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Abstract

We provide easily verifiable conditions for the well-posedness of the optimal investment
problem for a behavioral investor in an incomplete discrete-time multiperiod financial market
model, for the first time in the literature. Under suitable assumptions we also establish the
existence of optimal strategies.

Keyword : Optimisation, existence and well-posedness in behavioral finance, “S-shaped” utility
function, distorsion, Choquet integral.

1 Introduction

A classical optimization problem of mathematical finance is to find the investment strategy that
maximizes the expected von Neumann-Morgenstern utility of the portfolio value of some economic
agent, see e.g. Chapter 2 of Follmer and Schied [2002]. In mathematical terms, Fu(X) needs to
be maximized in X where u is a concave increasing function and X runs over values of admissible
portfolios.

In the paper Kahneman and Tversky [1979], based on experimentation, the authors contest
the expected utility paradigm and propose the cumulative prospect theory. This theory asserts
that: first, agents behave differently on gains and on losses. Second, agents overweight small
probabilities and underweight large probabilities. Third, agents evaluate assets in comparison
with some benchmark rather than based on final wealth positions. This can be translated into
mathematics by the following assumptions: investors use an “S-shaped” utility function u (i.e.
u(z) = ug (), x > 0; u(x) = —u_(—2), < 0 where uy,u_ : Ry — R are concave and increasing)
and they also distort the probability measure: instead of expectations, Choquet integrals appear.
Furthermore, maximization of their objective function takes place over the random variables X — B
where B is a fixed (stochastic) reference point and X, again, runs over the values of admissible
portfolios.

That paper triggered an avalanche of subsequent investigations, especially in the economics
literature. See the references of Jin and Zhou [2008] for a sample relevant to our present discussions.
Mathematical treatments rarely went beyond simple, one-step models (we only know of Berkelaar
et al. [2004], Jin and Zhou [2008] and Carlier and Dana [2011] where multiperiod models are
studied; in Berkelaar et al. [2004], however, no probability distortion is considered). The reason
for this, as pointed out in Jin and Zhou [2008], is the presence of massively difficult obstacles:
the objective function is non-concave and the probability distortions make it impossible to use
dynamic programming and the related machinery based on the Bellmann equation.

In Jin and Zhou [2008] a rather specific continuous-time market model (driven by Brownian
motion) is treated. As this model is complete (all “reasonable” random variables can be realized



by continuous trading), the behavioral investment problem can be reduced to a (still very difficult)
static optimization over a set of random variables.

The arguments of both Jin and Zhou [2008] and Carlier and Dana [2011] heavily rely on
completeness and there has not yet been any treatment of discrete-time multiperiod models in the
literature. In the present article we make a substantial step ahead by studying this problem in
a multiperiod, generically incomplete market model. We allow for a possibly stochastic reference
point B and need no concavity assumptions on uy,u_: only their behavior at infinity matters.

The issue of well-posedness is a recurrent theme in this literature (see Bernard and Ghossoub.
[2010], He and Zhou). As far as we know, our Theorem 4.3 below is the first result of its kind for
discrete-time multiperiod models.

The conditions in Jin and Zhou [2008] are not easily checked and have no obvious interpre-
tations. Here we manage to provide intuitive and easily verifiable conditions which apply in the
case where uy,u_ and the probability distortions are all “power-like” functions satisfying certain
parameter constraints and where appropriate moment conditions hold for the price process. We
also give examples providing parameter restrictions which are necessary for well-posedness.

Existence of optimal strategies is fairly subtle in this setting. Assuming a certain structure for
the information flow (see Assumption 5.1) we manage to establish an existence result in Theorem
5.6 below. Finally, we exhibit examples showing that our assumptions are satisfied in a reasonably
large class of models.

The paper is organized as follows: in section 2 we introduce our models; section 3 presents
examples pertinent to the well-posedness of the problem; section 4 provides a sufficient condition
for well-posedness in a multiperiod market; section 5 proves the existence of optimizers under
appropriate conditions, section 6 gives examples while section 7 contains technical material.

2 Market model description

Let (Q,F, (Fi)o<i<r, P) be a discrete-time filtered probability space with time horizon T € N.
The set of m-dimensional F;-measurable random variables will be denoted by =7".

Let {S;, 0 <t < T} be a d-dimensional adapted process representing the (discounted) price of
d securities in the financial market in consideration. The notation AS; := S; — S;_1 will often be
used. Trading strategies are given by d-dimensional processes {6;, 1 <t < T'} which are supposed
to be predictable (i.e. 6; is F;_1-measurable). The class of all such strategies is denoted by ®.

Trading is assumed to be self-financing, so the value process of a strategy 6 € ® is

t
X7 =24 0;AS;,
j=1
where z is the initial capital of the agent in consideration and the concatenation xy of elements
z,y € R? means that we take their scalar product.

Consider the following technical condition (R). It says, roughly speaking, that there are no
redundant assets, even conditionally, see also Remark 9.1 of Follmer and Schied [2002].

(R) The support of the (regular) conditional distribution of AS; with respect to Fi_1 is not
contained in any proper affine subspace of R%, almost surely, for all1 <t < T.

The following absence of arbitrage condition is standard, it is equivalent to the existence of a
risk-neutral measure in discrete time markets with finite horizon, see e.g. Dalang et al. [1990].

(NA) If X%H >0 a.s. for some 6§ € ® then X%e =0 a.s.

The next proposition is a trivial reformulation of Proposition 1.1 in Carassus and Rasonyi
[2007].



Proposition 2.1. The condition (R) + (NA) is equivalent to the existence of Fy-measurable pos-
itive random variables ky, T, 0 <t < T — 1 such that

ess. inf P(EAS 11 < —ki|€| /Fy) > 7y acs.

§EE]

Let W denote the set of R-valued random variables Y such that E|Y|? < oo for all p > 0. This
family is clearly closed under addition, multiplication and taking conditional expectation. The
family of nonnegative elements in W is denoted by W+. With a slight abuse of notation, for a
d-dimensional random variable Y, we write Y € W when we indeed mean Y| € W. We will also
need W;," := WH n=l.

We now present the hypotheses on the market model that will be needed for our main results
in the sequel.

Assumption 2.2. For allt > 1, AS; € W. Furthermore, for 0 <t < T —1, there exist 1y, m € =}
satisfying 1)k, 1/m € W, such that

ess.§i€njd ((ASi1 < —rel€|/Fe) = a.s. (1)
=t

The first item in the above assumption could be weakened to the existence of the Nth moment
for IV large enough but this would lead to complications with no essential gain in generality, which
we prefer to avoid. In the light of Proposition 2.1, (1) is a certain strong form of no-arbitrage.
Section 6 exhibits concrete examples showing that Assumption 2.2 holds in a broad class of market
models. We note that, by Proposition 2.1, Assumption 2.2 implies both (NA) and (R) above.

