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1 Introduction

The study of transport networks has long been at a crossroads between various

scientific disciplines. Traditionally, transport networks are studied from a graph

theory perspective, which is a branch of mathematics proposing concepts and

measures about the topology of networks considered as sets of nodes (vertices)

connected by links (edges). Limited computational power and the scarcity of rel-

evant datasets limited the analysis to relatively small networks, most of which

are planar networks (i.e. with no crossings between edges) and accessibility

problems based on pure topology. Decreasing interest for structural approaches

in social sciences partly caused the stagnation of transport network analysis

since the 1970s, notwithstanding progress brought in by Geographical Informa-

tion Systems (GIS) and and spatial economics from the 1980s onwards (Waters,

2006). Technology and information improvements as well as the wide popular-

ization of the “network” concept contributed to the emergence of new analysis

∗Submitted to SAGE Handbook of Transport Studies

1



methods in the late 1990s. The research field of complex networks, mostly led

by physicists eager to test their models and measures on real-world cases, pro-

vided many analyses of the structure and dynamics of large-scale networks of all

kinds. Among them, transport networks have received much attention, thereby

providing new ways of understanding their internal efficiencies and vulnerabili-

ties.

However, most social scientists interested in transport networks, such as ge-

ographers, economists, and regional scientists, have long relied on classic graph

theory and qualitative case studies. The integration of complex networks meth-

ods by transport specialists is very recent (Kuby et al., 2005) and comes as a

complement to other approaches such as circulation routing and flow optimiza-

tion which strongly focus on transport costs. So far, there remains little overlap

and interaction between the different approaches. This state of affairs as well

as the fast evolution of the field motivate this chapter, which proposes a review

of existing studies of transport networks from a methodological point of view.

We propose distinguishing amongst the structure and the dynamics of trans-

portation networks. The first section discusses the static dimension (struc-

ture) and reviews how transportation networks have been defined and analyzed

with regard to their topology, geometry, morphology, and spatial structure. It

presents a critical overview of main global (network level) and local (node level)

measures and examines their usefulness for understanding transportation net-

works. The second section explores the dynamics of transportation networks,

their evolution, and the properties underlying such evolutions. Each section

provides a brief background of the relevant literature, concrete applications,

and policy implications in various transport modes and industries, with an in-

terdisciplinary focus. A discussion is provided evaluating the legacy of reviewed

works and potential for further developments in transport studies in general.

2 Structure of Transportation Networks

Transport networks are mostly studied in a static fashion. Research in this

field is very voluminous and diverse, but one central goal is to highlight the

overall characteristics of the networks structure based on its topology, geometry,

morphology, and traffic flows. We divide the literature review between the global

level, which is interested in describing the entire network, and the sub-levels,

which look either at groups or individual nodes within the network.
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2.1 Global Level

Transport networks belong to a wider category of spatial networks, because

their design and evolution are physically constrained (e.g. Euclidian distance)

as opposed to non-spatial networks such as the Internet, scientific collabora-

tions, multinational firms, social networks, and biological systems such as neu-

ronal networks (Boccaletti et al., 2006; Gastner and Newman, 2004; Blumenfeld-

Lieberthal, 2009). The physical grounding varies in relevance depending on the

transport mode considered. Urban streets, roads, and railways are composed of

track infrastructure, while maritime and air transports remain vaguely defined

due to their higher spatial flexibility except for the location of terminals them-

selves (Rodrigue et al., 2009). Maritime networks remain more constrained than

airline networks due to coastlines (Xu et al., 2007). River networks typically

form basins and can be classified as trees or dendrograms (Banavar et al., 1999).

Most research on transport networks has focused on planar networks (e.g.

roads, railways) due to easier access to infrastructure data allowing topolog-

ical measurements and because the planning and operation of such networks

concern everyday mobility at the urban (e.g. street, bus, subway) or regional

level (e.g. highway, interstate lanes). Other transport networks without track

infrastructure (e.g. air, sea) necessitate the use of traffic data to build a graph

of ephemeral links from either vehicle movements or scheduled service. Partly

due to the absence of comparable data for urban studies, airline networks have

become central in the analysis of systems of cities on various levels. Maritime

transport has recently received more interest due to the use of newly available

data on carrier services and vessel movements (Ducruet et al., 2010).

