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ON LEAST FAVORABLE CONFIGURATIONS

FOR STEP-UP-DOWN TESTS

Gilles Blanchard, Thorsten Dickhaus, Etienne Roquain and Fanny Villers

Potsdam University, Humboldt University and UPMC University

Abstract: This paper investigates an open issue related to false discovery rate (FDR)

control of step-up-down (SUD) multiple testing procedures. It has been established

in earlier literature that for this type of procedure, under some broad conditions,

and in an asymptotical sense, the FDR is maximum when the signal strength under

the alternative is maximum. In other words, so-called “Dirac uniform configura-

tions” are asymptotically least favorable in this setting. It is known that this prop-

erty also holds in a non-asymptotical sense (for any finite number of hypotheses),

for the two extreme versions of SUD procedures, namely step-up and step-down

(with extra conditions for the step-down case). It is therefore very natural to con-

jecture that this non-asymptotical least favorable configuration property could more

generally be true for all “intermediate” forms of SUD procedures. We prove that

this is, somewhat surprisingly, not the case. The argument is based on the exact

calculations proposed earlier by Roquain and Villers (2011a), that we extend here

by generalizing Steck’s recursion to the case of two populations. Secondly, we quan-

tify the magnitude of this phenomenon by providing a nonasymptotic upper-bound

and explicit vanishing rates as a function of the total number of hypotheses.

Key words and phrases: False discovery rate, least favorable configuration, multiple

testing, Steck’s recursions, step-up-down.

1 Introduction

In mathematical statistics, so-called least favorable parameter configurations

(LFCs) play a pivotal role. For a given statistical decision problem over a param-

eter space Θ and a given decision rule δ, we define an LFC θ∗(δ) as any element

of Θ that maximizes the risk (expected loss) of δ under this parameter, i.e.,

∀θ ∈ Θ, R(θ, δ) ≤ R(θ∗(δ), δ),
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where R(θ, δ) denotes the risk of rule δ under θ. When available, the knowledge

of an LFCs allows one to obtain a bound on the risk over a possibly very large

parameter space, including non- or semi-parametric cases where Θ has infinite

dimensionality. Theoretical investigations of minimax properties can rely on the

computation of an LFC. Such knowledge is also relevant for practice, because a

user of the procedure can be provided with a performance guarantee if an LFC

is known. In this case, even if the risk under the LFC cannot be computed

in closed form, it can be approximated by a Monte-Carlo method simulating

the distribution corresponding to the LFC. Finally, if the parameter space Θ

is partitioned into disjoint, restricted submodels, it can be of interest to gain

knowledge of the LFC of a decision rule δ separately over each submodel, thus

providing finer-grained information.

LFC considerations naturally occur in hypothesis testing problems. A clas-

sical example is that of one-sided tests over a one-dimensional parameter space

admitting an isotonic likelihood ratio: it is well-known that the LFC for the type

I error probability is located at the boundary of the null hypothesis. This fact is

used to derive critical values for uniformly more powerful tests in that setting.

The LFC problem is particularly delicate for multiple hypotheses testing and

the latter has been investigated by many authors in previous literature (Finner

and Roters, 2001; Benjamini and Yekutieli, 2001; Lehmann and Romano, 2005;

Finner, Dickhaus, and Roters, 2007; Romano and Wolf, 2007; Guo and Rao,

2008; Somerville and Hemmelmann, 2008; Finner, Dickhaus, and Roters, 2009;

Finner and Gontscharuk, 2009; Gontscharuk, 2010). In that setting, a family of

m ≥ 2 null hypotheses H1, . . . , Hm is to be tested simultaneously under the scope

of a common statistical model with parameter space Θ, and some type I error

criterion is used that accounts for multiplicity. For theoretical as well as practi-

cal applications, it is relevant to determine LFCs over the restricted parameter

spaces Θm,m0
where exactly m0 out of m of the null hypotheses are true. In this

setting, LFC results can be derived straightforwardly only in special situations.

In the present work, we restrict our attention to multiple testing procedures that

depend on the observed data only through a collection of marginal p-values, each

associated to an individual null hypothesis. This is a commonly used setting for

multiple testing problems in high dimension. Moreover, we consider procedures

2



that reject exactly those null hypotheses having their p-value less than a certain

common threshold t∗, which can possibly be data-dependent. That is, t∗ may

depend in a complex way of the entire family of p-values. We call such procedures

threshold-based for short.

In this setting, LFCs crucially depend on the type I error criterion considered.

One frequently encountered family of such criteria is given through loss functions

that only depend on the number of type I errors, denoted

Vm = Vm(θ, δ) := |{1 ≤ i ≤ m : Hi is true for θ and gets rejected by δ}|. (1)

In other words, the risk takes the form R(θ, δ) = Eθ[φ(Vm)]. Natural assump-

tions are that t∗ is a nonincreasing function in each p-value and that φ is a non-

decreasing function. Then, by additionally assuming that the p-values are jointly

independent, it is known that the LFC over Θm,m0
is a Dirac-uniform (DU) dis-

tribution (introduced by Finner and Roters, 2001), i. e. , such that p-values cor-

responding to true nulls are independent uniform variables, while p-values under

alternatives follow a Dirac distribution with point mass 1 in zero. This result

is formally restated in Appendix C. For example, this LFC property holds true

under the above assumptions for the k-family-wise error rate (k-FWER). For a

given θ ∈ Θ, the k-FWER under θ is defined by FWERk,θ := Pθ(Vm ≥ k). Strong

control of the (1-)family-wise error rate, i. e., ensuring that supθ FWER1,θ ≤ α

for a pre-defined level α ∈ (0, 1), is the usual type I error concept in traditional

multiple hypotheses testing theory.

However, over the last two decades, progress in application fields such as

genomics, proteomics, neuroimaging, and astronomy has lead to massive multi-

ple testing problems with very large systems of hypotheses (Dudoit and van der

Laan, 2008; Pantazis, Nichols, Baillet, and Leahy, 2005; Miller, Genovese, Nichol,

Wasserman, Connolly, Reichart, Hopkins, Schneider, and Moore, 2001). In this

type of applications, (k-)FWER control is typically too strict a requirement, and

a less stringent notion of type I error control is needed in order to ensure reason-

able power of corresponding multiple tests. In particular, the false discovery rate

(FDR) introduced by Benjamini and Hochberg (1995) has become a standard

criterion for type I error control in large-scale multiple testing problems. The

FDR is defined as the expected proportion of type I errors among all rejections.

Unfortunately, it does not fall into the class of type I error measures considered
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in the previous paragraph, so that the above result does not apply. Furthermore,

because the average ratio of two dependent random variables is not necessarily

increasing in the value of the numerator, the LFC problem for the FDR criterion

turns out to be a challenging issue – even for simple classes of multiple tests and

under independence assumptions.

In this work, we contribute to the theory of LFCs under the FDR criterion

for so-called step-up-down multiple tests (SUD procedures, for short). These pro-

cedures constitute an important and wide subclass of threshold-based multiple

testing procedures, wherein the threshold t∗ is obtained by comparing the re-

ordered p-values to a fixed set of critical values (see Tamhane, Liu, and Dunnett,

1998; Sarkar, 2002). Furthermore, recent research has reinforced the interest

of this type of procedures. For instance, Finner et al. (2009) have shown that

step-up-down tests can be used is association with the so-called asymptotically

optimal rejection curve (AORC) to provide an asymptotically (as m → ∞) valid

FDR control which is additionally optimal in some specific sense.

