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RESEARCH ARTICLE Open Access

Power estimation of tests in log-linear non-
uniform association models for ordinal
agreement
Fabien Valet1* and Jean-Yves Mary2

Abstract

Background: Log-linear association models have been extensively used to investigate the pattern of agreement

between ordinal ratings. In 2007, log-linear non-uniform association models were introduced to estimate, from a

cross-classification of two independent raters using an ordinal scale, varying degrees of distinguishability between

distant and adjacent categories of the scale.

Methods: In this paper, a simple method based on simulations was proposed to estimate the power of non-

uniform association models to detect heterogeneities across distinguishabilities between adjacent categories of an

ordinal scale, illustrating some possible scale defects.

Results: Different scenarios of distinguishability patterns were investigated, as well as different scenarios of

marginal heterogeneity within rater. For sample size of N = 50, the probabilities of detecting heterogeneities within

the tables are lower than .80, whatever the number of categories. In additition, even for large samples, marginal

heterogeneities within raters led to a decrease in power estimates.

Conclusion: This paper provided some issues about how many objects had to be classified by two independent

observers (or by the same observer at two different times) to be able to detect a given scale structure defect. Our

results also highlighted the importance of marginal homogeneity within raters, to ensure optimal power when

using non-uniform association models.

Background
Initially developped in psychometrics to assess the sever-

ity of behavioral troubles or disturbances [1-3], ordinal

rating scales (ORS) are now essential tools in health

research and health care: for example to measure clini-

cal outcomes such as symptom grading [4], pathologists

finding [5], disease severity [6], treatment response

[7-9], as well as health-related quality of life [10,11].

When the same objects are classified twice on a scale,

differences in perception of one observer to another, or

of the same observer at two successive times, lead to

inter-rater and intra-rater variability. For patients, repro-

ducibility of ratings made using an ORS is a major issue

because their classification into one of the different cate-

gories may have important consequences on their

therapeutic follow-up and possibly on their quality of

life. There are two main components of reproducibility.

The first component is marginal homogeneity between

raters, which corresponds to the differences in raters

marginal distributions and refers to the tendencies of a

rater to make classifications higher or lower than those

of the other rater. The second component is category

distinguishability, that is to say the ability for observers

to distinguish between categories. Recently, non-uniform

association models (NUA) were proposed by Valet et al.

[12] to estimate degrees of distinguishability between

adjacent categories of an ORS. These models allowed to

test different patterns of distinguishability and then to

give information of the scale structure quality.

When designing a reproducibility study with two

observers (or one observer at two different times) asses-

sing the same objects on an ORS, two major questions

have to be solved: How many objects has to be classified

by the two observers to be able to detect a given
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heterogeneous pattern of distinguishability between

adjacent categories? Is it important to select these

objects in an attempt to approximate some marginal

distributions? In this study, simulations were used to

estimate the power of non-uniform association models

to detect heterogeneities across distinguishabilities

between adjacent categories as a function of typical dis-

tinguishability patterns and total number of objects clas-

sified, assuming homogeneous marginal distribution

within reader and between readers. Then, for the same

numbers of objects classified twice, the influence of dif-

ferent patterns of marginal heterogeneity within reader

on power estimate was studied.

Methods
Log-linear non-uniform association models

Log-linear modelling and parameters interpretation

Classifications of N objects by two independent raters A

and B (or by the same rater at two different times)

using an ORS with I categories can be summarized in a

I × I contingency table. In this table, let us define counts

nij as the numbers of objects rated i (i = 1,..., I) by

observer A and j (j = 1,..., I) by observer B, and suppose

that these counts have a full multinomial distribution

with expected mean mij = N × πij , where N is the sam-

ple size, and πij is a probability distribution on the cells

of the I × I table. Log-linear modelling expresses the

logarithm of these mij as a linear combination of para-

meters that illustrates raters effects on categories, as

well as sources of agreement and disagreement. For the

independence model, which assumes that ratings are

statistically independent, the model is written as:

Log mij = µ + λA
i + λB

j , (1)

where μ is the overall effect and λA
i and λB

j are A and

B effects on category i and j, respectively. For this

model, agreement between raters is expected to be due

to chance only.

When analyzing agreement in ordered contingency

table, we can usually expect an association between rat-

ings due to the natural ordering of the scale. As

described by several authors [12-15], this association

between rating is expected to increase as the distance

between categories increases. For instance on a five-level

severity scale, if an object is rated “1” by A, the probabil-

ity for this object to be rated “5” by B is very low [16].

This association can be expressed through odds ratio τij

= miimjj/mijmji. An odds ratio value equal to 1 indicates

that the two ratings are independent. From odds ratio

τij, Darroch and McCloud defined νij = 1 − τ−1
ij as the

degree of distinguishability (DD) between two categories

of an ORS, that is to say the readers’ ability to

distinguish between these two categories [17]. A DD

value close to 1 indicates an almost perfect distinguish-

ability between the two corresponding categories

whereas a DD value close to 0 indicates that these two

categories are very hard to distinguish.