In their review of the measures synthesizing the structure of communication

networks, Béguin and Thomas (1997) introduce four different schools: graph

theory, matrices of the shortest paths, geomorphometry (quantitative land sur-

face analysis), and eigenvalues. Matrices of the shortest paths refer to the search

for specific configurations in the network, such as the minimum cost tree, which

is the part of the network in which all nodes remain connected by the lowest cost

path. This approach can be at the global level to extract the optimal route from

the network or at the local level to zoom to specific nodes using algorithms such

as Kruskal, Floyd, or Dijkstra, among others (Ducruet, 2011). Geomorphometry

mainly examines river networks based on several indicators such as the number

of bifurcations and the length of the river, its number of junctions. There are

two types of eigenvalues approaches: the application of multivariate statistical

methods to adjacency matrices and the use of blockmodeling and structural

equivalence to determine groups of nodes sharing similar connectivity patterns

in the network (Beauguitte, 2011). Based on the simplification of real-world
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places and pathways into graphs, i.e. groups of nodes (vertices) connected by

some links (edges), a wide set of concepts and measures have been proposed by

graph theory since the seminal Seven Bridges of Koenigsberg problem proposed

by Leonhard Euler in 1735. The main questions addressed are whether different

transport networks share comparable properties and according to which criteria.

The integration of graph theoretical methods in geography and regional sci-

ence with related applications to transport networks dates back to the works

of Garrison (1960), Kansky (1963), Haggett and Chorley (1972), and Garri-

son and Marble (1974). The first set of studies was characterized by limited

data, low computational power, and few modeling techniques (Xie and Levin-

son, 2007) but is still used to analyze the structure of transport networks. Most

common measures include the number of nodes and links (i.e. network size),

the length and diameter of the network, its connexity (continuity of the network

in terms of the number of connected components), connectivity (more or less

optimal distribution of links among the nodes), and nodality. Notably, the three

main indices Alpha, Beta, and Gamma proposed by Kansky (1963) do not con-

sider the real length, quality, and weight of the links;1 networks of equal size

may exhibit contrasted topological forms (Béguin and Thomas, 1997; Kurant

and Thiran, 2006). However, they remain useful for describing the changing

structure of one given network (Scott et al., 2005; Xie and Levinson, 2009). Us-

ing such indicators, Wang et al. (2009) demonstrate the phased development of

the Chinese railway network from 1906 to 2000, highlighting its closeness with

overall economic development and the formation of urban systems.

More recently, robust macroscopic measures have been proposed to refine

those provided by graph theory (see the table in Appendix A: Complex Networks

Measures). Barabási and Albert (1999) define scale-free networks using a high

exponent (over 1 and/or between 2 and 3) of the power-law slope drawn based on

plotting the frequency of nodes versus the degree centrality distribution (i.e. the

number of edges connecting direct neighbors). Many nodes have a poor number

of connections, while only a few nodes multiply them, thus making the network

highly heterogeneous or disassortative (Figure 1). In comparison, small-world

networks (Watts and Strogatz, 1998) are defined by a high average clustering

coefficient and a short diameter, which illustrates a high density of links and the

existence of many cliques based on the probability that two randomly chosen

neighbors of a node are also direct neighbors of each other. The average shortest

path length is a measure of network efficiency (Barabási and Albert, 2002).

Considering actual account traffic, the rich-club index measures to what extent

large degree nodes are strongly connected to each other. Scale-free and small-

1For a detailed explanation and illustration of graph theoretical measures and indices
see: http://people.hofstra.edu/geotrans/eng/ch1en/meth1en/ch1m3en.html
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world networks tend to concentrate at a few high-order connections, whereas

road networks are characterized by a large diameter (i.e. maximum path length).

Other indices have been proposed, such as the assortativity coefficient, which

highlights to what extent nodes of comparable connectivity are connected to

each other in the network. Such properties imply dynamics and evolutionary

paths that are specific to transport networks.

Figure 1: Two main network configurations

Several applications of complex networks have revealed interesting speci-

ficities and common grounds of different transport networks. Studies of the

global maritime transport network (Hu and Zhu, 2009) and the global air trans-

port network (Guimera et al., 2005) confirm their overall scale-free properties

with regard to the existing literature on hub-and-spoke strategies of carriers

(see (Fleming and Hayuth, 1994; O’Kelly, 1998)). While a relatively high vul-

nerability of the network lays upon few large nodes, the truncated distribution

reveals the costs of creating new links at large nodes facing congestion problems,

as seen in other case studies of air transport networks (Li and Cai, 2004; Guida

and Maria, 2007), public transportation networks (Latora and Marchiori, 2002;

Sienkiewicz and Holyst, 2005; Ferber et al., 2005; Xu et al., 2007) and railway

networks (Sen et al., 2003).