Namely, the contributions of the paper are as follows:

• a survey of known LFC results for SUD procedures in specific model classes

is provided in Section 3;

• new results and surprising counterexamples for LFCs of SUD procedures

are derived in Section 4.

• in Section 5, Steck’s recursion is extended to the case of two populations

and we provide a summary of the exact formulas for computing the FDR

proposed by Roquain and Villers (2011a,b); these formulas are used to

derive the counterexamples previously mentioned.

2 Mathematical setting

2.1 Models

Given a statistical model, we consider a finite set of m ≥ 2 null hypotheses

H1, . . . , Hm, and a corresponding, fixed collection of tests with associated p-

value family p := (pi, i ∈ {1, ...,m}). For simplicity, we skip somewhat the formal

definition of p-values and of the underlying statistical model and consider directly
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a statistical model for the p-values, that is, a model for the joint distribution of

p. In what follows, we denote by F the set containing c.d.f.’s from [0, 1] into

[0, 1] that are continuous.

• The p-value family p follows the (two group) fixed mixture model with pa-

rameters m ≥ 2, 1 ≤ m0 ≤ m and F ∈ F , for which the corresponding

distribution is denoted by FM(m,m0, F ), if p = (pi, i ∈ {1, ...,m}) is a

family of mutually independent variables and for all i,

pi ∼
{

U(0, 1) if 1 ≤ i ≤ m0,

F if m0 + 1 ≤ i ≤ m,

where U(0, 1) denotes the uniform distribution on (0, 1).

• The p-value family p follows the (two group) random mixture model with

parameters m ≥ 2, π0 ∈ [0, 1] and F ∈ F , for which the corresponding

distribution is denoted by RM(m,π0, F ), if there is an (unobserved) bino-

mial random variable m0 ∼ B(m,π0) such that p follows the FM(m,m0, F )

model conditionally on m0. In that case, the p-values are i.i.d. with (un-

conditional) c.d.f. G(t) = π0t+ (1− π0)F (t).

In the above definition, note that the true nulls are automatically assigned

to the m0 (random or not) first coordinates. This can be assumed without loss

of generality, since we only consider procedures which only depend on p-values

through their reordering in increasing order.

A common additional assumption on F is that F (x) ≥ x or that F is concave.

For instance, these assumptions are both satisfied in the two following standard

examples:

- Gaussian location model: F (t) = Φ(Φ
−1

(t) − µ), for a given alternative

mean µ > 0, where Φ(z) = P(Z ≥ z) for Z ∼ N (0, 1). This corresponds

to the alternative distribution of p-values when testing for µ ≤ 0 under a

Gaussian location shift model with unit variance.

- Dirac δ0 distribution: F is identically equal to 1, as introduced by Finner

and Roters (2001). The corresponding distribution in the FM model is

called Dirac-uniform (DU) configuration (or distribution) and denoted by
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FM(m,m0, F ≡ 1) or simply DU(m,m0). We define similarly RM(m,π0, F ≡
1). Note that the Dirac-uniform configuration can be seen as an instance

of the Gaussian c.d.f. for an alternative mean µ = ∞.

In the existing literature, the Dirac-uniform distribution has often be considered

as the first candidate for being an LFC of several global type I error rates (with or

without a theoretical support) (see, e.g., Finner et al., 2007; Romano and Wolf,

2007; Somerville and Hemmelmann, 2008).

2.2 Procedures

In this paper, we consider the particular class of multiple testing procedures called

step-up-down procedures, introduced by Tamhane et al. (1998), see also Sarkar

(2002). First define a threshold or critical value collection as any nondecreasing

sequence t = (tk)1≤k≤m ∈ [0, 1]m (with t0 = 0 by convention).

Definition 2.1. Let us order the p-values p(1) ≤ p(2) ≤ ... ≤ p(m) (with the

convention p(0) = 0). For any threshold collection t, the step-up-down (SUD)

procedure with threshold collection t and of order λ ∈ {1, ...,m}, denoted here by

SUDλ(t), rejects the i-th hypothesis if pi ≤ tk̂, with

k̂ =

{
max{k ∈ {λ, . . . ,m} : ∀k′ ∈ {λ, . . . , k}, p(k′) ≤ tk′} if p(λ) ≤ tλ;

max{k ∈ {0, . . . , λ} : p(k) ≤ tk} if p(λ) > tλ.
(2)

In the sequel, for convenience, we identify procedures with their rejection

sets, e.g., SUDλ(t) = {1 ≤ i ≤ m : pi ≤ tk̂}. An important remark is that

the cases λ = 1 and λ = m correspond to the traditional step-down and step-up

procedures, respectively. An illustration is provided in Figure 1.

A classical choice for the threshold collection t consists of Simes’ (1986) crit-

ical values tk = αk/m for a pre-specified level α ∈ (0, 1). The corresponding

step-up-down procedure is called the linear step-up-down procedure and is de-

noted by LSUDλ. In particular, for λ = 1 and λ = m, the procedure LSUDλ is

simply denoted by LSD and LSU, respectively. LSU corresponds to the famous

linear step-up procedure of Benjamini and Hochberg (1995).

It is common to consider threshold collections of the form tk = ρ(k/m) for

a function ρ : [0, 1] → [0, 1]. This function is generally assumed to satisfy the
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Figure 1: Value of k̂ (vertical solid line), defined by (2), for several procedures of the

SUD type. The bottom-right SUD procedure (using λ = 2m/3) coincides with the SU

procedure for this realization of the p-value family.

following assumptions:

ρ : [0, 1] → [0, 1] is continuous and non-decreasing; (3)

x ∈ (0, 1] → ρ(x)/x is non-decreasing. (4)

The function ρ is called the critical value function (while its inverse is generally

called the rejection curve, see e.g. Finner et al., 2009). Observe that assumption

(3) can always be assumed to hold when m is fixed, however it is of interest in

the case of an asymptotical analysis as m → ∞ (in which case ρ is assumed to

be independent of m). Assumption (4) on the other hand restricts the possible

threshold collection also for any fixed m. It will be often used in this paper.

For a fixed finite m, assumptions (3) and (4) taken together are equivalent to

“k 7→ tk/k is non-decreasing”.

7



2.3 False discovery rate and LFCs

As introduced by Benjamini and Hochberg (1995), the false discovery rate of

a multiple testing procedure is defined as the averaged ratio of the number of

erroneous rejections to the total number of rejections. In our setting, for a

distribution P being either FM(m,m0, F ) or RM(m,π0, F ), the FDR of a step-

up-down procedure can be written as

FDR(SUDλ(t), P ) = Ep∼P [FDP(SUDλ(t),m0,p)] , (5)

for which the FDP is the false discovery proportion defined by

FDP(SUDλ(t),m0,p) =
|{1 ≤ i ≤ m0 : pi ≤ tk̂}|

|{1 ≤ i ≤ m : pi ≤ tk̂}| ∨ 1
, (6)

where | · | denotes the cardinality function and in which m0 is either fixed or ran-

dom whether P is FM(m,m0, F ) or RM(m,π0, F ), respectively. For short, the

quantity FDR(SUDλ(t),FM(m,m0, F )) is often denoted FDR(SUDλ(t),m0, F ),

or FDR(SUDλ(t), F ) when the context makes the interpretation unambiguous.

