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Olivier Guéant. Mean field games equations with quadratic Hamiltonian: a specific approach.
2011. <hal-00628536>

HAL Id: hal-00628536

https://hal.archives-ouvertes.fr/hal-00628536

Submitted on 3 Oct 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
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Mean field games equations with quadratic Hamiltonian: a
specific approach∗

Olivier Guéant ∗∗

Abstract

Mean field games models describing the limit of a large class of stochastic differential games,
as the number of players goes to +∞, have been introduced by J.-M. Lasry and P.-L. Lions in
[11, 12, 13]. We use a change of variables to transform the mean field games (MFG) equations into a
system of simpler coupled partial differential equations, in the case of a quadratic Hamiltonian. This
system is then used to exhibit a monotonic scheme to build solutions of the MFG equations. Effective
numerical methods based on this constructive scheme are presented and numerical experiments are
carried out.

Introduction

Mean field games equations have been introduced by J.-M. Lasry and P.-L. Lions [11, 12, 13] to
describe the dynamic equilibrium of stochastic differential games involving a continuum of players.

In the time-dependent case, these equations write:

(HJB) ∂tu+
σ2

2
∆u+H(∇u) = −f(x,m)

(K) ∂tm+∇ · (mH ′(∇u)) =
σ2

2
∆m

with prescribed initial condition m(0, ·) = m0(·) ≥ 0 and terminal condition u(T, ·) = uT (·), where
u and m are scalar functions defined on [0, T ]× Ω, Ω typically being (0, 1)d.

In this paper, we focus on the particular case of quadratic hamiltonian H(p) = p2

2 . In this
special case, a change of variables have been introduced by O. Guéant, J.-M. Lasry and P.-L. Lions
in [9] to write the mean field games equations as two coupled heat equations with similar source
terms. If indeed we introduce φ = exp

(
u
σ2

)
and ψ = m exp

(
− u
σ2

)
then the system reduces to:

∂tφ+
σ2

2
∆φ = − 1

σ2
f(x, φψ)φ

∂tψ −
σ2

2
∆ψ =

1

σ2
f(x, φψ)ψ

with φ(T, ·) = exp
(
uT (·)
σ2

)
and ψ(0, ·) = m0(·)

φ(0,·) .

∗The author wishes to acknowledge the helpful conversations with Yves Achdou (Université Paris-Diderot), Pierre
Cardaliaguet (Université Paris-Dauphine), Jean-Michel Lasry (Université Paris-Dauphine), Antoine Lemenant (Univer-
sité Paris-Diderot), Pierre-Louis Lions (Collège de France), Stéphane Menozzi (Université Paris-Diderot), Vincent Millot
(Université Paris-Diderot).
∗∗UFR de Mathématiques, Laboratoire Jacques-Louis Lions, Université Paris-Diderot. 175, rue du Chevaleret, 75013

Paris, France. olivier.gueant@ann.jussieu.fr
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We use this system to exhibit a constructive scheme for solutions to the mean field games
equations. This scheme and the method used to prove it indeed converges have been proposed by
J.-M. Lasry and P.-L. Lions. It starts with ψ0 = 0 and builds recursively two sequences (φn+ 1

2 )n
and (ψn+1)n using the following equations:

∂tφ
n+ 1

2 +
σ2

2
∆φn+ 1

2 = − 1

σ2
f(x, φn+ 1

2ψn)φn+ 1
2

∂tψ
n+1 − σ2

2
∆ψn+1 =

1

σ2
f(x, φn+ 1

2ψn+1)ψn+1

with φn+ 1
2 (T, ·) = exp

(
uT (·)
σ2

)
and ψn+1(0, ·) = m0(·)

φn+ 1
2 (0,·)

.

Then, φ and ψ are obtained as the monotonic limit of the two sequences (φn+ 1
2 )n and (ψn)n

under usual assumptions of f .

Moreover, this scheme provides a new numerical method to solve mean field games that is com-
pletely different from the methods already proposed in the literature. Finite different schemes on
u and m have been proposed, along with methods based on an equivalent formulation of the mean
field game partial differential equations in the form of an optimization problem (see [1], [2], [10], [7]
for the different proposals).
Here, we build a discrete counterpart to the above constructive scheme and the resulting algorithm
to approximate (φ, ψ) consists in a sequence of totally implicit finite difference schemes that can be
tackled with Newton methods.
The main difference with the preceding literature arises from the monotonicity properties of the
scheme and from the peculiarity that the equilibrium m is approached by a sequence that does not
verify, except at the limit, the mass conservation principle.

In section 1, we recall the change of variables and derive the associated system of coupled
parabolic equations. Then, section 2 is devoted to the introduction of the functional framework
and we prove the main monotonicity properties of the system. Section 3 presents the constructive
scheme and proves, as explained in P.-L. Lions’s course (see [14]), that we can have two monotonic
sequences converging towards φ and ψ. Section 4 uses the same ideas as in the preceding sections,
but in a discrete setting, to provide numerical schemes to approximate φ and ψ numerically. Stabil-
ity and convergence of the scheme are proved. Finally, section 5 presents the numerical experiments
carried out and discusses its properties.

1 From mean field games equations to a forward-backward

system of heat equations with source terms

We consider the mean field games equations introduced in [11, 12, 13] in the case of a quadratic
Hamiltonian. These partial differential equations, hereafter denoted (MFG) are considered on the
domain [0, T ]× Ω, Ω standing for (0, 1)d, and consist in the following equations:

(HJB) ∂tu+
σ2

2
∆u+

1

2
|∇u|2 = −f(x,m)

(K) ∂tm+∇ · (m∇u) =
σ2

2
∆m

with:

• Boundary conditions: ∂u
∂~n = ∂m

∂~n = 0 on (0, T )× ∂Ω

• Terminal condition: u(T, ·) = uT (·) a given payoff whose regularity is to be precised
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• Initial condition: m(0, ·) = m0(·) ≥ 0 a given positive function in L1(Ω), typically a probability
distribution function.