Since most research focuses on one single network, there is a growing aware-

ness that transport networks may be interdependent through issues of intercon-

nectivity and the vulnerability of tightly coupled infrastructures regarding cas-
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cading failures, breakdowns, and attacks (Geenhuizen, 2000; Vespignani, 2010;

Buldyrev et al., 2010). Notably, Zhang et al. (2005) argue that multi-layer

infrastructure networks should be analyzed at various geographic levels with

regard to the respective topology and function of individual networks and to po-

tential inter-modal shifts and mutual influence. Examining the co-evolution of

roads, canals, and ports during the English industrial revolution, Bogart (2009)

reveals noticeable interdependencies among different nodes and networks over

time based on spatial and functional proximity. This underlines that initial net-

work developments are often done to support and then compete with an existing

network by expanding geographically and topologically in ways unavailable to

the prior network. Ducruet et al. (2011) also highlights the complementarity be-

tween air and maritime networks in the formation of a global urban hierarchy.

This is also apparent in the work of Parshani et al. (2010) on the inter-similarity

between coupled maritime and air transport networks, which shows that well-

connected airports tend to couple with well-connected seaports in general, based

on their respective geographic locations and on their topological attributes. Fi-

nally, Jin et al. (2010) propose an indicator of transport dominance applied

simultaneously to freeway, railway and airline networks in China, stressing the

importance of large urban concentrations and the role of distant cities serving

as hubs for Western areas.

2.2 Local Level

Various local measures of networks have also been developed (Taaffe and Gau-

thier, 1973; Cliff et al., 1979; Dupuy and Stransky, 1996; West, 1996; Degenne

and Forse, 1999). The goal is to compare the relative position of nodes in the

network and to highlight groups of nodes in the network. While a full list of

measures would run beyond the scope of this chapter, it is possible to organize

them by those indicating the situation of the node in the entire network and

those focusing on the relations of the node with its adjacent neighbors.

The most common global measures of a given node include:

• betweenness centrality: number of possible positions on shortest paths;

• eccentricity (or associated number, Koenig number): number of links

needed to reach the most distant node in the graph;

• Shimbel index (or Shimbel distance, nodal accessibility, nodality): sum of

the length of all shortest paths connecting all other nodes in the graph.

The inverse measure is also called closeness centrality or distance central-

ity.
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Other local measures are those looking at the neighborhood of a given node:

• degree (or degree centrality): number of adjacent neighbors. The weighted

degree is the sum of weights on adjacent links;

• hub dependence: share of the strongest traffic link in total traffic, a mea-

sure of vulnerability;

• average nearest neighbors degree: indicates to what extent the node is

surrounded by large or small nodes;

• clustering coefficient: proportion of observed closed triplets in the sum of

all possible closed triplets, a measure of tightness and density.

Plotting together some of the aforementioned measures may highlight spe-

cific features of transportation networks. For instance, nodes with low degree

centrality and high betweenness centrality reveal their role as bridges between

different subgroups, i.e. as a strategic position or intermediacy. Some hubs may

also act as a redistribution platform within their adjacent regions, thus multiply-

ing their links in addition to their bridge role (e.g. feeder links in liner shipping,

air or trucking). In maritime networks, Deng et al. (2009) underline the strong

relation between actual throughput and degree centrality for container ports.

The centrality of cities in air transport networks has received great attention

in recent years. The relation between local measures and other local/regional

indicators is also the focus of recent research on transportation networks. For

instance, Wang et al. (2011) demonstrate the close relationship between the

position of Chinese cities in airline networks (i.e. degree, closeness, and be-

tweenness centralities) and their local socio-economic characteristics (i.e. total

passenger traffic, urban population, and Gross Regional Product). Analyzing

communication networks in the UK, Eagle et al. (2010) find strong interde-

pendencies between the diversity of connections and the economic well-being of

localities.