Similarly, FDR(SUDλ(t),RM(m,π0, F )) can be shortened as FDR(SUDλ(t), π0, F ),

or FDR(SUDλ(t), F ).

Definition 2.2. Any F ′ ∈ F is called a least favorable configuration (LFC) for

the FDR of SUDλ(t) in a fixed mixture model with m0 true hypotheses out of m

and over the class F if

∀F ∈ F , FDR(SUDλ(t),m0, F ) ≤ FDR(SUDλ(t),m0, F
′).

A similar definition holds for a random mixture model with m hypotheses and

proportion π0 of true hypotheses.

The above definition can possibly be restricted to a subclass F ′ ⊂ F (typi-

cally, the class of concave c.d.f.s). This will be clearly specified in the context.

Obviously, if F ′ is an LFC for the fixed mixture model for all values of

m0, then it is also an LFC in the RM(m,π0, F ) model for any value of π0 (by

integrating over m0 ∼ B(m,π0)).
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3 Survey of known LFCs under the FDR criterion

Recent results about LFCs for the FDR criterion related to step-up-down type

procedures are summarized in Figure 2 and explained below. These results hold

either under the fixed mixture model or the random mixture model, hence involve

a maximization over distributions where the p-values are independent. (While

the present paper is focused on this setting, let us mention here briefly, that LFCs

for the FDR criterion under arbitrary dependencies have also been studied, see,

e.g. Lehmann and Romano, 2005; Guo and Rao, 2008.)

First, let us consider the problem of the monotonicity of FDR(SUDλ(t)) in λ

(vertical arrows). Recently, it was proved that, whenever F is concave, the FDR

grows as the rejection set grows (Zeisel, Zuk, and Domany, 2011, Theorem 4.1).

Interestingly, the rejection set R can have a very general form: the only condition

is that |R| is a measurable function of the order statistics of the family of p-values

under consideration. From (2) and since for any λ ∈ {1, . . . ,m−1}, the rejection
set of SUDλ(t) is included in the one of SUDλ+1(t), we obtain that for a concave

F ,

FDR(SUDλ(t)) ≤ FDR(SUDλ+1(t)),

both for FM(m,m0, F ) and RM(m,π0, F ) models. This implies in particular

that FDR(SD(t)) ≤ FDR(SU(t)) for a concave F . Other studies establish sim-

ilar inequalities, but with a condition on the threshold collection t, not on F .

Precisely, Theorem 4.3 of Finner et al. (2009) and Theorem 3.10 of Gontscharuk

(2010) establish that, when k 7→ tk/k is nondecreasing, for any λ ∈ {1, . . . ,m−1},

FDR(SUDλ(t)) ≤ FDR(SU(t)),

both for FM(m,m0, F ) and RM(m,π0, F ) models. In particular, the fact that

FDR(SU(t)) dominates the FDR of SD(t) is quite well established in multiple

testing literature. Nevertheless, let us stress that this is no longer the case for

“atypical” configurations of F and t, as we state in Appendix B.

Secondly, let us consider the monotonicity of FDR(SUDλ(t), F ) in F . In the

step-up case (i.e., λ = m), the situation is somewhat simple: Theorem 5.3 of

Benjamini and Yekutieli (2001) states that F ≤ F ′ implies FDR(SUDλ(t), F ) ≤
FDR(SUDλ(t), F

′) whenever k 7→ tk/k is nondecreasing. Moreover, the inequal-

ity is reversed whenever k 7→ tk/k is nonincreasing. In the step-down case (i.e.,
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λ = 1) and for a RM(m,π0, F ) model, Theorem 4.1 of Roquain and Villers

(2011a) states that the Dirac-uniform configuration (F ≡ 1) is an LFC under

some complex condition on the threshold collection t, that is fulfilled by the

linear threshold collection tk = αk/m, α ∈ (0, 1) and over the class of concave

c.d.f.’s. However, for λ /∈ {1,m} (i.e., an “intermediate” SUD procedure), finding

LFC’s is more delicate and the only known result is asymptotic, as m tends to

infinity. Precisely, combining Theorem 4.3 of Finner et al. (2009) and Lemma 3.7

of Gontscharuk (2010), we easily derive the following result:

Theorem 3.1. [Gontscharuk (2010)] Consider a step-up-down procedure using

a threshold collection of the form tk = ρ(k/m), where ρ satisfies (3) and (4).

Assume that the step-up-down procedure is performed at an order λ = λm such

that λm/m → κ ∈ [0, 1]. Assume that m0/m → ζ ∈ [0, 1] and that, under

the DU(m,m0) distribution, the number of rejections of SUDλ(t) satisfies that

|SUDλ(t)|/m converges in probability as m grows to infinity. Then, in the fixed

mixture model FM(m,m0, F ), we have for any F ∈ F ,

lim sup
m

{
FDR(SUDλm

(t), F )− FDR(SUDλm
(t), F ≡ 1)

}
≤ 0, (7)

either for all ζ ∈ [0, 1] if κ > 0 or for all ζ ∈ [0, 1) if κ = 0.

However, for a finite m, and λ /∈ {1,m} no result is known about LFC’s to

our knowledge. This is the point of the paper and is symbolized by the question

mark in the middle of Figure 2.

Finally, let us consider the linear SUD procedure, that is, the SUD procedure

using the threshold collection tk = αk/m, α ∈ (0, 1) (corresponding to ρ(x) =

αx). Since both LSU and LSD procedures satisfy that DU is an LFC and since

an SUD procedure can be expressed as a combination of an SU and an SD, we

might make the following conjecture, which is the starting point of this paper.

Conjecture 3.2. For any m ≥ 2, the Dirac-uniform configuration (F ≡ 1) is

a least favorable configuration for the FDR of the linear step-up-down procedure,

in the RM(m,π0, F ) and FM(m,m0, F ) models.

Obviously, a similar conjecture might be formulated for a (non-linear) step-

up-down procedure using ρ satisfying (3) and (4).

10



SD, F SD, DU

SUD, F SUD,DU

SU, F SU, DU
[BY2001]

tk/k nondecreasing

?

[ZZD2010]
F concave

[ZZD2010]

[ZZD2010]
[ZZD2010]
F concave

[RV2011]
tk linear

RM, F concave

[FDR2009]
[Gont2010]

tk/k nondecreasing

Figure 2: An arrow “A → B” means “FDR(A) ≤ FDR(B)”. These results hold for the

fixed mixture (FM) model except when “RM” is written. The brackets are a shortened

reference to the corresponding literature, see main text for more details.
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4 Investigating Conjecture 3.2

4.1 Disproving the conjecture

The exact calculations described in Section 5 allow to compute the value of

FDR(LSUDλ(t)) exactly. This shows the following (numerical) result.

Proposition 4.1. For m = 10, consider the linear step-up-down procedure

LSUDλ at level α = 0.5 and for λ ∈ {4, 5, 6, 7}. Then, we have

FDR(LSUDλ, F ) > FDR(LSUDλ, F ≡ 1), (8)

in either of the two following cases:

• in the FM(m,m0, F ) model, with m0 = 7 and F (x) = x;

• in the RM(m,π0, F ) model, with π0 = 7/10 and F (x) = x.

