂ R
d with non-empty interior, for appropriate positive parameters

1 A function f : Rd → R is said to hit the level a ∈ R at x0 ∈ R
d if and only if f(x0) = a and

for any r > 0 there exists x ∈ B(x0, r) such that f(x) 6= a .
2 A function f : Rd → R is said to cross the level a ∈ R at x0 ∈ R

d if and only if for any r > 0,

there exists x
−

and x+ in B(x0, r) such that f(x
−
) < a and f(x+) > a.

12



C0, c0, r0, µmax > µmin > 0, there are distributions P ∈ PΣ such that the

regression function η associated with P hits 1/2 in the boundary of the support

of PX .

• For any α, β > 0, any integer d ≥ 2α, any positive parameter L and any

compact C ⊂ R
d with non-empty interior, for appropriate positive parameters

C0, c0, r0, µmax > µmin > 0, there are distributions P ∈ PΣ such that the

regression function η associated with P hits 1/2 in the interior of the support

of PX .

• If α(1 ∧ β) > 1 there is no distribution P ∈ PΣ such that the regression

function η associated with P crosses 1/2 in the interior of the support of PX .

Conversely, for any α, β > 0 such that α(1∧β) ≤ 1, any integer d, any positive

parameter L and any compact C ⊂ R
d with non-empty interior, for appropriate

positive parameters C0, c0, r0, µmax > µmin > 0, there are distributions P ∈ PΣ

such that the regression function η associated with P crosses 1/2 in the interior

of the support of PX .

Note that the condition α(1∧β) > 1 appearing in the last assertion is equivalent

to β(1+α)
2β+d

> (2β)∨(β+1)
2β+d

, which is necessary to have super-fast rates. As a consequence,

in this context, super-fast rates cannot occur when the regression function crosses

1/2 in the interior of the support. The third assertion of the proposition shows that

super-fast rates can occur with regression functions hitting 1/2 in the interior of the

support of PX provided that the regression function is highly smooth and defined

on a highly dimensional space and that a strong margin assumption holds (i.e. α

large).

Proof. See Section 6.3.

The following lower bound shows optimality of the rate of convergence for the

Hölder classes obtained in Theorem 3.3.

Theorem 3.5 Let d ≥ 1 be an integer, and let L, β, α be positive constants, such

that αβ ≤ d. Then there exists a constant C > 0 such that for any n ≥ 1 and any

classifier f̂n : Zn → F , we have

sup
P∈PΣ

{

ER(f̂n)− R(f ∗)
}

≥ Cn−β(1+α)
2β+d .

13



Proof. See Section 6.2.

Note that the lower bound of Theorem 3.5 does not cover the case of super-fast

rates ((α− 1)β > d).

Finally, we discuss the case where “α = ∞”, which means that there exists t0 > 0

such that

PX

(

0 < |η(X)− 1/2| ≤ t0
)

= 0. (3.9)

This is a very favorable situation for classification. The rates of convergence of the

ERM type classifiers under (3.9) are, of course, faster than under Assumption (MA)

with α < ∞ [cf. Massart and Nédélec (2003)], but they are not faster than n−1.

Indeed, Massart and Nédélec (2003) provide a lower bound showing that, even if

Assumption (CAD) is replaced by a very strong assumption that the true decision set

belongs to a VC-class (note that both assumptions are naturally linked to the study

the ERM type classifiers), the best achievable rate is of the order (log n)/n. We show

now that for the plug-in classifiers much faster rates can be attained. Specifically,

if the regression function η has some (arbitrarily low) Hölder smoothness β the rate

of convergence can be exponential in n. To show this, we first state a simple lemma

which is valid for any plug-in classifier f̂n.

Lemma 3.6 Let assumption (3.9) be satisfied, and let η̂n be an estimator of the

regression function η. Then for the plug-in classifier f̂n = 1I{η̂n≥ 1
2
} we have

ER(f̂n)− R(f ∗) ≤ P
(

|η̂n(X)− η(X)| > t0
)

.

Proof. Following the argument similar to the proof of Theorem 3.1 and using

condition (3.9) we get

ER(f̂n)− R(f ∗) ≤ 2t0PX

(

0 < |η(X)− 1/2| ≤ t0
)

+ E
(

|2η(X)− 1|1I{f̂n(X)6=f∗(X)}1I{|η(X)−1/2|>t0}
)

= E
(

|2η(X)− 1|1I{f̂n(X)6=f∗(X)}1I{|η(X)−1/2|>t0}
)

≤ P
(

|η̂n(X)− η(X)| > t0
)

.

Lemma 3.6 and Theorem 3.2 immediately imply that, under assumption (3.9),

the rate of convergence of the plug-in classifier f̂ ∗
n = 1I{η̂∗n≥ 1

2
} with a small enough

fixed (independent of n) bandwidth h is exponential. To state the result, we denote

by PΣ,∞ the class of probability distributions P defined in the same way as PΣ, with
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the only difference that in Definition 3.1 the margin assumption (MA) is replaced

by condition (3.9).

Proposition 3.7 There exists a fixed (independent of n) h > 0 such that for any

n ≥ 1 the excess risk of the plug-in classifier f̂ ∗
n = 1I{η̂∗n≥ 1

2
} with bandwidth h satisfies

sup
P∈PΣ,∞

{

ER(f̂ ∗
n)−R(f ∗)

}

≤ C4 exp(−C5n)

where the constants C4, C5 > 0 depend only on t0, β, d, L, c0, r0, µmin, µmax, and

on the kernel K.

Proof. Use Lemma 3.6, choose h > 0 such that h < min(r0/c, (t0/C3)
1/β), and

apply (3.7) with δ = t0.

Koltchinskii and Beznosova (2005) prove a result on exponential rates for the

plug-in classifier with some penalized regression estimator in place of the locally

polynomial one that we use here. Their result is stated under a less general condition,

in the sense that they consider only the Lipschitz class of regression functions η, while

in Proposition 3.7 the Hölder smoothness β can be arbitrarily close to 0. Note also

that we do not impose any complexity assumption on the decision set. However,

the class of distributions PΣ,∞ is quite restricted in a different sense. Indeed, for

such distributions condition (3.9) should be compatible with the assumption that

η belongs to a Hölder class. A sufficient condition for that is the existence of a

band or a “corridor” of zero PX -measure separating the sets {x : η(x) > 1/2} and

{x : η(x) < 1/2}. We believe that this condition is close to the necessary one.

4 Optimal learning rates without the strong den-

sity assumption

In this section we show that if PX does not admit a density bounded away from zero

on its support the rates of classification are slower than those obtained in Section

3. In particular, super-fast rates, i.e., the rates faster than n−1, cannot be achieved.

Introduce the following class of probability distributions.