Local measures may or may not take into account the valuation of the edges

concerned (i.e. weighted or non-weighted). This is of high relevance for trans-

port studies, since transport networks are better understood by the usage level

(e.g. number of passengers, tons, vehicles, capacity) than by their sole topology

based on a binary state (i.e. presence or absence of links). The weighted degree

centrality usually corresponds to the sum of edges traffic, sometimes called node

strength. The hub dependence index, which corresponds to the percentage of

the strongest traffic edge in the total traffic of each node, is a measure of vulner-

ability, notably highlighting the contrast for Shenzhen port between its traffic

growth and its maintained dependence upon the Hong Kong hub (Ducruet et al.,
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2010). In their study of the worldwide air transport network, Barrat et al. (2004)

demonstrated that the formation of cliques among major airports (also called

rich-club phenomenon) is readable only using traffic weights. The inclusion of

edge weight in the analysis can indeed reveal hidden patterns beyond the sole

topology, such as the small-world structure of commuter flows in Italy (DeMon-

tis et al., 2010) and the identification of different city types through the relative

efficiency of their urban street patterns and length compared to optimal con-

figurations of greedy triangulation and minimum spanning tree (Cardillo et al.,

2006).

Motivated by practical and policy implications, transport networks analysis

has also benefited from further developments in accessibility studies. Various

algorithms, such as the Koenig number and the Shimbel index, have been used

to describe nodal accessibility in numerous empirical studies. The Shimbel in-

dex was used in several case studies to reveal nodal accessibility for European

regions in the context of integration (Gutierrez and Urbano, 1996) and Belgian

crossroads (Lannoy and Oudheusden, 1991); the impact of deregulation and

hub formation on air accessibility in China (Choua, 1993; Shaw, 1993) and in

Southeast Asia (Bowen, 2000, 2002); and the impact of railway development

on urban accessibility in Japan (Murayama, 1994). Examining the Indianapolis

city road network, (Gleyze, 2007) refines topological measures of centrality and

eccentricity by distinguishing between network and spatial effects. Chapelon

(2005) applies the widely used Floyd algorithm of the shortest path, taking into

account topological features and circulation constraints such as national regula-

tions (e.g. speed limits), highway tolls, the types and capacities of main roads,

and the travel time including loading /unloading delays at multimodal junctions

(e.g. ferry crossings). Based on such criteria, Chapelon (2005) calculated the

topological accessibility of ports to population and regional wealth potentials

within a 6, 36, and 72 hour drive (Figure 2). The results clearly the privi-

leged situation of North European Range ports regarding hinterland coverage

and connectivity, while the correlation between road accessibility level and port

throughput volume remains only moderately significant.

The search for subgroups of nodes or clusters in a network is another cen-

tral issue in network analysis with related applications on transport networks.

Sociologists “were the first to formalize the idea of communities, to devise math-

ematical measures of the number and cohesion of communities, and to develop

methods to identify the subgroups of individuals within the network” (Boc-

caletti et al., 2006). Such methods also allow for simplifying large datasets in

order to make their structure more readable. In their general works on graph

theory, Berge (1973) and Bollobas (1998) define subgraphs (or subgroups) as

the union of a subset of nodes and the edges linking them. All methods seek
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Figure 2: Example of accessibility measures. European ports in the road net-
work (Source: adapted from Chapelon (2005)

to find relevant measures in order to bisect a given graph based on closeness

within resulting groups (see (Wasserman and Faust, 1994; Moody and White,

2003)). Resulting subgroups exhibit various characteristics such as adhesion,

with a centralization upon a leader node, cohesion, with more harmonized ties

among nodes, cliquishness, exhaustiveness, reachability, and density (Gleyze,

2010). The identification of cut-sets allows the identification of the edges to be

removed between subgroups, focusing on connections existence, quality and ro-

bustness within and between subgroups, with reference to the concept of clique.

The notion of modularity refers to the optimization of intra-group cohesiveness

(measured by distance, structural similarity or dissimilarity among nodes) with

regard to inter-group linkages.