Uniform Association (UA) and Non-Uniform Association

(NUA) models

In order to take into account this association, Goodman

introduced the uniform association (UA) model. In

2007, Valet et al. [12] proposed an equivalent but sim-

pler parameterization of the UA model as:

Log mij = µ + λA
i + λB

j −
(i − j)2

2
β , (2)

where i = 1,..., I and j = 1,..., I. From the UA model,

odds ratio are written as τij = eβ(i−j)2
. Hence, DDs

between two categories i and j are written as

νij = 1 − e−β(i−j)2
assuming that the DDs between cate-

gories vary according to the distance between them.

However, as pointed out by Valet et al. [12] the DDs

between adjacent categories are supposed to be constant

which can be a limiting a priori hypothesis, since it

assumes that the categories of the scale are regularly

spaced in terms of distinguishabilities; a rather satisfying

property for an ORS. They proposed log-linear non-uni-

form association (NUA) models to take into account the

variations of the DDs between both distant and adjacent

categories of an ORS. For ORS with I ≥ 3, NUA models

are defined by:

Log mij = µ + λA
i + λB

j −
|i − j|

2
×

max(i,j)−1
∑

k=min(i,j)

βk,k+1 (3)

For this model, DDs are written as:

νij = 1 − e

|i − j|

2
× �

max(ij)−1

k=min(ij) βk,k+1

,
(4)

illustrating the possible DDs variations between cate-

gories, even between adjacent ones. NUA models are a

generalization of UA models. Indeed, UA model is a

particular case of a NUA model where parameters bk, k

+1 are all equal (do not depend on k). Comparison of

log-likelihood of data when using UA and NUA models

allows us to test DDs homogeneity between adjacent

categories and can provide useful information on scale

structure. See Valet et al. [12,16] for a complete descrip-

tion of the NUA models and the possible patterns of

distinguishability that can be tested.

Power estimation of tests in NUA models

To investigate the ability of NUA models to detect het-

erogeneities within the DDs between adjacent categories,
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a simple method was proposed to simulate ordered con-

tingency tables resulting from the use of ORS having

different patterns of distinguishability between their

adjacent categories. Hereafter, tests were defined for a

null hypothesis H0 corresponding to the UA model

defined by equation (2), and alternative hypotheses H1

corresponding to NUA models defined by equation (3).

Different scenarios of DDs heterogeneity were proposed

to illustrate different typical scale structures. In all situa-

tions, marginal homogeneity between readers was

assumed, which can be expressed as:

λA
i = λB

i = λi, i = 1, . . . , I.

Simulation of I × I contingency tables from the NUA models

The total sample size N was fixed, but the row and col-

umn totals were not. Counts nij were drawn from a full

multinomial distribution M(πij,N). In order to simulate

different patterns of DDs heterogeneity between adja-

cent categories, theoretical probabilities πij were defined,

using equation (3), as a function of the parameters of

the NUA model:

πij = πji =
mij

N
=

1

N
× e

µ+λi+λj−
|i − j|

2
×�

max(i,j)−1

k=min(i,j) βk,k+1 (5)

When N and the association parameters bk, k+1 (k =

1,..., I - 1) are fixed, it is obvious that probabilities πij

only depend on the unknown parameters μ and li (i =

1,..., I). These I + 1 unknown parameters can be defined

as the solutions of the following non-linear system of I

+ 1 equations:

{∑

I
j=1mij = N × πS

i. , ∀i = 1, . . . , I
∑

I
k=1λk = 0

(6)

The first set of equations of the system defined by (6)

allows us to control the marginal probabilities distribu-

tion during simulations, i.e. to control marginal prob-

abilities πS
i . (upperscript “S” stands for simulations). The

second condition of the system ensures that μ remains

the overall effect [18]. As the number of equation is

equal to the number of unknown parameters, the system

can be easily solved using classical algorithm that can

find roots of nonlinear systems, as the well-known New-

ton-Krylov method for example [19,20]. However, in

this paper, a new method proposed by Lacruz et al. [21]

was used. This “non-monotone spectral residual”

method can find roots of nonlinear systems, by working

without gradient information and it was shown to be

competitive and frequently better than usual algorithms.

Many different scenarios of distinguishability patterns

can be simulated, using different sets of {bk,k+1; k = 1,...,

I - 1} in the NUA model. Suppose we aim to test all

possible patterns of distinguishability, we will have to

compare the null UA model (all bk, k+1 are equal) and

NUA models with all possible combinations of associa-

tion parameters, i.e. to test all possible equalities

between association parameters. For example, testing

equality of exactly B (B = 2,..., I - 1) association para-

meters in a NUA model with I - 1 association para-

meters would already yield to
∑

B

(

I−1

B

)

+ 1

comparisons. However, our aim was not to simulate

exhaustively all possible patterns of distinguishability

but credible patterns corresponding to typical scale

structures in inter or intra-observer variation study.

Therefore, as defined in Valet et al. [12] only combina-

tions of “symmetric” and “close” association parameters

were considered, that is to say NUA models where

equality of some symmetric and close association para-

meters was assumed, respectively.

Definition of alternative hypotheses

For simplicity, we will consider hereafter contingency

tables resulting from the use of ORS with I = 5 cate-

gories. The generalization to I × I contingency table is

obvious. To exemplify our simulation scenarios, exam-

ples of the different values of association parameters

that can be simulated in the case of a 5 × 5 contingency

table, were described in table 1.