Now we turn to investors’ behavior, as modeled by cumulative prospect theory, see Kahneman
and Tversky [1979], Tversky and Kahneman [1992]. Agents’ attitude towards gains and losses will
be expressed by the functions u4,u_. Agents are assumed to have a (possibly stochastic) reference
point B and a distorted view of reality expressed by the probability distortion functions w,w_.

Formally, we assume that uy,u_ : Ry — R, are nondecreasing, continuous functions with
u4(0) = u_(0) = 0. We fix B, a scalar-valued random variable. The functions wy,w_ : [0,1] —
[0, 1] are nondecreasing and continuous with w4 (0) = w_(0) =0 and w4 (1) = w_(1) = 1.

Remark 2.3. Actually, the main results of the present article need less about u+, w4 than stip-
ulated here, in particular, about continuity and monotonicity. But as these are fairly natural
requirements for agents’ preferences, we make these assumptions throughout the paper.

Example 2.4. A typical choice is taking
uy(z) = 2%, u_(x) = ko’
for some k > 0 and setting

Y t0
=m0 G g

with constants 0 < «, 8,7, < 1. In Tversky and Kahneman [1992], the following choice was made:
a=0=0.88, k=225 v=0.61 and § = 0.69.

We define, for X, € E(l) and 6 € ¢,

VH(Xo:01,. .., 07) = /Ooow+ (P (u+ ([Xffoﬂ —BL> > y)) dy,
V= (Xo:01,....070) = /OOO w_ (P (u ([X;W —B]_) > y)) dy,

and



and whenever V'~ (Xg;01,...,07) < oo we set
V(Xo0;01,...,07) =V (Xo;01,...,070) =V (Xo;04,...,07).
We denote by A(X() the set of strategies § € ® such that
V- (Xo:61,...,00) < 0
and we call them admissible (with respect to Xj).

Remark 2.5. If there were no probability distortions (i.e. w4 (t) = w_(t) = t) then we would sim-
ply get V' (Xo: 61, ..., 07) = Eus ([Xifm" - B} ) and V= (Xo: 61, ...,0r) = Eu_ ([Xifoﬁ - B} )
+ —

i.e. the expected “utility” of gains (resp. losses) with respect to the given reference point B.
We refer to Carassus and Pham [2009] for the explicit treatment of this problem in a continuous
time, complete case under the assumptions that w, is concave, u_ is convex and B is deterministic.

The present paper is concerned with maximizing V(Xq;601,...,07) over 8 € A(Xy). We seek
to find conditions ensuring well-posedness, i.e.

sup V(Xo;6y,...,07) < oo,
0cA(Xo)

and the existence of §* € A(Xy) attaining this supremum.

3 A first look at well-posedness

For simplicity we assume that u, (r) = 2% and u_(z) = z” for some 0 < «, 8 < 1; the distortion
functions are w, (t) = t7, w_(t) = t° for some 0 < 7,5 < 1. The example given below applies also
to w4, w_ with a power-like behavior near 0 such as those in Example 2.4 above.

Let us consider a two-step market model with Sy = 0, AS; uniform on [—1,1], P(ASy; = £1) =
1/2 and ASs is independent of AS;. This choice assures that there is absence of arbitrage. Let
Fo, F1,Fo be the natural filtration of Sy, S7, Ss.

Let us choose initial capital Xy = 0 and reference point B = 0. We consider the strategy given
by 6; = 0 and 62 = g(AS;) for some measurable g : R — R such that the distribution function of
02 is 1

Fly) =0, y <1, F(y)zlfy y=>1,

where ¢ > 0 will be chosen later; such a g exists as AS; has uniform law. It follows that

o . © 1 1
VK00 = [ PUGAST >0 = [ g
and
_ 01 0,) — > N B _ 11 d
V7 (Xo;61,02) = ; P°((02A82)2 > y) = . 20 yto/B Y-

If we have /7 > (/¢ then there is ¢ > 0 such that

o4 34

1< =

. <1<%
which entails V= (Xg;61,62) < oo and V*+(Xg;601,02) = oo so the optimization problem becomes
ill-posed.



One may wonder whether this phenomenon could be ruled out by restricting the set of strategies
e.g. to bounded ones. The answer is no. Considering 6;(n) := 0,602(n) := min{fs,n} for n € N we
obtain that V*(X;61(n),02(n)) — oo, V= (Xo;61(n),02(n)) — V= (Xo;01,602) < oo by monotone
convergence, which shows that we still have

SipV(Xo;wl,wg) = o0,

where 1 ranges over the family of bounded strategies.

This shows that the ill-posedness phenomenon is not just a pathology but comes from the fact
that one may use the information available at time 1 when choosing the investment strategy 6s.

We mention another case of ill-posedness which is present already in one-step models, as noticed
in He and Zhou and Bernard and Ghossoub. [2010]. We generalize a bit the previous setting,
Uy, u—, ASy remain unchanged but we allow general distortions, assuming only that w (¢), w_(t) >
0 for ¢ > 0. The market is defined by Sy = 0, AS; = £1 with probabilities p,1 — p for some
0 < p < 1and AS; is independent of AS;. Take 6;(n) =0 = Xy = B and 63(n) :=n, n € N, then
VH(Xo;01(n),02(n)) = n®wy(p) and V= (Xo;01(n),02(n)) = nPw_(p). If @ > 3 then, whatever
wy,w_ are, we have V(Xo;601(n),02(n)) — oco. Hence, in order to get a well-posed problem one
needs to have o < 3, as already observed in Bernard and Ghossoub. [2010] and He and Zhou.

We add a comment on the case @ = 3 (the choice of Tversky and Kahneman [1992]): whatever
w4, w— are, we may easily choose p such that the problem becomes ill-posed.

Since it would be difficult to exclude such a simple types of probability laws for ASs on economic
grounds we are led to the conclusion that in order to get a mathematically meaningful optimization
problem for a reasonably wide range of price processes one needs to assume both

a<fB and afy<g/s (2)

In the following section we propose an easily verifiable sufficient condition for the well-posedness
of this problem in multiperiod discrete-time market models. The decisive condition we require is
a/y < B, see (7) below. This is stronger than (2) but still reasonably general. If w_(t) = ¢
(i.e. 6 =1, no distortion on loss probabilities) then (7) is essentially sharp, as the present section
highlights.

4 Well-posedness in the multiperiod case

Assumptions 2.2, 4.1 and 4.2 will be in force throughout this section. We first present the
conditions we need on u4,w+. Basically, we require that u+ behave in a power-like way at infinity
and wy do likewise in the neighborhood of 0. Condition (7) has already been mentioned in the
previous section. It has a rather straightforward interpretation: the investor takes losses more
seriously than gains and the distortion on gains is not too strong so that it is still outbalanced by
loss aversion (as represented by parameter (3). We stress that no concavity assumption is made on
U4, u—, unlike in all related papers.

