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VOLUME ENTROPY RIGIDITY OF NON-POSITIVELY CURVED

SYMMETRIC SPACES

FRANÇOIS LEDRAPPIER

To Werner Ballmann for his 60th birthday

Abstract. We characterize symmetric spaces of non-positive curvature by the equality
case of general inequalities between geometric quantities.

1. Introduction

Let (M,g) be a closed connected Riemannian manifold, and π : (M̃ , g̃) → (M,g) its uni-
versal cover endowed with the lifted Riemannian metric. We denote p(t, x, y), t ∈ R+, x, y ∈

M̃ the heat kernel on M̃ , the fundamental solution of the heat equation ∂u
∂t

= Div ∇u

on M̃ . Since we have a compact quotient, all the following limits exist as t → ∞ and are

independent of x ∈ M̃ :

λ0 = inf
f∈C2

c
(M̃)

∫
|∇f |2∫
|f |2

= lim
t

−
1

t
ln p(t, x, x)

ℓ = lim
t

1

t

∫
d(x, y)p(t, x, y)dVol(y)

h = lim
t

−
1

t

∫
p(t, x, y) ln p(t, x, y)dVol(y)

v = lim
t

1

t
lnVolB

M̃
(x, t),

where B
M̃
(x, t) is the ball of radius t centered at x in M̃ and Vol is the Riemannian volume

on M̃ .
All these numbers are nonnegative. Recall λ0 is the Rayleigh quotient of M̃ , ℓ the linear

drift, h the stochastic entropy and v the volume entropy. There is the following relation:

(1) 4λ0

(a)

≤ h
(b)

≤ ℓv
(c)

≤ v2.

See [L1] for (a), [Gu] for (b). Inequality (c) is shown in [L3] as a corollary of (b) and (2):

(2) ℓ2 ≤ h
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2 FRANÇOIS LEDRAPPIER

If (M̃ , g) is a locally symmetric space of nonpositive curvature, all five numbers 4λ0, ℓ
2, h, ℓv

and v2 coincide and are positive unless (M̃, g) is (Rn,Eucl.). Our result is a partial converse:

Theorem 1.1. Assume (M,g) has nonpositive curvature. With the above notation, any
of the equalities

ℓ = v, h = v2 and 4λ0 = v2

hold if, and only if, (M̃, g̃) is a symmetric space.

As recalled in [L3], Theorem 1.1 is known in negative curvature and follows from [K],
[BFL], [FL], [BCG] and [L1]. The other possible converses are delicate: even for nega-
tively curved manifolds, in dimension greater than two, it is not known that h = ℓv holds
only for locally symmetric spaces. This is equivalent to a conjecture of Sullivan (see [L2]
for a discussion). Sullivan conjecture holds for surfaces of negative curvature ([L1], [Ka]).
It is not known either whether 4λ0 = h holds only for locally symmetric spaces. This would

follow from the hypothetical 4λ0

(d)

≤ ℓ2 by the arguments of this note.

We assume henceforth that (M,g) has nonpositive sectional curvature. Given a geodesic
γ inM , Jacobi fields along γ are vector fields t 7→ J(t) ∈ Tγ(t)M which describe infinitesimal
variation of geodesics around γ. By nonpositive curvature, the function t 7→ ‖J(t)‖ is
convex. Jacobi fields along γ form a vector space of dimension 2 Dim M . The rank of the
geodesic γ is the dimension of the space of Jacobi fields such that t 7→ ‖J(t)‖ is a constant
function on R. The rank of a geodesic γ is at least one because of the trivial t 7→ γ̇(t) which
describes the variation by sliding the geodesic along itself. The rank of the manifold M is
the smallest rank of geodesics in M . Using rank rigidity theorem ([B1], [BS]), we reduce
in section 2 the proof of Theorem 1.1 to proving that if (M,g) is rank one, equality in (2)

implies that (M̃ , g̃) is a symmetric space. For this, we show in section 3 that equality in

(2) implies that (M̃, g̃) is asymptotically harmonic (see the definition below). This uses
the Dirichlet property at infinity (Ballmann [B2]). Finally, it was recently observed by
A. Zimmer ([Z]) that asymptotically harmonic universal covers of rank one manifolds are
indeed symmetric spaces.

