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Abstract

We present integrable lattice equations on a two dimensional square lattice with
coupled vertex and bond variables. In some of the models the vertex dynamics is
independent of the evolution of the bond variables, and one can write the equations as
non-autonomous “Yang-Baxter maps”. We also present a model in which the vertex
and bond variables are fully coupled. Integrability is tested with algebraic entropy as
well as multidimensional consistency.

1 Introduction

Along with the classification results for integrable lattice maps on quad-graphs with one
component fields on vertices [1], various more general integrable lattice equations have been
proposed recently. This includes the “Yang-Baxter maps” (solutions to the functional Yang-
Baxter equations [2]) with variables on bonds [3, 4, 5], and number of higher order as well
as multi-component cases [6, 7, 8].

We describe here integrable lattice models which have both vertex and bond variables.1

These models were found in the analysis of a coarse graining process of known integrable
models on a square lattice [10]. We first describe the basic procedure we used, and the way to
test integrability via algebraic entropy (section 2). We then list various models obtained in

∗E-mail: jarmo.hietarinta@utu.fi
†E-mail: claude.viallet@upmc.fr
‡permanent address
1 The term “lattice models with bond and vertex variables” has already been used in the context of

quantum spin models [9], but the setting is then quite different: the vertex and bond variables are independent
variables and take on discrete values, the main data being the Boltzmann weight of the configuration, and
one is the interested in the statistical mechanics of the system. Here, in contrast, the lattice equations define
a 1+1 dimensional evolution of the variables.
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this way, giving explicitly the evolution they define and their entropy. We also show that the
evolution may be determined from a set of algebraic relations which have special rationality
properties (section 3). We finally examine the three dimensional consistency of these models,
and show that some of them can be interpreted as solutions of non-autonomous functional
Yang-Baxter equations (section 4).

2 A road map

2.1 The setting

The starting point is a regular planar square lattice. Its vertices are labeled by two integers
(n,m). We introduce two kinds of variables: the vertex variables, denoted wn,m, and the
bond variables denoted Xn,m for the horizontal bonds, and Yn,m for the vertical bonds. The
bond variables are indexed by their base vertex, which is to the left (respectively down)
along the bond, as shown in Figure 1(a). As usual we use the shorthand notation where only
shifts are indicated, e.g., X2 = Xn,m+1, w12 = wn+1,m+1, etc...

The models are given by three relations between the eight variables associated to each
square cell, in such a way that they define an evolution: from the three defining relations,
it is possible to calculate X2, Y1, w12 (open circles in Figure 1(a)) from w,X, Y, w1, w2 (black
disks). To fully define an evolution, we have to give a suitable set of initial data. Such data
may be given on a diagonal staircase, after which the vertex and bond variables may be
evaluated on the entire lattice, using the local relations on each cell.

We will be interested in models where the evolution is rational, i.e., X2, Y1, w12 are ra-
tionally expressed in terms of w,X, Y, w1, w2. For the models we will consider, one may
actually permute the role of the four corners, and in particular define a backward evolution
calculating w,X, Y in terms of Y1, X2, w1, w2, w12. This is a form of rational invertibility,
similar to birationality for maps. For the models we describe, it is actually possible to define
rational evolution in all four directions on the lattice.

2.2 A construction procedure

There is one very simple way to generate such integrable maps from known one-component
lattice maps.

Suppose we are given an integrable quad map. As shown in Figure 1(b), consider
{x, x11, x22, x1122} as vertex variables of a coarser lattice (renaming them {w,w1, w2, w12},
the rule being wn,m = x2n,2m), and {x2, x112, x1, x122} as bond variables (and renaming them
{Y, Y1, X,X2}, i.e., Xn,m = x2n+1,2m, Yn,m = x2n,2m+1). The quad map determines x12 in
terms of x, x1, x2, and x122 in terms of x2, x22, x12, and so on, after which one may forget the
central x12. One signature of this construction is that X2 does not depend on w1, and Y1

does not depend on w2.