The change of variables introduced in [9] is recalled in the following proposition:

Proposition 1. Let us consider a smooth solution (φ, ψ) of the following system (S) with φ > 0:

∂tφ+
σ2

2
∆φ = − 1

σ2
f(x, φψ)φ (Eφ)

∂tψ −
σ2

2
∆ψ =

1

σ2
f(x, φψ)ψ (Eψ)

with:

• Boundary conditions: ∂φ
∂~n = ∂ψ

∂~n = 0 on (0, T )× ∂Ω

• Terminal condition: φ(T, ·) = exp
(
uT (·)
σ2

)
.

• Initial condition: ψ(0, ·) = m0(·)
φ(0,·)

Then (u,m) = (σ2 ln(φ), φψ) defines a solution of (MFG).

Proof:

Let us start with (HJB).

∂tu = σ2∂tφ

φ
, ∇u = σ2∇φ

φ
∆u = σ2 ∆φ

φ
− σ2 |∇φ|2

φ2

Hence

∂tu+
σ2

2
∆u+

1

2
|∇u|2 = σ2

[
∂tφ

φ
+
σ2

2

∆φ

φ

]
=

σ2

φ

[
− 1

σ2
f(x, φψ)φ

]
= −f(x,m)

Now, for the equation (K):

∂tm = ∂tφψ + φ∂tψ ∇ · (∇um) = σ2∇ · (∇φψ) = σ2 [∆φψ +∇φ · ∇ψ]

∆m = ∆φψ + 2∇φ · ∇ψ + φ∆ψ

Hence

∂tm+∇ · (∇um) = ∂tφψ + φ∂tψ + σ2 [∆φψ +∇φ · ∇ψ]

= ψ
[
∂tφ+ σ2∆φ

]
+ φ∂tψ + σ2∇φ · ∇ψ

= ψ

[
σ2

2
∆φ− 1

σ2
f(x, φψ)φ

]
+ φ

[
σ2

2
∆ψ +

1

σ2
f(x, φψ)ψ

]
+ σ2∇φ · ∇ψ

=
σ2

2
∆φψ + σ2∇φ · ∇ψ +

σ2

2
φ∆ψ

=
σ2

2
∆m

This proves the result since the boundary conditions and the initial and terminal conditions are
coherent.

Now, we will focus our attention on the study of the above system of equations (S) and use it to
design a constructive scheme for the couple (φ, ψ) and thus for the couple (u,m) under regularity
assumptions.
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2 Properties of (S)

To study the system (S) we introduce several hypotheses on f : we suppose that it is a decreasing
function of its second variable, continuous in that variable and uniformly bounded. Moreover, to
simplify the exposition1 we suppose that f ≤ 0.
It’s noteworthy that the monotony hypothesis is to be linked to the usual proof of uniqueness for
the mean field games equations (see [13]).

Now let’s introduce the functional framework we are working in.
Let us note P ⊂ C([0, T ], L2(Ω)) the natural set for parabolic equations:

g ∈ P ⇐⇒ g ∈ L2(0, T,H1(Ω)) and ∂tg ∈ L2(0, T,H−1(Ω))

and let’s introduce Pε = {g ∈ P, g ≥ ε}.

Proposition 2. Suppose that uT ∈ L∞(Ω).
∀ψ ∈ P0, there is a unique weak solution φ to the following equation (Eφ):

∂tφ+
σ2

2
∆φ = − 1

σ2
f(x, φψ)φ (Eφ)

with ∂φ
∂~n = 0 on (0, T )× ∂Ω and φ(T, ·) = exp

(
uT (·)
σ2

)
.

Hence Φ : ψ ∈ P0 7→ φ ∈ P is well defined.

Moreover, ∀ψ ∈ P0, φ = Φ(ψ) ∈ Pε for ε = exp
(
− 1
σ2 (‖uT ‖∞ + ‖f‖∞T )

)
Proof:

Let us consider ψ ∈ P0.

Existence of a weak solution φ:

Let us introduce Fψ : ϕ ∈ L2(0, T, L2(Ω)) 7→ φ weak solution of the following linear parabolic
equation:

∂tφ+
σ2

2
∆φ = − 1

σ2
f(x, ϕψ)φ

with ∂φ
∂~n = 0 on (0, T )× ∂Ω and φ(T, ·) = exp

(
uT (·)
σ2

)
.

By classical linear parabolic equations theory, φ is in P ⊂ L2(0, T, L2(Ω)).

Our goal is to use Schauder’s fixed-point theorem on Fψ.

Compactness:

Usual energy estimates (see [4]) give that there exists a constant C that only depends on ‖uT ‖∞,
σ and ‖f‖∞ such that:

∀(ψ,ϕ) ∈ P0 × L2(0, T, L2(Ω)), ‖Fψ(ϕ)‖L2(0,T,H1(Ω)) + ‖∂tFψ(ϕ)‖L2(0,T,H−1(Ω)) ≤ C

Hence Fψ maps the closed ball BL2(0,T,L2(Ω))(0, C) to a compact subset of BL2(0,T,L2(Ω))(0, C).