From the UA model where all association parameters

are equal (H0 hypothesis), a different value just for one

association parameter (H1
1 hypotheses) can be used, to

account for a scale defect between two categories only

(categories are regularly spaced along the scale in terms

of distinguishabilities, except two). Equal values for sym-

metric (for instance it is easier to distinguish extreme

categories than to distinguish intermediate categories)

or close (for instance it is easier to distinguish lower

categories on the scale than upper categories) associa-

tion parameters can also be used as described by

hypotheses H2
1. Finally, taking different values for all

association parameters (H3
1 hypothesis) illustrates an

ORS where all categories are irregularly spaced in terms

of distinguishabilities.

Distribution of marginal probabilities

In addition to the different sets of distinguishabilities

values, i.e. different sets {bk,k+1; k = 1,..., 4} illustrating

the different alternative hypotheses that can be tested,

different sets of marginal probabilities {πS
i ; i = 1, . . . , 5}

were assumed for each alternative hypothesis, to investi-

gate the possible effects of marginal distribution hetero-

geneity within reader on NUA models’ ability to detect

significant DDs heterogeneities. These distributions were

chosen in order to illustrate different realistic marginal

distributions that can be observed in contingency table

resulting from the classification of objects on an ORS.

These different sets of marginal probabilities are

described in table 2. The first set corresponds to
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homogeneous distribution of marginal probabilities.

Then, the next three sets corresponds to homogeneous

distributions except for one category with a low preva-

lence. The fourth and the fifth sets corresponds to

homogeneous distributions except for two extreme or

intermediate categories with low prevalences. The last

set corresponds to an heterogeneous marginal

distribution.

Power and Type I error estimation

For each specific set of {bk, k+1; k = 1,..., 4} and

{πS
i ; i = 1, . . . , 5}, parameters μ and li were calculated

using the non-linear system defined by (6). Probabilities

πij of the multinomial distribution were calculated from

equation (5), using the specific set of {bk, k+1; k = 1,..., 4}

and the previously calculated values of μ and li. Then,

10000 simulations of 5 × 5 contingency tables summar-

izing classifications of N objects were drawn. The same

null hypothesis of equal DDs between all adjacent cate-

gories was used. For this null hypothesis, a common

value b1,2 = b2,3 = b3,4 = b4,5 = log(3) was chosen,

corresponding to similar association between adjacent

ratings (τ1,2 = τ2,3 = τ3,4 = τ4,5 = 3) and hence similar

DDs between all adjacent categories. To account for dif-

ferent null hypotheses, we also proposed a common

value of b1,2 = b2,3 = b3,4 = b4,5 log(2) and b1,2 = b2,3 =

b3,4 = b4,5 = log(4). For each simulation, the log-likeli-

hood of UA model (H0) and NUA models defined by H1

were calculated. As proposed by several authors [12,18],

the G2 likelihood ratio-statistic was used to compare

these two models. Indeed, we used the difference statis-

tics �G2 = G2
U A − G2

NU A, which are chi-squared distribu-

ted, with ∆df = dfUA - dfNUA degrees of freedom. For

the different tests corresponding to hypotheses H1
1, H2

1

and H3
1, differences ∆df were equal to 1, 1 and 3, respec-

tively. For each scenario, power was estimated as the

proportion of significant NUA models when applied on

contincency tables simulated under the same alternative

hypothesis. Type one error a was estimated as the pro-

portion of significant NUA models when applied on

contingency tables simulated under the null hypothesis.

Table 1 Examples of association parameters and distinguishability patterns between adjacent categories from NUA

models in a 5 × 5 contingency table

Hypothesis Association parameters Distinguishability patterns

H0 All association parameters are equal

b1,2 = b2,3 = b3,4 = b4,5 = log(3) 1 —— 2 —— 3 —— 4 —— 5

H
1
1

1 association parameter is different

H11
1

b1,2 ≠ b2,3 = b3,4 = b4,5 = log(3) 1 - 2 —— 3 —— 4 —— 5
1—————— 2 - 3 - 4 —— 5

H12
1

b2,3 ≠ b1,2 = b3,4 = b4,5 = log(3) 1 —— 2 - 3 —— 4 —— 5
1 – 2—————— 3 - 4 – 5

H13
1

Β3,4 ≠ b1,2 = b2,3 = b4,5 = log(3) 1———— 2 – 3 - 4 – 5
1 – 2 - 3 ———— 4 - 5

H14
1 Β4,5 ≠ b1,2 = b2,3 = b3,4 = log(3) 1 —— 2 —— 3 —— 4 - 5

1 - 2 – 3 - 4 ———————— 5

H
2
1

2 association parameters are different

H21
1

b1,2 = b2,3 ≠ b3,4 = b4,5 = log(3) 1-2 - 3————4————5
1————2———— 3-4-5

H22
1

b1,2 = b4,3 ≠ b2,3 = b3,4 = log(3) 1–2—— 3—— 4–5
1 —— 2 - 3 - 4 —— 5

All association parameters are different

H
3
1

b1,2 ≠ b2,3 ≠ b3,4 ≠ b4,5 1 - 2 —— 3 – 4 ———— 5

*Distinguishabilities values between two categories are proportionnal to number of dashed-lines between these two categories

