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Forces exerted by a correlated fluid on embedded inclusions
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Université Paris Diderot, Paris 7 and UMR CNRS 7057,
10 rue Alice Domon et Léonie Duquet, F-75205 Paris Cedex 13, France

(Dated: February 8, 2011)

We investigate the forces exerted on embedded inclusions by a fluid medium with long-range
correlations, described by an effective scalar field theory. Such forces are the basis for the medium-
mediated Casimir-like force. To study these forces beyond thermal average, it is necessary to define
them in each microstate of the medium. Two different definitions of these forces are currently used
in the literature. We study the assumptions underlying them. We show that only the definition
that uses the stress tensor of the medium gives the sought-after force exerted by the medium on an
embedded inclusion. If a second inclusion is embedded in the medium, the thermal average of this
force gives the usual Casimir-like force between the two inclusions. The other definition can be used
in the different physical case of an object that interacts with the medium without being embedded
in it. We show in a simple example that the two definitions yield different results for the variance
of the Casimir-like force.

I. INTRODUCTION AND SUMMARY

The present work deals with the force exerted by a
fluid medium with long-range correlations, described by
an effective scalar field theory, on embedded inclusions.
As inclusions constrain the fluctuations of the correlated
fluid medium, the force exerted by the medium on one
inclusion depends on the position of the other inclusions.
Thus, medium-mediated interactions appear between in-
clusions. These fluctuation-induced interactions are anal-
ogous to the Casimir force, which arises between two
uncharged metallic plates in a vacuum because of the
boundary conditions imposed by the plates on the quan-
tum fluctuations of the electromagnetic field [1]. Casimir-
like effects driven by thermal fluctuations of fluid media
were first discussed by Fisher and de Gennes in the con-
text of critical mixtures [2], and they have recently been
measured [3]. Such forces appear in many other systems,
including liquid crystals, fluid membranes, fluid inter-
faces and superfluids (for a review, see Refs. [4, 5]).

The Casimir-like force between two inclusions is usu-
ally defined as −∂F/∂ℓ, where F is the free energy of
the fluid medium with two inclusions separated by a dis-
tance ℓ. However, this definition only provides a ther-
mal average force. In order to study the fluctuations of
the Casimir-like force, as well as out-of-equilibrium situ-
ations, it is necessary to define the force exerted on an
inclusion by a fluid medium in each microstate of this
medium. Two different definitions of this force are cur-
rently used: the first one uses the stress tensor of the
medium [6–12], while the second one is based on differ-
entiating the effective Hamiltonian with respect to the
position of the inclusion while keeping constant the field
that describes the state of the medium [13–16]. The aim
of the present work is to clarify the difference between
these two definitions and to determine their respective
domains of validity.

In this paper, we consider a correlated fluid medium
described by a scalar field φ: each microstate of this ef-

fective field theory corresponds to a given φ. We study
the force f exerted by this fluid medium on an embed-
ded inclusion. This force f is defined as the negative
gradient of the effective Hamiltonian H of the medium
together with the inclusion, with respect to the position
of the inclusion. The validity of this fundamental defini-
tion in our coarse-grained description is justified in Ap-
pendix A. In order to determine f in a given microstate
of the medium, the gradient of H must be taken in this

microstate. There are two distinct ways of interpreting
these words, yielding two different routes to calculate the
force. In the first route, the field φ is kept constant in
the Eulerian sense, i.e., φ remains the same at each point
in space. In the second route, φ is kept constant in the
Lagrangian sense, i.e., each fluid particle of the medium
keeps the same value of φ during the infinitesimal defor-
mation that is associated with the displacement of the
inclusion. We show that the second route gives the inte-
gral of the stress tensor of the medium on the boundary
of the inclusion, which corresponds to the definition used
in Refs. [6–12]. We argue that this definition is the right
one for an embedded inclusion. We also consider the case
of non-embedded influencing objects, which interact with
the medium without being embedded in it, and we argue
that the first route, which corresponds to the definition
used in Refs. [13–16], is the right one in such situations.

This paper is organized as follows: in Sec. II, we study
the force f exerted on an inclusion by the fluid medium
in a given microstate, starting from the variation of the
total energy of the system when it undergoes a generic
infinitesimal deformation, and we compare the two routes
introduced above. In Sec. III, we proceed similarly in the
case of a non-embedded influencing object. In Sec. IV, we
show the link between the thermal average of the force f
and the Casimir-like force. In Sec. V, we study a simple
example of Casimir-like force, where we show that the
variance of the force depends strongly on the route that
is chosen. This example illustrates the importance of
choosing the right definition when studying Casimir-like
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forces beyond their average value at thermal equilibrium.
Finally, Sec. VI is a conclusion.

II. EMBEDDED INCLUSION

Let us consider an infinite d-dimensional fluid medium
(d ≥ 1) with short-range interactions, described in a
coarse-grained fashion by a scalar field φ with Hamilto-
nian density H(φ,∇φ). Let us assume that an embedded
inclusion with center of mass in ℓ ∈ R

d extends over the
region A of this medium (see Fig. 1). The inclusion is
made of a different material, typically a solid, where the
physical field φ is not defined. For instance, in critical bi-
nary mixtures, φ is the order parameter, i.e., the shifted
concentration in one component: φ = c−ccrit, where ccrit

is the critical concentration of this component [10], so φ
is not defined in solid objects immersed in the mixture.

n

A

B

S

FIG. 1. Schematic representation of an inclusion (white) em-
bedded in a two-dimensional fluid medium (shaded). The
inclusion extends over A, which is centered on ℓ, so φ is de-
fined only on B = R

2
rA. The contour of A is called S , and

n denotes its outward normal.

Since the embedded inclusion extends over the region
A, delimited by the hypersurface S, φ is defined only in
the region B = R

d
r A (see Fig. 1). We assume that

the field φ is coupled to the inclusion at the interface S
through short-range interactions modeled by a potential
V (φ), so the effective Hamiltonian of the system reads

H =

∫

B

H(φ,∇φ) ddr +

∫

S

V (φ) dd−1r + Eincl , (1)

where Eincl represents the internal energy of the inclu-
sion, which will not be varied in the following. Note that
our work can be generalized to a more general coupling
potential, such as V (φ,∇φ). While our proofs will be
presented with V (φ) for the sake of simplicity, the final
results for the force with V (φ,∇φ) will be mentioned.
Our aim is to calculate the force f , which is defined as

f = −∂H

∂ℓi
ei , (2)

where ei is a unit vector in the i direction. The Einstein
summation convention has been used in Eq. (2), and will

be used throughout. The validity of the fundamental def-
inition Eq. (2) in our coarse-grained description is justi-
fied in Appendix A from the principle of virtual work.
In order to obtain f , we must calculate the variation

of H when the inclusion undergoes the infinitesimal dis-
placement δℓ. Since it is impossible to move an embed-
ded inclusion without moving the fluid particles of the
surrounding medium, we will consider a displacement
field δr in the whole medium. We use the expression
“fluid particle” in a similar way as in fluid mechanics [17]:
it denotes a (macroscopically) closed mesoscopic part of
the fluid medium, the state of which is described by the
value of the coarse-grained field φ. Let us consider the
generic infinitesimal transformation

{

r → r + δr(r) ,
φ(r) → φ(r) + δφ(r) .

(3)

More explicitly, the particle initially in r undergoes the
infinitesimal displacement δr(r), and the value of φ at a
fixed point r in space is modified by the quantity δφ(r).
The functions δr and δφ, defined respectively on R

d and
on B, are assumed to be regular and to take small val-
ues, of order ǫ (i.e., δφ = O(ǫ) and |δr|/L = O(ǫ) where
L is the characteristic length of interest, e.g., the dis-
tance between two inclusions in a study of the Casimir-
like force). During this transformation, the total (La-
grangian) variation of φ for the fluid particle initially in r
is δTφ(r) = (φ+δφ)(r+δr)−φ(r) = δφ(r)+∇φ(r)·δr(r)
at first order in ǫ.
Let us assume that in the region A, δr is constant,

equal to δℓ: thus, the inclusion undergoes an infinitesi-
mal global translation that does not affect its internal en-
ergy Eincl. The total variation of the energy then reads,
at first order in ǫ:

δH =

∫

B

[

∂H
∂φ

− ∂i

(

∂H
∂(∂iφ)

)]

δφ ddr

−
∫

S

[

Hδℓi +
∂H

∂(∂iφ)
δφ

]

ni d
d−1r

+

∫

S

∂V

∂φ
(δφ+ ∂iφ δℓi) d

d−1r , (4)

where we have introduced n, the exterior normal to S
(see Fig. 1), and we have used the notation ∂iφ ≡ ∂φ/∂ri
for i ∈ {1, . . . , d}. In this equation, the hypervolume in-
tegral on B contains the standard Euler-Lagrange term.
Meanwhile, the first term of the first hypersurface inte-
gral comes from

∫

δB

H ddr = −
∫

S

Hδℓini d
d−1r , (5)

while its second term is obtained via Stokes’ theorem:
∫

B

∂i

(

∂H
∂(∂iφ)

δφ

)

ddr = −
∫

S

∂H
∂(∂iφ)

δφni d
d−1r . (6)

We may now calculate the force f , as defined in Eq. (2),
in a given microstate of the fluid medium. We will ex-
amine successively the two different routes presented in
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the introduction, which correspond to two different ways
of keeping φ constant.