Definition 4.1 For a fixed parameter α ≥ 0, fixed positive parameters

c0, r0, C0, β, L, µmax > 0 and a fixed compact C ⊂ R
d, let P ′

Σ denote the class of

all probability distributions P on Z such that
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(i) the margin assumption (MA) is satisfied,

(ii) the regression function η belongs to the Hölder class Σ(β, L,Rd),

(iii) the mild density assumption on PX is satisfied.

In this section we mainly assume that the distribution P of (X, Y ) belongs to P ′
Σ,

but we also consider larger classes of distributions satisfying the margin assumption

(MA) and the complexity assumption (CAR).

Clearly, PΣ ⊂ P ′
Σ. The only difference between P ′

Σ and PΣ is that for P ′
Σ the

marginal density of X is not bounded away from zero. The optimal rates for P ′
Σ are

slower than for PΣ. Indeed, we have the following lower bound for the excess risk.

Theorem 4.1 Let d ≥ 1 be an integer, and let L, β, α be positive constants. Then

there exists a constant C > 0 such that for any n ≥ 1 and any classifier f̂n : Zn → F
we have

sup
P∈P ′

Σ

{

ER(f̂n)−R(f ∗)
}

≥ Cn
− (1+α)β

(2+α)β+d .

Proof. See Section 6.2.

In particular, when α = d/β, we get slow convergence rate 1/
√
n, instead of

the fast rate n− β+d
2β+d obtained in Theorem 3.3 under the strong density assumption.

Nevertheless, the lower bound can still approach n−1, as the margin parameter α

tends to ∞.

We now show that the rate of convergence given in Theorem 4.1 is optimal in

the sense that there exist estimators that achieve this rate. This will be obtained

as a consequence of a general upper bound for the excess risk of classifiers over a

larger set P of distributions than P ′
Σ.

Fix a Lebesgue measurable set C ⊂ R
d and a value 1 ≤ p ≤ ∞. Let Σ be a

class of regression functions η on R
d such that Assumption (CAR) is satisfied where

the ε-entropy is taken w.r.t. the Lp(C, λ) norm (λ is the Lebesgue measure on R
d).

Then for every ε > 0 there exists an ε-net Nε on Σ w.r.t. this norm such that

log
(

cardNε

)

≤ A′ε−ρ,

where A′ is a constant. Consider the empirical risk

Rn(f) =
1

n

n
∑

i=1

1I{f(Xi)6=Yi}, f ∈ F ,
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and set

εn = εn(α, ρ, p) ,

{

n− 1
2+α+ρ if p = ∞,

n− p+α
(2+α)p+ρ(p+α) if 1 ≤ p <∞.

Define a sieve estimator η̂Sn of the regression function η by the relation

η̂Sn ∈ Argminη̄∈Nεn
Rn(fη̄) (4.1)

where fη̄(x) = 1I{η̄(x)≥1/2}, and consider the classifier f̂S
n = 1I{η̂Sn≥1/2}. Note that f̂S

n

can be viewed as a “hybrid” plug-in/ ERM procedure: the ERM is performed on a

set of plug-in rules corresponding to a grid on the class of regression functions η.

Theorem 4.2 Let P be a set of probability distributions P on Z such that

(i) the margin assumption (MA) is satisfied,

(ii) the regression function η belongs to a class Σ which satisfies the complexity

assumption (CAR) with the ε-entropy taken w.r.t. the Lp(C, λ) norm for some

1 ≤ p ≤ ∞,

(iii) for all P ∈ P the supports of marginal distributions PX are included in C.

Consider the classifier f̂S
n = 1I{η̂Sn≥1/2}. If p = ∞ for any n ≥ 1 we have

sup
P∈P

{

ER(f̂S
n )−R(f ∗)

}

≤ Cn− 1+α
2+α+ρ . (4.2)

If 1 ≤ p < ∞ and, in addition, for all P ∈ P the marginal distributions PX are

absolutely continuous w.r.t. the Lebesgue measure and their densities are uniformly

bounded from above by some constant µmax <∞, then for any n ≥ 1 we have

sup
P∈P

{

ER(f̂S
n )−R(f ∗)

}

≤ Cn− (1+α)p
(2+α)p+ρ(p+α) . (4.3)

Proof. See Section 6.4.

Theorem 4.2 allows one to get fast classification rates without any density as-

sumption on PX . Namely, define the following class of distributions P of (X, Y ).

Definition 4.2 For fixed parameters α ≥ 0, C0 > 0, β > 0, L > 0, and for a fixed

compact C ⊂ R
d, let P0

Σ denote the class of all probability distributions P on Z such

that
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(i) the margin assumption (MA) is satisfied,

(ii) the regression function η belongs to the Hölder class Σ(β, L,Rd),

(iii) for all P ∈ P the supports of marginal distributions PX are included in C.

If C is a compact the estimates of ε-entropies of Hölder classes Σ(β, L,Rd) in

the L∞(C, λ) norm can be obtained from Kolmogorov and Tikhomorov (1961), and

they yield Assumption (CAR) with ρ = d/β. Therefore, from (4.2) we easily get the

following upper bound.

Theorem 4.3 Let d ≥ 1 be an integer, and let L, β, α be positive constants. For

any n ≥ 1 the classifier f̂S
n = 1I{η̂Sn≥1/2} defined by (4.1) with p = ∞ satisfies

sup
P∈P0

Σ

{

ER(f̂S
n )−R(f ∗)

}

≤ Cn− (1+α)β
(2+α)β+d

with some constant C > 0 depending only on α, β, d, L and C0.

Since P ′
Σ ⊂ P0

Σ, Theorems 3.5 and 4.3 show that n− (1+α)β
(2+α)β+d is optimal rate of

convergence of the excess risk on the class of distributions P0
Σ.

5 Comparison lemmas

In this section we give some useful inequalities between the risks of plug-in classifiers

and the Lp risks of the corresponding regression estimators under the margin as-

sumption (MA). These inequalities will be helpful in the proofs. They also illustrate

a connection between the two complexity assumptions (CAR) and (CAD) defined in

the Introduction and allow one to compare our study of plug-in estimators with that

given by Yang (1999) who considered the case α = 0 (no margin assumption), as well

as with the developments in Bartlett, Jordan and McAuliffe (2003) and Blanchard,

Lugosi and Vayatis (2003).

Throughout this section η̄ is a Borel function on R
d and

f̄(x) = 1I{η̄(x)≥1/2}.

For 1 ≤ p ≤ ∞ we denote by ‖ · ‖p the Lp(R
d, PX) norm. We first state some

comparison inequalities for the L∞ norm.