The purpose of this paper is to present a number of models which cannot be obtained
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Figure 1: (a): the basic lattice square, and (b): its precursor, a 2× 2 sublattice.

in the simple way described above, and to analyze their properties. They will in particular
satisfy

∂Xn,m+1

∂wn+1,m
· ∂Yn+1,m

∂wn,m+1
6= 0, ∀n,m. (1)

In order to construct such maps we start from quad maps having a 2×2 Lax pair [11, 12].
We use this Lax pair to write the zero curvature condition on the larger square of Figure
1(b). From the size of the Lax matrices, we see that this zero curvature condition can give
at most three scalar conditions. We know that one rational solution can be obtained in the
way described above, we call this solution “regular”. What is remarkable is that for certain
quad maps, there exists another rational solution, which we called “exotic” [10].

In other words, we use the fact that the zero curvature condition written on a coarser
lattice is ambiguous. In most cases there is only one solution giving rational evolution, it
is the regular one. There are usually other solutions that are not rational, but we discard
them. Only in some exceptional cases do we find rational solutions satisfying (1).2

2.3 Testing integrability

When an exotic solution exists, there is no guarantee a priori that it leads to an integrable
evolution, and we have to check its integrability.

The setting is appropriate to use the vanishing algebraic entropy criterion [14, 15]. Given
initial data on a basic diagonal staircase, one evaluates the w’s, X ’s and Y ’s away from the
initial diagonal in terms of these data. The entropy can then be extracted from the sequences
{dn} of the successive degrees respectively for the w’s, X ’s and Y ’s. The entropy is the limit

η = lim
n→∞

1

n
log(dn).

This limit always exists. The characteristic of integrability is the vanishing of η. It is

2In some respects this is similar to using conservation laws to derive dynamics, which sometimes allows
multiple solutions[13].
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equivalent to polynomial growth of the sequences {dn}. Non-vanishing of the entropy, that
is to say exponential growth of a sequence {dn}, means non-integrability.

Remark : The simplest way to find the exact value of the entropy is by fitting, if possible,
the generating function ζ(s) =

∑

n dns
n of the sequence of degrees by a rational fraction.

The entropy is then determined by the position of the poles of that fraction [14, 15].

2.4 Simplified defining equations

We get the exotic solutions from a set of three algebraic conditions equivalent to a zero
curvature condition, having more than one solution. It is possible, for all the models we
describe below, to write three simpler equations, which have, as a unique solution, the
exotic model.

These equations define a rational variety of dimension 5 in an 8 dimensional space. They
have special (multi)-rationality properties: for any choice of a corner in Figure 1(a), the three
corresponding variables (one vertex variable and the two adjacent bond variables) can be
expressed rationally in terms of the five others. This special rationality property allows one
to define rational evolutions in all four directions of the square lattice. This is a generalized
form of the notion of quadrirationality introduced in [4].

Equivalently, choosing two adjacent bonds, the relations define 2 7→ 2 birational maps
between the variables attached to these bonds and the two remaining ones. These maps and
their inverses actually happen to have the same form, but they are not involutions a priori.

3 The models

3.1 dpKdV (H1)

The simplest case is obtained from the lattice potential KdV (H1 in [1]). Computing the
zero curvature condition on the coarser lattice we found two rational solutions [10]. We give
here for reference the regular one, which does not fulfill condition (1):

X2 = Y +
(q − p)(Y −X)

(Y −X)(w − w2)− (q − p)
, (2a)

Y1 = X +
(p− q)(X − Y )

(X − Y )(w − w1)− (p− q)
, (2b)

w12 = w + (p− q)
(p− q)(w1 + w2 − 2w) + 2(w − w1)(w − w2)(X − Y )

(p− q)2 − (w − w1)(w − w2)(X − Y )2
. (2c)
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The exotic solution is:

w12 = w1 + w2 − w, (3a)

X2 = Y + P, (3b)

Y1 = X + P, (3c)

P = − (X − Y )[(p− r)(w − w2) + (q − r)(w − w1)]

(p− r)(w − w2)− (q − r)(w − w1)− (w − w1)(w − w2)(X − Y )
. (3d)

The parameters p, q, r appearing in the solutions come from the construction of the
models: they are present in the Lax pairs we used.