This disproves Conjecture 3.2 and shows that finding the LFC for SUD is

more difficult than for SU and SD separately. More generally, Figure 3 reports

some obtained values in the Gaussian case F = Φ(Φ
−1

(·) − µ) for different val-

ues of the alternative mean µ. We observe that the result for FM(m,m0, F )

(left panel) or RM(m,π0, F ) (right panel) are qualitatively the same: there is a

range of values for λ ∈ {2, . . . ,m− 1} for which the FDR is larger for a smaller

µ. However, this phenomenon seems to decay when m becomes larger, see Fig-

ure 3 for m = 100. Also, when α decreases, the phenomenon still occurs but

its amplitude decays. To alleviate the concern that this somewhat unexpected

phenomenon could be due to numerical inaccuracies in the computation of the ex-

act formulas (which involve several nested recursions), the reported results were

double-checked via extensive and independent Monte-Carlo simulations, which

confirmed the validity of the reported curves.

4.2 Nonasymptotic bound

In the present section, we investigate the amplitude of the phenomenon observed

in the previous section as a function of the number of hypotheses. In other words,

we derive a more explicit and non-asymptotic version of the limit appearing in

(7). For this, we consider a perturbation analysis of the SUD procedure as defined
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Figure 3: The LFC of LSUD is not always DU. FDR(LSUDλ) as a function of the order

λ ∈ {1, . . . ,m}. Left: fixed mixture; Right: random mixture. One sided Gaussian

location model with parameter µ. α = 0.5.

in (2), under the Dirac-uniform model, and when the empirical c.d.f. of the p-

values is δ-close to the population c.d.f. (which happens with large probability).

In order to state the result in a compact form, we first introduce the following

notation for an SUD threshold in a continuous setting.

Definition 4.2. Let ρ : [0, 1] → [0, 1] satisfying (3). For any non-decreasing

13



function G : [0, 1] → [0, 1], and ℓ ∈ [0, 1], we define

U(ℓ,G) =




min {u ∈ [ℓ, 1] : G(ρ(u)) ≤ u} if G(ρ(ℓ)) ≥ ℓ;

max {u ∈ [0, ℓ] : G(ρ(u)) ≥ u} if G(ρ(ℓ)) < ℓ.
(9)

Observe that in the above definition, the infimum and supremum are well-

defined since the considered sets are non-empty; using that G is non-decreasing,

it can be seen that U(ℓ,G) is a fixed point of the function G ◦ ρ (so that the

infimum is indeed a minimum and the supremum, a maximum). Unfortunately,

the number of rejections k̂ of the SUD procedure as defined in (2) does not

always satisfy k̂/m = U(λ/m, Ĝm) (because of the step-down part, see Figure 6

in Section 7.2). Nevertheless, the following lemma is proved in Section 7.2.

Lemma 4.3. With the above notation, if the threshold collection t is defined as

tk = ρ(k/m), we have

U(λ/m, Ĝm) ≤ k̂/m ≤ U(λ/m, (Ĝm +m−1) ∧ 1), (10)

where k̂ is defined by (2) and Ĝm(x) := m−1
∑m

i=1 1{pi ≤ x} is the empirical

c.d.f. of the p-values.

We now state our main result.

Theorem 4.4. Consider a threshold collection t of the form tk = ρ(k/m), where

ρ : [0, 1] → [0, 1] satisfies (3) and (4). Let ζ ∈ (0, 1) be an arbitrary constant.

For δ ∈ (0, 1), define

u+δ = U(λ, (GDU
ζ + δ) ∧ 1) and u−δ = U(λ, (GDU

ζ − δ) ∨ 0),

where GDU
ζ (x) := (1 − ζ) + ζx (see Figure 4 for an illustration). Let us define

the remaining term: for any y ∈ (0, 1),

ε(δ,m, ζ, y) :=
ρ(u+δ )− ρ(u−δ )

u+δ
+

4

1− ζ
e
−2m(δ−y− 1

m
)
2

+
(1−y/ζ)+ . (11)

Then, for any F ∈ F and λ ∈ {1, . . . ,m} the following holds.

• In the FM(m,m0, F ) model with 0 < m0 < m and ν = maxk∈{m0−1,m0}{|k/m−
ζ|} ∈ [0, 1], we have

FDR(SUDλ(t),m0, F ) ≤ FDR(SUDλ(t),m0, F ≡ 1) +
m0

m
ε(δ,m, ζ, ν);

(12)
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• In the RM(m,π0, F ) model with π0 = ζ, we have for any γ ∈ (0, 1),

FDR(SUDλ(t), π0, F ) ≤ FDR(SUDλ(t), π0, F ≡ 1) + π0ε(δ,m, ζ, γ) + 4e−2m(γ−1/m)2
+ .

(13)

Linear rejection curve (α = 0.5) AORC (α = 0.2)
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DU((t)) == 1 −− ζζ ++ ζζt
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bounding c.d.f's

bounding quantities ρρ((uδδ
±± ))
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bounding c.d.f's

bounding quantities ρρ((uδδ
±± ))

bounding quantity ρρ((vδδ))
ρρ((λλm m))

Figure 4: Illustration for u+

δ and u−

δ in the case of the LSUD and the SUD based on

AORC. Here the X-axis is on the “threshold scale” t = ρ(u). ζ = 0.5; δ = 0.03. The

area between (GDU
ζ − δ) ∨ 0 and (GDU

ζ + δ) ∧ 1 is displayed in gray.

Theorem 4.4 is proved in Section 7.3. This result is illustrated in the two

following examples.

1. Let us first apply Theorem 4.4 in the particular case where ρ(x) = αx is the

linear critical value function, see the left panel of Figure 4. In that case, we

have u−δ = 1−ζ−δ
1−αζ ∨ 0 and u+δ = 1−ζ+δ

1−αζ ∧ 1. Hence,

(ρ(u+δ )− ρ(u−δ ))/u
+
δ ≤ 2αδ

1− ζ + δ
.

As a result, (12) and (13) hold by replacing (ρ(u+δ )− ρ(u−δ ))/u
+
δ by 2αδ

1−ζ+δ

inside the remaining term ε(δ,m, ζ, y).
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2. Second, for ζ > α, let us use

ρ(u) = αu/(1− u(1− α)), that is, ρ−1(t) = t/(α+ t(1− α)). (14)

The rejection curve ρ−1, displayed in the right panel of Figure 4, is called

the “asymptotically optimal rejection curve” (AORC). It was introduced

by Finner et al. (2009) for the purpose of improving the power of the linear

critical value function. When applying Theorem 4.4 with this choice of

ρ, the calculation of u−δ and u+δ depends on the position of the parameter

λm/m on [0, 1] and ρ(u+δ )−ρ(u−δ ) may not vanish when δ becomes small, see

Figure 4. Fortunately, when ρ(λm/m) (dotted-long-dashed line) is smaller

than the quantity ρ(vδ) (dashed line), the two points ρ(u−δ ) and ρ(u+δ )

(dotted-dashed lines) are expected to be close as δ becomes small and the

bound given in Theorem 4.4 will vanish. The exact expressions of u−δ ,

u+δ and vδ can be easily derived by solving the corresponding quadratic

equations. For short, we only report the equivalent as δ tends to 0:

vδ = 1− δα/(ζ − α) +O(δ2)

u+δ = (1− ζ)/(1− α) + δζ/(ζ − α) +O(δ2)

u−δ = (1− ζ)/(1− α)− δζ/(ζ − α) +O(δ2).