18



Lemma 5.1 For any distribution P of (X, Y ) satisfying Assumption (MA) we have

R(f̄)−R(f ∗) ≤ 2C0‖η̄ − η‖1+α
∞ , (5.1)

and

PX

(

f̄(X) 6= f ∗(X), η(X) 6= 1/2
)

≤ C0‖η̄ − η‖α∞. (5.2)

Proof. To show (5.1) note that

R(f̄)−R(f ∗) = E
(

|2η(X)− 1|1I{f̄(X)6=f∗(X)}
)

≤ 2E
(

|η(X)− 1
2
|1I0<{|η(X)− 1

2
|≤|η(X)−η̄(X)|}

)

≤ 2‖η − η̄‖∞PX

(

0 < |η(X)− 1
2
| ≤ ‖η − η̄‖∞

)

≤ 2C0‖η − η̄‖1+α
∞ .

Similarly,

PX

(

f̄(X) 6= f ∗(X), η(X) 6= 1/2
)

≤ PX

(

0 < |η(X)− 1
2
| ≤ |η(X)− η̄(X)|

)

≤ PX

(

0 < |η(X)− 1
2
| ≤ ‖η − η̄‖∞

)

≤ C0‖η − η̄‖α∞.

Remark 5.1 Lemma 5.1 offers an easy way to obtain the result of Theorem 3.3 in

a slightly less precise form, with an extra logarithmic factor in the rate. In fact,

under the strong density assumption, there exist nonparametric estimators η̂n (for

instance, suitably chosen locally polynomial estimators) such that

E

(

‖η̂n − η‖q∞
)

≤ C

(

log n

n

)
qβ

2β+d

, ∀ q > 0,

uniformly over η ∈ Σ(β, L,Rd) [see, e.g., Stone (1982)]. Taking here q = 1+ α and

applying the comparison inequality (5.1) we immediately get that the plug-in classifier

f̂n = 1I{η̂n≥1/2} has the excess risk E(f̂n) of the order (n/ log n)−β(1+α)/(2β+d).

Another immediate application of Lemma 5.1 is to get lower bounds on the risks

of regression estimators in the L∞ norm from the corresponding lower bounds on

the excess risks of classifiers (cf. Theorems 3.5 and 4.1). But here again we loose a

logarithmic factor required for the best bounds.

We now consider the comparison inequalities for Lp norms with 1 ≤ p <∞.
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Lemma 5.2 For any 1 ≤ p < ∞ and any distribution P of (X, Y ) satisfying As-

sumption (MA) with α > 0 we have

R(f̄)−R(f ∗) ≤ C1(α, p)‖η − η̄‖
p(1+α)
p+α

p , (5.3)

and

PX

(

f̄(X) 6= f ∗(X), η(X) 6= 1/2
)

≤ C2(α, p)‖η − η̄‖
p

p+α
p , (5.4)

where C1(α, p) = 2(α + p)p−1
(

p
α

)
α

α+pC
p−1
α+p

0 , C2(α, p) = (α + p)p−1
(

p
α

)
α

α+pC
p

α+p

0 . In

particular,

R(f̄)− R(f ∗) ≤ C1(α, 2)

(
∫

[η̄(x)− η(x)]2PX(dx)

)
1+α
2+α

. (5.5)

Proof. For any t > 0 we have

R(f̄)−R(f ∗)

= E
[

|2η(X)− 1|1I{f̄(X)6=f∗(X)}
]

= 2E
[

|η(X)− 1/2|1I{f̄(X)6=f∗(X)}1I{0<|η(X)−1/2|≤t}
]

+ 2E
[

|η(X)− 1/2|1I{f̄(X)6=f∗(X)}1I{|η(X)−1/2|>t}
]

≤ 2E
[

|η(X)− η̄(X)|1I{0<|η(X)−1/2|≤t}
]

+ 2E
[

|η(X)− η̄(X)|1I{|η(X)−η̄(X)|>t}
]

≤ 2‖η − η̄‖p
[

PX(0 < |η(X)− 1/2| ≤ t)
]

p−1
p +

2‖η − η̄‖pp
tp−1

(5.6)

by Hölder and Markov inequalities. So, for any t > 0, introducing E , ‖η− η̄‖p and
using Assumption (MA) to bound the probability in (5.6) we obtain

R(f̄)− R(f ∗) ≤ 2

(

C
p−1
p

0 t
α(p−1)

p E +
Ep

tp−1

)

.

Minimizing in t the RHS of this inequality we get (5.3). Similarly,

PX

(

f̄(X) 6= f ∗(X), η(X) 6= 1/2
)

≤ PX

(

0 < |η(X)− 1/2| ≤ t
)

+ PX

(

|η(X)− η̄(X)| > t)

≤ C0t
α +

‖η − η̄‖pp
tp

,

and minimizing this bound in t we obtain (5.4).

If the regression function η belongs to the Hölder class Σ
(

β, L,Rd
)

there exist

estimators η̂n such that, uniformly over the class,

E

{

[

η̂n(X)− η(X)
]2
}

≤ Cn− 2β
2β+d (5.7)
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for some constant C > 0. This has been shown by Stone (1982) under the additional

strong density assumption and by Yang (1999) with no assumption on PX . Using

(5.7) and (5.5) we get that the excess risk of the corresponding plug-in classifier

f̂n = 1I{η̂n≥1/2} admits a bound of the order n− 2β
2β+d

1+α
2+α which is suboptimal when

α 6= 0 (cf. Theorems 4.2, 4.3). In other words, under the margin assumption, Lemma

5.2 is not the right tool to analyze the convergence rate of plug-in classifiers. On

the contrary, when no margin assumption is imposed (i.e., α = 0 in our notation)

inequality (1.2), which is a version of (5.5) for α = 0, is precise enough to give the

optimal rate of classification [Yang (1999)].

Another way to obtain (5.5) is to use Bartlett, Jordan and McAuliffe (2003): it is

enough to apply their Theorem 10 with (in their notation) φ(t) = (1− t)2, ψ(t) = t2

and to note that for this choice of φ we have Rφ(η̄) − R∗
φ = ‖η − η̄‖22. Blanchard,

Lugosi and Vayatis (2003) used the result of Bartlett, Jordan and McAuliffe (2003)

to prove fast rates of the order n− 2(1+α)
3(2+α) for a boosting procedure over the class of

regression functions η of bounded variation in dimension d = 1. Note that the same

rates can be obtained for other plug-in classifiers using (5.5). Indeed, if η is of

bounded variation, there exist estimators of η converging with the mean squared L2

rate n−2/3[cf. van de Geer (2000), Györfi et al. (2002)], and thus application of (5.5)

immediately yields the rate n− 2(1+α)
3(2+α) for the corresponding plug-in rule. However,

Theorem 4.2 shows that this is not an optimal rate (here again we observe that

inequality (5.5) fails to establish the optimal properties of plug-in classifiers). In

fact, let d = 1 and let the assumptions of Theorem 4.2 be satisfied, where instead of

assumption (ii) we use its particular instance: η belongs to a class of functions on