A. First route

The first way we may proceed is to keep φ constant at
each point in space during the infinitesimal transforma-
tion, or, in other words, to keep the field φ constant in
the Eulerian sense. This amounts to taking δφ ≡ 0 in
Eq. (4), which gives:

f (1) = −ei
∂H

∂ℓi

∣

∣

∣

∣

φ,Eul.

=

∫

S

(

Hni −
∂V

∂φ
∂iφ

)

dd−1r ei .

(7)
In the case where the coupling potential is V (φ,∇φ)
instead of V (φ), a term −(∂V/∂(∂jφ))∂i∂jφ has to be
added in the brackets in Eq. (7).

However, it is physically not clear why each point in
space should keep the same value of φ during a displace-
ment in which each fluid particle of the system moves by
δr. Another more formal argument also shows that it is
artificial to keep the function φ constant while moving
infinitesimally the inclusion: the domain of definition of
φ itself depends on the position of the inclusion. For in-
stance, when the inclusion is moved from A (centered on
ℓ) to A′ (centered on ℓ+ δℓ), the initial φ is not defined
in the region ArA′ where it should exist after the trans-
formation. One way to deal with this mathematical issue
is to consider the analytic continuation of φ in this small
region, and to truncate φ in A′

r A, but the physical
meaning of this process is unclear.

In other words, this first route is not adapted to cal-
culate the force on an embedded inclusion because the
position ℓ of the inclusion and the Eulerian field φ are
not independent variables. Let us now move on to the
second route.

B. Second route

Let us consider the example of critical binary mixtures,
where φ is the (shifted) concentration: during a displace-
ment that is smooth at the microscopic scale, each fluid
particle keeps the same concentration, so φ is transported
by fluid particles. Similarly, in the case of liquid crys-
tals, the order parameter field is transported. The case
of membranes and interfaces is a little bit more complex
(see the discussion in Sec. II C).

Let us focus on fields that are transported by fluid par-
ticles during a deformation. For such a field φ, the correct
force f will be provided by the second route defined in the
introduction, where φ is kept constant in the Lagrangian
sense, i.e., each fluid particle of the medium keeps a con-
stant φ during the infinitesimal transformation. In this
case, δTφ ≡ 0, so that δφ(r) = −∇φ(r) · δr(r) for all r

in B: Eq. (4) becomes

δH =−
∫

B

[

∂H
∂φ

− ∂j

(

∂H
∂(∂jφ)

)]

∂iφ δri d
dr

− δℓi

∫

S

[

Hδij −
∂H

∂(∂jφ)
∂iφ

]

nj d
d−1r , (8)

Using the stress tensor T of the fluid medium, which is
discussed and derived in Appendix B, and which reads

Tij = Hδij −
∂H

∂(∂jφ)
∂iφ , (9)

and its divergence

∂jTij =

[

∂H
∂φ

− ∂j

(

∂H
∂(∂jφ)

)]

∂iφ =
δH

δφ
∂iφ , (10)

we can rewrite Eq. (8) as

δH = −
∫

B

∂jTij δri d
dr − δℓi

∫

S

Tijnj d
d−1r . (11)

This relation being valid for any continuous displace-
ment field δr such that ∀r ∈ A, δr = δℓ, it yields the
force f (2) exerted by the medium on the inclusion, and
the hypervolume density q of internal forces in the fluid
medium. Indeed, we can carry out an identification with
Eq. (A10), which comes from the principle of virtual work
(see Appendix A). We obtain

f (2) = −ei
∂H

∂ℓi

∣

∣

∣

∣

φ,Lagr.

=

∫

S

Tijnj d
d−1r ei , (12)

∀r ∈ B, q(r) = − δH

δri(r)
ei = ∂jTij(r) ei . (13)

This second method of calculating f gives the integral
of the stress tensor of the fluid medium on the bound-
ary S of the inclusion. Note that, contrary to f (1), the
force f (2) does not depend on the short-range coupling
V between the inclusion and the medium (in particular,
Eq. (12) holds for V (φ,∇φ) as well as for V (φ)). This
comes from the continuity of the function δr: the fluid
particles of the medium that are infinitesimally close to
the inclusion undergo the same small displacement as
the inclusion, so the short-range interaction between the
medium and the inclusion does not vary during the dis-
placement. Physically, we assume that no vacuum can
be created in the medium, so the closest particles “stick”
to the edge of the inclusion during the displacement.
Thus, the right definition of the force exerted by the

medium on an embedded inclusion, obtained via the sec-
ond route, is given by the integral of the stress tensor of
the medium. This corresponds to the definition used in
Refs. [6–12], and it is also very close to the definition used
in Refs. [18, 19], which is based on integrating a density-
dependent pressure on the boundary of the inclusion.
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C. Domain of application

We have considered a Hamiltonian density H and a
coupling potential V depending on φ and ∇φ. More gen-
erally, H and V can depend on higher-order derivatives
of φ. Our work can be adapted to such cases. In par-
ticular, the force f (2) exerted on an inclusion can be ex-
pressed as the integral of the stress tensor of the medium
also in these cases. The stress tensor associated with
a Hamiltonian (or Lagrangian) density involving higher-
order derivatives is discussed, e.g., in Refs. [20, 21].

We have focused on fields that are transported by fluid
particles during a displacement, such as the order pa-
rameter field in a critical mixture or in a liquid crystal.
However, our reasoning can be adapted to other cases,
especially when the field φ has a direct relation to the
position of the fluid particle. For instance, the Hamilto-
nian density of a membrane described in the Monge gauge
depends on the height φ(x, y) of the membrane with re-
spect to a reference plane: for a displacement δr(x, y) of
the fluid particle initially in (x, y), the variation of the
height φ at point (x, y) is δφ = δrz − ∂xφ δrx − ∂yφ δry
instead of δφ = −∂iφ δri. A stress tensor can be defined
for the membrane, taking this particularity into account
[22–24]. Note that lipid membrane models (e.g., the Hel-
frich model [25]) involve the membrane curvature, and
thus, second derivatives of the height φ. We showed in
Ref. [11] that the thermal average of the integral of the
membrane stress tensor around a pointlike inclusion, in
presence of a second inclusion, gives the usual Casimir-
like force between the two inclusions, and we also used
the membrane stress tensor to study the fluctuations of
this force.

In spite of this wider domain of application, the present
work is restricted to the case of a fluid medium described
by a scalar field φ such that its change during an in-
finitesimal displacement is a function of this infinitesimal
displacement. More precisely, the relation δφ = −∂iφ δri
(or its equivalent for the membrane) is crucial in our
derivation of f (2). As a counterexample, let us consider
a one-dimensional elastic solid described by a scalar de-
formation field φ(X) = x(X)−X , whereX is the position
of a particle in the reference (nondeformed) configuration
of the solid, while x(X) is its position in the deformed
configuration considered. In this case, changing the refer-
ence coordinate X of a particle has no link with changing
the deformation field φ.

D. Mean-field configuration

The quantities f (1) and f (2) obtained via the two dif-
ferent routes are, in general, not equal. However, they
cannot be distinguished in the most probable configura-
tion of the field φ, i.e., in the mean-field configuration.
Indeed, this configuration is such that the energy H is

stationary with respect to variations of φ:

0 = δH =

∫

B

[

∂H
∂φ

− ∂i

(

∂H
∂(∂iφ)

)]

δφ ddr

+

∫

S

[

∂V

∂φ
− ∂H

∂(∂iφ)
ni

]

δφ dd−1r , (14)

for any δφ. The bulk equilibrium condition yields the
usual Euler-Lagrange equation, valid on B:

∂H
∂φ

− ∂i

(

∂H
∂(∂iφ)

)

= 0 , (15)

while the boundary equilibrium condition gives the fol-
lowing relation, valid on S:

∂V

∂φ
=

∂H
∂(∂iφ)

ni . (16)

When Eq. (16) holds, f (1) and f (2) are identical. Thus,
the difference between the two routes is irrelevant when
one considers the mean-field configuration.