One of the first methods introduced for delimitating coherent sub-regions

was the Nystuen-Dacey or dominant flow algorithm (Nystuen and Dacey, 1961),

first applied to telecommunication flows among Oregon cities. Its numerous ap-

plications on weighted transport networks have revealed barrier effects in air

and rail transport flows (Cattan, 1995), which cities dominate the hierarchy

of air flows (Grubesic et al., 2008), and which ports act as pivots in maritime

systems (Ducruet and Notteboom, 2011). Retaining only the maximum flow

link between each node simplifies the networks architecture and highlights the

existence of so-called nodal regions. Independent nodes are those in which dom-

inant flow connects a smaller node in terms of individual traffic size; subordinate
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nodes always connect a larger sized node. Notably, Cattan (2004) depicts the

lowering integration level of the worldwide airline system, observing its growing

polarization by fewer large hubs and the disappearance of sub-regional systems

formerly well connected internally. Figure 3 gives a more concrete illustration

with the evolution of the nodal region of Busan, South Korea based on inter-

port container traffic flows, showing how the hub strategy has resulted in an

extension of its tributary area from mostly Japanese satellites to a number of

Chinese secondary ports.

Figure 3: Example of a nodal region. The case of Busan, South Korea (Source:
adapted from Ducruet et al. (2010).

Because the Nystuen-Dacey algorithm neglects a large number of secondary

links, other methods of graph clustering (or partitioning) have been preferred in

order to take into account the complexity of the network (Gleyze, 2010) and its

multi-level organization. For instance, the application of strength clustering on

commuter flows in France reveals the polycentrism, cohesion and fragmentation

of urban areas (Tissandier, 2011). It has also been applied to air passenger

flows among cities worldwide (Amiel et al., 2005), showing the importance of

geographic proximity in the formation of clusters and the multi-level relations

among them. For instance, Asian cities tend to form dense neighborhoods, while

some global hubs do not belong to a specific cluster due to their intermediate

role between regions. Other measures include the z-score (share of the cluster

in a nodes connections) and the participation coefficient (connections to other

clusters) applied to worldwide air traffic (Guimera et al., 2005). The availabil-

ity of air traffic data on city pairs has helped foster a vast number of studies

on the centrality of cities in such networks (see Shin and Timberlake (2000)).

The bisecting K-means algorithm applied on all weighted maritime links among

Atlantic ports verifies a strong interdependency within the Le Havre-Hamburg
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or North European range as well as strong ties among Iberian Peninsula ports

and Brazilian ports. Other port groups are better defined by internal geographic

proximity and peripherality from the whole system (Ducruet et al., 2010). Over-

all, the only problem related to clustering methods is that there is no guarantee

to reach the best result as it depends on the edge weight selected (e.g. traf-

fic), and there is no indication about the right number of iterations needed

unless it verifies valid hypotheses about the number, quality, and size of ex-

pected groups.2 Simpler methods have been proposed, such as deleting edges

with high betweenness centrality (Newman and Girvan, 2004) or removing the

highest or lowest degree centrality nodes (Zaidi, 2011). Other approaches in-

clude clustering junctions on road networks (Mackechnie and Mackaness, 1999;

Gleyze, 2007); the use of structural equivalence, blockmodeling, and lambda-set

methods to study the regionalization of the US Internet backbone infrastructure

network (Gorman and Kulkarni, 2004); and measures of node vulnerability in

the Swedish road network (Jenelius, 2009).

3 Dynamics in Transportation Networks

Understanding transport development requires analyzing complex and dynamic

processes that produce temporal changes in the transport system. Two main

issues are addressed in the literature: how the spatial structure of transporta-

tion networks evolves over time and the mechanisms modifying this structure.

Several techniques have been developed to describe, compute, and simulate

large-scale features of transport networks. Geographers describe topological

transformations in the network based on intuitive mechanisms to replicate net-

work geometries (Kansky, 1963; Taaffe et al., 1963; Garrison and Marble, 1962;

Morrill, 1965); economists and urban planners compute and design statistical

models for choosing the best design of the network from an explicit set of avail-

able variables and alternatives (Schweitzer et al., 1998; Leblanc, 1975; Yang and

Bell, 1998; Gastner and Newman, 2004; Barthélemy and Flammini, 2006); and

engineers and physicists simulate emergent attributes of networks applying the

concept of self-organization and agent-based models (ABM) (Barabási, 2002;

Newman, 2003; Lam and Pochy, 1993; Helbing et al., 1997; Yamins et al., 2003;