Symmetric hypotheses in association parameters: H1
1
and H14

1
, H12

1
and H13

1

Table 2 Sets of marginal theoretical probabilities in a 5 × 5 contingency table used in our simulations

Probabilities π
S

i.
, (i = 1,...,5) Description

.20 .20 .20 .20 .20 Homogeneous distribution

.05 .24 .24 .24 .23 Few counts in first category

.24 .05 .24 .24 .23 Few counts in intermediate category

.24 .24 .05 .24 .23 Few counts in central category

.05 .30 .30 .30 .05 Few counts in extreme categories

.05 .05 .30 .30 .30 Few counts in the first two adjacent categories

.05 .15 .40 .30 .10 Heterogeneous distribution
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Results
All simulations and power estimations were performed

using R software [22]. Association parameters were

equal to log(3) under the null hypothesis (i.e. OR equal

to 3) and for each alternative hypothesis, the values K of

the tested OR ranged from 1 to 16, which corresponds

to association parameters ranging from log(1) = 0, to log

(16) = 2.77. Thus, for a specific alternative hypothesis,

each specific set of association parameters {bk, k+1; k =

1,..., 4} contained some fixed parameters equal to log(3)

depicting the null hypothesis, and some varying para-

meters ranging from 0 to 2.77 depicting the alternative

hypotheses. Simulations results were firstly displayed on

Figure 1, illustrating for each simulated scenario, the

power estimates of tests with alternative hypotheses cor-

responding to the different NUA models tested. In

others words, this figure represents the probability of

finding significant heterogeneities within the DDs

between adjacent categories, according to the total sam-

ple size N, three different alternative hypotheses, and for

different values K of tested OR. Left panel (Figure 1,

examples a. to c.) corresponds to simulated scenarios

with homogeneous marginal distributions within rater,

whereas right panel (Figure 1, examples d. to f.) corre-

sponds to simulated scenarios with three different sets

of heterogeneous marginal distributions. We can

observe that power estimates were constantly lower in

scenarios with heterogeneous marginal distributions

(right panel) as compared to those with homogeneous

marginal distributions (left panel). In some cases, influ-

ence of marginal distributions heterogeneity was even

drastic and strongly penalized NUA models ability in

detecting significant heterogeneities within DDs between

adjacent categories (Figure 1, example d.). For total sam-

ple sizes of N ≤ 100, we can also note that none of the

simulated scenarios provided power estimates greater

than 80%. Conversely, except for example given in Fig-

ure 1, example d., power estimates were greater than

80% for tested OR K ≥ 12, for all the tested hypotheses.

Then, power estimates were given in table 3. Like in

Figure 1, this table shows power estimates as a function

of N, the three different alternative hypotheses, and the

different values K of the tested OR. In a similar way, left

panel corresponds to simulated scenarios with homoge-

neous marginal distribution, whereas right panel corre-

sponds to different situations of heterogeneity within

marginal distributions. For example, from the null

hypothesis that all OR are equal to 3, i.e. DDs between

all adjacent categories equal to 2/3, the power estimates

of test corresponding to i) an alternative given by H11
1 :

b1,2 ≠ b2,3 = b3,4 = b4,5, ii) an homogeneous marginal

distribution, and iii) a total sample size equal to N =

250, are greater than 80% for OR greater or equal to 10.

In others words, for N = 250, NUA models are able to

detect with a probability greater than 80%, DD between

adjacent categories 1 and 2, greater than 1-1/10=.90. For

the left panel of this table and for the H11
1 hypothesis of

a different DD between the first two adjacent categories

as compared to the others, NUA models are able to

detect with a probability greater than 80%: a null DD or

DDs greater than .92 for N ≥ 200, and DDs greater than

.94 for N ≥ 150. In a similar way, for N = 200, NUA

models are able to detect different DD between close

and symmetric adjacent categories (H21
1 and H22

1 , respec-

tively) with a probability greater than 80% for null DD

or DDs greater than .90.

It is clear that table 3 does not provide power esti-

mates for all possible values of association parameters

tested and hence for all decimal values between K = 0

and K = 2.77. However, interpolation of power estimate

for a specific value of association parameter is straight-

forward. From table 3 suppose for example that we

want to calculate the required sample size for a com-

mon value b1,2 = b2,3 = 2.25. From power estimates cor-

responding to b1,2 = b2,3 = 2.20 (namely .32, .53, .69, .81

and .89) and those corresponding to b1,2 = b2,3 = 2.30

(namely .35, .57, .76, .87 and .92), we can interpolate

those corresponding to 2.25 = 2.20 + (2.30 - 2.20)/2 as

(0.32 + (0.35 - 0.32)/2,..., 0.89 + (.92 - .89)/2. The corre-

sponding new values are then equal to .34, .55, .73, .84

and .91 respectively for N equal to 50, 100, 150, 200 and

250. Then, for a probability equal to .80, that is to say

between .73 (N = 150) and .84 (N = 200), the required

sample size can be interpolated as N = 150 + (200 -

150)/C, where C can be calculated from the following

equation: 0.80 = 0.73 + (0.84 - 0.73)/C. For this example

N has to be greater than 182.61, that is to say greater or

equal to 183.