2. Generalities and reduction of Theorem 1.1

We recall the notations and results from Ballmann’s monograph [B3] about the Hadamard

manifold (M̃, g̃) that we use. The space M̃ is homeomorphic to a ball. The covering group
G := π1(M) satisfies the duality condition ([B3] page 45).

2.1. Boundary at infinity. Two geodesic rays γ, γ′ in M̃ are said to be asymptotic if
supt≥0 d(γ(t), γ

′(t)) < ∞. The set of classes of asymptotic unit speed geodesic rays is called

the boundary at infinity M̃(∞). M̃ ∪ M̃(∞) is endowed with the topology of a compact

space where M̃(∞) is a sphere and where, for each unit speed geodesic ray γ, γ(t) → [γ]
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as t → ∞. The action of the group G on M̃ (∞) is the continuous extension of its action

on M̃ . For any x, ξ ∈ M̃ × M̃(∞), there is a unique unit speed geodesic γx,ξ such that
γx,ξ(0) = x and [γx,ξ] = ξ. The mapping ξ 7→ γ̇x,ξ(0) is a homeomorphism π−1

x between

M̃(∞) and the unit sphere SxM̃ in the tangent space at x to M̃ . We will identify SM̃ with

M̃ × M̃(∞) by (x, v) 7→ (x, πxv). Then the quotient SM is identified with the quotient of

M̃ × M̃(∞) under the diagonal action of G.

Fix x0 ∈ M̃ and ξ ∈ M̃ (∞). The Busemann function bξ is the function on M̃ given by:

bξ(x) = lim
y→ξ

d(y, x)− d(y, x0).

Clearly, bgξ(gx) = bξ(x)+ bgξ(gx0). Moreover, the function x 7→ bξ(x) is of class C
2 ([HI]).

It follows that the fonction ∆xbξ satisfies ∆gxbgξ = ∆xbξ and therefore defines a function

B on G \ (M̃ × M̃(∞)) = SM . It follows from the argument of [HI] that the function B

is continuous on SM (see [B3], Proposition 2.8, page 69).

2.2. Jacobi fields. Let (x, v) be a point in TM̃ . Tangent vectors in Tx,vTM̃ correspond
to variations of geodesics and can be represented by Jacobi fields along the unique geodesic
γx,v with initial value γ(0) = x, γ̇(0) = v. A Jacobi field J(t), t ∈ R along γx,v is uniquely

determined by the values of J(0) and J ′(0). We describe tangent vectors in Tx,vTM̃ by

the associated pair (J(0), J ′(0)) of vectors in TxM̃ . The metric on Tx,vTM̃ is given by

‖(J0, J
′
0)‖

2 = ‖J0‖
2 + ‖J ′

0‖
2. Assume (x, v) ∈ SM . A vertical vector in Tx,vSM̃ is a vector

tangent to SxM̃ . It corresponds to a pair (0, J ′(0)), with J ′(0) orthogonal to v. Horizontal

vectors correspond to pairs (J(0), 0). In particular, let X be the vector field on SM̃ such
that the integral flow of X is the geodesic flow. The geodesic spray Xx,v is the horizontal
vector associated to (v, 0). The orthogonal space to X is preserved by the differential Dgt

of the geodesic flow. More generally, the Jacobi fields representation of TTM̃ satisfies
Dx,vgt(J(0), J

′(0)) = (J(t), J ′(t)).

For any vector Y ∈ TxM̃ , there is a unique vector Z = Sx,vY such that the Jacobi
field J with J(0) = Y, J ′(0) = Z satisfies ‖J(t)‖ ≤ C for t ≥ 0 ([B3] Proposition 2.8

(i)). The mapping Sx,v : TxM̃ → TxM̃ is linear and selfadjoint. The vectors (Y, SY )

describe variations of asymptotic geodesics and the subspace Es
x,v ⊂ Tx,vTM̃ they generate

corresponds to TW s
x,v, where W s

x,v, the set of initial vectors of geodesics asymptotic to

γx,v, is identified with M̃ × πx(v) in M̃ × M̃(∞). Observe that Sx,vγ̇x,v(0) = 0 and that

the operator Sx,v preserves (γ̇x,v(0))
⊥. Recall from [B3], Proposition 3.2 page 71, that, for

Y ∈ (γ̇x,v(0))
⊥, with πxv = ξ,

DY (∇bξ) = −Sx,vY,

and therefore ∆xbξ = − Tr Sx,v with πx(v) = ξ.