Since ρ′((1− ζ)/(1−α)) = α/ζ2, we have ρ(u+δ )−ρ(u−δ ) = 2αδ/(ζ2−αζ)+

O(δ2). As a result, assuming ζ > α and λ/m < vδ, we can derive that

(12) and (13) hold and that quantity (ρ(u+δ ) − ρ(u−δ ))/u
+
δ is equivalent to

2α(1−α)
(ζ2−αζ)(1−ζ)

δ (as δ tends to zero) in the remaining term ε(δ,m, ζ, y).

4.3 Convergence rate when m → ∞

We can now use Theorem 4.4 in an asymptotic sense and for specific critical value

functions, in order to obtain an explicit bound on the convergence rate of the

limit appearing in (7).

Corollary 4.5. Let α ∈ (0, 1). Consider a threshold collection of the form tk =

ρ(k/m), where ρ is either ρ(x) = αx (linear) or given by (14), that is, associated

with the AORC. Consider the SUD procedure of threshold collection t and of order

λ = λm possibly depending on m. Consider either the FM(m,m0, F ) model with
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m0 = ⌊ζmm⌋ or RM(m,π0, F ) model with π0 = ζm, for some ζm ∈ (α, 1) possibly

depending on m. Assume that 1
1−ζm

√
(logm)/m = o(1). For the AORC case,

assume moreover 1
1−λm/m

√
(logm)/m = o(1). Then we have for any F ∈ F ,

(FDR(SUDλm
(t), F )− FDR(SUDλm

(t), F ≡ 1))+ = O

(
1

1− ζm

√
logm

m

)
.

(15)

Corollary 4.5 is proved in Section 7.4 and is an easy consequence of Theo-

rem 4.4 when taking δ = δm (and γ = γm) suitably tending to zero. Assuming

ζm > α is not an important restriction because when ζm ≤ α, controlling the

FDR is a trivial problem: the procedure rejecting all the hypotheses has an FDR

(and even an FDP) smaller than ζm ≤ α.

While focusing on the linear and AORC rejection curve, the conclusion of

Corollary 4.5 is substantially more informative than Theorem 3.1: it evaluates

what is the order of the error when considering that the DU is an LFC of an SUD

test. For ζm = ζ ∈ (0, 1) fixed with m, note that the rate of convergence in (15) is

equal to the parametric rate, up to a logm factor. Furthermore, the constant in

the O(·) can be derived explicitly by using the bound from the previous section.

For ζm tending to 1 (not too quickly, “fairly” sparse case), the convergence rate

is slower.

As a counterpart, assumptions of Corollary 4.5 are more restrictive than

those of Theorem 3.1. In particular, they exclude the case where ζm tends to

1 faster than
√

(logm)/m (“highly” sparse case). This is a limitation of the

methodology used to prove the nonasymptotic results. This problem may pos-

sibly be fixed by adapting the proof of Lemma 3.7 of Gontscharuk (2010) to a

nonasymptotic setting, but this falls outside of the intended scope of this paper.

5 Exact formulas

In this section, we gather some of the formulas derived by Roquain and Villers

(2011a,b) to calculate the joint distribution of the number of false discoveries and

the number of discoveries. Moreover, we complement this work by giving a new

recursion that makes these formulas fully usable. These calculations are used to

state Proposition 4.1.
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5.1 A new Steck’s recursion

For any k ≥ 0 and any threshold collection t = (t1, . . . , tk), we denote

Ψk(t) = Ψk(t1, . . . , tk) = P
[
U(1) ≤ t1, . . . , U(k) ≤ tk

]
. (16)

where (Ui)1≤i≤k is a sequence of k variables i.i.d. uniform on (0, 1) and with the

convention Ψ0(·) = 1. In practice, quantity (16) can be evaluated using standard

Steck’s recursion Ψk(t) = (tk)
k −∑k−2

j=0

(
k
j

)
(tk − tj+1)

k−jΨj(t1, . . . , tj) (Shorack

and Wellner, 1986, p. 366–369).

Next, we generalize the latter to the case of two populations. Define for

0 ≤ k0 ≤ k and any threshold collection t = (t1, . . . , tk),

Ψk,k0,F (t1, . . . , tk) = P
[
U(1) ≤ t1, . . . , U(k) ≤ tk

]
, (17)

where (Ui)1≤i≤k is a sequence of k variables such that (Ui)1≤i≤k0 are i.i.d. uni-

form on (0, 1), independently of (Ui)k0+1≤i≤k i.i.d. of c.d.f. F and with the

convention Ψ0,0,F (·) = 1. The computation of Ψk,k0,F is more difficult than Ψk

because it involves non i.i.d. variables. To our knowledge the existing formulas

for computing Ψk,k0,F have a complexity exponential with k (Glueck, Karimpour-

Fard, Mandel, Hunter, and Muller, 2008). Here, we propose a substantially less

complex computation, by generalizing Steck’s recursions as follows.

Proposition 5.1. The following recursion holds: for 0 ≤ k0 ≤ k,

Ψk,k0,F (t1, . . . , tk) =(tk)
k0F (tk)

k−k0 −
∑

0≤j0≤j≤k−2
j0≤k0

j−j0≤k−k0

(
k0
j0

)(
k − k0
j − j0

)

× (tk − tj+1)
k0−j0(F (tk)− F (tj+1))

k−k0−j+j0Ψj,j0,F (t1, . . . , tj),

(18)

with the convention 00 = 1.

This is proved in Section 7.1. Note that the case k = k0 reduces to the

standard (one population) Steck’s recursion.

5.2 FDR formulas

Using the Ψk’s and Ψk,k0 ’s, let us define the following useful quantities: for any

threshold collection t = (tk)1≤k≤m, F ∈ F ; for any π0 ∈ [0, 1], k ≥ 0, k ≤ m,
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0 ≤ j ≤ k, we let

Pm,π0,F (t, k, j) =

(
m

j

)(
m− j

k − j

)
πj
0π

k−j
1 (tk)

j(F (tk))
k−j

×Ψm−k(1−G(tm), . . . , 1−G(tk+1)); (19)

P̃m,π0,F (t, k, j) =

(
m

j

)(
m− j

k − j

)
πj
0π

k−j
1 (1−G(tk+1))

m−k

×Ψk,j,F (t1, . . . , tk), (20)

where G(t) = π0t + (1 − π0)F (t). For any m0 ∈ {0, . . . ,m}, k ≥ 0, k ≤ m,

j ≤ m0, k − j ≤ m−m0, we let

Qm,m0,F (t, k, j) =

(
m0

j

)(
m−m0

k − j

)
(tk)

j(F (tk))
k−j

×Ψm−k,m0−j,F (1− tm, . . . , 1− tk+1); (21)

Q̃m,m0,F (t, k, j) =

(
m0

j

)(
m−m0

k − j

)
(1− tk+1)

m0−j(1− F (tk+1))
m−m0−k+j

×Ψk,j,F (t1, . . . , tk), (22)

where F (t) = 1 − F (1− t). The following results have been proved by Roquain

and Villers (2011a,b).