In a similar way, tables 4 and 5 provided power esti-

mates for the same three different alternative hypoth-

eses, considering at this time the null hypotheses that all

OR are equal to 2 and 4, respectively. These tables allow

the reader to estimate power for different null hypoth-

eses through interpolation. Supplementary tables were

also proposed to account for 4 × 4 (Additional file 1:

table S1) and 6 × 6 (Additional file 1: table S2) contin-

gency tables. In addition, results for different alternative

hypotheses as well as different scenarios and sample

sizes can be easily provided on simple request to the

authors.

Discussion
Results given by Figure 1 andtables 3 to 5 highlighted the

strong influence that marginal heterogeneity within reader

may have on power estimates of tests in NUA models.

Conversely, when assuming marginal homogeneity within
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reader, NUA models are able to detect, from a null

hypothesis of a DD equal to 2/3 between all adjacent cate-

gories and for a reasonable value of N = 200, null DD

(between two or three categories with a probability greater

than 80%. For a five-level scale, with an equal DD of 2/3

between its adjacent categories, NUA models are hence

able to detect two or more confusing categories with a

satisfying power. In the same way, for N = 200, NUA

models are able to detect with a good power two or more

adjacent categories (close or symmetric) for which the

DDs are greater or equal to .92.

In our simulations of contingency tables resulting

from cross-classifications of the same objects twice on

an ordinal rating scale, the assumption of marginal

homogeneity between readers was assumed, which can

be seen as a limiting constraint. However, as described

Figure 1 Power estimates of tests with alternative hypotheses given by H
11
1 : b1,2 ≠ b2,3 = b3,4 = b4,5 = log(3), H

21
1 : b1,2 = b2,3 ≠ b3,4 =

b4,5 = log(3), H
22
1 : b1,2 = b4,5 ≠ b2,3 = b3,4 = log(3) for (a, d), (b, e) and (c, f) respectively. Marginal probabilities are given by

{πS
i ; i = 1, . . . , 5}.
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Table 3 Power estimates of tests in a 5 × 5 table, as a function of N, with three different alternative hypotheseses
(

H
11
1 , H21

1 , and H
22
1

)

, with homogeneous (left column) and heterogeneous (right column) marginal theoretical

distributions described by {πS

i.
}. Estimates greater than 80% are in bold

N= 50 100 150 200 250 50 100 150 200 250

H11
1

b12 OR DD a. {πS
i. } = { .20,.20,.20,.20.,20} d. {πS

i. } = { .05,.24,.24,.24.,23}

.00 1 .00 .34 .57 .74 .85 .92 .21 .30 .43 .54 .63

.69 2 .50 .10 .12 .16 .19 .21 .10 .10 .10 .11 .13

1.10 3 .67 .07 .06 .06 .05 .05 .09 .10 .07 .06 .06

1.39 4 .75 .08 .08 .10 .11 .12 .11 .13 .11 .10 .10

1.61 5 .80 .11 .14 .17 .21 .26 .14 .17 .16 .16 .18

1.79 6 .83 .15 .20 .27 .35 .42 .15 .21 .21 .23 .25

1.95 7 .86 .18 .27 .38 .46 .55 .17 .25 .26 .29 .33

2.08 8 .87 .22 .34 .45 .56 .67 .18 .29 .31 .34 .40

2.20 9 .88 .24 .39 .54 .66 .76 .20 .30 .35 .40 .48

2.30 10 .90 .28 .43 .60 .73 .82 .21 .35 .40 .44 .52

2.48 12 .92 .33 .53 .70 .83 .89 .23 .39 .45 .52 .61

2.64 14 .93 .38 .61 .78 .89 .95 .26 .43 .52 .58 .67

2.77 16 .94 .42 .67 .83 .92 .97 .26 .47 .56 .63 .73

H21
1

b12, b23 OR DD b. {πS
i. } = { .20,.20,.20,.20.,20} e. {πS

i. } = { .05,.05,.30,.30,.30}

.00 1 .00 .73 .95 .99 1 1 .59 .84 .96 .99 1

.69 2 .50 .14 .21 .28 .35 .42 .13 .17 .24 .29 .37

1.10 3 .67 .06 .06 .05 .05 .05 .09 .07 .06 .06 .06

1.39 4 .75 .09 .10 .13 .15 .18 .12 .13 .14 .15 .17

1.61 5 .80 .13 .19 .26 .33 .39 .17 .20 .26 .31 .36

1.79 6 .83 .19 .29 .40 .50 .59 .21 .27 .36 .43 .51

1.95 7 .86 .22 .37 .51 .64 .74 .26 .34 .46 .55 .66

2.08 8 .87 .27 .47 .62 .74 .82 .28 .39 .54 .64 .74

2.20 9 .88 .32 .53 .69 .81 .89 .32 .45 .61 .71 .81

2.30 10 .90 .35 .57 .76 .87 .92 .35 .49 .66 .77 .85

2.48 12 .92 .41 .67 .84 .92 .97 .40 .56 .74 .84 .92

2.64 14 .93 .46 .74 .89 .96 .99 .44 .61 .79 .88 .95

2.77 16 .94 .50 .79 .93 .97 .99 .46 .66 .84 .92 .97

H22
1

b12, b45 OR DD c. {πS
i. } = { .20,.20,.20,.20.,20} f. {πi.} = { .05,.30,.30,.30,.05}