Yerra and Levinson, 2005; Fricker et al., 2009; Levinson and Yerra, 2006; Xie

and Levinson, 2009).3

In this section, we review briefly the application of Agent-Based Models

(ABMs) to analyze the dynamics in transport networks. Although such an ap-

plication is relatively new in the field of transportation networks, it provides

2See in-depth reviews of clustering methods by Fortunato (2010) and Schaeffer (2007).
3For a complete review of literature see Xie and Levinson (2009).
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important advantages over analytical models. For example, ABMs describe in-

dividual interrelationships and form emergent properties in the system. There-

fore, ABMs are a class of computational models for simulating systems of au-

tonomous components, called agents, and the relationships between them and

their environment. Based on a set of simple behavioral rules, agents interact and

produce unexpected collective behavior (Newman, 2003). From the perspective

of complex systems, the self-organization process shows how global patterns or

structures in a system appear without the influence of a central authority or

planning entity (Vicsek, 2000). Therefore, ABMs are a good option to study

the dynamics in transportation networks, because they are evolutive models and

allow for flexible application to diverse theoretical approaches.

For the purpose of analysis, we present two different methods to conduct

an ABM application: generative and degenerative processes. Then, we point

out some important factors that analyze the change and growth in the spatial

configuration of the network. Finally, we suggest some significant features to be

considered when designing ABMs for transport networks.

3.1 Generative vs Degenerative Methods

When the goal of the analysis is to design, create, and compare a simulation

model to empirical evidence in transportation networks, there are two general

procedures to analyze dynamics. The first is a generative method of network

formation, which explains how nodes connect by edges over time and which sit-

uations are considered rest-points in this process. Starting from an unconnected

graph, the process begins to connect each node based on different mechanisms

related to edges, for example, the cost of building or maintaining the link. An-

other process to connect nodes is based on their hierarchical attributes. For

example, a link is created between two nodes based on their degree of connec-

tivity. This process is known as “preferential attachment” and explains the

dynamics of networks that generate a power law degree distribution in a sys-

tem (Newman, 2003). Applying such a process to transportation systems may

reveal some emergent behaviors in planar and non-planar networks, such as

hub-and-spoke configurations (e.g. airlines and shipping lines) and the limi-

tations imposed by the spatial structure of transport networks (e.g. number

of connections per node for road and railway paths). Therefore, preferential

attachment not only explains the dynamics of a system based on nodes connec-

tivity but also highlights the consideration of hierarchical attributes of nodes

in order to explore the evolution of networks. The generative method has been
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used in various scientific fields, for example, in economics (Goyal and Joshi,

2002; Yamins et al., 2003; Kirman, 2011), geography (Jiang and Yao, 2010),

and urban planning (Wilson and Nuzzolo, 2009).

On the other hand, the degenerative method proposes starting the analysis

from a complete network, where all nodes are connected to each other. All edges

represent possible paths that can be used in the system, but only the more

valuable ones reinforce its existence and modify its attributes. For example,

some local roads can reinforce their importance based on the number of users

and the cost of maintenance as well as the hierarchy of nodes to which they

are connected. Therefore, edges that are less valuable decrease in importance

and in their probability to be considered part of a representative path. Civil

engineering is the most common field of application for such a method (see Yerra

and Levinson (2005), Levinson and Yerra (2006), and Xie and Levinson (2009)).

Both methods have the same purpose: explaining an endogenous change

and growth that produces a particular network structure. For example, Fig-

ure 4 shows a planar network road system consisting of 150 nodes that are

uniformly and randomly distributed in an array of 400x400 cells, where the ini-

tial configuration of the system in the generative method is shown in 4a, and

the degenerative method is displayed in 4c. Phase 4b presents one possible out-

come in the final structure of the network; the process behind this structure is

a simple distance mechanism that connects shorter edges or deletes large edges

to nodes.

Even though both methods start from different initial conditions and ap-

ply inverse distance mechanisms, they converge to explain the final configura-

tion of the network. In other words, there are different stories to tell about

a process that creates particular network configurations. With this in mind,

pre-knowledge of the network structure, such as global/local measures, and its

contextualization, such as social and economic conditions, make it possible to

define a mechanism that well explains the dynamics behind such a configu-

ration. Then, the dynamics can be related to local mechanisms particularly

market areas, traffic flows, and socio-cultural characteristics (Christaller, 1933).

Therefore, the next step in the process to make a simulation model is selecting

those factors that guide the explanation of the evolution in the transportation

network and specify them as parameters in the model.