1In terms of the initial mean field game problem, the optimal control ∇u and the subsequent distribution m are not
changed if we subtract ‖f‖∞ to f .
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Continuity:

Let us now prove that Fψ is a continuous function.

Let us consider a sequence (ϕn)n of L2(0, T, L2(Ω)) with ϕn →n→∞ ϕ in the L2(0, T, L2(Ω))
sense.
Let us write φn = Fψ(ϕn). We know from the above compactness result that we can extract from
(φn)n a new sequence denoted (φn′)n′ that converges in the L2(0, T, L2(Ω)) sense toward a func-
tion φ. To prove that Fψ is continuous, we then need to show that φ cannot be different from Fψ(ϕ).

Now, because of the energy estimates, we know that φ is in P and that we can extract another
subsequence (still denoted (φn′)n′), such that:

• φn′ → φ in the L2(0, T, L2(Ω)) sense.

• ∇φn′ ⇀ ∇φ weakly in L2(0, T, L2(Ω)).

• ∂tφn′ ⇀ ∂tφ weakly in L2(0, T,H−1(Ω)).

and

• ϕn′ → ϕ almost everywhere.

By definition we have that ∀w ∈ L2(0, T,H1(Ω)):∫ T

0
〈∂tφn′(t, ·), w(t, ·)〉H−1(Ω),H1(Ω)dt−

σ2

2

∫ T

0

∫
Ω
∇φn′(t, x) · ∇w(t, x)dxdt

= − 1

σ2

∫ T

0

∫
Ω
f(x, ϕn′(t, x)ψ(t, x))φn′(t, x)w(t, x)dxdt

By weak convergence, the left hand side of the above equality converges toward∫ T

0
〈∂tφ(t, ·), w(t, ·)〉H−1(Ω),H1(Ω)dt−

σ2

2

∫ T

0

∫
Ω
∇φ(t, x) · ∇w(t, x)dxdt

Since f is a bounded continuous function and using dominated convergence theorem, the right
hand side converges toward

− 1

σ2

∫ T

0

∫
Ω
f(x, ϕ(t, x)ψ(t, x))φ(t, x)w(t, x)dxdt

Hence φ = Fψ(ϕ).

Schauder’s Theorem:

By Schauder’s theorem, we then know that there exists a fixed-point φ to Fψ and hence a weak
solution to the nonlinear parabolic equation (Eφ).

Positiveness of φ:

Let us consider a solution φ as above. If I(t) = 1
2

∫
Ω(φ(t, x)−)2dx, then:

I ′(t) = −
∫

Ω
∂tφ(t, x)φ(t, x)−dx

= −
∫

Ω

(
∇φ(t, x) · ∇(φ(t, x)−)− 1

σ2
f(x, φ(t, x)ψ(t, x))φ(t, x)φ(t, x)−

)
dx

= −
∫

Ω

(
−|∇φ(t, x)|21φ(t,x)≤0 +

1

σ2
f(x, φ(t, x)ψ(t, x))(φ(t, x)−)2

)
dx
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=

∫
Ω
|∇φ(t, x)|21φ(t,x)≤0 −

∫
Ω

1

σ2
f(x, φ(t, x)ψ(t, x))(φ(t, x)−)2dx

≥ 0

Since I(T ) = 0 and I ≥ 0, we know that I = 0. Hence, φ is positive.

Uniqueness:

Let us consider two weak solutions φ1 and φ2 to the equation (Eφ).

Let us introduce J(t) = 1
2

∫
Ω(φ2(t, x)− φ1(t, x))2dx. We have:

J ′(t) =

∫
Ω

(∂tφ2(t, x)− ∂tφ1(t, x))(φ2(t, x)− φ1(t, x))dx

= −
∫

Ω

1

σ2
(f(x, φ2(t, x)ψ(t, x))φ2(t, x)− f(x, φ1(t, x)ψ(t, x))φ1(t, x)) (φ2(t, x)− φ1(t, x))dx

+

∫
Ω
|∇φ2(t, x)−∇φ1(t, x)|2dx

Because of our assumptions on f , the function ξ ∈ R+ 7→ 1
σ2 f(x, ψξ)ξ is a decreasing function.

Hence, since φ1 and φ2 are positive, J ′(t) ≥ 0. Since J(T ) = 0 and J ≥ 0, we know that J = 0.
Hence, φ1 = φ2.

Lower bound to φ:

We can get a lower bound to φ through a subsolution taken as the solution of the following
ordinary differential equation:

φ′(t) =
1

σ2
‖f‖∞φ(t) φ(T ) = exp

(
−‖uT ‖∞

σ2

)
Let us indeed consider K(t) = 1

2

∫
Ω((φ(t)− φ(t, x))+)2dx. We have:

K ′(t) =

∫
Ω

(φ′(t)− ∂tφ(t, x))(φ(t)− φ(t, x))+dx

=

∫
Ω

(
1

σ2
‖f‖∞φ(t)(φ(t)− φ(t, x))+ + |∇φ(t, x)|21φ(t)−φ(t,x)≥0

+
1

σ2

(
f(x, φ(t, x)ψ(t, x))φ(t, x)(φ(t)− φ(t, x))+

))
dx

≥ 1

σ2

∫
Ω

(
‖f‖∞φ(t) + f(x, φ(t, x)ψ(t, x))φ(t, x)

)
(φ(t)− φ(t, x))+dx

≥ 1

σ2

∫
Ω

(‖f‖∞ + f(x, φ(t, x)ψ(t, x)))φ(t, x)(φ(t)− φ(t, x))+dx

≥ 0

Since K(T ) = 0 and K ≥ 0, we know that K = 0.