III. NON-EMBEDDED INFLUENCING OBJECT

Let us now study the case of an object that interacts
with the fluid medium without being embedded in it (see
Fig. 2). For instance, it may be an optical trap creating
a local electromagnetic field in the medium, or a protein
binding very softly onto a lipid membrane so that the
latter keeps its fluidity: in these cases, there is no ma-
terial object immersed in the medium. We will refer to
this type of object as an “influencing object”, to make
the distinction with the embedded inclusion. We will see
that, contrary to the case of the embedded inclusion, it
is here the first route that gives the correct force f .

n

A

B

S

FIG. 2. Schematic representation of a two-dimensional fluid
medium with an influencing object. The object, represented
by a black sphere, is not embedded in the medium (here, it is
above the plane where the medium stands). It influences the
medium, i.e., the field φ, in a region A, which is centered on
ℓ. The other notations are the same as in Fig. 1.

In the case of the influencing object, the field φ with
Hamiltonian density H is defined everywhere in R

d (re-
call that the d-dimensional fluid medium is assumed to be
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infinite). In the region A, the medium is affected by the
influencing object: a term V (φ), representing the inter-
action between the influencing object and the medium,
adds to H. The effective Hamiltonian H of the fluid
medium with the influencing object reads

H =

∫

Rd

H(φ,∇φ) ddr +

∫

A

V (φ) ddr

=

∫

Rd

[H+ V 1A] d
dr , (17)

where 1A is the indicator function of the region A. Here
too, our work can be generalized to V (φ,∇φ), and the
final results for the force will be mentioned in this case.
In order to calculate the force f defined in Eq. (2),

we can follow the same path as in the case of the embed-
ded inclusion, by applying the generic transformation (3).
The variation of H during this transformation reads, at
first order:

δH =

∫

Rd

δH

δφ
δφ ddr +

∫

S

V (φ)ni δℓi d
d−1r , (18)

where the functional derivative of H with respect to φ is

δH

δφ
=

∂H
∂φ

+
∂V

∂φ
1A − ∂i

(

∂H
∂(∂iφ)

)

. (19)

A. First route

If φ is kept constant in the Eulerian sense during the
infinitesimal displacement (i.e., δφ ≡ 0), we obtain

f (1) = −ei
∂H

∂ℓi

∣

∣

∣

∣

φ,Eul.

= −
∫

S

V (φ)n dd−1r . (20)

The result for V (φ,∇φ) is exactly similar.
In fact, since the influencing object is not embedded in

the medium, the force exerted on it by the medium in a
given microstate can be calculated directly by moving the
object with respect to the medium in a given configuration
of φ. In other words, ℓ and the Eulerian field φ can
be considered as independent variables. Then, we only
need to take into account the variation of the interaction
energy Ep(ℓ) =

∫

A
V (φ) ddr between the medium and

the object when the position ℓ of the object is modified:

f (1) = −ei
∂Ep

∂ℓi

∣

∣

∣

∣

φ,Eul.

= −
∫

S

V (φ)n dd−1r . (21)

This derivation is more physical than considering the full
variation of H during the generic transformation (3).
It shows that here, f (1) is simply the negative gradi-
ent of the potential energy of interaction Ep between the
medium and the influencing object.
This definition of the force, which is the correct one for

influencing objects that are not embedded in the medium,

is the one used in Refs. [13–16]. In these works, this def-
inition of the force is used to investigate Casimir-like in-
teractions out of equilibrium [13, 14]. Note however that
Casimir-like interactions are usually studied between em-
bedded inclusions and not between non-embedded influ-
encing objects. Besides, this definition has also been used
to investigate drag forces in classical fields [15, 16]. In the
latter works, the example studied in detail is a pointlike
magnetic field moving through an Ising ferromagnet: it
qualifies as an influencing object, since nothing material
is embedded in the ferromagnet. However, the present
work shows that the application of these results to the
diffusion of inclusions embedded in membranes, which is
discussed in Refs. [15, 16], should be taken with caution.

B. Second route

The Hamiltonian in Eq. (17) can be used to describe
a medium coupled to an influencing object, but also a
medium containing a “perturbative embedded inclusion”,
i.e., an inclusion that is only slightly different from the
surrounding medium. Indeed, in the latter case, φ is
defined everywhere in R

d, and the energy density is per-
turbed by an extra term V inside the inclusion. For in-
stance, in lipid membranes, domains with a lipid com-
position different from that of the rest of the membrane
can be described as perturbative embedded inclusions, as
well as similar structures in nematic liquid crystals.
As for any other inclusion, it is meaningless to move

a perturbative inclusion while keeping φ constant in the
Eulerian sense, since moving the inclusion displaces the
surrounding fluid particles. If we assume, as before, that
φ is transported by fluid particles, the second route is the
right one to calculate the force exerted on a perturbative
embedded inclusion. Let us now calculate this force.
If the field φ is kept constant in the Lagrangian sense

during the infinitesimal transformation, i.e., δφ(r) =
−∇φ(r) · δr(r) for all r in R

d, Eq. (18) becomes

δH =−
∫

B

δH

δφ
∂iφ δri d

dr

−
{
∫

A

δH

δφ
∂iφddr −

∫

S

V (φ)ni d
d−1r

}

δℓi , (22)

where, again, B = R
d
rA. This yields, using Eq. (19),

f (2) =− ei
∂H

∂ℓi

∣

∣

∣

∣

φ,Lagr.

=

∫

A

δH

δφ
∇φddr −

∫

S

V (φ)n dd−1r

=

∫

A

[

∂H
∂φ

+
∂V

∂φ
− ∂j

(

∂H
∂(∂jφ)

)]

∇φddr

−
∫

S

V (φ)n dd−1r . (23)

Given the singularities in the energy density H + V 1A

on S, the integral over A has to be calculated us-
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ing the procedure defined in Appendix A, Eq. (A15).
Since (∂V/∂φ)∇φ = ∇V , the two terms involving V
in Eq. (23) cancel. Thus, using Eq. (10), we obtain

f (2) =

∫

A

∂jTij d
dr ei =

∫

S

Tijnj d
d−1r ei , (24)

where T is the stress tensor of the fluid medium. This
result, which is independent of V , remains the same for
V (φ,∇φ).
The expression for f (2) is the same here as for the em-

bedded inclusion. In fact, a perturbative inclusion is a
particular inclusion with Eincl =

∫

A
(H + V ) ddr, which

verifies δEincl = 0 during our transformation, and with-
out any explicit boundary coupling.
Thus, while it is the first route that gives the correct

force exerted by the medium on an influencing object, the
second route is the right one in the case of a perturbative
embedded inclusion.

C. Mean-field configuration

The two forces f (1) and f (2) are, in general, not equal,
and we have seen that they are relevant to very different
physical situations. However, as in the case of an em-
bedded inclusion (see Sec. II D), these two quantities are
equal in the mean-field configuration of the system. In-
deed, in this configuration, δH/δφ ≡ 0, so Eq. (23) shows
that f (2) is identical to f (1).

D. Formal relation between the two types of forces

Independently of the physical interpretations of the
forces f (1) and f (2), Eq. (23) gives a formal relation be-
tween these two forces:

f (1) = f (2) −
∫

A

δH

δφ
∇φddr . (25)

Given the singularities in the energy density H + V 1A

on S, the integral over A has to be calculated using the
procedure defined in Appendix A, Eq. (A15).
Let us introduce the stress tensor T ′ of the compos-

ite medium comprising the perturbative embedded in-
clusion: the force density at each point of the medium,
even inside the perturbative embedded inclusion, is q′ =
∂jT

′
ijei (see Appendix C). Thus, the basic definition

Eq. (A11) of the force f enables us to write:

f (2) =

∫

A

q′(r) ddr . (26)

Here again, the integral over A has to be calculated using
the procedure defined in Eq. (A15). Besides, if C is a
region such that A ⊂ C, we have
∫

C

q′(r) ddr =

∫

C

δH

δφ
∇φddr −

∫

S

V (φ)n dd−1r , (27)

where we have used the expression of q′ in Eq. (C2).
Thus, we can write

f (1) =

∫

C

q′(r) ddr −
∫

C

δH

δφ
∇φddr , (28)

which corresponds exactly to formula (18) in [14]. How-
ever, this equation relates f (1) and f (2) only if C = A:
the formal relation between f (1) and f (2) is given by
Eq. (25).