The sequence of degrees for the bond variables is

{dn}b = 1, 4, 13, 28, 49, 76, 109, 148, 193, 244, 301 . . . (4)

The generating function of the sequence (4) is

ζ(s) =
1 + 4 s2 + s

(1− s)3

The sequence has quadratic growth and the entropy vanishes.

Simplified form: By taking suitable linear combinations of equations (3) we can also
write the equations in the form

w12 − w1 − w2 + w = 0, (5a)

X +X2 − Y − Y1 = 0, (5b)

X X2 − Y Y1 − (X −X2)
q − r

w − w2
+ (Y − Y1)

p− r

w − w1
= 0. (5c)

The equations (5) have the form typical for most of our results: an independent linear
or linearizable w equation, a linear or linearizable equation for X, Y,X2, Y1, and a coupling
equation. It is then easy to see that the evolution is rational in any direction: solve the w of
any corner from the first equation, then its adjacent X, Y variables can be solved rationally
from the remaining two.

Remark: The parameters appearing in the results (here and below) follow from the Lax
set-up [10], p, q, r corresponding to the three coordinate directions of the consistency cube.
In the end the regular solution typically depends only on p − q, while the exotic solution
depends on p− r and q− r. Clearly any finite r can be absorbed into p, q. The limit r → ∞
is also possible, but in the present case it produces a model that is linear in X, Y .

3.2 H1ǫ

This quad map was introduced in [16]. There in fact are two kinds of integrable models of
type H1ǫ, related by inversion.

(x− x12)(x1 − x2)− (p− q)(1 + ǫxx12) = 0 (6)

(x− x12)(x1 − x2)− (p− q)(1 + ǫx1x2) = 0, (7)

5



When extended to the whole lattice they must alternate thereby forming a black-white
(checkerboard) lattice [18, 10].

We may consider two different configurations for the 2× 2 basic cell

(7)

α :

(6)

(6) (7)

β :

(6) (7)

(7) (6)

To each of these patterns corresponds a zero curvature condition. Each of these again
have two rational solutions, the regular one and an exotic one. The exotic solutions are as
follows:

3.2.1 H1ǫα

For configuration α, we have:

Original form:

X2 =Y + P/Q, Y1 = X + P/Q, (8a)

P =(X − Y )[(p− r)(w − w2)(1 + ǫww1) + (q − r)(w − w1)(1 + ǫww2)]

+ ǫ(p + q − 2r)(p− q)(w − w1)(w − w2) (8b)

Q =(w − w1)(w − w2)(X − Y )

− (p− r)(w − w2)(1 + ǫww1) + (q − r)(w − w1)(1 + ǫww2) (8c)

w12 + w =
(w1 + w2)(1 + ǫw2)

1 + ǫ(ww1 + ww2 − w1w2)
. (8d)

Entropy: The sequence of degrees are respectively:

{dn}v = 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, . . . (9)

for the vertex variables, and

{dn}b = 1, 5, 17, 37, 65, 101, 145, 197, 257, 325, 401, 485, 577, . . . (10)

for the bond variables. The sequence (9) has linear growth, signaling the linearizability of the
evolution of the vertex variables (see below). The sequence (10) has the generating function

ζ(s) =
∑

n

dns
n =

1 + 5 s2 + 2 s

(1− s)3
(11)

which means quadratic growth of the degrees, i.e. integrability.
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Simplified form: Transforming the vertex variables by the Moebius transformation w 7→
(w − 1)/[κ(w + 1)] with ǫ = −κ2 etc, takes (8d) into

ww12 = w1w2. (12)

Then we can write the equations in the form

ww12 − w1w2 = 0, (13a)

X2 +X − Y1 − Y = 0, (13b)

X2X − Y1Y − (X −X2)(q − r)κ
w + w2

w − w2
+ (Y − Y1)(p− r)κ

w + w1

w − w1

+κ2[(p− r)2 − (q − r)2] = 0. (13c)

In comparison with (5), which was linear in w, this is multiplicative.