Similarly, there is a selfadjoint linear operator Ux,v : TxM̃ → TxM̃ such that the Jacobi
field J with J(0) = Y, J ′(0) = UY satisfies ‖J(t)‖ ≤ C for t ≤ 0. The subspace Eu

x,v ⊂
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Tx,vTM̃ they generate corresponds to TW u
x,v, where W u

x,v is the set of opposite vectors to
vectors in W s

x,−v. By definition, Sγ̇x,(0) = −Uγ̇x,−v(0), so that we also have:

B(x, v) := −Tr Sx,v = Tr Ux,−v.

We have Ker S = Ker U and Y ∈ Ker S if, and only if, the Jacobi field J(t) with J(0) =
Y, J ′(0) = 0 is bounded for all t ∈ R. The rank of the geodesic γx,v therefore is κ =
Dim Ker S and the geodesic γx,v is of rank one only if Det((U − S)|

(γ̇x,v(0))⊥)
= 0.

Recall that SM is identified with the quotient of M̃ × M̃(∞) under the diagonal action
of G. Clearly, for g ∈ G, g(W s

x,v) = W s
Dg(x,v) so that the W s define a foliation Ws on SM .

The leaves of the foliation Ws are quotient of M̃ , they are naturally endowed with the
Riemannian metric induced from g̃.

2.3. Proof of Theorem 1.1. We continue assuming that (M̃, g̃) has nonpositive curva-

ture. By the Rank Rigidity Theorem (see [B3]), (M̃ , g̃) is of the form

(M̃0 × M̃1 × · · · × M̃j × M̃j+1 × · · · × M̃k, g̃)
1,

where g̃ is the product metric g̃2 = (g̃0)
2 + (g̃1)

2 + · · · + (g̃j)
2 + (g̃j+1)

2 + · · · + (g̃k)
2,

(M̃0, g̃0) is Euclidean, (M̃i, g̃i) is an irreducible symmetric space of rank at least two for

i = 1, · · · , j and a rank-one manifold for i = j+1, · · · , k. If the (M̃i, g̃i), i = j+1, · · · k, are

all symmetric spaces of rank one, then (M̃, g̃) is a symmetric space. Moreover in that case,
all inequalities in (1) are equalities: this is the case for irreducible symmetric spaces (all
numbers are 0 for Euclidean space; for the other spaces, 4λ0 and v2 are classically known
to coincide ([O]) and we have:

4λ0(M̃) =
∑

i

4λ0(M̃i), v2(M̃) =
∑

i

v2(M̃i).

To prove Theorem 1.1, it suffices to prove that if ℓ2 = h, all M̃i in the decomposition are

symmetric spaces. This is already true for i = 0, 1, · · · j. It remains to show that (M̃i, g̃i) are

symmetric spaces for i = j + 1, · · · k. Eberlein showed that each one of the spaces (M̃i, g̃i)
admits a cocompact discrete group of isometries (see [Kn], Theorem 3.3). This shows that

the linear drifts ℓi and the stochastic entropies hi exist for each one of the spaces (M̃i, g̃i).
Moreover, we clearly have

ℓ2 =
∑

i

ℓ2i , h =
∑

hi.

Therefore Theorem 1.1 follows from

Theorem 2.1. Assume (M,g) is a closed connected rank one manifold of nonpositive

curvature and that ℓ2 = h. Then (M̃ , g̃) is a symmetric space.

1With a clear convention for the cases when Dim M̃0 = 0, j = 0 or k = j.
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A Hadamard manifold M̃ is called asymptotically harmonic if the function B(= ∆xb) is

constant on SM̃ . Theorem 2.1 directly follows from two propositions:

Proposition 2.2. Assume (M,g) is a closed connected rank one manifold of nonpositive

curvature and that ℓ2 = h. Then (M̃ , g̃) is asymptotically harmonic.

Proposition 2.3. [[Z], Theorem 1.1] Assume (M,g) is a closed connected rank one man-

ifold of nonpositive curvature such that (M̃ , g̃) is asymptotically harmonic. Then, (M̃ , g̃)
is a symmetric space.