Assumption 4.1. We assume that

up(r) < kpa® +ky, (3)
kol k. < u_(x), (4)
wy(z) < ga7, (5)
w_(x) > fx,, (6)
with 0 < o, 3,7 <1, kx,ky, g, f > 0 fized constants and
Q@
— < p. 7
5 (7)

This allows us to fix A such that Ay > 1 and Ao < 3.



We remark that the functions in Example 2.4 satisfy Assumption 4.1 whenever (7) holds.
The assumption below requires that the reference point B should be comparable to the market
performance in the sense that it can be sub-hedged by some portfolio strategy ¢ € ®.

Assumption 4.2. We fix a scalar random variable B such that, for some strateqy ¢ € ® and for
some b € R, we have

T
X732 =b+Y ¢AS < B. (8)

t=1
The main result of the present section is the following.

Theorem 4.3. Under Assumptions 2.2, 4.1 and 4.2,

sup V(Xo;61,...,07) < oo,
0cA(Xop)

whenever Xo € Z§ with E|Xo|? < oo.

In particular, the result applies for X a deterministic constant. We need to do some preparatory
work before proving Theorem 4.3.

Lemma 4.4. There exist constants IE,[, (> 0, such that

T
V*(Xo;01,...,0r) < kE <1 X+ Y (O — %)ASM) 9)
n=1
= ‘7+(X0;913"'70T)a
T ~
V_(X(];017...,9T) 2 gE <[X(]+Z(0n —¢n)ASn —b}ﬁ> —E (10)
n=1

= V’(XO;Gl,...,GT).
Proof. We will use the facts that for 0 < n <1 one has
o+ y[" < [af”+ Jy|" (11)

for all z,y € R and for 1 < 7 we have |z + y|7 < 27 (|2|7 + |y|7).
We get, using (5) and Chebishev’s inequality:

s B (w}([Xo + S h_y 0n S, — Bly))
yM

V+(X0;01,...,9T) §1+g/
1

dy (12)

Evaluating the integral and using (3) we continue the estimation as

V+<X0;017"'76T>

IN

T
g A—17.) A A—17.A
1—|—mE‘Y (2 k:+[XO—|— E HnASn—B}i + 2 k+>

n=1

T
g Aol—1 _ al al
o [RY <E<|Xo+n§_jl<en 62)DS 1) + b )

+ky 22 1],

1+

using the rough estimate ¥ < x 4+ 1, x > 0, Assumption 4.2 and the fact that C; > C5 implies
that (Y — C1)4+ < (Y — C3)4. This gives the first statement. For the second inequality note that,



by (6) and Assumption 4.2,

. T
Vi(X0§917---70T) Z f/o P(“—([XO+Z(07L¢n)ASnb}—)Zy> dy
T
= fEu_ <[XO+Z(97L_¢H)ASTL_Z)}—>
n=1
> fk_ E<X0+Z — n)AS, —b)? )—fk_.

Whenever V_(Xo; 01,...,07) < 0o, we set
V(Xo301,...,07) ==V (Xo;01,...,00) — V™ (Xo:01,...,07).

For X, € 2} we also introduce A(X) as the set of # € ® such that V= (Xg;6y,...,07) < cc.

For proving Theorem 4.3, we will make use of an auxiliary optimization problem with objective
function V(XO; 01,...,07). As no probability distortions are involved this time, we can perform
a kind of dynamic programming on this auxiliary problem. To this end we introduce, for all
t=0,....,7, Xy €Z} and 0, € = n >t + 1 the quantities

n17

Vit (Xe;0i41,...,07) = kE <1+|Xt+ > (0n — dn)AS, a,\/]_-t>7

n=t+1

T
Vi (Xt;0441, -, 07) = (E ([Xt + Y (0 — ¢n)AS, — b]%’ﬁ) -1

n=t+1
Whenever f/t_ (Xt;0¢41,...,07) < 00 a.s., we also define
Vi(Xe: 011y, 07) := V,H (X301, - .., 00) — Vi (X3 0041, ..., 07).
We denote by fit(Xt) the set of (6411,...,07) such that ‘7; (X¢;0141,...,07) < 00 as.

Remark 4.5. Cleatly, (011, ...,0r) € A,(X;) implies (1, -, 07) € Appm (Xt 00T (6,—

On)AS,,), for m > 0; this follows from the tower law for conditional expectations and the fact that
a bounded from below and integrable random variable is almost surely finite. For the same reason,
A(Xp) € Ag(Xp) and, by Lemma 4.4, A(Xy) C A(Xp).

The crux of our arguments is contained in the next result.

Lemma 4.6. For each 0 < t < T, there exist C! € WF, n =t

) - yoo, I — 1 such that, for
(Or11,...,07) € A(Xy),

%(Xﬁ Ot+1,-..,07) < ‘Zf(Xﬁ ét+1, ooy Or),
where (By41, . ..,07) € A (X;) satisfies
16 — dul < Cp_1[1 X + 1], (13)

forn=t+1,...,T, whenever X; € Z}.



Proof. Notice that for ¢ = T the statement of the Lemma is trivial as there are no strategies
involved. Let us assume that the Lemma is true for ¢ + 1, we will deduce that it holds true for
t7 too. Let Xt € E% and (9t+17~~'79T) S At(Xt) L(Nﬂt Xt+1 = Xt + (9t+1 - ¢t+1)ASt+17 then
X,41 € 2}, and by Remark 4.5, (0442,...,07) € A;11(X;11). By induction hypothesis take
(0t+2, ey GT) € At+1(Xt+1) such that

105, — dn| < CEELXG + (Brs1 — Geg1)ASpya| + 1] (14)

and Vi1 (Xeg1; 0042, -, 07) < Vg1 (Xeq1;0p42, ..., 07). Tt is clear from (14) that

T
> (On = ¢n)AS,| < H(IXy + (Brs1 — br41)ASeia| + 1)
n=t+2
for H = ZZ::H_Q CI1IAS,| € WH. We have
Vi(Xt50041,-.,07) = EVigr(Xe + (041 — hr41)ASii15 014, 07) [ F)
< BV (Xe + (Op41 — 141)ASi41: 042, ..., 07) | F)
= W(Xt;9t+179t+23-'-39T)' (15)
Fix some a\ < x < 3, we continue the estimation of \Zf = f/tJr(Xt; 9t+1,ét+2, A éT) using the

(conditional) Holder inequality for ¢ = x/(aX) and 1/p+1/¢ = 1.