3.2.2 H1ǫβ

For the configuration β we have the exotic solution:

Original form:

X2 = Y + P2/Q2, Y1 = X + P1/Q1 (14a)

P1 =(X − Y )(1 + ǫX2)[(p− r)(w − w2) + (q − r)(w − w1)], (14b)

Q1 =(X − Y )(w − w1)(w − w2)− (p− r)(w − w2)(1 + ǫX2)

+ (q − r)(w − w1)(1− ǫX(X − 2Y )), (14c)

P2 =(X − Y )(1 + ǫY 2)[(p− r)(w − w2) + (q − r)(w − w1)], (14d)

Q2 =(X − Y )(w − w1)(w − w2)− (p− r)(w − w2)(1− ǫY (Y − 2X))

+ (q − r)(w − w1)(1 + ǫY 2), (14e)

w12 =w1 + w2 − w. (14f)

Entropy: The entropy calculation leads to the same conclusion as for the configuration α:
the vertex evolution is linear, and independent of the bonds. The degree sequence for the
bonds is the same as (10).

Simplified form: Starting with (14) and using the Moebius transformation X 7→ (X −
1)/[κ(X + 1)], etc. with ǫ = −κ2, we get:

w12 − w1 − w2 + w = 0, (15a)

X +X2 − Y − Y1 + 2κ
q − r

w − w2
(X −X2)− 2κ

p− r

w − w1
(Y − Y1) = 0, (15b)

XX2 − Y Y1 = 0. (15c)

7



Remarks: H1ǫα and H1ǫβ are deformations that in the limit ǫ → 0 reduce back to H1.
As a consequence the original forms (8) and (14) reduce to (3), as can be readily verified.
However, the simplified forms (13) and (15) are obtained with a transformation that is
singular in ǫ. In these equations ǫ appears through κ and the κ → 0 limit trivializes them.

The models again depend on p− r and q− r, so r can be eliminated, except that r → ∞
is a possible limit. In the H1ǫβ case the r → ∞ limit leads to a nonlinear model, which may
be interesting on its own.

3.3 dmKdV (H3δ=0)

If we start from the discrete modified KdV equation (H3 with δ = 0 in [1]) we obtain the
following:

Original form:

w12w = w1w2, (16a)

X2X = Y1Y, (16b)

X2

Y
=

Y1

X
=

(q2w2 − r2w)(w − w1)pX − (p2w1 − r2w)(w − w2)qY

(r2w2 − q2w)(w1 − w)pY − (r2w1 − p2w)(w2 − w)qX
(16c)

Entropy: The sequence of degrees we get are respectively

{dn}v = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, . . . (17)

for the vertex variables, and

{dn}b = 1, 4, 13, 28, 49, 76, 109, 148, 193, 244, 301, . . . (18)

for the bond variables, actually the same as for H1. The vertex evolution is linearizable,
and the bond evolution is integrable.

Simplified form: By taking suitable linear combinations of the original equations we can
write the result also as

ww12 − w1w2 = 0, (19a)

(X +X2)p(q
2 + r2)− (X −X2)p(q

2 − r2)
w + w2

w − w2

−(Y + Y1)q(p
2 + r2) + (Y − Y1)q(p

2 − r2)
w + w1

w − w1

= 0, (19b)

X X2 − Y Y1 = 0. (19c)

Remark: For H3 the parameter dependence is through p/r and q/r. Therefore we may
put r = 1, but the special limits r = 0 and r → ∞ also produce interesting sub-cases.
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3.4 dSKdV (Q1δ=0)

This model was obtained from the discrete Schwarzian KdV equation [19] (Q1 with δ = 0
in [1]). For the elementary square we used the Lax matrices

L(x1, x; p) =

(

px1 + r(x− x1) −pxx1

p −px+ r(x− x1)

)

, (20)

where L(x1, x; p) describes the parallel transport from x to x1, and L(x2, x; q) from x to x2.
When constructing the Lax pair for the bigger 2× 2 lattices, we get expressions depending
on the corner variables x, x11, x22, x1122 which will be relabeled as w,w1, w2, w12, respectively,
while x1, x2, x112, x122 will become bond variables X, Y, Y1, X2, respectively.