Theorem 5.2 (Roquain and Villers (2011)). Consider any threshold collection t

and the quantities defined by (19), (20), (21) and (22). Then the following holds:

(i) In the RM(m,π0, F ) model, for any π0 ∈ [0, 1], F ∈ F , 0 ≤ k ≤ m,

0 ≤ j ≤ k,

P(|R ∩ {1, . . . ,m0}| = j, |R| = k) =

{
Pm,π0,F (t, k, j) for R = SU(t),

P̃m,π0,F (t, k, j) for R = SD(t).

(23)

(ii) In the FM(m,m0, F ) model, for any m0 ∈ {0, . . . ,m}, F ∈ F , 0 ≤ k ≤ m,

0 ∨ (k −m+m0) ≤ j ≤ m0 ∧ k,

P(|R ∩ {1, . . . ,m0}| = j, |R| = k) =

{
Qm,m0,F (t, k, j) for R = SU(t),

Q̃m,m0,F (t, k, j) for R = SD(t).

(24)
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Classically, any step-up-down procedure can be written as a combination of

a step-down and a step-up procedure (Sarkar, 2002):

SUDλ(t) =

{
SU((tλ ∧ tj)1≤j≤m) if |SU((tλ ∧ tj)1≤j≤m)| < λ,

SD((tλ ∨ tj)1≤j≤m) if |SD((tλ ∨ tj)1≤j≤m)| ≥ λ.
(25)

Moreover, since {|SU((tλ ∧ tj)1≤j≤m)| < λ} = {p(λ) > tλ} and {|SD((tλ ∨
tj)1≤j≤m)| ≥ λ} = {p(λ) ≤ tλ} the two cases in (25) form a partition of the

probability space. This yields the following explicit FDR computations:

Corollary 5.3. let λ ∈ {1, . . . ,m} and consider any threshold collection t. Then

the following holds:

(i) In the model RM(m,π0, F ), for any π0 ∈ [0, 1], F ∈ F , we have

FDR(SUDλ(t)) =

λ−1∑

k=1

k∑

j=0

j

k
Pm,π0,F (t ∧ tλ, k, j)

+

m∑

k=λ

k∑

j=0

j

k
P̃m,π0,F (t ∨ tλ, k, j). (26)

(ii) In the model FM(m,m0, F ), for any m0 ∈ {0, . . . ,m}, F ∈ F , we have

FDR(SUDλ(t)) =

λ−1∑

k=1

m0∧k∑

j=0∨(k−m+m0)

j

k
Qm,m0,F (t ∧ tλ, k, j)

+

m∑

k=λ

m0∧k∑

j=0∨(k−m+m0)

j

k
Q̃m,m0,F (t ∨ tλ, k, j). (27)

In the model RM(m,π0, F ), it turns out that FDR(SUDλ(t)) has an expres-

sion only involving the Ψks, and not the Ψk,j,F (Roquain and Villers, 2011a,

Section 5.2). Although it has a somewhat less intuitive form, it is better than

(26) from a computational point of view.

6 Discussion

Our aim in this paper was to address the question “is the Dirac-uniform distribu-

tion an LFC for an intermediate step-up-down procedure (that uses a standard
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threshold collection)?” In a nutshell, the answer we found is “no, but almost”.

We provided a rigorous quantification of what “almost” means, using an alter-

native approach to the asymptotic results of Gontscharuk (2010) that entails

nonasymptotic bounds and explicit convergence rates. In practical situations,

evaluating such bounds can allow to determine whether we can consider that the

FDR is maximum when the signal strength is maximum.

Returning to equations (5) and (6), an additional question, particularly rele-

vant in practice, is how appropriate it is to base the multiple type I error criterion

solely on control of the expectation of the random variable FDP. We notice that

Theorem 5.2 may also be used to study this issue by computing exactly the point

mass function of the FDP under arbitrary configurations for the alternative, cf.

Section A in the appendix. Based on this, we investigated to what extent the

distribution of the FDP concentrates around its expectation for a simple Gaus-

sian location model with parameter µ. Figure 5 was obtained from these exact

formulas for m = 100 and varying values of π0 and µ. Note that the unrealis-

tically large choice of α = 1/2 has only been used for reasons of readability of

the figures; similar plots also obtained when choosing α smaller (the variance of

the FDP actually increases with smaller α, because this entails a smaller number

of rejections). On inspection of these graphs, it becomes apparent that – even

though joint independence of the p-values holds – the distribution of the FDP is

not concentrated around the corresponding FDR in the following two situations:

(i) The effect size µ is close to zero (weak signal) or (ii) the proportion π0 of true

null hypotheses is close to 1 (sparse signal). Thus, controlling the FDR alone

does not guarantee a small FDP for a specific experiment at hand in these cases.

For a well-defined dependency structure induced by exchangeable test statistics,

theoretical arguments for m tending to infinity support the observation that the

distribution of the FDP often does not degenerate in the limit, see (Finner et al.,

2007; Delattre and Roquain, 2011). For the jointly independent case and in the

cases (i) or (ii) above, this phenomenon has not been theoretically studied to the

best of our knowledge. The latter can possibly be investigated by extending the

asymptotic approach of Neuvial (2008) to the case where µ and π0 are allowed

to depend on m.

Taking these considerations into account, control of the false discovery ex-
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Figure 5: Exact probability P(FDP(LSU) ∈ [i/50, (i+1)/50)) for 0 ≤ i ≤ 50. The value

of FDR(LSU) = π0α is displayed by the vertical dashed line. Random mixture model.

α = 0.5; m = 100. One sided location Gaussian c.d.f. with parameter µ.

ceedance (i.e., of the probability that the FDP exceeds a given threshold) has

recently been proposed in the literature (see, e.g. Farcomeni, 2008, for a review).

Controlling the false discovery exceedance control again brings forth the question

of the corresponding LFC: are Dirac-uniform configurations least favorable for,

e.g., P(FDP(LSU) > x)? Some non-reported figures show that this is not the

case for any x. Hence, finding LFCs for the false discovery exceedance stays an

open avenue for future research.
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7 Proofs

7.1 Proof of Proposition 5.1

We follow the proof of the regular Steck’s recursion (Shorack and Wellner, 1986,

p. 366–369). By using the convention U(0) = t0 = 0 and by considering the

smallest j for which U(j+1) > tj+1, we can write

P(U(k) ≤ tk)− P
[
U(1) ≤ t1, . . . , U(k) ≤ tk

]

=
k−2∑

j=0

P(∀i ≤ j, U(i) ≤ ti, U(j+1) > tj+1, Uk ≤ tk)

=
k−2∑

j=0

∑

X⊂{1,...,k},|X|=j

P(∀i ≤ j, U(i) ≤ ti, ∀i /∈ X, tj+1 ≤ Ui ≤ tk).