Vit < E[1+ BE(X: 4 (01 — dp1) ASepa|*Y/ Fo)+
E(HMX; + (041 — dr41)ASy 1| + HYYFy)]

< R [TH XN+ 01— G| P E(AS | F) + BYPH F) (
BY9( X} F) + EYU(|0 11 = dra M ASpa [}/ F) ) + BH™/F)
<k [1 F XN + 1001 — G| P E(AS 11" Fy) + EVP(HSP [ F) (1 X

b1 — Gt [V EVI(AS [}/ F) ) + B(HF)]

It follows that, for an appropriate H; in W,

Vi(Xt;0041s...,07) < [+ H, (14X + 041 — bria]|*) —

T
(E ([Xt + (041 — Pr41)ASe41 + Z (6 — dn)AS, — bﬁ/ﬂ) (16)
n=t+2
By Lemma 4.7, the event
A= {(0n — ¢n)AS, <0, n >t +2; (Br1 — dr41)ASer1 < —kelfrs1 — Prir|}

satisfies P(A|F;) > 7, with 1/#, € W;", hence considering

P { 10141 — Dry1|me

el 1)+ 101} (17)

_ B
1pE <1A <|9t+1 2¢t+1lﬁt) /ft)

o B
(|9t+1 ¢t+1ﬁt> Al (18)

we have (recall that X¢11 = Xt + (0441 — de41)ASt41),

Y

T
1FE ([XtJrl + Z (én - ¢n)ASn - b]ﬁ/}—t>

n=t+2

2



As a little digression we estimate

‘Zf(Xtv ¢t+la .. '7¢T)

B (R(L+ X0 — (X0~ b7 /F,) +1
> X7 —ep)”. (19)
Let us now choose the F;-measurable random variable C} so large that on the event
Fi={|0p41 — ¢ | > G X + 1]}

we have

041 — i
M > |X|+b| (thatis, F C F holds)

B B
C(Ben = bmlie) "2 5 (o4 ) x, P2,
3 2

—_ ﬂ 0
S L Y A AL Oy
3 2

B B
ﬁ(W) T > Hil0r = 6™

One can easily check that such a Cf exists and is in W;™. On F we have, using | X;|** < |X;|% +1
and thanks to (16), (18) and (19):

Vi( X3 00415, 07) — Vi(Xis bpiny - 7)< C+ Hy (24| Xe|? + [0r1 — Prg1|*) —

_ B
‘ ('9t+1 2@*1"“) Fo+ 00X, + 0)p]?

< (04 H)I Xl + Hi|0p1 — doia|* + 2H,
bl — ¢ (W)ﬁm +i
< 0. (20)
Consequently, defining
Ore1 = Grr1lp+ 011z,
O, = ¢plpg+0,15., n=t+2,....T,

we have, using (15) and (20),
‘N/}(Xt; Oiy1,...,07) < ‘;}(Xt; 9~t+1, ol éT) a.s..
By construction, ~
0111 — dea] < CEHI Xy | +1],
and, for n >t + 2,
10n — dn| < CENIXs + (Bryr — dr41) ASepa| + 1] < CHL X + CHIXe| + 1)[AS 41| + 11,
hence we may set
Cl_y = C(CYAS 1] + 1)
forn > t42. Clearly, C!_, € W' |. To conclude the proof it remains to check that (§t+1, ...,0p) €
A:(X:). As by hypothesis (041, . ..,07) € A:(X}), we get from (15) that V™ (Xy; 04, 0¢40,...,07) <
oo. Finally,

‘Zi(Xt;épFl, NN 7éT) = 1}3( ((Xt — b)g —Z) + 1ﬁc‘7«.t7(Xt;0t+17ét+27v .. ,GT) < o0 a.s.



Lemma 4.7. There exists 7, with 1/%; € W;' such that

P((O41 — d141)ASei1 < —kelOg1 — drgal, (On — ¢n)AS, <0, n=1t+2,....,T/F) > 7.
Proof. Define the events
A1 = {041 — de41)ASi1 < —kefOpy1 — dral},
A, = {(0n — dn)AS, <0}, t+2<n<T.
We prove, by induction, that for m >t + 1,
E(la,y---1a,,/F) 2 T(m) (21)

for some 7;(m) with 1/7;(m) € W;". For m =t + 1 this is just (1). Let us assume that (21) has
been shown for m — 1, we will establish it for m.

E(IAWL"']‘At+1/ft) = E(E(lAm/f"L—1>1Am71 "'lAt+1/ft)

> E(7Tm_11Am71 v 1At+1/‘7:t)
E2(1Am,1-~-1At+1/-7:t) S ﬁ'f(m—l)

Y%

EQl/mm_1/F) ~ E(1/mmo1/F)
by the (conditional) Cauchy inequality. Here 1/7;(m — 1) € W;" by the induction hypothesis,
E(1/mpm-1|F:) € W, (since 1/m,,—1 € WF) and the statement follows. O

Proof of Theorem 4.3. If A(Xy) is empty, there is nothing to prove. Otherwise, by Remark 4.5
and Lemma 4.6, for all n € {1,...,T}, there is C}) € W, such that for all 6 € A(X,) there exists
0 € Ao(Xo) satisfying |0, — ¢n| < CO_1[|Xo| +1],1 <n < T and

‘/O(X();elv"'voT) < %(Xo;élv"'véT)'
As 0 € A(Xy), by Lemma 4.4

V(X0;91,...,9T) S V(Xo;el,...,(gT)ZE%(Xo;el,...,(gT)SE%(XQ;él,...,HT)
< E‘70+(X0;é1a"'7§T)
T
< kE (1 + [ Xl + Y 16n — m“*E(ASW/fn_l))
n=1
N T
S kE ((1 + |X0|a)\) <1 + Z(C'g—l)a)\E(|AS’rb|a>\/]:n—1)>)
n=1
<

T q
k25 EMP(1 4 | Xo|?) BV <1 + Z(C%)“*E(MSHW/JTM)) (22)

n=1

using Hélder’s inequality with p = 3/(a\) and its conjugate number q. As E|Xo|? < oo, we get
that this expression is finite, showing the Theorem. O

Remark 4.8. It is worth contrasting Theorem 4.3 with Theorem 3.2 of Jin and Zhou [2008]. The
latter states, in a continuous-time context, that in a typical (complete) Brownian market model
our optimization problem is ill-posed whenever u is unbounded and w_(t) = ¢ (i.e. no distortion
on losses).

This phenomenon stems from the particularity of continuous-time models where the richness
of attainable payoffs leads to ill-posedness. However, in our discrete-time models the family of
replicable claims is relatively small hence ill-posedness does not occur even if w_ is the identity
(as long as the other assumptions of Theorem 4.3 hold).
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5 Existence of optimal strategies

Throughout this section, Assumptions 2.2, 4.1, 4.2, 5.1 and 5.3 will be in force.