The results also depend on the three parameters (p, q, r) in an homogeneous way. The
“true” parameters are thus p/r and q/r. If r is not vanishing we do get a rational model,
but that model is not integrable, as we will see. (We will not give here the explicit solution
for r 6= 0, as it may be extracted from the simplified form of the defining equations given at
the end of this section.) In the r → 0 limit, we have the following defining relations:

Original form:

w12 =
A

B
with (21)

A = − (X − Y ) (2w −X − Y )w1
2w2

2 +
(

−2 Y X2 − 4 Y w2 +XY 2 + 4wY X + w3
)

w1
2w2

−2w (X − Y )
(

w2 − Y X
)

w1w2 −
(

−2 Y 2X − 4w2X + 4wY X + wX2 + w3
)

w1w2
2

+Y 2 (w −X)2w1
2 −X2 (w − Y )2w2

2 − wY 2 (w −X)2w1 + wX2 (w − Y )2w2,

B = −
(

2w3X − Y 2X2 + 4wX Y 2 − 4w2X Y − w2Y 2
)

w1 − w (w −X)2w2
2

+
(

−4w2X Y + 2 Y w3 − Y 2X2 + 4wX2Y −X2w2
)

w2 + w (w − Y )2w1
2

+2 (X − Y )
(

w2 − Y X
)

w1w2 + (w −X)2w1w2
2 − (w − Y )2w1

2w2

+w2 (X − Y ) (wX + Y w − 2 Y X) ,

and

X2 =
C

D
with (22)

C = X2 (w − Y )2w2 − Y 2 (w −X)2w1 + Y (w −X)2w1
2

−
(

2 Y 2X − Y X2 − Y w2 − 2wYX + 2w2X
)

w1w2 + (X − Y ) (−X + 2w − Y )w1
2w2,

D = −
(

2 Y 2X − Y X2 − Y w2 − 2wYX + 2w2X
)

w1

+Y (w −X)2w2 + (w − Y )2w1
2 − (w −X)2 w1w2 + w (X − Y ) (−2 Y X + wX + wY ) .

By symmetry, Y1 is obtained from X2 by the exchange (X ↔ Y, w1 ↔ w2)

Entropy: For r = 0 the sequence of degrees for the vertex variables is

{dn}v = 1, 10, 28, 71, 139, 248, 398, 605, 869, 1206, 1616, 2115, 2703, . . . (23)
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fitted by the generating function

ζv(s) =
1 + 7 s+ 9 s3 − s4

(1 + s) (1− s)4
(24)

For the bond variables we get the sequence of degrees

{dn}b = 1, 8, 33, 92, 201, 376, 633, 988, 1457, 2056, 2801, 3708, 4793, . . . (25)

fitted by

ζb(s) =
(1 + s) (1 + 3 s+ 4 s2)

(1− s)4
(26)

The growth of the degrees is cubic, showing integrability. It is interesting to notice that this
example does not have the quadratic growth so commonly observed. The vertex and bond
variables are moreover intertwined in a non-trivial way.

The behaviour when r = 0 has to be contrasted with the generic r 6= 0 behaviour, where
the degree calculation yields for the vertex variables

{dn}v = 1, 10, 38, 149, 565, 2110, 7882, 29425, 109817, 409850, 1529590, . . .

and for the bond variables

{dn}b = 1, 8, 45, 186, 711, 2672, 9991, 37304, 139239, 519666, 1939437, . . .

fitted respectively by the generating functions

ζv(s) =
1 + 6 s− s2 + 6 s3 + s4

(1− s) (1 + s+ s2) (1− 4 s+ s2)
, ζb(s) =

1 + 14 s2 + 13 s3 + 8 s4 + 4 s

(1− s) (1 + s+ s2) (1− 4 s+ s2)
,

indicating non-integrability (the rate of growth of the degrees is given by the roots of s2 −
4s+ 1, i.e. 2 +

√
3).

Simplified form: The transformation

X 7→ Xw − w1

X − 1
, Y 7→ Y w − w2

Y − 1
, X2 7→

X2w2 − w12

X2 − 1
, Y1 7→

Y1w1 − w12

Y1 − 1
,

simplifies the equations to

X2Y − Y1X = 0, (27a)

Y1Y (w − w1) + w12 − w2 = 0, (27b)

X2X(w − w2) + w12 − w1 = 0, (27c)

Here is also, for reference, the (nonintegrable) form before taking the r → 0 limit:

X2Y − Y1X = r(AX2 +BY1),

Y1Y (w − w1) + w12 − w2 = 0,

X2X(w − w2) + w12 − w1 = 0,

where

A =
(w − w1)(w − w2) q XY − ((w − w2)X − w1 + w2)

2p

p q (w − w1)(w1 − w2)
,

B =
(w − w1)(w − w2) pXY − ((w − w1)Y − w1 + w2)

2q

p q (w − w2)(w1 − w2)
.