.00 1 .00 .37 .64 .80 .90 .95 .18 .32 .45 .57 .67

.69 2 .50 .10 .13 .17 .21 .25 .09 .10 .11 .13 .15

1.10 3 .67 .06 .06 .05 .05 .05 .08 .06 .06 .05 .05

1.39 4 .75 .08 .08 .10 .12 .14 .09 .09 .09 .09 .10

1.61 5 .80 .11 .16 .21 .27 .31 .12 .13 .16 .18 .22

1.79 6 .83 .15 .24 .33 .42 .49 .15 .19 .24 .30 .35

1.95 7 .86 .20 .32 .44 .55 .66 .18 .25 .32 .41 .47

2.08 8 .87 .25 .41 .55 .67 .77 .21 .30 .40 .50 .59

2.20 9 .88 .28 .47 .63 .76 .84 .23 .35 .47 .58 .67

2.30 10 .90 .32 .53 .71 .82 .90 .27 .40 .53 .65 .74

2.48 12 .92 .38 .64 .81 .90 .95 .32 .18 .64 .76 .84

2.64 14 .93 .45 .71 .87 .95 .98 .37 .56 .73 .84 .90

2.77 16 .94 .49 .77 .91 .97 .99 .40 .61 .78 .89 .94

H11
1 : β1,2 �= β2,3 = β3,4 = β4,5 = log(3)

H21
1 : β1,2 = β2,3 �= β3,4 = β4,5 = log(3)

H22
1 : β1,2 = β4,5 �= β2,3 = β3,4 = log(3)
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Table 4 Power estimates of tests in a 5 × 5 table, as a function of N, with three different alternative hypotheseses
(

H
11
1 , H21

1 , and H
22
1

)

, with homogeneous (left column) and heterogeneous (right column) marginal theoretical

distributions described by {πS

i.
}. Estimates greater than 80% are in bold

N= 50 100 150 200 250 50 100 150 200 250

H11
1

b12 OR DD a. {πS
i. } = { .20,.20,.20,.20.,20} d. {πS

i. } = { .05,.24,.24,.24.,23}

.00 1 .00 .22 .38 .51 .59 .72 .14 .16 .21 .26 .32

.69 2 .50 .06 .05 .05 .05 .06 .07 .07 .07 .06 .06

1.10 3 .67 .11 .13 .17 .22 .26 .10 .10 .10 .10 .14

1.39 4 .75 .16 .25 .41 .48 .57 .13 .15 .21 .25 .28

1.61 5 .80 .26 .41 .56 .67 .79 .17 .22 .29 .36 .43

1.79 6 .83 .33 .52 .70 .82 .88 .22 .30 .39 .47 .55

1.95 7 .86 .38 .63 .78 .92 .94 .25 .34 .46 .57 .66

2.08 8 .87 .43 .72 .85 .94 .98 .30 .41 .56 .62 .74

2.20 9 .88 .47 .76 .90 .97 .99 .34 .43 .58 .70 .78

2.30 10 .90 .52 .79 .94 .98 .99 .38 .51 .67 .74 .86

2.48 12 .92 .58 .85 .96 .99 1 .39 .55 .71 .81 .91

2.64 14 .93 .64 .90 .97 1 1 .41 .58 .78 .86 .93

2.77 16 .94 .69 .95 .99 1 1 .46 .62 .84 .88 .97

H21
1

b12, b23 OR DD b. {πS
i. } = { .20,.20,.20,.20.,20} e. {πS

i. } = { .05,.05,.30,.30,.30}

.00 1 .00 .43 .74 .87 .96 .97 .34 .52 .73 .86 .92

.69 2 .50 .06 .06 .05 .05 .06 .08 .07 .06 .06 .05

1.10 3 .67 .12 .20 .28 .37 .44 .16 .19 .28 .35 .40

1.39 4 .75 .24 .41 .57 .66 .78 .28 .41 .54 .62 .74

1.61 5 .80 .34 .57 .78 .86 .93 .36 .52 .71 .81 .89

1.79 6 .83 .42 .69 .86 .95 .97 .40 .62 .81 .89 .94

1.95 7 .86 .51 .78 .90 .97 .98 .48 .71 .89 .94 .98

2.08 8 .87 .53 .85 .95 .98 1 .54 .76 .93 .96 .99

2.20 9 .88 .62 .88 .97 1 1 .55 .80 .94 .97 .99

2.30 10 .90 .64 .90 .97 1 1 .57 .85 .96 .98 1

2.48 12 .92 .69 .93 .99 1 1 .65 .86 .98 .99 1

2.64 14 .93 .73 .96 .99 1 1 .67 .87 .97 1 1

2.77 16 .94 .77 .98 .99 1 1 .71 .93 .99 1 1

H22
1

b12, b45 OR DD c. {πS
i. } = { .20,.20,.20,.20.,20} f. {πi.} = { .05,.30,.30,.30,.05}