IV. CASIMIR-LIKE FORCE

A. Embedded inclusions

Let us consider a fluid medium comprising two em-
bedded inclusions with respective centers of mass at the
origin of the frame and at point ℓ, and let us introduce
the unit vector u ≡ ℓ/ℓ. The Casimir-like force exerted
on the inclusion in ℓ by the other one is usually defined
through fC = −u ∂F/∂ℓ, where F (ℓ) = −kBT lnZ(ℓ) is
the free energy of the system. We are going to show that
fC corresponds to the average at thermal equilibrium of
the force f (2) exerted on the inclusion in ℓ by the medium
containing the other inclusion.
Let us assume that the line joining the centers of mass

of the two inclusions is a symmetry axis of the system.
This assumption is valid in the standard case of parallel
plates, as well as for pointlike and spherical inclusions.
Then, the effective Hamiltonian H of the system only
depends on φ and on the distance ℓ between the two
inclusions. At thermal equilibrium, the statistical weight
of a configuration ([φ], ℓ) is given by e−βH([φ],ℓ), where
the notation [φ] represents a functional dependence on
φ. At a given ℓ, the partition function of the system is

Z(ℓ) =

∫

Dφ e−βH([φ],ℓ) , (29)

where the functional integral runs over the functions φ
defined in the domain B = R

d
r (A0 ∪ Aℓ), where Aℓ is

the region where the inclusion with center of mass in ℓ

stands (and similarly for A0).
Let us now introduce a replica of the system presented

above, identical to it except that the center of mass of
the second inclusion is at point ℓ + δℓu. The partition
function of this replica reads

Z(ℓ+ δℓ) =

∫

D′φ̃ e−βH([φ̃],ℓ+δℓ) . (30)

Here, the functional integral runs over the functions φ̃
defined in the domain B′ = R

d
r(A0∪Aℓ+δℓu). This dif-

ference with respect to Eq. (29) is symbolized by a prime
on the functional measure. Let us consider a smooth in-
vertible function r′ : B → B′, r 7→ r′(r) = r + δr(r),
where the infinitesimal virtual displacement field δr is
such that δr = 0 on the first inclusion while δr = δℓu
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on the second one, and |δr|/ℓ is small, say of order ǫ. Let
us assume that the function r′ maps a field φ to a field
φ̃ = φ + δφ such that φ̃(r′(r)) = φ(r) for all r ∈ B, and
δφ = −δr·∇φ at first order in ǫ. This is motivated by our
assumption that each fluid particle of the medium keeps
the same value of φ during any real smooth infinitesimal
displacement. As this process can be inverted, r′ yields a
one-to-one mapping of the states ([φ], ℓ) of the first sys-
tem to the states ([φ+ δφ], ℓ+ δℓ) of the replica. We may
thus write

Dφ =
∏

r∈B

d[φ(r)] =
∏

r′(r)∈B′

d[φ̃(r′(r))] = D′φ̃ , (31)

where the continuous products must be understood as
∏

r∈B d[φ(r)] ≡ limN→∞

∏N
n=1 d[φ(rn)], where {rn} is a

regular mesh of B [26]. Hence, Eq. (30) can be rewritten
as

Z(ℓ+ δℓ) =

∫

Dφ e−βH([φ+δφ],ℓ+δℓ) , (32)

so the difference of free energy between the replica and
the original system reads at first order in ǫ:

δF = −kBT
δZ

Z
=

∫

Dφ
e−βH([φ],ℓ)

Z
δH = 〈δH〉 , (33)

where 〈.〉 denotes the average at thermal equilibrium,
while δZ ≡ Z(ℓ + δℓ) − Z(ℓ), and δH ≡ H([φ + δφ], ℓ +
δℓ)−H([φ], ℓ).
The expression of δH is given by Eq. (11), so we obtain

δF = −
∫

B

〈qi〉 δri ddr − δℓ

∫

S

〈Tui〉ni d
d−1r , (34)

where the axes have been chosen so that one of them is
along u: Tuini d

d−1r denotes the component along this
axis of the force transmitted through the infinitesimal hy-
persurface dd−1r. Recall that q represents the hypervol-
ume density of internal in the medium, given by Eq. (13).
As no average external forces are imposed to the sys-

tem, the hypervolume density of external forces w veri-
fies 〈w〉 = 0. Neglecting inertia, which is possible if the
timescales considered are sufficiently large, Newton’s sec-
ond law applied to each fluid particle of the medium gives
q = −w (see Appendix A). Thus, we obtain 〈q〉 = 0.
This relation can also be obtained formally: Eqs. (10)
and (13) show that q = (∇φ) δH/δφ, and the thermal
average of the latter quantity can be proved to vanish
using the Schwinger-Dyson equation [14]. Thus, Eq. (34)
becomes

δF = −δℓ

∫

S

〈Tui〉ni d
d−1r = −δℓ 〈f (2)〉 · u , (35)

where we have used the expression of f (2) in Eq. (12).
Note that Eq. (35) is independent of the virtual displace-
ment field δr chosen at the beginning of this discussion to

map the states of the system onto the state of its replica.
We obtain from Eq. (35):

fC = −∂F

∂ℓ
u =

(

〈f (2)〉 · u
)

u . (36)

Since 〈f (2)〉 is along u by symmetry, we can conclude
that fC = 〈f (2)〉.

B. Non-embedded influencing objects

Although Casimir-like forces are usually studied be-
tween embedded inclusions, let us now consider non-
embedded influencing objects. In this case, the partition
function can also be written as

Z(ℓ) =

∫

Dφ e−βH([φ],ℓ) , (37)

but here the functional integral runs over the functions
φ defined on R

d. In contrast to the case of the embedded
inclusions, ℓ can be varied at constant Eulerian field φ.
Thus we can write directly

∂F

∂ℓ
=

∫

Dφ
e−βH([φ],ℓ)

Z

∂H

∂ℓ
=

〈

∂H

∂ℓ

〉

= −〈f (1)〉 · u .

(38)
Thus, in the case of influencing objects, it is the average
of f (1) that gives −u ∂F/∂ℓ.
Some effective Hamiltonians, such as the one in

Eq. (17) and the one studied in the next section, can de-
scribe both influencing objects and embedded inclusions.
For such effective Hamiltonians, our results show that the
thermal average of f is the same in these two physical
cases, each of them being treated with the appropriate
route. If there are two inclusions, this thermal average
force corresponds to the Casimir-like force −u ∂F/∂ℓ. In
spite of this degeneracy concerning thermal average, it
is very important to distinguish the two physical cases
as soon as one wishes to go beyond the thermal average
force. This point will be illustrated in the next section.

V. A SIMPLE EXAMPLE OF CASIMIR-LIKE

FORCE

A. The situation

Let us now present a simple example with a Hamil-
tonian that can describe both influencing objects and
embedded inclusions. In this example, we calculate the
variance of the Casimir-like force, both in the usual case
of embedded inclusions (via the second route) and in the
particular case of non-embedded influencing objects (via
the first route), and we find two very different results.
Thus, this example illustrates the importance of the dis-
tinction between the two physical cases.
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Let us consider an infinite one-dimensional fluid
medium described by a dimensionless scalar field φ with
Hamiltonian density

H =
κ

2
φ′2 +

m

2
φ2 , (39)

where φ′ ≡ dφ/dx. The energy H0 of the medium is such
that

βH0 = β

∫

R

dx H(x) =
1

2

∫

R2

dx dy φ(x)O(x, y)φ(y) ,

(40)

where β = (kBT )
−1, and the symmetric operator O is

defined by

O(x, y) =

[

βm− βκ
d2

dx2

]

δ(x− y) . (41)

Let us assume that there are two pointlike inclusions or
non-embedded influencing objects, in x = 0 and x = ℓ,
where ℓ > 0, and that their coupling to the field φ is
given by

βV =
α

2

[

φ2(0) + φ2(ℓ)
]

. (42)

Since φ is dimensionless, α is dimensionless too. When
α → ∞, this quadratic coupling yields Dirichlet bound-
ary conditions on the inclusions. Indeed, in this limit,
the statistical weight e−β(H0+V ) of any configuration such
that φ 6= 0 on an inclusion goes to zero.
For the calculations that follow, let us assume that

there is an external field u conjugate to φ:

βHext = −
∫

R

dxu(x)φ(x) . (43)

In order to calculate the partition function of the system

Z[u] =

∫

Dφ e−β(H0+V+Hext) , (44)

let us carry out a Hubbard-Stratonovich transformation
[27]. Using the relation

e−βV =
1

2πα

∫

R2

d2v exp

[

− v2

2α
+ i (v1 φ(0) + v2 φ(ℓ))

]

,

(45)
where (v1, v2) is a two-dimensional vector, and perform-
ing the Gaussian integration on φ, we obtain

Z[u] =
Z0

2πα

∫

R2

d2v exp

[

− v2

2α

+
1

2

∫

R2

dx dy S(x)G(x, y)S(y)

]

. (46)

In this expression, Z0 is the partition function of the
medium with no inclusion or other influencing object,
while S(x) = u(x) + i v1 δ(x) + i v2 δ(x − ℓ), and G is
the Green function of O. The latter can be obtained

using a Fourier transform since the medium is infinite
and translation-invariant:

G(x, y) =
kBT

2π

∫

R

dq
ei q(x−y)

κ q2 +m

=
kBT L

2 κ
exp

(

−|x− y|
L

)

, (47)

where L =
√

κ/m. In the absence of inclusions or other
influencing objects, the correlation function of φ is G, so
L represents the correlation length of φ. Therefore, we
expect Casimir-like forces to be most important when the
distance ℓ between the objects is such that ℓ ≪ L.
Performing the Gaussian integration on (v1, v2) in

Eq. (46) yields

Z[u] =
Z0

α
√
detM

exp

(

1

2

∫

R2

dx dy u(x)C(x, y)u(y)

)

,

(48)
where C(x, y) = G(x, y) − AT (x)M−1A(y), with
AT (x) = (G(x, 0) , G(x, ℓ)) and

M =

(

G(0, 0) + α−1 G(0, ℓ)
G(0, ℓ) G(ℓ, ℓ) + α−1

)

. (49)

It is straightforward to deduce the moments of the Gaus-
sian variable φ(x) from Eq. (48):

〈φ(x)〉 = −
(

1

Z

δZ

δu(x)

)

[u = 0] = 0 , (50)

〈φ(x)φ(y)〉 = −
(

1

Z

δ2Z

δu(x) δu(y)

)

[u = 0] = C(x, y) .

(51)

Thus, the correlation function of the field φ in the pres-
ence of the two objects is

〈φ(x)φ(y)〉 − 〈φ(x)〉〈φ(y)〉 = C(x, y)

= G(x, y)−AT (x)M−1A(y) .
(52)

B. Average Casimir-like force

The average Casimir-like force 〈f〉 between the two
inclusions can be calculated by differentiating the free
energy F = −kBT ln(Z[u = 0]) of the system, which can
be obtained from Eq. (48):

〈f〉 = −∂F

∂ℓ
= −kBT

2

∂(ln detM)

∂ℓ

=
−(kBT )

3α2L e−
2ℓ
L

(kBT )2α2L2
(

1− e−
2ℓ
L

)

+ 4 kBT α κL+ 4 κ2
.

(53)

Taking the hard-constraint limit α → ∞, which will
be denoted in the following by a subscript index h, we
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obtain:

〈fh〉 =
kBT

L
(

1− e
2ℓ
L

) ∼
ℓ≪L

−kBT

2 ℓ
. (54)

As expected, the Casimir-like force vanishes when ℓ ≫ L:
when the distance between the inclusions is much larger
than the correlation length of φ, one inclusion cannot feel
the effect of the other one. We have emphasized the “crit-
ical regime” ℓ ≪ L, where the Casimir-like force is most
important: it has a simple ℓ−1 power-law dependence.
Meanwhile, in the perturbative limit α → 0, which

will be denoted in the following by a subscript index p,
we obtain, to lowest order in α:

〈fp〉 = − (kBT )
3α2L e−

2ℓ
L

4 κ2
∼

ℓ≪L
− (kBT )

3α2 (L− 2ℓ)

4 κ2
.

(55)
Here too, we have emphasized the critical regime ℓ ≪ L:
this time, the leading term is independent of ℓ, so the
force is nearly constant in this regime.

C. Variance of the Casimir-like force

We are now going to illustrate the difference between
embedded inclusions and non-embedded influencing ob-
jects by studying the variance of the Casimir-like force.
The two routes to calculate the force f are detailed in
the particular case of pointlike embedded inclusions or
non-embedded influencing objects in Appendix D.

1. Preliminary remark

The variance we are going to study is that of the force
f defined at the coarse-graining level where the system
is described by ([φ], ℓ). This force is averaged over the
fundamental microstates “µ → ([φ], ℓ)” that yield the
coarse-grained field φ and the inclusion position ℓ. In-
deed, it is shown in Appendix A that the force fµ exerted
by the medium on the inclusion in the fundamental mi-
crostate µ verifies

〈fµ〉µ→([φ],ℓ) = f([φ], ℓ) , (56)

where 〈.〉µ→([φ],ℓ) represents the statistical average at
equilibrium over the fundamental microstates µ →
([φ], ℓ). Therefore, the variance ∆2f of the force f is
smaller than ∆2fµ.
The difference between ∆2fµ and ∆2f is due to fluc-

tuation modes with wavelengths smaller than the cutoff
a of the field φ: such modes are averaged in the coarse-
graining procedure leading to f . Thus, we expect ∆2f to
decrease if a increases. The small-wavelength fluctuation
modes are generically the fastest to equilibrate, so above
a certain time resolution, it is right to consider ∆2f in-
stead of ∆2fµ, and for even longer time resolutions, it

is appropriate to consider larger values of a. This sub-
telty, which is linked to the coarse-grained nature of the
force f , arises in all studies of fluctuations of Casimir-like
forces [6, 11].

2. Embedded inclusions

In the case of pointlike embedded inclusions, the force
exerted on the inclusion in ℓ by the medium containing
the other inclusion is obtained via the second route. It
is given by Eq. (D6), adapted to d = 1: f (2) = T (ℓ+) −
T (ℓ−).
Let us first show explicitly in the present example that

the thermal average of f (2) gives back the Casimir force
〈f〉. Here, the stress tensor of the medium is

T = H− φ′ ∂H
∂φ′

= −κ

2
φ′2 +

m

2
φ2 , (57)

and Eq. (51) enables to express its average as

〈T (x)〉 = −κ

2
Cxy(x, x) +

m

2
C(x, x) , (58)

where we have introduced the notation Cxy(x, y) ≡
[∂x∂yC](x, y). Such notations will be used in the follow-
ing. This average can be calculated thanks to Eq. (47)
and (52). Note that Gxy(x, x) has to be regularized using
the short-distance cutoff a of the theory:

Gxy(x, x) ≡
kBT

2π

∫ 1/a

−1/a

dq
q2

κ q2 +m

=
kBT

π κ

(

1

a
− Arctan

(

L
a

)

L

)

. (59)

We then recover the result obtained in Eq. (53):
〈

f (2)
〉

=
〈T (ℓ+)〉−〈T (ℓ−)〉 = 〈f〉. Note that the cutoff-dependent
term Eq. (59) vanishes when one calculates the difference
between the average stress on each side of the inclusion.
This is reminiscent of the calculation of the (average)
quantum Casimir force, either from the energy [1] or from
the radiation pressure [28], where two infinite quantities
subtract to give a finite force. However, in the variance,
this cutoff-dependent term will no longer vanish.
We may now proceed to calculate the variance ∆2f (2)

of f (2):

∆2f (2) = K(ℓ−, ℓ−) +K(ℓ+, ℓ+)− 2K(ℓ−, ℓ+) , (60)

where K(x, y) ≡ 〈T (x)T (y)〉 − 〈T (x)〉 〈T (y)〉. Given the
expression of the stress tensor in Eq. (57), its correlation
function K involves quartic terms in φ (or φ′). Since
φ(x) is a centered Gaussian variable, we may use Wick’s
theorem to calculate K. It yields:

∆2f (2) =
κ2

2

[

C2
xy(ℓ

−, ℓ−) + C2
xy(ℓ

+, ℓ+)− 2C2
xy(ℓ

−, ℓ+)
]

− κm
[

C2
x(ℓ

−, ℓ−) + C2
x(ℓ

+, ℓ+)

− C2
x(ℓ

−, ℓ+)− C2
y(ℓ

−, ℓ+)
]

. (61)
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This variance can be calculated from Eqs. (47), (52) and
(59). Note that Gx(x, x) and Gy(x, x) can be obtained
from a regularized Fourier transform:

Gx(x, x) = −Gy(x, x) ≡
kBT

2π

∫ 1/a

−1/a

dq
iq

κ q2 +m
= 0 .