Hence, if U(i:X) denotes the i-th smallest member of the set {Ui, i ∈ X}, we

obtain

P(U(k) ≤ tk)− P
[
U(1) ≤ t1, . . . , U(k) ≤ tk

]

=

k−2∑

j=0

∑

X⊂{1,...,k},|X|=j

P(∀i ≤ j, U(i:X) ≤ ti)P(∀i /∈ X, tj+1 ≤ Ui ≤ tk)

=
k−2∑

j=0

j∑

j0=0

∑

X⊂{1,...,k},|X|=j

1{|X ∩ {1, . . . , k0}| = j0}Ψj,j0,F (t1, . . . , tj)

× P(∀i /∈ X, tj+1 ≤ Ui ≤ tk).

7.2 Proof of Lemma 4.3

In this proof, we denote Ĝ
′
m = (Ĝm +m−1) ∧ 1 for short. Let us first note that

for any k ∈ {1, . . . ,m}, “p(k) ≤ tk” is equivalent to “Ĝm(ρ(k/m)) ≥ k/m”. We

now distinguish two cases:

- Step-up case: assume p(λ) > tλ, that is, Ĝm(ρ(λ/m)) < λ/m. Let us prove

that k̂/m = U(λ/m, Ĝm). Since U(ℓ,G) is a fixed point of the function

G ◦ ρ, we have U(ℓ,G) ∈ {0, 1/m, . . . ,m/m}. Hence,

k̂/m = max{k/m ∈ {0, . . . , λ/m} : Ĝm(ρ(k/m)) ≥ k/m}
= max{u ∈ [0, λ/m] : Ĝm(ρ(u)) ≥ u},
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and we can conclude.

- Step-down case: assume p(λ) ≤ tλ, that is, Ĝm(ρ(λ/m)) ≥ λ/m. First

assume that k̂ < m and prove that (k̂ + 1)/m = U(λ/m, Ĝ′
m). On the one

hand,

(k̂ + 1)/m = min{k/m ∈ {(λ+ 1)/m, . . . ,m/m} : Ĝm(ρ(k/m)) < k/m}
= min{k/m ∈ {λ/m, . . . ,m/m} : Ĝm(ρ(k/m)) < k/m}
= min{k/m ∈ {λ/m, . . . ,m/m} : Ĝ

′
m(ρ(k/m)) ≤ k/m}, (28)

becausemĜm(ρ(k/m)) is an integer. On the other hand, since Ĝ′
m(ρ(λ/m)) ≥

λ/m, we have

U(λ/m, Ĝ′
m) = min

{
u ∈ [λ/m, 1] : Ĝ

′
m(ρ(u)) ≤ u

}

= min
{
u ∈ {λ/m, . . . ,m/m} : Ĝ

′
m(ρ(u)) ≤ u

}
, (29)

because U(λ/m, Ĝ′
m) ∈ {0, 1/m, . . . ,m/m}. Combining (28) and (29) yields

the result. Second, in the case where k̂ = m, then for any k/m ∈ {λ/m, . . . ,m/m},
we have Ĝm(ρ(k/m)) ≥ k/m. Hence, for all k/m ∈ {λ/m, . . . , (m −
1)/m}, Ĝ′

m(ρ(k/m)) > k/m which entails U(λ/m, Ĝ′
m) = 1. Hence, k̂/m =

U(λ/m, Ĝ′
m) in that case. Finally, the inequality k̂/m ≤ U(λ/m, Ĝ′

m) al-

ways holds.

7.3 Proof of Theorem 4.4

Let us first prove the result in FM(m,m0, F ) model. We recall Ĝm(x) :=

m−1
∑m

i=1 1{pi ≤ x}, GDU
ζ (x) := (1 − ζ) + ζx and we put û := k̂/m, where

k̂ is defined by (2). We can easily check from the definition (9) that if G,G′ are

two nondecreasing functions such that ∀x ∈ [0, 1], G(x) ≥ G′(x), then U(λ,G) ≥
U(λ,G′). Based on the bound (10), we deduce that ∀δ ∈ (0, 1),

{
sup

x∈[0,1]
|Ĝm(x)−GDU

ζ (x)| ≤ δ − 1

m

}
⊂
{
u−δ ≤ û ≤ u+δ

}
.
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λ = 8 (SU part) λ = 4 (SD part)
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Figure 6: Plot of Gm(ρ(·)) for ρ(x) = 0.5x and m = 10 p-values. The order λ of the SUD

procedure is displayed by the dashed line while the value of k̂/m is displayed by the dotted

line. Left: the SUD procedure of order λ = 8 is such that k̂/m = U(λ/m, Ĝm) = 0.7.

Right: the SUD procedure of order λ = 4 satisfies k̂/m = 0.7 but U(λ/m, Ĝm) = 0.4.

As a consequence, in the DU(m, k) model, k ∈ {m0 − 1,m0}, by using Ĝm(x)−
GDU

ζ (x) = (k/m− ζ)(1− Ĝk(x))− ζ(Ĝk(x)− x), we obtain

Ωδ(k) :=

{
sup

x∈[0,1]
|Ĝk(x)− x| ≤ ζ−1(δ − ν − 1

m
)

}
⊂
{
u−δ ≤ û ≤ u+δ

}
. (30)

Remember that p1, . . . , pm0
correspond to true nulls, hence, when k ∈ {m0 −

1,m0}, Ĝk involves only variables which are i.i.d. uniform. As a consequence,

by using the DKW inequality with Massart’s (1990) optimal constant, we have

in the DU(m, k) model and for k ∈ {m0 − 1,m0},

PDU(m,k)[(Ωδ(k))
c] ≤ 2 exp

{
−2k

(
δ − ν − 1

m

)2

+

/ζ2

}

≤ 2 exp

{
−2m

(
δ − ν − 1

m

)2

+

(1− ν/ζ)+

}
, (31)

because k/m ≥ ζ − ν and ζ ≤ 1.
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7.3.1 Upper bound

Let q(x) = ρ(x)/x when x ∈ (0, 1] and q(0) = limx→0+ ρ(x)/x (the limit exists

in R because x ∈ (0, 1] → ρ(x)/x is non-decreasing). Applying Theorem 4.3 of

Finner et al. (2009), we have

FDR(SUDλ(t),m0, F ) ≤ m0

m
EDU(m,m0−1)[q(û)]

≤ m0

m

ρ(u+δ )

u+δ
+

m0

m
PDU(m,m0−1)[(Ωδ(m0 − 1))c], (32)

because q is non-decreasing, u+δ is positive and by (30). Next, by (31), we obtain

the following upper-bound:

FDR(SUDλ(t),m0, F ) ≤ m0

m

ρ(u+δ )

u+δ
+

m0

m
2 exp

{
−2m

(
δ − ν − 1

m

)2

+

(1− ν/ζ)+

}
.

(33)

7.3.2 Lower bound

In the model DU(m,m0) with m0 < m, we have û > 0 a.s. and thus

FDR(SUDλ(t),m0, F ≡ 1) =
m0

m
EDU(m,m0)

(
Ĝm0

(ρ(û))

û

)

≥ m0

m
EDU(m,m0)

(
Ĝm0

(ρ(û))

û
1{Ωδ(m0)}

)

≥ m0

m
EDU(m,m0)

(
Ĝm0

(ρ(u−δ ))

u+δ
1{Ωδ(m0)}

)

≥ m0

m

ρ(u−δ )

u+δ
− m0

m

1

1− ζ
PDU(m,m0) [(Ωδ(m0))

c] ,

by (30) and because u+δ ≥ 1− ζ. From (31), we obtain the lower-bound

FDR(SUDλ(t),m0, F ≡ 1) ≥ m0

m

ρ(u−δ )

u+δ
− m0

m

1

1− ζ
2 exp

{
−2m

(
δ − ν − 1

m

)2

+

(1− ν/ζ)+

}
.