3. Proof of Proposition 2.2

We consider the foliation W of subsection 2.2. Recall that the leaves are endowed with a
natural Riemannian metric. We write ∆W for the associated Laplace operator on functions
which are of class C2 along the leaves of W. A probability measure m on SM is called
harmonic if it satisfies, for any C2 function f , we have:∫

SM

∆Wfdm = 0.

Let M be a closed connected manifold such that ℓ2 = h. In [L3] it is shown that then, there
exists a harmonic probability measure m on SM such that, at m-a.e. (x, v), B(x, v) = ℓ.
Since B is a continuous function, Proposition 2.2 follows from

Theorem 3.1. Let (M,g) be a closed connected rank one manifold of nonpositive curvature,
W the stable foliation on SM endowed with the natural metric as above. Then, there is
only one harmonic probability measure m and the support of m is the whole space SM .

Proof. Let m be a W harmonic probability measure on SM . Then, there is a unique

G-invariant measure m̃ on SM̃ which coincide with m locally. Seen as a measure on

M̃ × M̃(∞), we claim that m̃ is given, for any f continuous with compact support, by:

(3)

∫
f(x, ξ)dm̃(x, ξ) =

1

VolM

∫

M̃

(∫

M̃(∞)
f(x, ξ)dνx(ξ)

)
dx,

where the family x 7→ νx is a family of probability measures on M̃(∞) such that, for all

ϕ continuous on M̃(∞), x 7→
∫
ϕ(ξ)dνx(ξ) is a harmonic function on M̃ and the measure

dx is the Riemannian volume on M̃ . The claim follows from [Ga]. For convenience, let

us reprove it: on the one hand, the measure m̃ projects on M̃ as a G-invariant measure

satisfying
∫
∆fdm = 0. The projection of m̃ on M̃ is proportional to Volume, gives

measure 1 to fundamental domains and formula (3) is the desintegration formula. On the

other hand, if one projects m̃ first on M̃(∞), there is a probability measure ν on M̃(∞)
such that ∫

f(x, ξ)dm̃(x, ξ) =

∫

M̃(∞)

(∫

M̃

f(x, ξ)dmξ(dx)

)
dν(ξ).
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For ν-a.e. ξ, the measure mξ is a harmonic measure on M̃ ; therefore, for ν-a.e. ξ, there is a
positive harmonic function kξ(x) such that mξ = kξ(x)Vol. Comparing the two expressions
for
∫
fdm̃, we see that the measure νx is given by

νx = kξ(x)ν

and x 7→
∫
M̃(∞)

ϕ(ξ)dνx(ξ) is indeed a harmonic function.

The G-invariance of m̃ implies that, for all g ∈ G, g∗νx = νgx. In particular, the support

of ν is G-invariant. By [E] (see [B3], page 48), the support of ν is the whole M̃(∞) and
therefore the support of m is the whole SM . This result would be sufficient for proving

Proposition 2.2, but using discretization, we are going to identify the measure νx on M̃(∞)

as the hitting measure of the Brownian motion on M̃ starting from x. This shows Theorem
3.1.

Fix x0 ∈ M̃ . The discretization procedure of Lyons and Sullivan ([LS]) associates to

the Brownian motion on M̃ a probability measure µ on G such that µ(g) > 0 for all g and

that any bounded harmonic function F on M̃ satisfies

F (x0) =
∑

g∈G

F (gx0)µ(g).

Recall that for all ϕ continuous on M̃(∞), x 7→ νx(ϕ) is a harmonic function and that
νgx = g∗νx. It follows that the measure νx0 is stationary for µ, i.e. it satisfies:

νx0 =
∑

g∈G

g∗νx0µ(g).

Since the support of µ generates G as a semigroup (actually, it is already the whole G),

there is only one stationary probability measure on M̃(∞) (see [B3], Theorem 4.11 page

58). We know one already: the hitting measure mx0 of the Brownian motion on M̃ starting
from x0. This shows that νx0 = mx0 . Since x0 was arbitrary in the above reasoning, we

have νx = mx for all x ∈ M̃ and the measure m̃ is given by:

∫
f(x, ξ)dm̃(x, ξ) =

1

VolM

∫

M̃

(∫

M̃(∞)
f(x, ξ)dmx(ξ)

)
dx.

�
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