Hence, φ(t, x) ≥ φ(t) = e−
‖uT ‖∞
σ2 exp

(
− 1
σ2 ‖f‖∞(T − t)

)
≥ ε and the result follows.

Now, we turn to a monotonicity result regarding Φ.

Proposition 3.
∀ψ1 ≤ ψ2 ∈ P0,Φ(ψ1) ≥ Φ(ψ2)
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Proof:

Let us introduce φ1 = Φ(ψ1) and φ2 = Φ(ψ2).

Let us introduce I(t) = 1
2

∫
Ω((φ2(t, x)− φ1(t, x))+)2dx. We have:

I ′(t) =

∫
Ω

(∂tφ2(t, x)− ∂tφ1(t, x))(φ2(t, x)− φ1(t, x))+dx

=

∫
Ω

(
|∇φ2(t, x)−∇φ1(t, x)|21φ2(t,x)−φ1(t,x)≥0

− 1

σ2
(f(x, φ2(t, x)ψ2(t, x))φ2(t, x)− f(x, φ1(t, x)ψ1(t, x))φ1(t, x)) (φ2(t, x)− φ1(t, x))+

)
dx

≥ 1

σ2

∫
Ω

(f(x, φ1(t, x)ψ1(t, x))φ1(t, x)− f(x, φ2(t, x)ψ2(t, x))φ2(t, x)) (φ2(t, x)− φ1(t, x))+dx

≥ 1

σ2

∫
Ω

(f(x, φ1(t, x)ψ2(t, x))φ1(t, x)− f(x, φ2(t, x)ψ2(t, x))φ2(t, x)) (φ2(t, x)− φ1(t, x))+dx

≥ 0

Hence, since I(T ) = 0 and I ≥ 0, we know that I = 0. Consequently, φ1 ≥ φ2.

We now turn to the second equation (Eψ) of the system (S).

Proposition 4. Let us fix ε > 0 and suppose that m0 ∈ L2(Ω).
∀φ ∈ Pε, there is a unique weak solution ψ to the following equation (Eψ):

∂tψ −
σ2

2
∆ψ =

1

σ2
f(x, φψ)ψ (Eψ)

with ∂ψ
∂~n = 0 on (0, T )× ∂Ω and ψ(0, ·) = m0(·)

φ(0,·) .

Hence Ψ : φ ∈ Pε 7→ ψ ∈ P is well defined.

Moreover, ∀φ ∈ Pε, ψ = Ψ(φ) ∈ P0.

Proof:

The proof of existence and uniqueness of a weak solution ψ ∈ P is the same as in Proposition
2. The only thing to notice is that the initial condition ψ(0, ·) is in  L2(Ω) because m0 ∈ L2(Ω) and
φ bounded from below by ε > 0.

Now, to prove that ψ ≥ 0, let’s introduce I(t) = 1
2

∫
Ω(ψ(t, x)−)2dx, then:

I ′(t) = −
∫

Ω
∂tψ(t, x)ψ(t, x)−dx

= −
∫

Ω

(
−∇ψ(t, x) · ∇(ψ(t, x)−) +

1

σ2
f(x, φ(t, x)ψ(t, x))ψ(t, x)ψ(t, x)−

)
dx

= −
∫

Ω

(
|∇ψ(t, x)|21ψ(t,x)≤0 −

1

σ2
f(x, φ(t, x)ψ(t, x))(ψ(t, x)−)2

)
dx

≤ 0

Since I(0) = 0 and I ≥ 0, we know that I = 0. Hence, ψ is positive.

Now, we turn to a monotonicity result regarding Ψ.
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Proposition 5.
∀φ1 ≤ φ2 ∈ Pε,Ψ(φ1) ≥ Ψ(φ2)

Proof:

Let us introduce ψ1 = Ψ(φ1) and ψ2 = Ψ(φ2).

Let us introduce I(t) = 1
2

∫
Ω((ψ2(t, x)− ψ1(t, x))+)2dx. We have:

I ′(t) =

∫
Ω

(∂tψ2(t, x)− ∂tψ1(t, x))(ψ2(t, x)− ψ1(t, x))+dx

=
1

σ2
(f(x, φ2(t, x)ψ2(t, x))ψ2(t, x)− f(x, φ1(t, x)ψ1(t, x))ψ1(t, x)) (ψ2(t, x)− ψ1(t, x))+dx

−
∫

Ω
|∇ψ2(t, x)−∇ψ1(t, x)|21ψ2(t,x)−ψ1(t,x)≥0dx

≤ 1

σ2

∫
Ω

(f(x, φ2(t, x)ψ2(t, x))ψ2(t, x)− f(x, φ1(t, x)ψ1(t, x))ψ1(t, x)) (ψ2(t, x)− ψ1(t, x))+dx

≤ 1

σ2

∫
Ω

(f(x, φ1(t, x)ψ2(t, x))ψ2(t, x)− f(x, φ1(t, x)ψ1(t, x))ψ1(t, x)) (ψ2(t, x)− ψ1(t, x))+dx

≤ 0

Now, I(0) = 1
2

∫
Ωm0(x)

((
1

φ2(0,x) −
1

φ1(0,x)

)
+

)2

dx = 0. Hence since I ≥ 0, we know that I = 0.

Consequently, ψ1 ≥ ψ2.

We will use these properties to design a constructive scheme for the couple (φ, ψ).

3 A constructive scheme to solve the system (S)

The scheme we consider involves two sequences (φn+ 1
2 )n and (ψn)n that are built using the following

recursive equations:

ψ0 = 0

∀n ∈ N, φn+ 1
2 = Φ(ψn)

∀n ∈ N, ψn+1 = Ψ(φn+ 1
2 )

Theorem 1. Suppose that uT ∈ L∞(Ω) and that m0 ∈ L2(Ω).