.00 1 .00 .20 .37 .52 .63 .74 .10 .16 .27 .32 .37

.69 2 .50 .07 .05 .05 .05 .04 .06 .07 .05 .05 .05

1.10 3 .67 .11 .12 .16 .23 .26 .10 .10 .13 .14 .18

1.39 4 .75 .19 .32 .44 .52 .61 .15 .21 .28 .34 .38

1.61 5 .80 .26 .46 .62 .74 .82 .21 .32 .42 .52 .60

1.79 6 .83 .35 .58 .75 .88 .94 .25 .42 .54 .71 .77

1.95 7 .86 .45 .68 .85 .93 .97 .31 .49 .65 .79 .84

2.08 8 .87 .44 .74 .92 .96 1 .36 .55 .73 .86 .91

2.20 9 .88 .55 .84 .94 .98 .99 .41 .61 .78 .89 .94

2.30 10 .90 .58 .87 .96 .99 1 .47 .67 .85 .92 .96

2.48 12 .92 .66 .91 .99 .99 1 .52 .77 .91 .97 .98

2.64 14 .93 .70 .94 .98 1 1 .53 .82 .93 .98 1

2.77 16 .94 .74 .95 .99 1 1 .58 .85 .96 .98 1

H11
1 : β1,2 �= β2,3 = β3,4 = β4,5 = log(2)

H21
1 : β1,2 = β2,3 �= β3,4 = β4,5 = log(2)

H22
1 : β1,2 = β4,5 �= β2,3 = β3,4 = log(2)
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Table 5 Power estimates of tests in a 5 × 5 table, as a function of N, with three different alternative hypotheseses
(

H
11
1 , H21

1 , and H
22
1

)

, with homogeneous (left column) and heterogeneous (right column) marginal theoretical

distributions described by {πS

i.
}. Estimates greater than 80% are in bold

N= 50 100 150 200 250 50 100 150 200 250

H11
1

b12 OR DD a. {πS
i. } = { .20,.20,.20,.20.,20} d. {πS

i. } = { .05,.24,.24,.24.,23}

.00 1 .00 .40 .66 .82 .92 .97 .21 .31 .43 .50 .65

.69 2 .50 .16 .22 .31 .35 .45 .11 .12 .16 .18 .24

1.10 3 .67 .07 .09 .08 .12 .12 .09 .08 .07 .08 .08

1.39 4 .75 .06 .05 .05 .04 .06 .08 .07 .07 .06 .05

1.61 5 .80 .08 .06 .06 .08 .08 .08 .08 .08 .07 .06

1.79 6 .83 .09 .10 .12 .14 .16 .07 .09 .10 .10 .11

1.95 7 .86 .11 .11 .17 .22 .25 .12 .12 .12 .13 .15

2.08 8 .87 .13 .17 .24 .31 .36 .11 .14 .15 .18 .23

2.20 9 .88 .15 .21 .30 .37 .45 .13 .17 .20 .23 .27

2.30 10 .90 .18 .24 .34 .43 .52 .14 .19 .25 .24 .30

2.48 12 .92 .21 .35 .45 .58 .67 .19 .21 .31 .32 .40

2.64 14 .93 .24 .38 .53 .66 .77 .19 .26 .33 .42 .49

2.77 16 .94 .29 .46 .61 .76 .84 .20 .28 .39 .45 .55

H21
1

b12, b23 OR DD b. {πS
i. } = { .20,.20,.20,.20.,20} e. {πS

i. } = { .05,.05,.30,.30,.30}

.00 1 .00 .85 .99 1 1 1 .71 .92 .99 1 1

.69 2 .50 .23 .43 .60 .67 .76 .22 .34 .50 .61 .72

1.10 3 .67 .09 .12 .13 .15 .18 .11 .10 .11 .11 .15

1.39 4 .75 .05 .05 .05 .06 .05 .07 .06 .08 .06 .05

1.61 5 .80 .07 .08 .11 .10 .10 .11 .08 .10 .10 .11

1.79 6 .83 .11 .11 .15 .21 .22 .16 .13 .17 .17 .20

1.95 7 .86 .14 .18 .25 .28 .35 .16 .19 .21 .29 .30

2.08 8 .87 .14 .22 .31 .40 .45 .18 .23 .27 .30 .42

2.20 9 .88 .17 .29 .41 .50 .57 .23 .26 .36 .39 .49

2.30 10 .90 .23 .33 .49 .56 .69 .23 .30 .40 .46 .53

2.48 12 .92 .25 .41 .59 .73 .81 .28 .33 .49 .57 .67

2.64 14 .93 .29 .51 .67 .79 .86 .32 .42 .55 .65 .76

2.77 16 .94 .30 .56 .75 .86 .92 .35 .47 .60 .71 .81

H22
1

b12, b45 OR DD c. {πS
i. } = { .20,.20,.20,.20.,20} f. {πi.} = { .05,.30,.30,.30,.05}