3.2 Mechanisms for Changing and Growing

The evolution of the transportation network is closely related to the change

and growth of central places. For example, Christaller (1933) explains the ex-

istence, characteristics, and evolution of such places. Transportation networks
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(a) Generative method displays an un-
connected graph

(b) A complex patter resulted by con-
necting or deleting links with small and
large distance respectively

(c) Degenerative method shows a com-
plete planar graph

Figure 4: Generative vs Degenerative Methods
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are one of the principal factors to describe the number, size, and patter of spa-

tial distribution of these places. The co-evolution process of central places and

transport networks points out the strong connection between the dynamics of

urban and transport systems, as seen in the works of Batty (2005, 2008) and

Blumenfeld-Lieberthal and Portugali (2010).

The market factor applied to transport networks explains the importance

of the transportation cost between places in order to maximize the trade-off

between demand and supply of goods and services. The creation and mainte-

nance of transportation systems depend on the distance between central places;

the higher the distance between places, the more expensive it is to sustain the

transportation system. In other words, short links in transportation are prefer-

able. Therefore, the market area affects the transportation cost and shapes

some emergent patters in the structure of the network Fujita et al. (1999).

In addition to the market factor, traffic is another important element that

affects the structure of transportation systems. This explains the importance of

the flow of individuals, goods, and services between central places. Components

that describe this factor include the total travel time and speed on links (Xie and

Levinson, 2009). Large-scale properties of the network, such as the existence

and hierarchy of links in the system, are analyzed by the traffic factor (de Dios

and Willumsen, 2001; Levinson and Yerra, 2006).

The socio-cultural factor is a hierarchical order between central places show-

ing the level of embedded systems across a particular geographical area, for

example, an increased number of activities coordinated inside a city makes it

more important compared to other cities. Economic and demographic variables,

such as the Gross Domestic Product (GDP) and the urban population, valuate

and describe the rank of a place in a system. Consequently, transportation links

receive the effects of this factor, because more activities need to expand and dis-

tribute their influence to other places (Krugman, 1996; Pumain and Tannier,

2005; Batty, 2005).

As a result, depending on the spatial structure of the network, dynamics

can be studied through the above factors and translated into parameters. Con-

tinuing with our example of a random planar network, links are classified into

different levels according to the transportation cost. Each link has a specific

cost associated to the distance between a node pair; the closer the nodes are,

the easier it is to build and maintain their connection, and the less likely longer

pairs are to exist. Defining a parameter beta, which provides a threshold value

for selecting shorter links (distance of one link divided by the larger link), and

modifying its value provides the results shown in Figure 5.

In the figure, 5a shows a topological structure when beta is defined as 0.15,

meaning that links of bigger size (i.e. more than 15%), are not used to connect
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(a) Transportation network topology with
high preference to have shorter links, in this
case links less than 0.15.

(b) Transportation network topology when
it is more desire to have larger links, in this
case links bigger than 0.25.

Figure 5: Variation in the transportation cost parameter and the emergent
transportation network
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nodes or are deleted from the system. Conversely, 5b displays a dissimilar

structure, because it includes larger links, where the threshold value is set at

25%. Hence, depending on the value of the parameter, different structures

emerge in the system.

3.3 Applications

Almost any transportation network shows properties of complex systems, and

its structures can be explained by the self-organization process. Hence, ABMs

are a natural method to search explanations of the evolution of such systems,

because they provide flexible and novel applications. For instance, Martens

et al. (2010) simulate parking behaviors in a city, and Blumenfeld-Lieberthal

and Portugali (2010) develop an urban simulation model to study the dynamics

of a system of cities. After specifying the method and the relevant parameters of

the analysis, the next step is to design and implement simulation experiments.

At a glance, ABMs are computational methods conforming to a collection of

autonomous agents, each of which has specific attributes and behavioral rules;

their interrelationships produce large-scale structures in the system. In order

to apply ABMs to transportation networks, it is necessary to define the scale

of the analysis and the type of agents in the system. The scale can be related

to a region, a metropolitan area, or a city; the type of agents can be speci-

fied by nodes such as cities or terminals; and edges represent transportation

links among them. The key point is to define an autonomous agent who has

particular attributes and specific methods to interact with other agents and its

surroundings. Attributes are intrinsic characteristics of the agent, such as its

name, age, or location, and methods are mechanisms or behavioral rules that

make possible the interaction with others and modify its attributes, for example,

a method that changes the agent’s location.

Applying such methods to the Mexican road system specifies two types of

autonomous agents: cities as nodes and roads as edges. The former is defined

as a central place with the attributes of location and population. The latter

is defined as transportation links with the attributes of location and distance.