(34)

Finally, (33) and (34) yield the result.
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7.3.3 Proof for random mixture model

In the RM(m,π0, F ) model with π0 = ζ, the distribution of m0 is binomial with

parameters (m, ζ). In particular, ν is random. However, we can write

E[FDP(SUDλ(t),m0)] ≤ E [FDP(SUDλ(t),m0)1{ν ≤ γ}]
+ 2 P (|m0/m− π0| > γ − 1/m) . (35)

Additionally, using Hoeffding’s (1963) inequality, we can write

P (|m0/m− π0| > γ − 1/m) ≤ 2e−2m(γ−1/m)2
+ . (36)

Combining (35) and (36) with (12) finishes the proof.

7.4 Proof of Corollary 4.5

First consider the FM(m,m0, F ) model with m0 < m (the case m0 = m is

trivial). Let νm = maxk∈{m0−1,m0}{|k/m − ζm|} and consider δm ∈ (νm, 1) that

satisfies for large m,

2(1− νm/ζm)(δm − νm − 1/m)2 = (logm)/m, (37)

so that e−2m(δm−νm−1/m)2
+
(1−νm/ζm)+ = 1/m for large m. Since νm ≤ 2/m by

assumption, we have δm ∝
√

(logm)/m. From Theorem 4.4, it is sufficient to

prove
ρ(u+δm)− ρ(u−δm)

u+δm
= O(δm/(1− ζm)).

From Section 4.2, this holds for the linear critical value function. This also

holds for the AORC as soon as λm/m < vδm , which is the case for large m by

assumption.

The proof in the RM(m,π0, F ) model is similar by taking additionally γm ∝√
(logm)/m such that 2e−2m(γm−1/m)2

+ = 1/m.

Acknowledgements

This work was supported by the French Agence Nationale de la Recherche (ANR

grant references: ANR-09-JCJC-0027-01, ANR-PARCIMONIE, ANR-09-JCJC-

0101-01) and the French ministry of foreign and european affairs (EGIDE - PRO-

COPE project number 21887 NJ).

27



A Formulas for FDP distribution

From Theorem 5.2 and (25), we can compute the exact c.d.f. of the FDP of any

SUD procedure in the following way, for each fixed number m ≥ 2 of hypotheses.

Corollary A.1. Let λ ∈ {1, . . . ,m} and consider any threshold collection t. Fix

an arbitrary x ∈ (0, 1). Then the following holds:

(i) in the model RM(m,π0, F ), for any π0 ∈ [0, 1], F ∈ F , we have

P(FDP(SUDλ(t)) ≤ x) =

λ−1∑

k=0

⌊xk⌋∑

j=0

Pm,π0,F ((tλ ∧ tj)1≤j≤m, k, j)

+
m∑

k=λ

⌊xk⌋∑

j=0

P̃m,π0,F ((tλ ∨ tj)1≤j≤m, k, j); (38)

(ii) in the model FM(m,m0, F ), for any m0 ∈ {0, . . . ,m}, F ∈ F , we have

P(FDP(SUDλ(t)) ≤ x) =

λ−1∑

k=0

m0∧⌊xk⌋∑

j=0∨(k−m+m0)

Qm,m0,F ((tλ ∧ tj)1≤j≤m, k, j)

+

m∑

k=λ

m0∧⌊xk⌋∑

j=0∨(k−m+m0)

Q̃m,m0,F ((tλ ∨ tj)1≤j≤m, k, j).

(39)

B FDR(SD) can exceed FDR(SU) in an extreme con-

figuration

Lemma B.1. Consider the FM(m,m0, F ) model with F (x) = 1{x ≥ 1} (i.e.,

all the p-values under the alternative are constantly equal to 1). Consider the

threshold collection t defined by tk = t0, 1 ≤ k ≤ m − 1 and tm = 1, for some

t0 ∈ (0, 1). Then we have for any λ ∈ {1, . . . ,m− 1},

FDR(SUDλ(t)) = 1− (1− t0)
m0 ;

FDR(SU(t)) = m0/m.

In particular, FDR(SD(t)) > FDR(SU(t)) for t0 > 1− (1−m0/m)1/m0.

The proof is straightforward and is left to the reader. As an illustration, for

m = 10 and m0 = 7, 1− (1−m0/m)1/m0 ≃ 0.158.
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C DU is an LFC for the k-FWER

We state here for the sake of completeness a straightforward generalization of

Lemma 1 of Finner and Gontscharuk (2009) (see also Lemma 2.2 of Gontscharuk,

2010) concerning the LFCs of multiple testing procedures under a class of type I

criteria containing in particular the k-FWER (but not the FDR, as pointed out in

the introduction). This result should be considered as already known by experts

in the field, although we failed to locate a precise reference for it. The setting

considered assumes independence of p-values corresponding to true nulls, but is

more general than the fixed mixture model, since the p-values corresponding to

true null hypotheses are only assumed to be stochastically larger than a uniform

variable on [0,1]; also, the p-values corresponding to alternatives are not assumed

to be identically distributed nor independent.

Lemma C.1. Let m ≥ 1 and m0 ∈ {0, . . . ,m} be fixed. Let p = (p1, . . . , pm) be

a family p-values with distribution by P such that (pi)1≤i≤m0
form an indepen-

dent family of variables, each stochastically lower bounded by a uniform variable.

Assume that δ is a multiple testing procedure rejecting all hypotheses having p-

value less than a data-dependent threshold t∗(p). Let R be a type I error criterion

taking the form

R(P, δ) = Ep∼P [φ(Vm(δ(p)))],

where Vm is defined in (1) and φ is a function from N to R.

Assume the two following conditions are satisfied:

(i) t∗ is a nonincreasing function of each p-value;

(ii) φ is nondecreasing.

Then it holds that

R(P, δ) ≤ R(DU(m,m0), δ),

that is, DU(m,m0) is an LFC for δ among the set of distributions satisfying the

properties described above.

Proof. Using (i) and (ii) together entails that p 7→ φ(Vm(δ(p))) is a nonincreasing

function of each p-value. Denote p0 = (p1, . . . , pm0
, 0, . . . , 0) the p-value family

obtained by replacing pi by 0 for i > m0, and P0 the distribution of p0 when p
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has distribution P . Obviously we have

Ep∼P [φ(Vm(δ(p)))] ≤ Ep∼P [φ(Vm(δ(p0)))] = Ep∼P0
[φ(Vm(δ(p)))]

Now applying Lemma A.11 as cited by Gontscharuk (2010), we obtain

Ep∼P0
[φ(Vm(δ(p)))] ≤ Ep∼DU(m,m0)[φ(Vm(δ(p)))] ,

and thus the conclusion.

A straightforward (though less immediately interpretable) extension of this

result to procedures that are not necessarily threshold-based is to replace as-

sumption (i) by (i’): p 7→ Vm(δ(p)) is a non increasing function of each p-value.
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