[0, 1] whose total variation is bounded by a constant L <∞. It follows from Birman

and Solomjak (1967) that Assumption (CAR) for this class is satisfied with ρ = 1

for any 1 ≤ p <∞. Hence, we can apply (4.3) of Theorem 4.2 to find that

sup
P∈P

{

ER(f̂S
n )− R(f ∗)

}

≤ Cn− (1+α)p
(2+α)p+(p+α) (5.8)

for the corresponding class P. If p > 2 (recall that the value p ∈ [1,∞) is chosen by

the statistician), the rate in (5.8) is faster than n
− 2(1+α)

3(2+α) obtained under the same

conditions by Blanchard, Lugosi and Vayatis (2003).
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6 Proofs

6.1 Proof of Theorem 3.2

Consider a distribution P in PΣ. Let A be the support of PX . Fix x ∈ A

and δ > 0. Consider the matrix B ,
(

Bs1,s2

)

|s1|,|s2|≤⌊β⌋ with elements Bs1,s2 ,
∫

Rd u
s1+s2K(u)µ(x+ hu)du. The smallest eigenvalue λB̄ of B̄ satisfies

λB̄ = min‖W‖=1W
T B̄W

≥ min‖W‖=1W
TBW +min‖W‖=1W

T (B̄ − B)W

≥ min‖W‖=1W
TBW −∑

|s1|,|s2|≤⌊β⌋
∣

∣B̄s1,s2 −Bs1,s2

∣

∣.

(6.1)

Let An ,
{

u ∈ R
d : ‖u‖ ≤ c; x + hu ∈ A

}

where c is the constant appearing in

(3.3). Using (3.3), for any vector W satisfying ‖W‖ = 1, we obtain

W TBW =
∫

Rd

(
∑

|s|≤⌊β⌋Wsu
s
)2
K(u)µ(x+ hu)du

≥ cµmin

∫

An

(
∑

|s|≤⌊β⌋Wsu
s
)2
du.

By assumption of the theorem, ch ≤ r0. Since the support of the marginal distribu-

tion is (c0, r0)-regular we get

λ[An] ≥ h−dλ
[

B(x, ch) ∩ A
]

≥ c0h
−dλ

[

B(x, ch)
]

≥ c0vdc
d,

where vd , λ
[

B(0, 1)
]

is the volume of the unit ball and c0 > 0 is the constant

introduced in the definition (2.1) of the (c0, r0)-regular set.

Let A denote the class of all compact subsets of B(0, c) having the Lebesgue

measure c0vdc
d. Using the previous displays we obtain

min
‖W‖=1

W TBW ≥ cµmin min
‖W‖=1;S∈A

∫

S

(

∑

|s|≤⌊β⌋
Wsu

s
)2
du , 2µ0. (6.2)

By the compactness argument, the minimum in (6.2) exists and is strictly positive.

For i = 1, . . . , n and any multi-indices s1, s2 such that |s1|, |s2| ≤ ⌊β⌋, define

Ti ,
1
hd

(

Xi−x
h

)s1+s2
K

(

Xi−x
h

)

−
∫

Rd u
s1+s2K(u)µ(x+ hu)du.

We have ETi = 0, |Ti| ≤ h−d supu∈Rd

(

1 + ‖u‖2β
)

K(u) , κ1h
−d and the following

bound for the variance of Ti:

VarTi ≤ 1
h2dE

(

Xi−x
h

)2s1+2s2
K2

(

Xi−x
h

)

= 1
hd

∫

Rd u
2s1+2s2K2(u)µ(x+ hu)du

≤ µmax

hd

∫

Rd

(

1 + ‖u‖4β
)

K2(u)du , κ2

hd .
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From Bernstein’s inequality, we get

P⊗n
(

|B̄s1,s2 −Bs1,s2| > ǫ
)

= P⊗n
(
∣

∣

1
n

∑n
i=1 Ti

∣

∣ > ǫ
)

≤ 2 exp
{

− nhdǫ2

2κ2+2κ1ǫ/3

}

.

This and (6.1) – (6.2) imply that

P⊗n(λB̄ ≤ µ0) ≤ 2M2 exp
(

− Cnhd
)

(6.3)

where M2 is the number of elements of the matrix B̄. Assume in what follows that

n is large enough, so that µ0 > (log n)−1. Then for λB̄ > µ0 we have |η̂∗n(x)−η(x)| ≤
|η̂LPn (x)− η(x)|. Therefore,

P⊗n
(
∣

∣η̂∗n(x)− η(x)
∣

∣ ≥ δ
)

≤ P⊗n
(

λB̄ ≤ µ0

)

+ P⊗n
(
∣

∣η̂LPn (x)− η(x)
∣

∣ ≥ δ, λB̄ > µ0

)

.

(6.4)

We now evaluate the second probability on the right hand side of (6.4). For λB̄ > µ0

we have η̂LPn (x) = UT (0)Q−1V
(

where V is given by (2.3)
)

. Introduce the matrix

Z ,
(

Zi,s

)

1≤i≤n,|s|≤⌊β⌋ with elements

Zi,s , (Xi − x)s
√

K
(

Xi−x
h

)

.

The s-th column of Z is denoted by Zs, and we introduce Z(η) ,
∑

|s|≤⌊β⌋
η(s)(x)

s!
Zs.

Since Q = ZTZ, we get

∀|s| ≤ ⌊β⌋ : UT (0)Q−1ZTZs = 1I{s=(0,...,0)},

hence UT (0)Q−1ZTZ(η) = η(x). So we can write

η̂LPn (x)− η(x) = UT (0)Q−1(V − ZTZ(η)) = UT (0)B̄−1a

where a , 1
nhdH(V − ZTZ(η)) ∈ R

M and H is a diagonal matrix H ,
(

Hs1,s2

)

|s1|,|s2|≤⌊β⌋ with Hs1,s2 , h−s11I{s1=s2}. For λB̄ > µ0 we get

∣

∣η̂LPn (x)− η(x)
∣

∣ ≤ ‖B̄−1a‖ ≤ λ−1
B̄
‖a‖ ≤ µ−1

0 ‖a‖ ≤ µ−1
0 M maxs |as|, (6.5)

where as are the components of the vector a given by

as =
1

nhd

∑n
i=1

[

Yi − ηx(Xi)
] (

Xi−x
h

)s
K

(

Xi−x
h

)

.