.00 1 .00 .45 .77 .90 .97 .99 .26 .47 .60 .71 .82

.69 2 .50 .14 .26 .36 .44 .50 .11 .15 .21 .25 .32

1.10 3 .67 .08 .09 .10 .13 .12 .08 .09 .08 .09 .10

1.39 4 .75 .05 .06 .05 .05 .06 .08 .06 .06 .06 .06

1.61 5 .80 .06 .07 .08 .07 .09 .10 .08 .09 .08 .07

1.79 6 .83 .08 .12 .14 .16 .21 .12 .11 .12 .14 .14

1.95 7 .86 .12 .15 .20 .24 .33 .14 .14 .17 .19 .23

2.08 8 .87 .13 .22 .28 .38 .44 .14 .17 .22 .28 .33

2.20 9 .88 .20 .25 .36 .47 .56 .17 .20 .27 .35 .41

2.30 10 .90 .20 .31 .46 .55 .66 .17 .22 .33 .41 .49

2.48 12 .92 .26 .38 .54 .67 .80 .23 .31 .43 .50 .60

2.64 14 .93 .28 .50 .64 .77 .87 .26 .42 .51 .63 .73

2.77 16 .94 .35 .55 .75 .87 .90 .29 .45 .61 .70 .79

H11
1 : β1,2 �= β2,3 �= β3,4 �= β4,5 = log(4)

H21
1 : β1,2 �= β2,3 �= β3,4 �= β4,5 = log(4)

H22
1 : β1,2 �= β4,5 �= β2,3 �= β3,4 = log(4)
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by the authors [12,16], NUA models are based on the

assumption that in agreement studies, high values of

counts are expected on the diagonal of the contingency

table, and on the parallels immediately over and below

this diagonal, whereas low values of counts are expected

in others parts of this contingency table. Thus defined,

NUA models are suitable for contingency tables with

marginal homogeneities and may not be adapted for

contingency tables showing others patterns of marginal

distribution. In addition, it should be noticed that such

patterns of contingency tables usually show a baseline

non null association between adjacent ratings, what may

consolidate the choice of OR = 3 under the null

hypothesis.

For each simulations, the algorithm of Lacruz et al.

[21] was used to estimate parameters μ and li. Like

many others systems, this system of non-linear equa-

tions appeared to be very sensitive to initial values. In

order to handle this problem and to avoid local maxi-

mums, solutions μ and li of each system associated to a

specific value K of the tested OR were used as initial

parameters of the following system with the next tested

K value.

In this simulation study we presented three alternative

hypotheses illustrating different patterns of distinguish-

ability between adjacent categories. The first tested

hypothesis H11
1 (DD between categories 1 and 2 different

from the others), the corresponding symmetric hypoth-

esis (DD between categories 4 and 5 different from the

others), and the last hypothesis H22
1 (DDs between

extreme adjacent categories different from the others)

allow to detect significant differences between extreme

adjacent categories (1 and 2, 4 and 5 or both) and

others intermediate ones. This is a usual pattern in ordi-

nal rating scales, as the first category often corresponds

to “no intensity” and the last one often corresponds to

the “highest intensity” of the measured phenomenon.

These two extreme adjacent categories are more likely

to be distinguishable than the others because they corre-

spond to extreme situations. Finally, the second hypoth-

esis H21
1 (DDs between close adjacent categories from 1

to 3 different then the others) and the corresponding

symmetric one (DDs between close adjacent categories

from 3 to 5 different from the others) allow to detect

higher or lower DDs between some close adjacent cate-

gories of the scale. This can also be a typical pattern

corresponding for example to ordinal scale where some

consecutive grades shows many similarities and may be

hard to distinguish.

Conclusions
In this paper we proposed a new simple method based

on simulations, to estimate power of tests in log-linear

non-uniform association models. To this aim, we first

presented a method to simulate contingency tables

resulting from cross-classifications of the same objects,

using ordinal rating scales having different patterns of

distinguishability between their adjacent categories.

Then, taking typical situations of scale structures, we

proposed a table summarizing the main effects of sam-

ple size, alternative hypotheses and marginal distribu-

tions on power estimates for the detection of DDs

heterogeneities within the scale structure. Results were

given for three typical alternative hypotheses, and in the

case of an 5 × 5 contingency tables.

In health-research assessment of disease severity or

patients’ well being are more and more performed using

ordinal rating scales. One of the major component of an

ordinal scale is category distinguishability between its

adjacent categories. Using a simple method based on

simulations, this paper provided some issues about how

many objects has to be classified by two observers to be

able to detect a given scale structure defect, what may

be of prime interest to improve ordinal scale quality and

then others assessments made using this scale.

Additional material

Additional file 1: Power estimates of tests in a 4 × 4 table, as a

function of N, with three different alternative hypotheseses
(

H
11
1 , H21

1 , and H
22
1

)

, with homogeneous (left column) and

heterogeneous (right column) marginal theoretical distributions

described by {{πS

i.
}}. Estimates greater than 80% are in bold. This table

provided in the case of 4 × 4 contingency tables, power estimates, with

three different alternative hypotheses and considering homogeneous

(left column) and heterogeneous (right column) marginal theoretical

distributions.
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