Assumption 5.1. Let Go = {0,Q}, G, = o(Z1,...,2Z;) for 1 <t < T, where the Z;, i =1,...,T
are RN -valued independent random variables. Sy is constant and AS; is a continuous function of
(Z1,...,2Z), for allt > 1 (hence Sy is Gi-adapted).

Furthermore, Fy = Gy V Fo, t > 0, where Fo = o (&) with € uniformly distributed on [0,1] and
independent of (Z1,...,2T).

We may think that G; contains the information available at time ¢ (given by the observable
stochastic factors Z;, i = 1,...,t) and Fy provides some independent random source that we use to
randomize our trading strategies (in practice, one may always generate € e.g. using a computer).
The random variables Z; represent the “innovation”: the information surplus of F; with respect
to F;_1, in an independent way. For the construction of the optimal strategies we use weak
convergence techniques which necessitate the additional randomness provided by & (the situation
is somewhat analogous to the construction of a weak solution for a stochastic differential equation).
Assumption 5.1 holds in many cases, see section 6 and Remark 7.8 below.

Remark 5.2. Let us take Sp = 0, P(AS; =2) =3/4, P(AS; =—-1)=1/4 and G;, i = 0,1 the
natural filtration of S. Assume, moreover, that Fo = o(e) where P(e =1) =2/3, Ple=-1)=1/3
and Fy = G1 V Fo. Let A(0) (resp. A'(0)) denote the family of admissible strategies from 0 initial
capital which are G; (resp. F;) predictable. Consider uy (x) = x4, u_(x) = =, wy (p) = p'/?,
w—(p) = p-

We thank Andrea Meireles for numerically checking that, somewhat surprisingly,

sup V(0;6,) < sup V/(0;6;).
0€.A(0) 0€A’(0)

This simple example shows that additional randomness may increase the satisfaction of the agent,
hence using the randomization € appearing in Assumption 5.1 is, at least, reasonable.

This s in stark contrast with the case where there is no distortion present. The tower law
for conditional expectations shows that in this case adding an independent random variable to G
cannot increase the agent’s attainable level of satisfaction.

Assumption 5.3. The random variable B is a continuous function of (Z1,...,Zr), Xo is deter-
ministic and A(Xo) is not empty.

Remark 5.4. If B is a continuous function of (Sp,...,S7) then Assumption 5.1 clearly implies
the first part of Assumption 5.3. If u_(z) < ¢(1 + 2") for some ¢ > k_ and n > 3, Xo,B € W
and w_(t) < Ct for some § < 1 and C' > 1 then Lemma 7.1 implies that the strategy 6; = 0,
t=1,...,Tisin A(Xy), in particular, the latter set is non-empty. Actually, § € A(X,) whenever
0 € W, t=1,...,T. This applies, in particular, to Example 2.4.

Remark 5.5. We may and will suppose that Z; are bounded. This can always be achieved by
replacing each coordinate Z7 of Z; with arctan Z} for j =1,...,N,i=1,...,T.

We now present our main result on the existence of an optimal strategy.

Theorem 5.6. Let Assumptions 2.2, 4.1, 4.2, 5.1 and 5.8 hold. Then there is 0* € A(Xo) such
that
V(Xo;07,...,01) = sup V(Xo;01,...,07) < cc.
0cA(Xp)

Before proving Theorem 5.6, we need to extend certain arguments of Lemma 4.6 above. We fix
some aA < x < [ for what follows.
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Lemma 5.7. Fiz c € R and 8", 3 satisfying x < 8" < 3 < 3. Assume that
E‘~/t<Xt7 9t+17 s 79T) >c

for some Fi-measurable X; with E\Xt|'6/ < oo and for some (0y41,...,07) € .,th(Xt). Then there
exists K; such that . ,
BlOrsr — dpa|” < K [EIX|T + 1],

where K; does not depend on either X; or 6.
Proof. Let Xyy1 := Xy + (0441 — ¢p111)ASi1 and (1o, ..., 07) € Ari1(Xs41) such that
16n — ¢n| < CLL (1 Xuga | + 11,
form=t+4+2,...,7T and
Vi1 (Xet13 042, -, 07) < Vit (Xeg1: 0ei2, - ., O7),

see Lemma 4.6. We can obtain equations (15) and (16) just like in the proof of Lemma 4.6.
Furthermore, using (18), we get (recall (17) for the definition of F') :

EVi(X4; 0111, -,07) < E(H(14 X% + 01401 — 151|*))

— B ~
(E <1F (W) %t> + 0. (23)

We now push further estimations in this last equation.
We may estimate, using the Holder inequality for p = /4’ and its conjugate q,

/B/
EP (1 (|0t+17¢t+1|’1t) 77_1/17 1 )
10141 — Drg1]me b ( F 2 toogl/e
E\lr 5 ) T > .
Ep/a <~q1/p>

The denominator here will be denoted C' in the sequel. By Lemma 4.7, C' < cc.

Now let us note the trivial fact that for random variables X,Y > 0 such that EY? > 2EXP
one has E[l{y>x; Y7 > 1EY?,

It follows that if

0 — 4 /
E (W) > 2E(1X,| + [b))” >y

holds true then, applying the trivial x < 2P 4+ 1, z > 0,

EP (1F (Wy) EP ((W)ﬁ)

>
C - 2rC
E (\0t+1—§t+1\m)ﬁ ~1 ,
> 90 =1 E(|0p41 — des1lre)® — 2

with suitable ¢1,ca > 0. Using again Holder’s inequality with p = /3" and its conjugate g,

EP|0i41 — bria]” > Elfi1 — dea]” —1
Er/q 1,,) - Er/q (%,)
</<;f q nf q

12

E(|0i11 — drialme)® > (25)




With suitable ¢}, c, > 0, we get, whenever (24) holds, that

10141 — drr1|ke . / B _
E\|1lp — s ) ™ > QB0 — dia]” —ch. (26)

Estimate also, with p := x/(a)),

E (Ht(l + |Xt|)\a + 1041 — ¢t+1|)\a)) < El/q[Hg][l + El/p\Xt|X + El/p|9t+1 = Gr41]*]
< EYH[3 + E|XX + El0s1 — dr11)]
< 1+ E|Xe|? + Elbii1 — e |¥], (27)

with some ¢ > 0, using that X < P + 1, 2P < 2 +1, for > 0. Furthermore, Holder’s inequality
with p = 8" /x gives

Elfii1 — e [X < BXP0,40 — dra]®

It follows that whenever
1-x/8" 2¢

(E\9t+1 —— ) > vk (28)
1
one also has y
~ C "
CE|Oy1 — P X < %E|9t+l — ¢eal” . (29)
Finally consider the condition
Clg 2 - 7 ~
B0 — o™ 2 el + BIX ) 4 (ht — e 1) + L. (30)

It is easy to see that we can find some K, large enough, such that E|0y 1 —dii1|? > K [E| X% +1]
implies that (24) (recall (25)), (28), (30) all hold true. So in this case we have, from (23), (27),
(29), (26) and (30),

E‘Z(Xt;gt+1a .. '79T)

IA

a1+ B X% + %Ewm — "
U0y — pu|” 4T
< (el —c+ 1)+l <ec.
From this the statement of the lemma follows. O
Corollary 5.8. Fiz c € R and assume that
V(Xo;61,...,07) = EVy(Xo;01,...,070) > ¢

for some Xy € =} with E|Xo|? < 0o and some 0 € fl(Xo). Fix Br with x < Br < B. There exist
constants Gy,t = 0,...,T — 1 such that E|0i1 — ¢¢11|°7 < Gy[E|Xo|? +1] fort =0,...,T — 1,
and Gy do not depend on Xq or on 6.