Define
T

(s,1)
i , 1

hd

[

Yi − η(Xi)
] (

Xi−x
h

)s
K

(

Xi−x
h

)

,

T
(s,2)
i , 1

hd

[

η(Xi)− ηx(Xi)
] (

Xi−x
h

)s
K

(

Xi−x
h

)

.
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We have

|as| ≤
∣

∣

1
n

∑n
i=1 T

(s,1)
i

∣

∣+
∣

∣

1
n

∑n
i=1

[

T
(s,2)
i − ET

(s,2)
i

]
∣

∣+
∣

∣ET
(s,2)
i

∣

∣. (6.6)

Note that ET
(s,1)
i = 0,

∣

∣T
(s,1)
i

∣

∣ ≤ κ1h
−d, and

VarT
(s,1)
i ≤ 4−1h−d

∫

u2sK2(u)µ(x+ hu)du ≤ (κ2/4)h
−d,

∣

∣T
(s,2)
i − ET

(s,2)
i

∣

∣ ≤ Lκ1h
β−d + Lκ2h

β ≤ Chβ−d,

VarT
(s,2)
i ≤ h−dL2

∫

h2β‖u‖2s+2βK2(u)µ(x+ hu)du ≤ L2κ2h
2β−d.

From Bernstein’s inequality, for any ǫ1, ǫ2 > 0, we obtain

P⊗n
(
∣

∣

∣

1
n

∑n
i=1 T

(s,1)
i

∣

∣

∣
≥ ǫ1

)

≤ 2 exp
{

− nhdǫ21
κ2/2+2κ1ǫ1/3

}

and

P⊗n
(
∣

∣

∣

1
n

∑n
i=1

[

T
(s,2)
i − ET

(s,2)
i

]

∣

∣

∣
≥ ǫ2

)

≤ 2 exp
{

− nhdǫ22
2L2κ2h2β+2Chβǫ2/3

}

.

Since also
∣

∣ET
(s,2)
i

∣

∣ ≤ Lhβ
∫

‖u‖s+βK2(u)µ(x+ hu)du ≤ Lκ2h
β

we get, using (6.6), that if 3µ−1
0 MLκ2h

β ≤ δ ≤ 1 the following inequality holds

P⊗n
(

|as| ≥ µ0δ
M

)

≤ P⊗n
(
∣

∣

∣

1
n

∑n
i=1 T

(s,1)
i

∣

∣

∣
> µ0δ

3M

)

+ P⊗n
(
∣

∣

∣

1
n

∑n
i=1

[

T
(s,2)
i − ET

(s,2)
i

]

∣

∣

∣
> µ0δ

3M

)

≤ 4 exp
(

−Cnhdδ2
)

.

Combining this inequality with (6.3), (6.4) and (6.5), we obtain

P⊗n
(
∣

∣η̂∗n(x)− η(x)
∣

∣ ≥ δ
)

≤ C1 exp
(

− C2nh
dδ2

)

(6.7)

for 3m−1MLκ2h
β ≤ δ (for δ > 1 inequality (6.7) is obvious since η̂∗n, η take values in

[0, 1]). The constants C1, C2 in (6.7) do not depend on the distribution PX , on its

support A and on the point x ∈ A, so that we get (3.7). Now, (3.7) implies (3.8) for

Cn− β
2β+d ≤ δ, and thus for all δ > 0 (with possibly modified constants C1 and C2).

6.2 Proof of Theorems 3.5 and 4.1

The proof of both theorems is based on Assouad’s lemma [see, e.g., Korostelev and

Tsybakov (1993), Chapter 2 or Tsybakov (2004b), Chapter 2]. We apply it in a

form adapted for the classification problem (Lemma 5.1 in Audibert (2004)).
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For an integer q ≥ 1 we consider the regular grid on R
d defined as

Gq ,

{(

2k1 + 1

2q
, . . . ,

2kd + 1

2q

)

: ki ∈ {0, . . . , q − 1}, i = 1, . . . , d

}

.

Let nq(x) ∈ Gq be the closest point to x ∈ R
d among points in Gq (we assume

uniqueness of nq(x): if there exist several points in Gq closest to x we define nq(x) as

the one which is closest to 0). Consider the partition X ′
1, . . . ,X ′

qd of [0, 1]
d canonically

defined using the grid Gq (x and y belong to the same subset if and only if nq(x) =

nq(y)). Fix an integer m ≤ qd. For any i ∈ {1, . . . , m}, we define Xi , X ′
i and

X0 , R
d \ ∪m

i=1Xi, so that X0, . . . ,Xm form a partition of Rd.

Let u : R+ → R+ be a nonincreasing infinitely differentiable function such that

u = 1 on [0, 1/4] and u = 0 on [1/2,∞). One can take, for example, u(x) =
(

∫ 1/2

1/4
u1(t)dt

)−1
∫∞
x
u1(t)dt where the infinitely differentiable function u1 is defined

as

u1(x) =







exp
{

− 1
(1/2−x)(x−1/4)

}

for x ∈ (1/4, 1/2),

0 otherwise.

Let φ : Rd → R+ be the function defined as

φ(x) , Cφu(‖x‖),

where the positive constant Cφ is taken small enough so ensure that |φ(x′)−φx(x
′)| ≤

L‖x′ − x‖β for any x, x′ ∈ R
d. Thus, φ ∈ Σ(β, L,Rd).

Define the hypercube H =
{

P~σ : ~σ = (σ1, . . . , σm) ∈ {−1, 1}m
}

of probability

distributions P~σ of (X, Y ) on Z = R
d × {0, 1} as follows.

For any P~σ ∈ H the marginal distribution of X does not depend on ~σ, and has a

density µ w.r.t. the Lebesgue measure on R
d defined in the following way. Fix 0 <

w ≤ m−1 and a set A0 of positive Lebesgue measure included in X0 (the particular

choices of A0 will be indicated later), and take: (i) µ(x) = w/λ[B(0, (4q)−1)] if x

belongs to a ball B(z, (4q)−1) for some z ∈ Gd, (ii) µ(x) = (1 − mw)/λ[A0] for

x ∈ A0, (iii) µ(x) = 0 for all other x.

Next, the distribution of Y given X for P~σ ∈ H is determined by the regression

function η~σ(x) = P (Y = 1|X = x) that we define as η~σ(x) =
1+σjϕ(x)

2
for any x ∈ Xj ,

j = 1, . . . , m, and η~σ ≡ 1/2 on X0, where ϕ(x) , q−βφ
(

q[x−nq(x)]
)

.We will assume

that Cφ ≤ 1 to ensure that ϕ and η~σ take values in [0, 1].
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For any s ∈ N
d such that |s| ≤ ⌊β⌋, the partial derivative Dsϕ exists, and

Dsϕ(x) = q|s|−βDsφ
(

q[x − nq(x)]
)

. Therefore, for any i ∈ {1, . . . , m} and any

x, x′ ∈ Xi, we have

|ϕ(x′)− ϕx(x
′)| ≤ L‖x− x′‖β.