Then, the above scheme has the following properties:

• (φn+ 1
2 )n is a decreasing sequence of Pε where ε is as in Proposition 2.

• (ψn)n is an increasing sequence of P0, bounded from above by Ψ(ε)

• (φn+ 1
2 , ψn)n converges for almost every (t, x) ∈ (0, T )× Ω, and in L2(0, T, L2(Ω)), towards a

couple (φ, ψ).

• (φ, ψ) ∈ Pε × P0 is a weak solution of (S).

Proof:

By immediate induction we get from Propositions 2 and 4 that the two sequences are well de-
fined and in the appropriate spaces.
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Now, as far as monotonicity is concerned we have that ψ1 = Ψ(φ
1
2 ) ≥ 0 = ψ0. Hence, if for a

given n ∈ N we have ψn+1 ≥ ψn, then Proposition 3 gives:

φn+ 3
2 = Φ(ψn+1) ≤ Φ(ψn) = φn+ 1

2

Applying now the function Ψ we get:

ψn+2 = Ψ(φn+ 3
2 ) ≥ Ψ(φn+ 1

2 ) = ψn+1

By induction we then have that (φn+ 1
2 )n is decreasing and (ψn)n is increasing.

Moreover, since φn+ 1
2 ≥ ε, we have that ψn+1 = Ψ(φn+ 1

2 ) ≤ Ψ(ε).

Now this monotonic behavior allows to define two limit functions φ and ψ in L2(0, T, L2(Ω))
and the convergence is almost everywhere and in L2(0, T, L2(Ω)).

Now, we want to show that (φ, ψ) is a weak solution of (S) and to this purpose we use the
energy estimates of the parabolic equations.

We know that there exists a constant C > 0, that only depends on ‖uT ‖∞, σ and ‖f‖∞ such
that:

∀n ∈ N, ‖φn+ 1
2 ‖L2(0,T,H1(Ω)) + ‖∂tφn+ 1

2 ‖L2(0,T,H−1(Ω)) ≤ C

Hence, φ ∈ P and we can extract a subsequence (φn
′+ 1

2 )n′ such that:

• φn′+
1
2 → φ in the L2(0, T, L2(Ω)) sense and almost everywhere.

• ∇φn′+
1
2 ⇀ ∇φ weakly in L2(0, T, L2(Ω)).

• ∂tφn
′+ 1

2 ⇀ ∂tφ weakly in L2(0, T,H−1(Ω)).

Now, for w ∈ L2(0, T,H1(Ω))∫ T

0
〈∂tφn

′+ 1
2 (t, ·), w(t, ·)〉H−1(Ω),H1(Ω)dt−

σ2

2

∫ T

0

∫
Ω
∇φn′+

1
2 (t, x) · ∇w(t, x)dxdt

= − 1

σ2

∫ T

0

∫
Ω
f(x, φn

′+ 1
2 (t, x)ψn

′
(t, x))φn

′+ 1
2 (t, x)w(t, x)dxdt

Using the weak convergence stated above, the continuity hypothesis on f and the dominated
convergence theorem for the last term we get that ∀w ∈ L2(0, T,H1(Ω))∫ T

0
〈∂tφ(t, ·), w(t, ·)〉H−1(Ω),H1(Ω)dt−

σ2

2

∫ T

0

∫
Ω
∇φ(t, x) · ∇w(t, x)dxdt

= − 1

σ2

∫ T

0

∫
Ω
f(x, φ(t, x)ψ(t, x))φ(t, x)w(t, x)dxdt

Hence, for almost every t ∈ (0, T ) and ∀v ∈ H1(Ω),

〈∂tφ(t, ·), v〉H−1(Ω),H1(Ω) −
σ2

2

∫
Ω
∇φ(t, x) · ∇v(x)dx

= − 1

σ2

∫
Ω
f(x, φ(t, x)ψ(t, x))φ(t, x)v(x)dx

and the terminal condition is obviously satisfied.
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Obviously, we also have φ ≥ ε.

Now, turning to the second equation, the proof works the same. The only additional thing to
notice is that

ψ(0, ·) = lim
n→∞

ψn+1(0, ·) = lim
n→∞

m0

φn+ 1
2 (0, ·)

=
m0

φ(0, ·)

where the limits are in the L2(Ω) sense.

Hence (φ, ψ) is indeed a weak solution of (S).

We exhibited a way to build a solution to the system (S). However, it should be noticed that
the two functions φ and ψ have been introduced to transform the initial (MFG) system into two
simpler partial differential equations. The functions we are interested in, as far as the mean field
game is concerned, are rather u and m.
To well understand the nature of the change of variables and of the constructive scheme, let us
introduce the sequence (mn+1)n where mn+1 = φn+ 1

2ψn+1. From Theorem 1, we know that (mn+1)n
converges almost everywhere and in L1 toward the function m = φψ for which we have conservation
of mass along the trajectory. However, this property is not true for mn+1 as it is stated in the
following proposition:

Proposition 6. Let us consider n ∈ N and let’s denote Mn+1(t) =
∫

Ωm
n+1(t, x)dx the total mass

of mn+1 at date t.
Then, there may be a loss of mass along the trajectory in the sense that:

d

dt
Mn+1(t) =

∫
Ω
ψn+1(t, x)φn+ 1

2 (t, x)
(
f
(
x, ψn+1(t, x)φn+ 1

2 (t, x)
)
− f

(
x, ψn(t, x)φn+ 1

2 (t, x)
))
≤ 0

Proof:

From the regularity obtained above, we can write:

d

dt
Mn+1(t) = 〈∂tφn+ 1

2 (t, ·), ψn+1(t, ·)〉H−1(Ω),H1(Ω) + 〈∂tψn+1(t, ·), φn+ 1
2 (t, ·)〉H−1(Ω),H1(Ω)

=
σ2

2

∫
Ω
∇φn+ 1

2 (t, x) · ∇ψn+1(t, x)dx

− 1

σ2

∫
Ω
φn+ 1

2 (t, x)ψn+1(t, x)f
(
x, φn+ 1

2 (t, x)ψn(t, x)
)
dx

− σ2

2

∫
Ω
∇φn+ 1

2 (t, x) · ∇ψn+1(t, x)dx

+
1

σ2

∫
Ω
φn+ 1

2 (t, x)ψn+1(t, x)f
(
x, φn+ 1

2 (t, x)ψn+1(t, x)
)
dx

=

∫
Ω
ψn+1(t, x)φn+ 1

2 (t, x)
(
f
(
x, ψn+1(t, x)φn+ 1

2 (t, x)
)
− f

(
x, ψn(t, x)φn+ 1

2 (t, x)
))

≤ 0

This property shows that the constructive scheme is rather original since it basically consists in
building a probability distribution function using a sequence of functions in L1 that only has the
right total mass asymptotically. For the same reason, although there will be no systematic loss of
mass, the numerical scheme we present in the next section consists in approximating probability
distribution functions without taking care to mass conservation.
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4 A numerical scheme

The constructive scheme of Theorem 1 allows to design a monotonic numerical scheme to solve the
system (S) and in turn to approximate u and m.

For the sake of simplicity, we present the scheme with Ω = (0, 1) but the results would be similar
in higher dimensions. We also assume that uT and m0 are bounded functions.

Let us consider a uniform subdivision (t0, . . . , tI) of [0, T ] where ti = i∆t for i ∈ I = {0, . . . , I}
and a uniform subdivision (x0, . . . , xJ) of the interval [0, 1] where xj = j∆x for j ∈ J = {0, . . . , J}
.

We consider a recursive sequence of finite difference schemes in which ψ̂ni,j and φ̂
n+ 1

2
i,j stand for

the approximations of ψn and φn+ 1
2 at point (ti, xj). For convenience, we also define ψ̂ni,−1 = ψ̂ni,0

and ψ̂ni,J+1 = ψ̂ni,J to take account of Neumann conditions at the border.

The numerical scheme is as follows:

ψ̂0
i,j = 0, (i, j) ∈ I × J

and for n ≥ 0:

φ̂
n+ 1

2
i+1,j − φ̂

n+ 1
2

i,j

∆t
+
σ2

2

φ̂
n+ 1

2
i,j+1 − 2φ̂

n+ 1
2

i,j + φ̂
n+ 1

2
i,j−1

(∆x)2
= − 1

σ2
f(xj , φ̂

n+ 1
2

i,j ψ̂ni,j)φ̂
n+ 1

2
i,j , i ∈ I − {I}, j ∈ J

φ̂
n+ 1

2
I,j = exp

(
uT (xj)

σ2

)
, j ∈ J

ψ̂n+1
i+1,j − ψ̂

n+1
i,j

∆t
− σ

2

2

ψ̂n+1
i+1,j+1 − 2ψ̂n+1

i+1,j + ψ̂n+1
i+1,j−1

(∆x)2
=

1

σ2
f(xj , φ̂

n+ 1
2

i+1,jψ̂
n+1
i+1,j)ψ̂

n+1
i+1,j , i ∈ I−{I}, j ∈ J

ψ̂n+1
0,j =

m0(xj)

φ̂
n+ 1

2
0,j

, j ∈ J

To study this scheme, let’s introduce M = MI+1,J+1(R) and

Mε = {(mi,j)i∈I,j∈J ∈M, ∀(i, j) ∈ I × J ,mi,j ≥ ε}

Let us start with the discrete counterpart of Proposition 2.

Proposition 7. ∀ψ̂ ∈M0, there is a unique solution φ̂ ∈M to the following equation:

φ̂i+1,j − φ̂i,j
∆t

+
σ2

2

φ̂i,j+1 − 2φ̂i,j + φ̂i,j−1

(∆x)2
= − 1

σ2
f(xj , φ̂i,jψ̂i,j)φ̂i,j , i ∈ I − {I}, j ∈ J

with φ̂I,j = exp
(
uT (xj)
σ2

)
, ∀j ∈ J and the conventions φ̂i,−1 = φ̂i,0, φ̂i,J+1 = φ̂i,J .

Hence Φ̂ : ψ̂ ∈M0 7→ φ̂ ∈M is well defined.

Moreover, ∀ψ̂ ∈M0, φ̂ = Φ̂(ψ̂) ∈Mε for ε = exp
(
− 1
σ2 (‖uT ‖∞ + ‖f‖∞T )

)
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Proof:

Let us consider ψ̂ ∈M0.

Existence and positiveness of a solution φ̂:

Let us introduce F̂
ψ̂

: ϕ̂ ∈M 7→ φ̂ solution of the following equations:

φ̂i+1,j − φ̂i,j
∆t

+
σ2

2

φ̂i,j+1 − 2φ̂i,j + φ̂i,j−1

(∆x)2
= − 1

σ2
f(xj , ϕ̂i,jψ̂i,j)φ̂i,j , i ∈ I − {I}, j ∈ J

with φ̂I,j = exp
(
uT (xj)
σ2

)
, ∀j ∈ J and the conventions φ̂i,−1 = φ̂i,0, φ̂i,J+1 = φ̂i,J .