Proof. Take fr < Br—1 < ... < f1 < By := . We first prove, by induction on ¢, that X; :=
Xo + 2321(91‘ — ¢;)AS;, t > 0 satisfy

BIX|™ < G[E|Xo|” + 1],
for suitable Cy > 0. For ¢t = 0 this is trivial. Assuming it for ¢t we will show it for ¢ + 1. We first

remark that ~ _
EVi(Xt; 0441, .., 07) = EVo(Xo;01,...,07) > c
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and that by the induction hypothesis E|X;|* < oo holds. As§ € A(Xo) € Ao(Xo), Bis1,...,07) €
Ai(X;) (see Remark 4.5). Thus Lemma 5.7 applies with the choice 8 := (8;+1+06;)/2 and 5’ := [,
and we can estimate, using Holder’s inequality with p := 3”/8;41 (and its conjugate number q),
plugging in the induction hypothesis:

E| X" = E|Xi+ (Br1 — dry1) AS4q| M
E| X P 4 E|(0141 — bia1)ASpyq |+
B|Xy|% + 1+ EYP|(0p1 — ¢ri1)|” BV AS |

EIX|" +14C <E|(9t+1 —¢r)” + 1)

[VARVAN

IN

IN

E|X|® +1+C (Kt(E|Xt\5’ +1)+ 1)
E|XyP + 1+ C (K¢(B|X¢|” +1) + 1)
(1+CK,)Cy (B|Xo|” +1) + 1+ C + CK,

IN

with C := EY9|AS, 1|91, this proves the induction hypothesis for ¢ + 1.
Now let us observe that, by Lemma 5.7 (with 8" = 811,08 = (),

El0p1 — ¢t+1|ﬂT < By — ¢t+1‘ﬁt+1 +1
< KJBIX|P +1]+1 < Ki[C(B|Xol® +1) + 1] + 1,

concluding the proof. O

Proof of Theorem 5.6. Lemma 7.2 with the choice E := &, [ = 2 gives us ¢, ¢’ independent, uni-
formly distributed on [0, 1] and Fy-measurable. Introduce

A'(Xg) :=={0 € A(Xy) : 0; is F,_,-measurable for all t = 1,...,T},

where F| := G; V o(¢’). Note that if § € A(Xy) then there exists 8’ € A'(X() such that the law
of (0, AS) equals that of (6', AS) (since the law of € equals that of ¢’ and both are independent of
AS). It follows that for all 8 € A(Xy) there is §' € A(Xy) with

V(Xo;el, e 79T> = V(Xo; /1, e 79/T)
Take 6(j) € A(Xo),j € N such that

V(X0,91(3)7,9T(j)) — sup V(Xo;el,...,eT), j—>OO
0cA(Xo)

By Assumption 5.3 and Theorem 4.3, the supremum is finite and we can fix ¢ such that —oco <
¢ < inf; V(Xo;01(5),...,07(j)). By Lemma 4.4 it implies that for all j,

V(X0;01(j), . ...07(j)) > c.

By the discussions above we may and will assume 6(j) € A'(Xy),j € N. Apply Corollary 5.8 for
some [ such that x < Br < 3 to get

sup E|0:(j) — o |PT < 0.
J,t

Tt follows that the sequence of T'(d + N) + 1-dimensional random variables
5}j = (6/;01(;7) - (blv e ,0T(j) - ¢T7 217 ceey ZT)
are bounded in Lg, (recall Remark 5.5) and hence

BY,[r _ ©
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for some fixed C' > 0, showing that the sequence of the laws of f/] is tight. Then, clearly, the
sequence of laws of
}/j = (glvel(j)v cee 70T(j)7 Zlv ceey ZT)7

is also tight and hence admits a subsequence (which we continue to denote by j) weakly convergent
to some probability law p on B(RT(@+N)+1),

We will construct, inductively, 05, ¢ = 1,...,T such that (¢,05,...,0%, Z1,..., Zr) has law p
and 0* is F-predictable. Let M be a T(d 4+ N) + 1-dimensional random variable with law pu.

First note that (M!TTd+1 MI+TIHN) has the same law as 7,
ooy (MATAHT=DNFL - AIHTATNY hag the same law as Zr.
Now let py be the law of (M?, ... MITkd ppi+dT+1 - pNpi+dTHNTY o REENTHL (which

represents the marginal of p with respect to its first 1 + kd and last NT coordinates), k > 0.

As a first step, we apply Lemma 7.2 with E := ¢, | := T to get o(¢)-measurable random
variables 1, ...,er that are independent with uniform law on [0, 1].

Applying Lemma 7.3 with the choice Ny =d, No =1, Y =&’ and E = ¢; we get a function
G such that (¢/,G(¢’,e1)) has the same law as the marginal of p; with respect to its first 1 + d
coordinates. Let Q, Q', U, U’ random variables such that @ and Q' have same law and U and U’
have same law. If @ is independent of U and @’ is independent of U’, then (Q,U) and (Q',U’)
have same law.

Let Q = (M*Y,... . M%) Q" = (¢/,G(¢',&1)), U = (M 4T+ MIHAT+HINY and U/ =
(Z1,...,Z7). As (e1,€',Zy,...,Zr) are independent, we get that Q' is independent of U’. Now
remark that weak convergence preserves independence, so as (¢/,0;(j)) and U’ are independent for
all j, we get that @ is independent of U. So we conclude that (¢/,G(¢’,e1), Z1, ..., Zr) has law
p1. Define 67 := G(¢’, 1), this is clearly Fp-measurable.