This implies that for any ~σ ∈ {−1, 1}m the function η~σ belongs to the Hölder class

Σ
(

β, L,Rd
)

.

We now check the margin assumption. Set x0 =
(

1
2q
, . . . , 1

2q

)

. For any ~σ ∈
{−1, 1}m we have

P~σ

(

0 <
∣

∣η~σ(X)− 1/2
∣

∣ ≤ t
)

= mP~σ

(

0 < φ[q(X − x0)] ≤ 2tqβ
)

= m
∫

B(x0,(4q)−1)
1I{0<φ[q(x−x0)]≤2tqβ}

w
λ[B(0,(4q)−1)]

dx

= mw
λ[B(0,1/4)]

∫

B(0,1/4) 1I{φ(x)≤2tqβ}dx

= mw1I{t≥Cφ/(2qβ)}.

Therefore, the margin assumption (MA) is satisfied if mw = O(q−αβ).

According to Lemma 5.1 in Audibert (2004), for any classifier f̂n we have

sup
P∈H

{

ER(f̂n)−R(f ∗)
}

≥ mwb′(1− b
√
nw)/2 (6.8)

where

b ,

[

1−
( ∫

X1

√

1− ϕ2(x)µ1(x)dx
)2
]1/2

= Cφq
−β,

b′ ,
∫

X1
ϕ(x)µ1(x)dx = Cφq

−β

with µ1(x) = µ(x)/
∫

X1
µ(z)dz.

We now prove Theorem 3.5. Take q =
⌊

C̄n
1

2β+d

⌋

, w = C ′q−d and m =
⌊

C ′′qd−αβ
⌋

with some positive constants C̄, C ′, C ′′ to be chosen, and set A0 = [0, 1]d \ ∪m
i=1Xi.

The condition αβ ≤ d ensures that the above choice of m is not degenerate: we

have m ≥ 1 for C ′′ large enough. We now prove that H ⊂ PΣ under the appropriate

choice of C̄, C ′, C ′′. In fact, select these constants so that the triplet (q, w,m) meets

the conditions m ≤ qd, 0 < w ≤ m−1, mw = O(q−αβ). Then, in view of the

argument preceding (6.8), for any ~σ ∈ {−1, 1}m the regression function η~σ belongs

to Σ
(

β, L,Rd
)

and Assumption (MA) is satisfied. We now check that PX obeys the

strong density assumption. First, the density µ(x) equals to a positive constant for

x belonging to the union of balls ∪m
i=1B(zi, (4q)−1) where zi is the center of Xi, and

µ(x) = (1 − mw)/(1 − mq−d) = 1 + o(1), as n → ∞, for x ∈ A0. Thus, µmin ≤
µ(x) ≤ µmax for some positive µmin and µmax. (Note that this construction does not
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allow to choose any prescribed values of µmin and µmax, because µ(x) = 1 + o(1).

The problem can be fixed via a straightforward but cumbersome modification of the

definition of A0 that we skip here.) Second, the (c0, r0)-regularity of the support

A of PX with some c0 > 0 and r0 > 0 follows from the fact that, by construction,

λ(A∩B(x, r)) = (1+ o(1))λ([0, 1]d ∩B(x, r)) for all x ∈ A and r > 0 (here again we

skip the obvious generalization allowing to get any prescribed c0 > 0). Thus, the

strong density assumption is satisfied, and we conclude that H ⊂ PΣ. Theorem 3.5

now follows from (6.8) if we choose C ′ small enough.

Finally, we prove Theorem 4.1. Take q =
⌊

Cn
1

(2+α)β+d
⌋

, w = C ′q2β/n and m = qd

for some constants C > 0, C ′ > 0, and choose A0 as a Euclidean ball contained in

X0. As in the proof of Theorem 3.5, under the appropriate choice of C and C ′, the

regression function η~σ belongs to Σ
(

β, L,Rd
)

and the margin assumption (MA) is

satisfied. Moreover, it is easy to see that the marginal distribution of X obeys the

mild density assumption (the (c0, r0)-regularity of the support of PX follows from

considerations analogous to those in the proof of Theorem 3.5). Thus, H ⊂ P ′
Σ.

Choosing C ′ small enough and using (6.8) we obtain Theorem 4.1.

6.3 Proof of Proposition 3.4

The following lemma describes how the smoothness constraint on the regression

function η at some point x ∈ R
d implies that η “stays close” to η(x) in the vicinity

of x.

Lemma 6.1 For any distribution P ∈ PΣ with regression function η and for any

κ > 0, there exist L′ > 0 and t0 > 0 such that for any x in the support of PX and

0 < t ≤ t0, we have

PX

[

∣

∣η(X)− η(x)
∣

∣ ≤ t;X ∈ B
(

x, κt
1

1∧β

)

]

≥ L′t
d

1∧β .

Proof of Lemma 6.1. Let A denote the support of PX . Let us first consider

the case β ≤ 1. Then for any x, x′ ∈ R
d, we have

∣

∣η(x′)− η(x)
∣

∣ ≤ L‖x′ − x‖β. Let
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κ′ = κ ∧ L−1/β . For any 0 < t ≤ Lrβ0 , we get

PX

[

∣

∣η(X)− η(x)
∣

∣ ≤ t;X ∈ B
(

x, κt
1

1∧β

)

]

= PX

[

∣

∣η(X)− η(x)
∣

∣ ≤ t;X ∈ B
(

x, κt
1
β

)

∩ A
]

≥ PX

[

X ∈ B
(

x, κt
1
β ∧

(

t
L

)
1
β
)

∩A
]

≥ µminλ
[

B
(

x, κ′t
1
β

)

∩ A
]

≥ c0µminλ
[

B
(

x, κ′t
1
β

)

]

≥ c0µminvd(κ
′)dt

d
β ,

which is the desired result with L′ ≤ c0µminvd(κ
′)d and t0 ≤ Lrβ0 .

For the case β > 1, by assumption, η is continuously differentiable. Let C(A) be
the convex hull of the support A of PX . By compactness of C(A), there exists C > 0

such that for any s ∈ N
d with |s| = 1,

sup
x∈C(A)

∣

∣Dsη(x)
∣

∣ ≤ C.

So we have for any x, x′ ∈ A,

|η(x)− η(x′)| ≤ C‖x− x′‖.

The rest of the proof is then similar to the one of the first case.

• We will now prove the first item of Proposition 3.4. Let P ∈ PΣ such that

the regression function associated with P hits 1/2 at x0 ∈
◦
A, where

◦
A denotes

the interior of the support of PX . Let r > 0 such that B(x0, r) ⊂ A. Let

x ∈ B(x0, r) such that η(x) 6= 1
2
. Let t1 =

∣

∣η(x)− 1/2
∣

∣. For any 0 < t ≤ t1, let

xt ∈ [x0; x] such that
∣

∣η(xt)−1/2
∣

∣ = t/2.We have xt ∈ A so that we can apply

Lemma 6.1 (with κ = 1 for instance) and obtain for any 0 < t ≤ t1 ∧ (4t0)

PX

[

0 <
∣

∣η(X)− 1/2
∣

∣ ≤ t
]

≥ PX

[

∣

∣η(X)− η(xt)
∣

∣ ≤ t/4
]

≥ L′(t/4)
d

1∧β .