10



4 Non-autonomous functional Yang-Baxter equations,

three dimensional consistency

One interesting property of the four models proposed in Sec. 3.1-3.3 is that they provide
non-autonomous solutions to the functional form of the Yang-Baxter equations [2], alias
Yang-Baxter maps. This may be seen by examining the 3 dimensional consistency of the
models on the configuration shown in Figure 2. The vertices introduce position dependence,
and the maps induced on the bonds verify a modified functional Yang-Baxter equations if
the model is 3D consistent.

�
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��

�
�
�

�
��

�
�
�

w2w

w1 w12

Y3

X3

Z2

Y

X2

Y1

X

Z1

Z

Z12

X23

Y13 w123

w23w3

w13

Figure 2: The consistency cube

Suppose that w,w1, w2, w3, X, Y, Z are given. Then the relation on each face allows one
to evaluate X2, X3, Y1, Y2, Z1, Z2, w12, w13, w23 in a unique way, X23, Y13, Z12 in two different
ways, and w123 may be computed in three different ways. Consistency means they all have
to give the same results.We have checked that all the integrable models described here verify
this 3 dimensional consistency.

It should be noted that for the model presented in section 3.4, the consistency is not
verified when r 6= 0, precisely in the case where it is not integrable, but is verified for r = 0
(that is to say the limit p = q = s = ∞), where it is integrable, as ascertained by the
vanishing of the algebraic entropy.

The first four sets of simplified equations have similar structure. The vertex equation is
independent of the bonds, and the values w might be considered as parameters. They intro-
duce non-autonomy in the bond evolution, which turns out to be the functional equivalent
of the quantum Yang-Baxter equation introduced in [20]. The vertex equations are either
linear (additive case), or linearizable (multiplicative case), and can be solved explicitly. In
the additive case w + w12 − w1 − w2 = 0 the general solution is wn,m = F (n) + G(m), and
in the multiplicative case ww12 − w1w2 = 0, we have wn,m = F (n)G(m), with F and G
arbitrary functions. The equations determining X and Y contain one linear part, and a
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coupling equation which introduces non-linearity.

4.1 dpKdV and H1ǫ, configuration α

We can solve dpKdV (5) and H1ǫ, configuration α, (13) together. The vertex evolution is
additive for (5a) and multiplicative for (13a) and is solved as described above. Equations
(5c) and (13c) can then be cast in the common form:

XX2 − Y Y1 − g(m) (X −X2) + f(n) (Y − Y1) + ω = 0, (28)

where f and g are readily expressible in terms of the aforementioned F (n) and G(m) and ω
is a constant.

We can solve (28) together with the constraintX+X2 = Y+Y1 for arbitrary f(n), g(m), ω,
obtaining

X2 = Y +R, Y1 = X +R, with R =
f(n)2 − g(m)2 − ω

Y −X + f(n)− g(m)
.

Redefining the X and Y by the shifts

X = X ′ + f(n) + σ(n) + ρ(m), Y = Y ′ + g(m) + σ(n) + ρ(m),

where σ, ρ are determined from σ(n+1)− σ(n) = 2 f(n) and ρ(m+1)− ρ(m) = 2 g(m), we
finally get

X ′
2 = Y ′ + P, Y ′

1 = X ′ + P, with P =
f(n)2 − g(m)2 − ω

X ′ − Y ′
. (29)

This is a non-autonomous version of the Adler map [17] (FV in the classification of [4]).