Carrying on, let us assume that we have found 07, j = 1,..., k such that (€,05,...,05,21,... Z7)
has law py and 607 is a function of e, Z,...,Zj_1, €1,...,&; only (and is thus F;_;-measurable).
We apply Lemma 7.3 with Ny =d, No = kd+ kN + 1, E = ¢,41 and

Y =(,00,...,00, 20, ... Zy)

to get G such that (Y, G(Y,ex41)) has the same law as (M1, .. MTkd ppi+Tdel o ppi+Td+HRN
MUtk (D) Thys

Q = (e,07,...,0;,G(Y,ext1), Z1,- -, Zk)

has the same law as Q = (M*',..., M tE+Dd ppA+TdHL - ppi+Td+kNY - Now choose U =
(MAHATHRNAL S ApI+dT+ANY and U’ = (Zpy1,- - ., Z7). As Q' depends only on (1, ..., ep41,€,
Z1,...,Z), which is independent from (Zgi1,...,2Z7), @' is independent of U’. Moreover,
,01(9),.-.,0k+109), Z1,...,2Z;) and (Zg41,...,Z7) are independent for all j and weak con-
vergence preserves independence, so () is independent of U. This entails that

(5/79Ta .- 79;;’G(K €k+1)a Zlv ceey ZT)

has law pip 41 and setting 0; | := G(Y, er41) we make sure that 05, | is a function of €', 71, ..., Zy,
€1,...,Ek+1 only, a fortiori, it is Fi-measurable. We finally get all the 67, j = 1,...,T such that
the law of

(5179T7~~~79;’7Z17~~7ZT)

equals p = pp. We will now show that

V(Xo;07,...,07) > limsup V(Xo;601(5),...,07(5)), (31)

Jj—oo

which will conclude the proof.
Indeed, H; := Xo+ 23:1 0:(j)AS; — B clearly converges in law to H := X+ Zthl 0;AS; — B,
j — oo (note that AS; and B are continuous functions of the Z; and Xy is deterministic). By

15



continuity of uy,u_ also uy ([H;]+) tends to us([H]+) in law which entails that P(uy([H;]+) >
y) — P(ux([H]x) > y) for all y outside a countable set (the points of discontinuities of the
cumulative distribution functions of uy ([H]1)).

It suffices thus to find a measurable function h(y) with wy (P(uy[H;]+ > y)) < h(y),j > 1 and
fooo h(y)dy < oo and then Fatou’s lemma will imply (31). We get, just like in Lemma 4.4, using
Chebishev’s inequality, (3) and (5), for y > 1:

L+ X0/ + 324 E (10:(5) — 64l *}|AS[**
wi(Plu[H)y >y) < C = yﬁj t i)
C T
< = (1 + 1 Xo|** + D EY16,() — WTE”QW#) :

t=1

for some constant C > 0 and Wy, € WT, t = 1,..., T, using Holder’s inequality with p := Br/(a))
and its conjugate ¢ (recall that AS; € W). We know from the construction that sup; ; E[6;(j) —
$¢|PT < co. Thus we can find some constant C’' > 0 such that w, (P(uy[H;]+ > y)) < C'/y™,
for all j. Now trivially wy(P(us[H;]+ > vy)) < wy(1) =1 for 0 <y < 1. Setting h(y) := 1 for
0 <y <1and h(y) := C'/y* for y > 1, we conclude since Ay > 1 and thus 1/y* is integrable on
[1, 00). O

6 Examples

Example 6.1. Let Sy be constant and AS; € W independent t = 1,...,T. Take Z; := AS;,
define Gy := {0,Q} and G; :== 0(Z1,...,Z;), T > 1. Assume that S; satisfies (NA) + (R) w.r.t. G;.
Then this continues to hold for the enlargement F; defined in Assumption 5.1. So Assumptions
2.2 and 5.1 hold with k¢, m; almost surely constants since the conditional law of AS; w.r.t. Fy_1
is a.s. equal to its actual law.

Example 6.2. Fix d < N. Take Yy € RV constant and define Y; by the difference equation
Yior =Y = u(Yy) + o (Yy)erqa,

where p : RV — R¥ is bounded and continuous, o : RN — R¥*¥ is bounded and continuous. We
assume that there is h > 0 such that

forall z e RY: ¢, e W, t =1,...,T are independent with supp Law e; = RV,

Thus Y; follows a discretized dynamics of a non-degenerate diffusion process. We may think
that Y; represent the evolution of N economic factors. Take Gy trivial and G; := o(e;,j < t), ¢t > 1.

We claim that Y; satisfies Assumption 2.2 with respect to G;. Indeed, Y; € W is trivial and we
will show that (1) holds with k;, 7, constants.

Take v € RY. Obviously,

P(o(Yis1 — Y2) < —[ol/G) = P(o(Yer — Y3) < —Jol/Y2).

It is thus enough to show that there is ¢ > 0 such that for each unit vector v and each 2 € RV
Plo(u(e) +o(x)e) < —1) > c

Denoting by m an upper bound for |u(x)|, z € RY, we may write

P(o(u(x) + o(a)er) < —1) > Pvo(a)e, < —(m + 1)).
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Here 3y = v"o(z) is a vector of length at least v/h, hence the absolute value of one of its components

is at least y/h/N. Thus we have

P(wTo(x)e, < —(m+1)) > min (min P(\/h/Neéi < —(m+1),ki(j)e <0, j#1i);

min P(y/h/Nej = (m+ 1), ki()e] <0, j #1))

where i ranges over 1,..., N and k; ranges over the (finite) set of all functions from {1,2,...,i —
1,i+1,...,N} to {1, -1} (representing all the possible configurations for the signs of 37, j # ).
This minimum is positive by our assumption on the support of ¢;.

Now we can take S} := Y, i = 1,...,d for some d < N. When N > d, we may think that
the Y, d < j < N are not prices of some traded assets but other relevant economic variables that
influence the market. It is easy to check that Assumption 2.2 holds for S;, too, with respect to G;.

Enlarging each G; by &, independent of €1,...,er we get F; as in Assumption 5.1. Clearly,
Assumption 2.2 continues to hold for S; with respect to F; and Assumption 5.1 is then also true
as S; is a continuous function of €y, ..., €.

Example 6.3. Take Y; as in the above example. For simplicity, we assume d = N = 1. Further-
more, let ¢, t =1,...,T be such that for all { > 0,

Eefletl < oo,

Set Sy := exp(Y;) this time. We claim that Assumption 2.2 holds true for S; with respect to the
filtration G;. Obviously, AS; € W, t > 1.

We choose k; := S;/2. Clearly, 1/k; € W. It suffices to prove that 1/P(S;41 — St < —=S5:/2/G;)
and 1/P(Si41 — St > Si/2/G:) belong to W. We will show only the second containment, the first
one being similar. This amounts to checking

1/P(exp{Yiy1 — Y} > 3/2/Y:) € W.
Let us notice that

Plexp{Yis1 — Yi} 2 3/2/¥)) = P(u(Ys) +o(Yi)erss = In(3/2)/Yy)
In(3/2) — p(Y;
(3/2) — p(\) %)
(V1)
In(3/2) —m
Vh
which is a deterministic positive constant, by the assumption on the support of €¢;41. Defining

the enlarged F;, Assumptions 2.2 and 5.1 hold for S;. Examples 6.2 and 6.3 are pertinent, in
particular, when the ¢; are Gaussian.