Now from the margin assumption, we get that for any small enough t > 0

C0t
α ≥ L′(t/4)

d
1∧β , hence α ≤ d

1∧β .

• For the second item of Proposition 3.4, to skip cumbersome details, we may

assume that C contains the unit ball in R
d. Consider the distribution such

that
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– PX is the uniform measure on
{

(x1, . . . , xd) ∈ R
d : |x1 − 1/4| + |x2| +

· · ·+ |xd| ≤ 1/4
}

– the regression function associated with P is

η(x1, . . . , xd) =
1 + Cηsign(x1)|x1|β∧1u(x1)

2
,

where

u(t) =

{

exp
(

− 1
1−t2

)

if |t| < 1

0 otherwise,

and 0 < Cη ≤ 1 is small enough so that for any x, x′ ∈ R
d, η satisfies

|η(x′)− ηx(x
′)| ≤ L‖x− x′‖β.

For appropriate positive parameters c0, r0, µmax > µmin > 0, the only non-

trivial task in checking that P belongs to PΣ is to check the margin assumption.

For t small enough, we have

PX

[

∣

∣η(X)−1/2
∣

∣ ≤ t
]

≤ PX

[

|X1|β∧1 ≤ Ct; |X1−1/4|+|X2|+· · ·+|Xd| ≤ 1/4
]

for some C > 0. Therefore, we have PX

[

0 <
∣

∣η(X)− 1/2
∣

∣ ≤ t
]

≤ Ct
d

β∧1 . So

the margin assumption is satisfied for an appropriate C0 whenever α ≤ d
β∧1 .

Since η hits 1/2 at 0Rd which is in boundary of the support of PX , we have

proved the second assertion.

• For the third assertion of Proposition 3.4, to avoid cumbersome details again,

we may assume that C contains the unit ball in R
d. Consider the distribution

such that

– PX is the uniform measure on the unit ball,

– the regression function associated with P is

η(x) =
1 + Cη‖x‖2u(‖x‖2/2)

2
,

where 0 < Cη ≤ 1 is small enough so that for any x, x′ ∈ R
d, η satisfies

|η(x′)− ηx(x
′)| ≤ L‖x− x′‖β.
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For appropriate positive parameters C0, c0, r0, µmax > µmin > 0, the distri-

bution P belongs to PΣ provided that α ≤ d/2 (in order that the margin

assumption holds). We have obtained the desired result since η hits 1/2 at 0Rd

which is in the interior of the support of PX .

• For the last item of Proposition 3.4, let P ∈ PΣ such that the regression

function η associated with P crosses 1/2 at x0 ∈
◦
A. For d = 1, from the first

item of the theorem, we necessarily have α(β ∧ 1) ≤ 1. Let us now consider

the case: d > 1.

Figure 1 will help to keep track of the following notation.
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Figure 1: Notation summary

Let r1 > 0 such that B(x0, 3r1) ⊂ A. Introduce x− and x+ in B(x0, r1) such
that η(x−) < 1/2 and η(x+) > 1/2. Let t1 =

(

1/2 − η(x−)
)

∧
(

η(x+) − 1/2
)

.

Define y = x−+x+

2
, ed =

x+−x−
‖x+−x−‖ and D = ‖x+ − x−‖. Let e1, . . . , ed−1 be unit

vectors such that e1, . . . , ed is an orthonormal basis of Rd. Let B∗(x, r) (resp.

S∗(x, r)) denote the ball (resp. the sphere) centered at x and of radius r wrt

the norm ‖x‖∗ = sup1≤i≤d |〈x, ei〉|.

Since η is continuous, there exists r2 > 0 such that

{

η(x) < 1/2− t1/2 for any x ∈ B∗(x−, r2)

η(x) > 1/2 + t1/2 for any x ∈ B∗(x+, r2)
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Let ζ = 1
β∧1 . For any k = (k1, . . . , kd−1) ∈ Z

d−1, introduce

yk = y + tζ
d−1
∑

i=1

kiei.

For any t in ]0; t1[, consider the grid G =
{

yk; k ∈ Z
d−1, max

1≤i≤d−1
|ki| ≤ D

2
√
d−1tζ

}

.

For any yk in G, we have ‖yk − y‖ ≤
√
d− 1 max

1≤i≤d−1
|tζki| ≤ D/2 ≤ r1. There-

fore, using that y ∈ B(x0, r1), the grid G is included in B(x0, 2r1). For

any yk ∈ G, let y−k = [x−; yk] ∩ S∗(x−, r2) and y+k = [x+; yk] ∩ S∗(x+, r2).

Since ‖yk − y‖ ≤ D/2, we have y−k = x− + r2ed + 2r2
D
tζ
∑d−1

i=1 kiei and

y+k = x+ − r2ed +
2r2
D
tζ
∑d−1

i=1 kiei.

For any yk in G, consider the continuous path formed by the segments [y−k ; yk]

and [yk; y
+
k ]. Since η is continuous on this path, there exists wk ∈ γk , [y−k ; yk]∪

[yk; y
+
k ] such that η(wk) = 1/2 + t/2. Now let us show that when k 6= k′, wk

and wk′ are at least
√
2r2
D
tζ away from each other. The distance between wk

and wk′ is not less than the distance between the paths γk and γk′. Let U

denote the biggest integer smaller than or equal to D
2
√
d−1tζ

. When yk 6= yk′ in

G, the distance between γk and γk′ is minimum for k = K , (U, . . . , U) and

k′ = K ′ , (U − 1, U, . . . , U). This distance is equal to the distance between

y−K and its orthogonal projection on [y−K ′; yK ′], which is the distance between

y−K and the line (x−; yK ′). Let K ′′ = (0, U, . . . , U) ∈ Z
d−1. To compute this

distance V , it suffices to look at the plane (x−; yK ′′; yK) (see figure 2).
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Figure 2: plane (x−; yK ′′; yK)

We obtain that the angle θ between yK ′ − x− and yK ′′ − x+ is smaller than

π/4. As a consequence, V = ‖y−K − y−K ′‖ cos θ ≥
√
2r2t

ζ/D.