The first method compares the distance between links and returns a group of

the shortest ones; the second method compares the distance between links and

the number of habitants between nodes in order to return short links to connect

more populated cities. In Figure 6, 6a displays the road system of Mexico, 6b

shows the simulation result based on short roads, and 6c exhibits a simulation

output regard to short roads and large cities.

Although this example is very simple, note that the process behind emergent

patterns is an auto-organization between agents without a central authority
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(a) Road system of Mexico in 2005 (Source: Instituto Na-
cional de Estad́ıstica y Geograf́ıa (INEGI) (2010)

(b) Short roads based on a distance less than 10% com-
pare to its maximum.

(c) Short roads based on a distance less than 6% and a
number of habitants bigger than 10, 000.

Figure 6: Application of ABMs to road networks: the case of the road system
at Mexico
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or planner that can be applied to the analysis of the existence, geometry, or

hierarchy in road networks.

In addition to the rigorous application of ABMs to transportation networks,

the results must be communicated in a straightforward, structured, and scientific

way. Simulation models are usually validated through comparison to empirical

data. The simulation also needs to achieve other requirements, such as analyzing

temporal changes in the topology of the network based on different network

paths, measuring structural properties of the network, and making a sensitivity

analysis where emergent patterns in the network are related to dissimilar initial

conditions (Xie and Levinson, 2009). Furthermore, there are some interesting

proposals to create a basic framework for communicating ABMs results, the

most useful of which is the ODD protocol (Overview, Design Concepts, and

Details). Based on the work of Grimm et al. (2006), this protocol is applied to

study large-scale system properties that emerge from the adaptive behavior of

agents.

4 Conclusion

Transportation networks are at the center of network analysis in natural and

social sciences. Recent trends show more interdisciplinary approaches and fast

developments of new analytical methods explored by physicists. While trans-

port network analysis still has a lot to gain from such advances, it maintains

its specificity by bridging abstract measures and theories with knowledge of the

transport industry and broader socio-economic and spatial issues. On another

hand, natural sciences give increasing importance to the spatial and social di-

mension of networks, thereby calling for further collaboration between natural

and social sciences. One interesting research path lies in the field of intermodal-

ism, which integrates local studies of planning and strategies with global-level

approaches to multiple network topologies and interdependencies. Additionally,

a closer look at meso-level measures would certainly foster understanding of how

transportation networks are structured and how they evolve with regard to the

combination of their local and global properties.

The study of dynamics in transport networks is improved through the appli-

cation of ABMs. Although such models are relatively new in the field of trans-

port networks, they help to understand endogenous mechanisms that produce

unexpected collective behavior in the system. In order to apply ABMs to the

analysis of network dynamics, it is important to define the method and mech-

anism of analysis based on theoretical and empirical evidence. In conclusion,

applying complex systems to transport networks is preferred to complement

theories and applications in different scientific fields.
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A Complex Networks Measures

Global Measure Basic Definition Formula
Exponent of the slope for
the power-law line drawn y = αxh

Hierarchy in a bi-log plot of node
frequency over degree
distribution
Ratio between the observed

Transitivity number of closed triplets Ci = λG(v)
τG(v)

and the maximum possible
number of closed triplets
in the graph

Average Average number of
shortest stops between two nodes lG = 1

n(n−1)
∑

i,j
d(vi,vj)

path length in the graph
Pearson correlation

Assortativity between the degree of τ =
M−1

∑
i
jiki[M

−1
∑

i

1
2 (ji+ki)]

2

M−1
∑

i

1
2 (j

2
i
+k2

i
)−[M−1

∑
i

1
2 (ji+ki)]

2

coefficient nodes at both ends of
each link (edge) in the
network

Local Measure
Degree Number of

centrality adjacent nodes ki = CD(i) =
∑N
j xij

Number of links needed
Eccentricity to reach the most distant e(x) = maxy∈Xd(x, y)

node in the graph
Shimbel Sum of the length of

index all shortest paths connecting Ai =
∑N
j=1 dij

all other nodes in the graph
Betweenness Number of times a node

centrality is crossed by shortest paths CB(i) =
gjk(i)
gjk

in the graph
Average
nearest Average degree of adjacent knn,i = 1

ki

∑
j αijkj

neighbors nodes
degree

Common measures used by complex networks (compiled from various sources)
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