(62)

The full analytical expression of ∆2f (2) is quite heavy,
so we will only present its limiting behaviors for large
and small α, and we will focus on the regime where a <
ℓ ≪ L, since the Casimir effect is strongest in the critical
regime ℓ ≪ L. More precisely, in each limit, we carry
out expansions in the small parameter a/L after setting
ℓ = Ca where C is a constant.
Taking the hard-constraint limit α → ∞, and then

keeping only the leading order in a/L, we obtain:

∆2f
(2)
h = ∆2f (2)† +∆2f

(2)
h

‡ , (63)

where the first term is independent of ℓ and α:

∆2f (2)† ≃ (kBT )
2

π2a2
, (64)

while the second one arises from the inclusions:

∆2f
(2)
h

‡ ≃ − (kBT )
2

π a ℓ
. (65)

If we consider inclusions imposing Dirichlet boundary
conditions (i.e., φ(0) = φ(ℓ) = 0) instead of inclusions
imposing a potential V , we recover the result in Eqs. (63,
64, 65) for the force variance. In this case too, the av-
erage force can be obtained either directly from F or by
using the stress tensor, and it gives back 〈fh〉 in Eq. (54).
In the perturbative limit α → 0, let us keep the two

lowest orders in α: the leading term corresponds to the
situation where there is no inclusion, α = 0, so the effect
of the inclusions appears in the subleading term. We
obtain

∆2f (2)
p = ∆2f (2)† +∆2f (2)

p
‡ , (66)

where the first term is the one in Eq. (64), still at leading
order in a/L, while

∆2f (2)
p

‡ ≃ − (kBT )
3α

π κ a

(

1− ℓ

L

)

, (67)

where we have kept the two leading orders in a/L to
see the ℓ-dependence. Note that these results can be
obtained directly from a perturbative expansion of the
stress tensor correlation function K at first order in βV .
Besides, using this perturbative method, it is straight-
forward to study the more general problem of inclusions
with a finite size s: we have checked that it gives back
the average force Eq. (55) and the variance Eqs. (66, 67)
in the small-size limit.
Both in the hard-constraint limit and in the pertur-

bative limit (and also in the intermediary regime), the

variance of the force features a term ∆2f (2)†, expressed
in Eq. (64), which is independent of ℓ and α. It cor-
responds to the variance of the zero-average fluctuating
force exerted on a point of the medium, or on a single
inclusion, by the rest of the medium, in the absence of
any other inclusion. This term depends on the cutoff a,
and it decreases when a increases, in agreement with the
preliminary remark above. The other terms depend on ℓ,
and this dependence has the same origin as the Casimir-
like interaction itself: it comes from the constraints im-
posed by the inclusions on the fluctuations of φ. They
also depend on the intensity of the coupling constant α,
because they come from the constraints imposed by the
inclusions. The presence of a term independent of ℓ and
of smaller ones that depend on ℓ is similar to the results
of Refs. [6, 11].

3. Other influencing objects

In the case of pointlike influencing objects that are not
embedded in the fluid medium, the force exerted on the
object in ℓ by the medium is obtained via the first route.
It is given by Eq. (D3), for d = 1:

f (1) = −φ′(ℓ)
∂V

∂φ
(φ(ℓ)) = −αkBT φ′(ℓ)φ(ℓ) . (68)

Eq. (51) enables to express its average as

〈

f (1)
〉

= −αkBT Cx(ℓ, ℓ) , (69)

which can be calculated from Eq. (47), (52) and (62),
yielding once more the result obtained in Eq. (53):
〈

f (1)
〉

= 〈f〉. We have thus verified on the present exam-
ple that all the definitions (i.e., the direct derivation from
the free energy, and the two routes defined in the intro-
duction) give the same result for the thermal average of
the force.
In order to calculate the variance of f (1), we use Wick’s

theorem as above. It gives

∆2f (1) = α2(kBT )
2
[

C(ℓ, ℓ)Cxy(ℓ, ℓ) + 2C2
x(ℓ, ℓ)

]

.

(70)

This variance can be calculated from Eqs. (47), (52), (59)
and (62). Here again, we will only present the limiting
behaviors of ∆2f (1), in the same regimes as for the em-
bedded inclusion.
In the hard-constraint limit α → ∞, keeping the lead-

ing order in α, and then keeping the leading order in a/L,
we obtain:

∆2f
(1)
h ≃ (kBT )

3α

κ a

(

1

π
− a

4 ℓ

)

. (71)

In the perturbative limit α → 0, if we keep the two
lowest orders in α (the lowest order term does not depend
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on ℓ, so we also keep the next one), we obtain:

∆2f (1)
p ≃ (kBT )

4α2

2 π κ2

L

a
+

(kBT )
5α3L

2 π κ3

(

−L

a
+

ℓ

a
+

π

4

)

,

(72)
where we have kept only the leading orders in a/L, and
also the subleading one in the α3 term to see the ℓ-
dependence. This result can also be found directly from
a perturbative expansion of

〈

(f (1))2
〉

at second order in
βV . This variance diverges when L → ∞, but the corre-
lation function itself diverges in this limit (see Eq. (47)).

The present results are very different from the ones
concerning the embedded inclusions. First, there is no
term independent of the coupling constant α here, since,
as explained above, the first route amounts to taking the
derivative of the potential energy of interaction between
the medium and the influencing object. Besides, here,
the variance diverges as α in the hard-constraint limit
α → ∞, while it converged in the case of the embed-
ded inclusion. Here follows a physical explanation of
this divergence: for each microstate φ, let r and s be
such that |φ(ℓ)| = αr and |φ(0)| = αs. For α → ∞,
only the states such that r ≤ −1/2 and s ≤ −1/2 can
keep a significant statistical weight: they are such that
exp(−βV ) ≥ 1/e, while for the others, exp(−βV ) → 0
exponentially when α → ∞. Let us consider the statisti-
cally significant states with highest r, i.e., the ones such
that r = −1/2: they will yield the largest forces f (1).
For these states, (f (1))2 ∼ α (kBT )

2φ′2(ℓ). Since there is
no particular constraint on φ′(ℓ), (f (1))2 typically scales
as α in these states, which explains the behavior of the
variance. Much more qualitatively, if α is infinite, the
only allowed states are such that φ(ℓ) = 0, but φ′(ℓ) is
generically nonzero, so φ(ℓ + δℓ) 6= 0: if it moved to this
position, the object would have an infinite energy. Thus,
it feels an infinite restoring force. While such contribu-
tions can cancel in the average, they add in the variance,
which thus diverges with α.

In this simple example, we have found very different re-
sults for the variance of the Casimir-like force for embed-
ded inclusions and for non-embedded influencing objects.
It illustrates the importance of distinguishing these two
physical cases and the associated routes for calculating
the force.

The out-of-equilibrium behavior of Casimir-like forces
also depends strongly on the route that is taken. The ap-
proach to equilibrium after a quench at φ = 0 has been
studied for plates imposing boundary conditions to the
field φ, using the second route in Ref. [10], and using the
first route in Ref. [14]. The two routes give very differ-
ent results for the case where one plate imposes Dirichlet
boundary conditions while the other one imposes Neu-
mann boundary conditions. Indeed, in Ref. [10], the force
exerted on one plate is not equal to the one exerted on
the other plate during the relaxation (but both converge
to the same equilibrium value), while in Ref. [14], these
two forces are always equal. Note that obtaining different
forces on each plate is not ruled out by the action-reaction

principle, since the forces at stake are forces exerted by
the medium containing one plate on the other plate, and
not forces exerted by one plate on the other plate.