Such a matrix φ̂ exists by straightforward backward induction. We indeed know φ̂I,j ,∀j ∈ J ,

and if we know φ̂i+1,j , ∀j ∈ J for some i ∈ I − {I}, then we have:

A

 φ̂i,0
...

φ̂i,J

 =

 φ̂i+1,0
...

φ̂i+1,J


where:

A =



1 + ∆tβi,0 − σ2∆t
2(∆x)2 0 · · · 0

− σ2∆t
2(∆x)2 1 + ∆tβi,1 − σ2∆t

2(∆x)2

. . .
...

0
. . .

. . .
. . . 0

...
. . . − σ2∆t

2(∆x)2 1 + ∆tβi,J−1 − σ2∆t
2(∆x)2

0 · · · 0 − σ2∆t
2(∆x)2 1 + ∆tβi,J


where βi,j = σ2

(∆x)2 − 1
σ2 f(xj , ϕ̂i,jψ̂i,j), ∀i ∈ I−{I},∀j ∈ J −{0, J}, βi,0 = σ2

2(∆x)2 − 1
σ2 f(x0, ϕ̂i,0ψ̂i,0)

and βi,J = σ2

2(∆x)2 − 1
σ2 f(xJ , ϕ̂i,J ψ̂i,J), ∀i ∈ I − {I}.

Since A is an M -matrix, φ̂i,j is well defined ∀j ∈ J , and by immediate induction φ̂ is well defined.

Now, F̂
ψ̂

is well-defined and continuous since f is continuous.

To prove that there is a fixed point to F̂
ψ̂

, we will use Brouwer’s theorem. The only thing that

needs to be proved is that ∃C > 0, ∀ϕ̂ ∈ M,max(i,j)∈I×J

∥∥∥F̂ψ̂(ϕ̂)i,j

∥∥∥ ≤ C. More precisely, we are

going to prove that if φ̂ = F̂
ψ̂

(ϕ̂) then:

∀(i, j) ∈ I × J , 0 ≤ φ̂i,j ≤ max
j∈J

φ̂I,j ≤
∥∥∥exp

(uT
σ2

)∥∥∥
∞

Let us suppose first that φ̂ = min(i,j)∈I×J φ̂i,j < 0.

Then, let’s consider (i, j) ∈
{

(i′, j′) ∈ I × J |φ̂i,j = φ̂,∀(i′′, j′′) ∈ I × J , φ̂i′′,j′′ = φ̂⇒ i′′ ≤ i′
}

. We

know that i 6= I and hence:

0 <
φ̂i+1,j − φ̂i,j

∆t
+
σ2

2

φ̂i,j+1 − 2φ̂i,j + φ̂i,j−1

(∆x)2
= − 1

σ2
f(xj , ϕ̂i,jψ̂i,j)φ̂i,j

Since f ≤ 0, this gives φ̂i,j = φ̂ ≥ 0 contrary to our hypothesis.

Hence, ∀(i, j) ∈ I × J , φ̂i,j ≥ 0.
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Similarly let’s suppose that φ̂ = max(i,j)∈I×J φ̂i,j > maxj∈J φ̂I,j . Then, let’s consider a couple

(i, j) ∈
{

(i′, j′) ∈ I × J |φ̂i,j = φ̂,∀(i′′, j′′) ∈ I × J , φ̂i′′,j′′ = φ̂⇒ i′′ ≤ i′
}

. We have that i 6= I and

hence:

0 >
φ̂i+1,j − φ̂i,j

∆t
+
σ2

2

φ̂i,j+1 − 2φ̂i,j + φ̂i,j−1

(∆x)2
= − 1

σ2
f(xj , ϕ̂i,jψ̂i,j)φ̂i,j

But then, φ̂i,j < 0 and this is not possible. Hence, we indeed have that the maximum is attained

for i = I, namely max(i,j)∈I×J φ̂i,j = maxj∈J φ̂I,j .

Now, from Brouwer’s theorem, we know that there exists φ̂ ∈M0, such that F̂
ψ̂

(φ̂) = φ̂.

Uniqueness of φ̂:

Let us suppose that there are two fixed points φ̂ and φ̂′ to F̂
ψ̂

and imagine for instance that

∃(i, j) ∈ I × J such that φ̂i,j > φ̂′i,j . Then, let’s consider δ̂ = φ̂ − φ̂′, δ̂ = max(i,j)∈I×J δ̂i,j and

(i, j) ∈
{

(i′, j′) ∈ I × J |δ̂i,j = δ̂,∀(i′′, j′′) ∈ I × J , φ̂i′′,j′′ = δ̂ ⇒ i′′ ≤ i′
}

. We know that i 6= I and

hence:

0 >
δ̂i+1,j − δ̂i,j

∆t
+
σ2

2

δ̂i,j+1 − 2δ̂i,j + δ̂i,j−1

(∆x)2

= − 1

σ2

[
f(xj , φ̂i,jψ̂i,j)φ̂i,j − f(xj , φ̂′i,jψ̂i,j)φ̂

′
i,j

]
But since φ̂i,j > φ̂′i,j ≥ 0 as above, the right hand side of the above equation must be greater than
0, in contradiction with the above inequality.
Hence, φ̂ ≤ φ̂′ and, by symmetry, φ̂ = φ̂′. As a consequence Φ̂ : ψ̂ ∈M0 7→ φ̂ ∈M is well defined.