Finally, focusing on the behaviour of the regression function near the wk’s, by

using Lemma 6.1 with κ = 4ζr2√
2D

, we obtain that there exists L′ > 0 and t0 > 0
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such that for any 0 < t < 4t0 ∧ t1,
C0t

α ≥ PX

[

0 <
∣

∣η(X)− 1
2

∣

∣ ≤ t
]

≥ ∑

k∈Zd−1: max
1≤i≤d−1

|ki|≤ D

2
√

d−1tζ

PX

[

∣

∣η(X)− η(wk)
∣

∣ ≤ t/4;X ∈ B
(

wk,
r2tζ√
2D

)

]

≥ (2U + 1)d−1L′(t/4)dζ

≥
(

D
2
√
d−1tζ

)d−1
L′(t/4)dζ

≥ Ctζ ,

hence α ≤ ζ (which is the desired result).

For the converse, the proof is similar to the ones of the second and third

assertions of the proposition. Without loss of generality, we may assume that

S =
{

(x1, . . . , xd) ∈ R
d : max

1≤i≤d
|xi| ≤ 1/2

}

is a subset of C. we consider the

distribution P such that

– PX is the uniform measure on S
– the regression function associated with P is

η(x1, . . . , xd) =
1 + Cηsign(x1)|x1|β∧1u(x1)

2
,

where 0 < Cη ≤ 1 is small enough so that for any x, x′ ∈ R
d, η satisfies

|η(x′)− ηx(x
′)| ≤ L‖x− x′‖β.

For small enough t > 0, we have

PX

[

∣

∣η(X)− 1/2
∣

∣ ≤ t
]

≤ PX

[

|X1|β∧1 ≤ Ct
]

,

for some constant C > 0, so that we have PX

[

0 <
∣

∣η(X)− 1
2

∣

∣ ≤ t
]

≤ 2(Ct)
1

β∧1 .

As a consequence, for appropriate parameters C0, c0, r0, µmax > µmin > 0, the

distribution P belongs to PΣ whenever α ≤ 1
β∧1 . Since η crosses 1/2 at 0Rd

which is in the interior of the support of PX , the converse holds.

6.4 Proof of Theorem 4.2

We prove the theorem for p < ∞. The proof for p = ∞ is analogous. For any

decision rule f we set d(f) , R(f)−R(f ∗) and

f ∗∗(x, f) ,

{

f ∗(x) if η(x) 6= 1/2,

f(x) if η(x) = 1/2,
∀ x ∈ R

d.

32



Lemma 6.2 Under Assumption (MA) for any decision rule f we have

PX(f(X) 6= f ∗∗(X, f)) ≤ Cd(f)α/(1+α). (6.9)

Proof. Note that f ∗∗(·, f) is a Bayes rule, and following the same lines as in

Proposition 1 of Tsybakov (2004a) we get PX(f(X) 6= f ∗∗(X, f), η(X) 6= 1/2) ≤
Cd(f)α/(1+α). It remains to observe that PX(f(X) 6= f ∗∗(X, f), η(X) 6= 1/2) =

PX(f(X) 6= f ∗∗(X, f)).

For a Borel function η̄ on R
d define fη̄ , 1I{η̄≥1/2}, f

∗
η̄ (·) , f ∗∗(·, fη̄) and

Zn(fη̄) , [Rn(fη̄)− Rn(f
∗
η̄ )]− [R(fη̄)− R(f ∗

η̄ )] = [Rn(fη̄)−Rn(f
∗
η̄ )]− d(fη̄).

Let ηn be an element of Nεn such that ‖ηn − η‖p,λ ≤ εn, where ‖ · ‖p,λ is the

Lp(C, λ) norm. In view of the assumption on P we have ‖ηn − η‖p ≤ µ
1/p
maxεn where

‖ · ‖p is the Lp(R
d, PX) norm. It follows from the comparison inequality (5.3) that

d(fηn) ≤ Cε
(1+α)p
p+α

n , δn. Set

∆n = Cn− (1+α)p
(2+α)p+ρ(p+α)

(i.e., ∆n is of the order of desired rate). Fix t > 0 and introduce the set

N ∗
n = {η̄ ∈ Nεn : d(fη̄) ≥ t∆n}.

For any t > 0 we have

P(d(f̂ s
n) ≥ t∆n) ≤ P(min

η̄∈N ∗
n

[Rn(fη̄)− Rn(fηn)] ≤ 0)

= P(min
η̄∈N ∗

n

[Zn(fη̄)− Zn(fηn) + d(fη̄)− d(fηn)] ≤ 0)

≤ P(min
η̄∈N ∗

n

[Zn(fη̄)− Zn(fηn) + d(fη̄)/2 + t∆n/2− d(fηn)] ≤ 0)

≤ P(min
η̄∈N ∗

n

[Zn(fη̄) + d(fη̄)/2] ≤ 0)

+P(Zn(fηn) ≥ t∆n/2− d(fηn))

≤ P(min
η̄∈N ∗

n

[Zn(fη̄) + d(fη̄)/2] ≤ 0)

+P(Zn(fηn) ≥ t∆n/2− δn).
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Since ∆n is of the same order as δn, we can choose t large enough to have t∆n/2−δn ≥
t∆n/4. Thus,

P(d(f̂ s
n) ≥ t∆n) ≤ card N ∗

n max
η̄∈N ∗

n

P(Zn(fη̄) ≤ −d(fη̄)/2)

+P(Zn(fηn) ≥ t∆n/4)

≤ exp(A′ε−ρ
n ) max

η̄∈N ∗
n

P(Zn(fη̄) ≤ −d(fη̄)/2)

+P(Zn(fηn) ≥ t∆n/4).

Note that for any decision rule f the value Zn(f) is an average of n i.i.d. bounded and

centered random variables whose variance does not exceed PX(f(X) 6= f ∗∗(X, f)).

Thus, using Bernstein’s inequality and (6.9) we obtain

P(−Zn(f) ≥ a) ≤ exp

(

− Cna2

a + d(f)α/(1+α)

)

, ∀ a > 0.

Therefore, for η̄ ∈ N ∗
n ,

P(Zn(fη̄) ≤ −d(fη̄)/2) ≤ exp(−Cnd(fη̄)(2+α)/(1+α))

≤ exp(−Cn(t∆n)
(2+α)/(1+α)).

Similarly, for t > C,

P(Zn(fηn) ≥ t∆n/4) ≤ exp

(

− Cn∆2
n

∆n + d(fηn)
α/(1+α)

)

≤ exp

(

− Cn∆2
n

∆n + δ
α/(1+α)
n

)

≤ exp
(

−Cn∆(2+α)/(1+α)
n

)

.

The result of the theorem follows now from the above inequalities and the relation

n∆
(2+α)/(1+α)
n ≍ ε−ρ

n .

References

[1] Audibert, J.-Y. (2004). Classification using Gibbs estimators under complexity and

margin assumptions. Preprint, Laboratoire de Probabilités et Modelès Aléatoires,
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