VI. CONCLUSION

We have investigated the force exerted on an inclusion
by a fluid medium with long-range correlations, described
by a scalar field φ in a coarse-grained theory. If a sec-
ond inclusion is embedded in the medium, the thermal
average of this force gives the Casimir-like force between
the two inclusions. In order to go beyond the thermal
average force, it is necessary to define properly the force
f exerted on an inclusion by the medium in each mi-
crostate. In practice, one must take the negative gradient
of the effective Hamiltonian with respect to the position
of the inclusion in a given microstate of the medium. We
have shed light onto the subtlety of this task, showing two
routes that can be taken to calculate this gradient. In the
first route, φ is kept constant in the Eulerian sense, while
in the second one, φ is kept constant in the Lagrangian
sense.
In the usual case of an embedded inclusion, the po-

sition of the inclusion and the Eulerian field φ are not
independent variables, so one should not take the first
route. Indeed, when an inclusion is displaced infinitesi-
mally, the surrounding fluid particles are displaced too.
In many physical cases, φ is transported by the fluid par-
ticles of the medium during a displacement, so the second
route is the correct one. It gives the integral of the stress
tensor of the medium on the boundary of the inclusion.
We have also considered the case of influencing objects

that interact with the medium without being embedded
in it. Contrary to inclusions, such objects can be moved
with respect to the medium at a given Eulerian field φ.
Thus, the first route is adapted to calculate the force
exerted by the medium on an influencing object.
In a nutshell, the two formal routes for calculating the

force f apply to two different physical cases. We have
discussed the practical importance of this distinction.
First, in the mean-field configuration, the two routes give
the same result. Then, for effective Hamiltonians that
can describe both physical cases, the two routes give the
same thermal average of the force. However, the differ-
ence between these two routes becomes crucial as soon
as one wants to study this force beyond its mean-field
value and its thermal average. We have shown in a sim-
ple example that they yield very different results for the
variance of the Casimir-like force. Besides, comparing
Refs. [10] and [14] shows that the out-of-equilibrium be-
havior of Casimir-like forces also depends on the route
that is taken.
Two definitions of the force, corresponding to our two

routes, are currently used to study the fluctuations of the
Casimir-like force and its out-of-equilibrium behavior.
Our work shows that the second route, which gives the
integral of the stress tensor, should be used when study-
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ing Casimir-like forces between embedded inclusions, in
agreement with Refs. [6–12]. In contrast, the first route,
which is used in Refs. [13–16], should be reserved to the
case of non-embedded influencing objects.

Appendix A: Definition of the force f from the

principle of virtual work

The aim of the present Appendix is to provide a justifi-
cation of the fundamental definition Eq. (2) in our coarse-
grained, effective description. Let us consider, as in the
main text, an infinite d-dimensional fluid medium with
short-range interactions, and let us assume that an em-
bedded inclusion extends over the region A ⊂ R

d of this
medium. Let us consider a “fundamental” microstate µ
of the system constituted by the fluid medium with the
inclusion, i.e., a microstate defined not by the coarse-
grained field φ and by the position ℓ of the center of mass
of the inclusion, but by all the underlying microscopic de-
grees of freedom. Let us call wµ the hypervolume density
of forces exerted by the exterior on the system, and qµ
the hypervolume density of forces exerted on a piece of
the system by the rest of the system, in the microstate µ.
Both wµ and qµ can take different values in the differ-
ent fundamental microstates “µ → ([φ], ℓ)” that yield the
same coarse-grained field φ and inclusion position ℓ. The
coarse-graining procedure regroups these microstates so
that

Z([φ], ℓ) = e−βH([φ],ℓ) =
∑

µ→([φ],ℓ)

e−βEµ , (A1)

where Eµ is the energy of the fundamental microstate
µ, while H([φ], ℓ) is the effective energy of the coarse-
grained microstate ([φ], ℓ). Let us now introduce the
average q([φ], ℓ) (respectively, w([φ], ℓ)) of qµ (respec-
tively, wµ) over the microstates µ → ([φ], ℓ): q and w
are coarse-grained force densities. Explicitly, we have

q([φ], ℓ) ≡ 〈qµ〉µ→([φ],ℓ) =
∑

µ→([φ],ℓ)

qµ
e−βEµ

Z([φ], ℓ)
, (A2)

and similarly for w.
Let us consider a material particle of hypervolume ddr

of the system: it can be a fluid particle of the medium
in the sense defined in the main text, or a piece of the
inclusion. Since it is a (macroscopically) closed particle,
Newton’s second law applies to it. In the fundamental
microstate µ, it reads wµ d

dr + qµ d
dr = d(pµ d

dr)/dt,
where pµ is the hypervolume density of momentum in
the microstate µ. This is equivalent to writing that wµ ·
δr ddr + qµ · δr ddr = [d(pµ d

dr)/dt] · δr for any smooth
infinitesimal virtual displacement field δr. The former
relation can be integrated on the whole system:

∫

Rd

wµ · δr ddr +
∫

Rd

qµ · δr ddr =
∫

Rd

d(pµ d
dr)

dt
· δr .
(A3)

The first integral in Eq. (A4) represents the work δWµ of
the external forces on the whole system, and is therefore
equal to the variation δEµ of the energy of the system
during the infinitesimal displacement. Thus, averaging
over the microstates µ → ([φ], ℓ), we obtain

〈δEµ〉µ→([φ],ℓ) = −
∫

Rd

q([φ], ℓ) · δr ddr

+

∫

Rd

〈

d(pµ d
dr)

dt

〉

µ→([φ],ℓ)

· δr , (A4)

where we have used Eq. (A2). Neglecting the average
inertial term in Eq. (A4) yields

〈δEµ〉µ→([φ],ℓ) = −
∫

Rd

q([φ], ℓ) · δr ddr . (A5)

It is possible to neglect the inertial term even out of equi-
librium provided that the timescales considered are suf-
ficiently large, as in case of the Langevin equation [29].
Let us consider the variation δH of the coarse-grained

Hamiltonian H during the virtual displacement δr. Let
us denote by φ̃ = φ+ δφ the field after the displacement,
and by ℓ + δℓ the position of the center of mass of the
inclusion after the displacement. We can write at first
order

δH([φ], ℓ) ≡ H([φ̃], ℓ+ δℓ) −H([φ], ℓ)

=
kBT

Z([φ], ℓ)

(

Z([φ], ℓ)− Z([φ̃], ℓ+ δℓ)
)

.

(A6)

We assume that the smooth infinitesimal virtual displace-
ment δr yields a one-to-one mapping of each fundamen-
tal microstate µ → ([φ], ℓ) to a fundamental microstate

µ′ → ([φ̃], ℓ + δℓ). In the present Appendix, we do not
discuss the way φ is affected by the infinitesimal displace-
ment —this problem is dealt with in the body of our
paper— but we only assume that φ is modified by an
amount δφ, which is a function of δr. Then,

Z([φ̃], ℓ+ δℓ) =
∑

µ′→([φ̃],ℓ+δℓ)

e−βEµ′

=
∑

µ→([φ],ℓ)

e−β(Eµ+δEµ) , (A7)

and we obtain at first order

δH([φ], ℓ) = 〈δEµ〉µ→([φ],ℓ) , (A8)

so Eq. (A5) becomes

δH([φ], ℓ) = −
∫

Rd

q([φ], ℓ) · δr ddr . (A9)

Assuming that δr is constant in A, equal to δℓ (so that
the inclusion undergoes a translation), Eq. (A9) becomes

δH([φ], ℓ) = −f([φ], ℓ) ·δℓ−
∫

B

q([φ], ℓ) ·δr ddr , (A10)
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where

f([φ], ℓ) =

∫

A

q([φ], ℓ) ddr (A11)

is the force exerted by the fluid medium on the inclusion
in the coarse-grained description. Thus, Eq. (A10) gives

f([φ], ℓ) = −∂H([φ], ℓ)

∂ℓi
ei , (A12)

which corresponds to the fundamental definition Eq. (2).
Note that the force f([φ], ℓ) is relevant at the coarse-

graining level where the system is described by ([φ], ℓ). It
is a force averaged over the microstates µ → ([φ], ℓ): in-
deed, in the fundamental microstate µ, the force exerted
by the medium on the inclusion is

fµ =

∫

A

qµ d
dr , (A13)

which verifies

〈fµ〉µ→([φ],ℓ) =

∫

A

〈qµ〉µ→([φ],ℓ) d
dr = f([φ], ℓ) , (A14)

where we have used Eq. (A2) and (A11).
If there are singularities in the energy density of the

system at the boundaries of A, the mathematical def-
inition f =

∫

A
q ddr can become ambiguous. This is

the case for instance when such singularities yield Dirac
terms in q at the boundaries ofA (see, e.g., Appendix C).
However, the force f must take into account all the terms
that come from the presence of the inclusion, including
boundary terms. Thus, in general, the integral over A
has to be carried out using the following procedure:

∫

A

q ddr = lim
ǫ→0

∫

Aǫ

q ddr , (A15)

where Aǫ contains A and its boundary S plus a shell of
hypervolume ǫ, so that each point ofA and S is interior to
Aǫ for all ǫ > 0. This procedure amounts to performing
the integral infinitesimally outside the inclusion, in or-
der to ensure that the whole inclusion is enclosed in our
hypersurface of integration. Using this procedure does
not change the result in the case where q is a piecewise
continuous function.
Note that we can also extract the hypervolume den-

sity q of internal forces in the medium, at the coarse-
graining level where the system is described by ([φ], ℓ),
from Eq. (A9):

q([φ], ℓ) = −δH([φ], ℓ)

δri
ei. (A16)

Appendix B: Derivation of the stress tensor T of the

fluid medium

In this Appendix, we consider a fluid medium with
Hamiltonian density H(φ,∇φ) without any inclusion.