4.2 H1ǫ, configuration β and dmKdV (H3δ=0)

Equations (15) and (19) can also be solved together. In both cases the coupling equations
(15b) and (19b) can be written as

µ (X +X2)− ν (Y + Y1)− g(m) (X −X2) + f(n) (Y − Y1) = 0, (30)

where f and g are, as above, some functions related to F (n), G(m), and µ and ν are constants.
Equation (30) together with the constraint X X2−Y Y1 = 0 is solved in the generic case by

X2 = Y Q, Y1 = X Q, Q =
(µ− g(m))X − (ν − f(n)) Y

(ν + f(n))X − (µ+ g(m)) Y
, (31)

Scaling X and Y by

X = X ′σ(n)ρ(m)/(f(n) + ν), Y = Y ′σ(n)ρ(m)/(g(m) + µ), (32)
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where σ, ρ now solve

σ(n + 1) = σ(n)
ν − f(n)

ν + f(n)
ρ(m+ 1) = ρ(m)

µ− g(m)

µ+ g(m)
, (33)

we get the equations in the form

X ′
2 =

Y ′

α(n)
P, Y ′

1 =
X ′

β(m)
P, P =

α(n)X ′ − β(m)Y ′

X ′ − Y ′
, (34)

with

α(n) =
1

ν2 − f(n)2
, β(m) =

1

µ2 − g(m)2
.

Equation (34) is a non-autonomous version of FIII of [4].

It should be noticed that the non-autonomous nature of the above equations parallels
the results of [21].

4.3 dSKdV (Q1δ=0)

In the case of equation (27) the w evolution is not linearizable, as indicated by the algebraic
entropy analysis. If we consider (27) as three equations for two variables X, Y then we can
derive from their compatibility an equation for w, which can be written as

T (n,m+ 2)

T (n,m)
=

H(n+ 2, m)

H(n,m)
, (35a)

where T,H are 3-point Schwarzian-like derivatives of n,m, respectively:

T (n,m) :=
w(n+ 2, m)− w(n+ 1, m)

w(n+ 1, m)− w(n,m)
, H(n,m) :=

w(n,m+ 2)− w(n,m+ 1)

w(n,m+ 1)− w(n,m)
. (35b)

Equation (35) connects the points of a 3×3 sublattice, except the center point (in the above
w(n+1, m+1)). The algebraic entropy analysis indicates the rare cubic growth. Equations
defined on a 3× 3 sublattice are typical for Boussinesq-type lattice equations [22], but they
usually have quadratic growth.

The Schwarzian KdV equation is given by

S(n,m) :=
[w(n,m)− w(n+ 1, m)][w(n,m+ 1)− w(n+ 1, m+ 1)]

[w(n,m)− w(n,m+ 1)][w(n+ 1, m)− w(n+ 1, m+ 1)]
=

p

q
. (36)

From (35) one can now derive

S(n+ 1, m+ 1)S(n,m) = S(n+ 1, m)S(n,m+ 1), (37)

which can be solved and we find that w solves the non-autonomous SKdV equation

[w(n,m)− w(n+ 1, m)][w(n,m+ 1)− w(n+ 1, m+ 1)]

[w(n,m)− w(n,m+ 1)][w(n+ 1, m)− w(n+ 1, m+ 1)]
=

f(n)

g(m)
. (38)

Thus when the model (27) is considered on larger cells made of four adjacent squares, we
find an independent non-trivial evolution of the vertex variables (35), driving the evolution
of the bond variables according to (27b,c).
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5 Conclusion and perspectives

We have presented lattice models with values given at both the vertices and the bonds of a
2D square lattice. They were constructed using the ambiguity of the zero curvature condition
on a coarse grained lattice. The integrability of these models is guaranteed by the vanishing
of the algebraic entropy and by the Consistency-Around-the-Cube property.

Four out of five models provide non autonomous generalizations of known Yang-Baxter
maps, the fifth case (27) (related to dSKdV) being seemingly different.

They all share some remarkable algebraic properties, in particular their multi-rationality,
which might be the frame for further examples and an eventual classification.

Many more aspects will have to be examined (especially for (27)), like the existence
of Bäcklund transforms, proper Lax pairs, symmetries, reductions (periodic reductions as
well as similarity reductions) which should produce interesting integrable maps, including
discrete Painlevé equations. Their continuous limits should also be considered. All these go
beyond the scope of this paper, and require further studies.

Acknowledgments

One of us (JH) was partially supported by the Ville de Paris in the “Research in Paris”
program. Some of the computations were done using REDUCE [23]. We would like to thank
F. Nijhoff and J. Perk for additional references.