= P(eq1 >

> Plegyr1 >

);

7 Auxiliary results

We start with a simple observation.
Lemma 7.1. IfY € WT then
/ P(Y > y)dy < oo,
0

for all 6 > 0.
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Proof. As by Chebishev’s inequality and Y € W,
P(Y 2y) < M(N)y™, y>0,

for all N > 0, for a constant M(N) := EYY we can choose N so large to have N§ > 1, showing
that the integral in question is finite. O

The following Lemmata are fairly standard but we include their proofs in want of an appropriate,
precise reference.

Lemma 7.2. Let E be uniformly distributed on [0,1]. Then for each I > 1 there are measurable
fi,oo, fi:10,1] — [0,1] such that fL(E),..., fi(E) are independent and uniform on [0,1].

Proof. We first recall that if ), Vs are uncountable Polish spaces then they are Borel isomorphic,
i.e. there is a bijection 1) : Y1 — Y such that 1,9 ~! are measurable (with respect to the respective
Borel fields); see e.g. page 159 of Dellacherie and Meyer [1979)].

Fix a Borel-isomorphism 1 : R — [0, 1]! and define the probability x(A) := A\ (v(4)), A € B(R),
where ); is the I-dimensional Lebesgue-measure restricted to [0, 1]'. Denote by F(x) := x((—o0, z]),
x € R the cumulative distribution function (c.d.f.) corresponding to x and set

F~(u):=inf{ge Q: F(q) > u}, ue (0,1).
This function is measurable and it is well-known that F~(FE) has law x. Now clearly

(fr(w) s fi(w)) = P (F (u))
is such that (f1(E),..., fi(E)) has law )\; and the f; are measurable. O

Lemma 7.3. Let u(dy,dz) = v(y,dz)d(dy) be a probability on RN? x RM such that §(dy) is
a probability on RN? and v(y,dz) is a probabilistic kernel. Assume that Y has law §(dy) and
E is independent of Y and uniformly distributed on [0,1]. Then there is a measurable function
G RN x [0,1] — RN such that (Y,G(Y, E)) has law u(dy, dz).

Proof. Just like in the previous proof, fix a Borel isomorphism v : R — R™1. Consider the measure
on R xRN2 defined by ji(Ax B) := [, v(y,¥(B))d(dy), A € B(RN?), B € B(R). For é-almost every
y, v(y,¥()) is a probability measure on R. Let F(y, z) := v(y, ¥ ((—o0, 2]))) denote its cumulative
distribution function and define

F~(y,u) :=inf{qg € Q: F(y,q) > u}, u e (0,1),

this is easily seen to be B(R™2) ® B([0, 1])-measurable. Then, for -almost every y, F~(y, E) has
law v(y, (). Hence (Y, F~ (Y, E)) has law ji. Consequently, (Y, (F~ (Y, E))) has law p and we
may conclude setting G(y,u) := ¥(F~(y,u)). The technique of this proof is well-known, see e.g.
page 228 of Bhattacharya and Waymire [1990]. O

Lemma 7.4. Let (Z, W) be a R x R¥-valued random variable with continuous everywhere positive
density f(zt, ..., z8TY) (with respect to the k + 1-dimensional Lebesgue measure) such that the
function

' — sup f(z',..., ") (32)

z2,...,xk

is integrable on R. Then there is a homeomorphism H : RF1 — [0, 1] xR” such that H (2%, ..., 2*1) =
xt fori=2,....k+1 and Z := H*(Z,W) is uniform on [0, 1], independent of W.
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Proof. The conditional distribution function of Z knowing W = (22, ..., z*t1),

fj;o flz,22,... 2" hdz

F(ah, ... a2kt = =2 ,
(@ =) oo fz?, . ak ) dz

is continuous (due to the integrability of (32) and Lebesgue’s theorem). By everywhere positivity
of f, F is also strictly increasing in x!. It follows that the function

H: (z',.. . 2" = (F(2h, ... 2%, 22, ah

is a bijection and hence a homeomorhpism by Theorem 4.3 in Deimling [1985]. The conditional law
PHYZ,W) € -|W = (22,...,2")) is uniform on [0, 1] for Lebesgue-almost all (z2,...,x**1),

which shows that H'(Z, W) is independent of W with uniform law on [0, 1]. O
Corollary 7.5. Let (21, ceey Zk) be an R -valued random variable with continuous and everywhere
positive density (w.r.t. the k-dimensional Lebesgue measure) such that for all i = 1,...k, the
function _ _

z — sup flt, a2t k) (33)

..........

is integrable on R. There are independent random variables Zi,...,Zx and homeomorphisms
gi(k) : R = R 1 <1<k such that (Z1,...,2) = gi(k)(Zy1,...,Z)).

Proof. The case k = 1 is vacuous and k = 2 follows by Lemma 7.4. Assume that the statement
is true for k, let us prove it for k + 1. We may set g;(k + 1) := gi(k), 1 <1 < k, it remains to
construct gi+1(k + 1) and Zj4q.

Lemma 7.4 provides a homeomorphism s : R¥+1 — Rk+1 guch that s™ (2!, ..., 2%1) = 2™ 1 <
m < kand Zpy 1 := sk“(Zl, e, Zk+1) is independent of (Zl, e Zk) (and hence of (Z1,...,2Zk) =

ge(k)"Y(Z4, ..., Z)). Define a : R¥t1 — RFH1 by

a(@,.. o dY) = (gt b, S @ ah )
= s(ge(k) M@t 2,2,
a is a homeomorphism since it is the composition of two homeomorphisms. As then a(Zl, ceey Zk+1) =
(Z1,...,Zks1), the result is shown setting g1(k + 1) := a1 O

Remark 7.6. Condition (33) is quite weak, it holds, for example, when there is C' > 0 such that

k

f(x) < T x € R".
Assumption 7.7. Let Go = {0,Q}, G, = 0(Zy,...,Z;) for 1 <t < T, where the Z;, i = 1,...,T
are RV -valued random variables with a continuous and everywhere positive joint density f on RTV
such that (33) holds with k = TN. Sy is constant and AS; is a continuous function of (Z, ..., Z;),
for all ¢t > 1.

Furthermore, F; = G, V Fp, t > 0, where Fy = o(€) with € uniformly distributed on [0, 1] and
independent of (Z, ..., Zr).

Remark 7.8. If Assumption 7.7 above holds true then so does Assumption 5.1, in virtue of
Corollary 7.5. Assumption 7.7 may be easier to verify in certain model classes.
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