The stress tensor associated to H can be derived from
Noether’s theorem (see, e.g., Ref. [30]). Indeed, it is the
Noether current associated to the translation invariance
of the system. It is obtained by considering the following
infinitesimal translation:

{

r → r + δr ,
φ(r) → φ(r) + δφ(r) .

(B1)

with constant δr, and with δφ(r) = −∇φ(r) ·δr(r), i.e.,
δTφ ≡ 0. The stress tensor given directly by Noether’s
theorem is often called the canonical stress tensor (or
more generally, in time-dependent field theories, the
canonical energy-impulsion tensor). Indeed, it is its di-
vergence that appears in the conservation law associated
with translation invariance, so any tensor with vanishing
divergence can be freely added to this canonical stress
tensor. Such modifications of the stress tensor are often
used in field theory, for instance to ensure its symme-
try or its scale or conformal invariance [31]. However,
in the case of perturbative embedded inclusions, where
the stress tensor is defined everywhere in the system,
even inside the inclusions (see Appendix C), Stokes’ the-
orem can be applied to the integral of the stress tensor
on any closed hypersurface, so that the divergence-free
“improvement” terms do not contribute to Casimir-like
forces (this argument is used in Ref. [32]). We will not
discuss these terms further.

In the present work, our field-theoretic model describes
a fluid medium where the interactions are supposed to
be short-ranged. Thus, another way of constructing the
stress tensor of the medium is to adapt the definition of
continuum mechanics. Let us define the stress tensor T
by the relation

dfi = Tijnj d
d−1r , (B2)

where df is the infinitesimal force that one side of the
medium (side 1) exerts onto the other side (side 2)
through the hypersurface dd−1r, and n denotes the nor-
mal to this hypersurface directed toward side 1 [17, 33].
The stress tensor T of the medium can be determined
from its energy H using the principle of virtual work.
For this, we start by cutting (virtually) a subpart A of
the medium, with energy

HA =

∫

A

H(φ,∇φ) ddr . (B3)

Let us call B the rest of the medium (i.e., B = R
d
rA),

and S the interface between A and B. Let us now con-
sider an infinitesimal transformation of the medium, as
defined in Eq. (3). We consider that each fluid parti-
cle keeps the same φ during the displacement: δφ(r) =
−∇φ(r) · δr(r), i.e., δTφ ≡ 0. The variation during this
transformation of the energy HA of the closed system
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initially in A reads, at first order in ǫ:

δHA =−
∫

A

[

∂H
∂φ

− ∂j

(

∂H
∂(∂jφ)

)]

∂iφ δri d
dr

+

∫

S

[

Hδij −
∂H

∂(∂jφ)
∂iφ

]

nj δri d
d−1r . (B4)

This variation of energy can be equated to the work δW
done during the transformation by the external forces
acting on the closed system initially in A:

δW =

∫

A

wi δri d
dr +

∫

S

Tijnj δri d
d−1r , (B5)

where w is the hypersurface density of forces exerted by
the exterior on the fluid medium, so that the integral
on A represents the forces exerted by the exterior of the
medium on the closed system initially in A. Meanwhile,
the integral on S represents the force exerted by the rest
of the medium on the closed system initially in A, which
has been expressed using the stress tensor thanks to its
definition Eq. (B3). Since the energy balance δH = δW
must hold for any virtual deformation field δr, we can
identify the stress tensor of the medium:

Tij = Hδij −
∂H

∂(∂jφ)
∂iφ . (B6)

In addition, the identification of the bulk term gives the
hypervolume density q of internal forces in the medium.
Neglecting inertia, which is possible if the timescales con-
sidered are sufficiently large, Newton’s second law ap-
plied to each fluid particle of the medium gives q = −w,
where w represents the hypervolume density of external
forces (see Appendix A). Thus, we obtain:

qi = −wi =

[

∂H
∂φ

− ∂j

(

∂H
∂(∂jφ)

)]

∂iφ = ∂jTij . (B7)

This derivation of the stress tensor shows that the
stress tensor itself is built by assuming that each fluid

particle keeps the same φ during a displacement. It is
therefore not surprising that we find the stress tensor
when we calculate the force f (2) under this assumption.
With our mechanical definition of the stress tensor,

we have obtained, from the principle of virtual work, a
stress tensor T that is identical to the canonical stress
tensor T c given by Noether’s theorem. In field theory, the
stress tensor T c generally written is in fact T c

ij = −Tji

[30, 31], but this apparent difference is just a matter of
convention. Note that our stress tensor T is fully defined
(not up to a term with vanishing divergence) because we
have asked it to give the force exchanged through any
infinitesimal hypersurface.

Appendix C: Stress tensor T ′ of the fluid medium

with a perturbative embedded inclusion

Let us now consider the fluid medium with a perturba-
tive embedded inclusion in it: its effective HamiltonianH

corresponds to Eq. (17). Carrying out the same reason-
ing as in the previous section, using a generic infinitesi-
mal deformation δr, enables to identify the stress tensor
T ′ of the composite medium comprising the perturbative
inclusion:

T ′
ij = (H + V 1A) δij −

∂H
∂(∂jφ)

∂iφ . (C1)

The same reasoning also enables to identify the hy-
pervolume density of internal forces at each point of the
composite medium as q′i = ∂jT

′
ij . Explicitly, it gives

q′ =
δH

δφ
∇φ+ V ∇1A , (C2)

where H is defined in Eq. (17), and its functional deriva-
tive with respect to φ is given by Eq. (19). Note that the
gradient of 1A, and thus q′, features Dirac singularities
on the contour of A, i.e., on S.

Appendix D: Pointlike embedded inclusion or

non-embedded influencing object

Let us consider a pointlike object in r = ℓ that is
coupled to φ(ℓ):

H =

∫

Rd

H(φ,∇φ) ddr + V (φ(ℓ))

=

∫

Rd

[H + V δ(r − ℓ)] ddr . (D1)

Here, the total variation of H during the infinitesimal
transformation (3) reads, at first order:

δH =

∫

Rd

[

∂H
∂φ

− ∂i

(

∂H
∂(∂iφ)

)]

δφ ddr

+
∂V

∂φ
(φ(ℓ)) [δφ+∇φ · δℓ] . (D2)

Thus, the first route, which corresponds to δφ ≡ 0,
yields

f (1) = −∇φ(ℓ)
∂V

∂φ
(φ(ℓ)) . (D3)

Meanwhile, if we follow the second route, i.e., if δTφ =
δφ+∇φ · δr ≡ 0, Eq. (D2) becomes

δH = −
∫

Rd

[

∂H
∂φ

− ∂j

(

∂H
∂(∂jφ)

)]

∂iφ δri d
dr

= −
∫

Rd

∂jTij δri d
dr , (D4)

where we have used Eq. (10). In spite of this simple
expression, we must remember that the energy density
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H+ V δ(r− ℓ) has a singularity in ℓ. To deal with it, let
us write

δH =− lim
ǫ→0

∫

RdrBℓ
ǫ

∂jTij δri d
dr

−
{

lim
ǫ→0

∫

Bℓ
ǫ

∂jTij d
dr

}

δℓi . (D5)

where Bℓ
ǫ denotes the hyperball of radius ǫ centered on

ℓ. This relation enables to identify f (2) as

f (2) = lim
ǫ→0

∫

Bℓ
ǫ

∂jTij d
dr ei

= lim
ǫ→0

∫

Sℓ
ǫ

Tijnj d
d−1r ei , (D6)

where Sℓ
ǫ denotes the hypersphere of radius ǫ centered on

ℓ and n is its exterior normal.

Thus, the difference between the two ways of keeping φ
constant while varying ℓ remains for pointlike objects. As
in the case of extended objects, the force f (2) is adapted
to a pointlike embedded inclusion, while the force f (1) is
adapted to a non-embedded pointlike influencing object.
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