References

[1] V Adler, A Bobenko and Yu Suris, Classification of Integrable Equations on Quad-
Graphs. The Consistency Approach, Commun. Math. Phys. 233 (2003) 513–543,
arXiv:nlin/0202024.

[2] V.G. Drinfeld, On some unsolved problems in quantum group theory, in: Quantum
Groups, in: Lecture Notes in Mathematics, Vol. 1510, Springer, New York, 1992, p. 1.

[3] A.P. Veselov, Yang-Baxter maps and integrable dynamics, Phys. Lett A 314 (2003)
214–221.

[4] V.E. Adler, A.I. Bobenko and Yu.B. Suris, Geometry of YangBaxter Maps: pencils
of conics and quadrirational mappings, Commun. Anal. Geom., 12, 967–1007 (2004),
arXiv:math/0307009.

[5] V.G. Papageorgiou, A.G. Tongas, Yang-Baxter maps and multi-field integrable lattice
equations, J. Phys. A: Math. Theor. 40 (2007) 12677–12690, arXiv:math/0702577.

[6] J. Hietarinta, Boussinesq-like multi-component lattice equations and multi-dimensional
consistency, J. Phys. A: Math. Theor. 44 (2011) 165204 (22pp), arXiv:1011.1978

14

http://arxiv.org/abs/nlin/0202024
http://arxiv.org/abs/math/0307009
http://arxiv.org/abs/math/0702577
http://arxiv.org/abs/1011.1978


[7] P.E. Spicer, F.W. Nijhoff and P. H. van der Kamp, Higher Analogues of the Discrete-
Time Toda Equation and the Quotient-Difference Algorithm, arXiv:1005.0482 , to
appear in Nonlinearity.

[8] F.W. Nijhoff, A higher-rank version of the Q3 equation, arXiv:1104.1166.

[9] M. Jimbo, A. Kuniba, T. Miwa and M. Okado, The A
(1)
n Face Models, Commun. Math.

Phys. 119 (1988) 543–565.

[10] J. Hietarinta and C. Viallet, Weak Lax pairs for lattice equations (2011),
arXiv:1105.3329.

[11] FW Nijhoff, Lax pair for the Adler (lattice Krichever-Novikov) system, Phys. Lett. A
297 (2002) 49–58, arXiv:nlin/0110027.

[12] A.Bobenko, Yu. Suris, Integrable systems on quad-graphs, IMRN 11 (2002) 573–611,
arXiv:nlin/0110004v1.

[13] G.R.W. Quispel, H.W. Capel and J.A.G. Roberts. Duality for discrete integrable sys-
tems, J. Phys. A: Math. Gen. 38 (2005) 3965–3980.

[14] M. Bellon and C-M. Viallet. Algebraic Entropy, Comm. Math. Phys. 204 (1999) 425–
437, arXiv:chao-dyn/9805006.

[15] C-M. Viallet Algebraic entropy for lattice equations, arXiv:math-ph/0609043

[16] V. E. Adler, A. I. Bobenko, and Yu. B. Suris. Discrete Nonlinear Hyperbolic
Equations. Classification of Integrable Cases, Funct. Anal. App., 43, 3–17 (2009),
arXiv:0705.1663.

[17] V.E. Adler, Recuttings of polygons, Funct. Anal. App., 27 (1993) 141–143.

[18] P.D. Xenitidis and V.G. Papageorgiou, Symmetries and integrability of discrete equa-
tions defined on a black-white lattice J. Phys. A: Math. Theor. 42 (2009), 454025,
arXiv:0903.3152.

[19] F.W. Nijhoff, G.R.W. Quispel and H.W. Capel Direct linearization of nonlinear
difference-difference equations, Phys. Lett. A 97 (1983) 125–128.

[20] J.-L. Gervais and A. Neveu, Novel Triangle Relation and Absence of Tachyons in Liou-
ville String Field Theory, Nucl. Phys. B238 (1984) 125-141.

[21] R. Sahadevan, O.G. Rasin, P.E. Hydon Integrability conditions for nonautonomous
quad-graph equations, J. Math. Anal. Appl. 331 (2007) 712–726.
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