Lower bound for φ̂:

Let us consider φ̂
i,j

= exp
(
−‖uT ‖∞

σ2

)
1(

1+∆t
‖f‖∞
σ2

)I−i solution of the following problem:

φ̂
i+1,j

− φ̂
i,j

∆t
+
σ2

2

φ̂
i,j+1

− 2φ̂
i,j

+ φ̂
i,j−1

(∆x)2
=

1

σ2
‖f‖∞φ̂i,j , i ∈ I − {I}, j ∈ J

with φ̂
I,j

= exp
(
−‖uT ‖∞

σ2

)
,∀j ∈ J and the conventions φ̂

i,−1
= φ̂

i,0
, φ̂

i,J+1
= φ̂

i,J
.

Now, let’s write δ̂ = φ̂− φ̂ and let’s suppose that δ̂ = max(i,j)∈I×J δ̂i,j > 0. Then, let’s consider

(i, j) ∈
{

(i′, j′) ∈ I × J |δ̂i,j = δ̂,∀(i′′, j′′) ∈ I × J , δ̂i′′,j′′ = δ̂ ⇒ i′′ ≤ i′
}

. By construction, we know

that i 6= I and hence:

0 >
δ̂i+1,j − δ̂i,j

∆t
+
σ2

2

δ̂i,j+1 − 2δ̂i,j + δ̂i,j−1

(∆x)2
=

1

σ2

[
‖f‖∞φ̂i,j + f(xj , φ̂i,jψ̂i,j)φ̂i,j

]
But then, φ̂

i,j
< φ̂i,j in contradiction with the hypothesis.

In conclusion, we have ∀(i, j) ∈ I × J :

φ̂i,j ≥ φ̂i,j ≥ e−
‖uT ‖∞
σ2

1(
1 + ∆t‖f‖∞

σ2

)I−i ≥ e− ‖uT ‖∞σ2
1(

1 + ∆t‖f‖∞
σ2

) T
∆t

≥ ε

Let us now turn to a monotonicity property of the function Φ̂.
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Proposition 8.
∀ψ̂1 ≤ ψ̂2 ∈M0, Φ̂(ψ̂1) ≥ Φ̂(ψ̂2)

Proof:

Let us consider ψ̂1 ≤ ψ̂2 ∈M0 and let’s denote φ̂1 = Φ̂(ψ̂1) and φ̂2 = Φ̂(ψ̂2).

Now, let’s write δ̂ = φ̂2−φ̂1 and let’s suppose that δ̂ = max(i,j)∈I×J δ̂i,j > 0. Then, let’s consider

(i, j) ∈
{

(i′, j′) ∈ I × J |δ̂i,j = δ̂,∀(i′′, j′′) ∈ I × J , δ̂i′′,j′′ = δ̂ ⇒ i′′ ≤ i′
}

. We know that i 6= I and

hence:

0 >
δ̂i+1,j − δ̂i,j

∆t
+
σ2

2

δ̂i,j+1 − 2δ̂i,j + δ̂i,j−1

(∆x)2
= − 1

σ2

[
f(xj , φ̂2,i,jψ̂2,i,j)φ̂2,i,j − f(xj , φ̂1,i,jψ̂1,i,j)φ̂1,i,j

]
But then, f(xj , φ̂2,i,jψ̂2,i,j)φ̂2,i,j−f(xj , φ̂1,i,jψ̂1,i,j)φ̂1,i,j > 0 in contradiction with the hypothesis

for the chosen (i, j).

Hence, φ̂1 ≥ φ̂2.

Let us now turn to the second equation. We have exactly the same result as above with the
same proof:

Proposition 9. ∀φ̂ ∈Mε, there is a unique solution ψ̂ ∈M to the following equation:

ψ̂i+1,j − ψ̂i,j
∆t

−σ
2

2

ψ̂i+1,j+1 − 2ψ̂i+1,j + ψ̂i+1,j−1

(∆x)2
=

1

σ2
f(xj , φ̂i+1,jψ̂i+1,j)ψ̂i+1,j , 0 ≤ i ≤ I−1, 0 ≤ j ≤ J

with ψ̂0,j =
m0(xj)

φ̂0,j
, ∀j ∈ J and the conventions ψ̂i,−1 = ψ̂i,0, ψ̂i,J+1 = ψ̂i,J .

Hence Ψ̂ : φ̂ ∈Mε 7→ ψ̂ ∈M is well defined.

Moreover, ∀φ̂ ∈Mε, ψ̂ = Ψ̂(φ̂) ∈M0.

Similarly, the same monotonicity result can be proved:

Proposition 10.
∀φ̂1 ≤ φ̂2 ∈Mε, Ψ̂(φ̂1) ≥ Ψ̂(φ̂2)

Now, using the functions introduced in the above propositions, we can write the numerical
scheme in a more compact fashion:

ψ̂0 = 0

∀n ∈ N, φ̂n+ 1
2 = Φ̂

(
ψ̂n
)

∀n ∈ N, ψ̂n+1 = Ψ̂
(
φ̂n+ 1

2

)
Using the monotonicity properties, we get that the sequences

(
ψ̂n
)
n

and
(
φ̂n+ 1

2

)
n

converge

monotonically. More precisely we have that:

Proposition 11. The numerical scheme verifies the following properties:

•
(
φ̂n+ 1

2

)
n

is a decreasing sequence of Mε where ε is as in Proposition 7.

•
(
ψ̂n
)
n

is an increasing sequence of M0, bounded from above by ‖m0‖∞
ε .
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•
(
φ̂n+ 1

2 , ψ̂n
)
n

converges towards a couple (φ̂, ψ̂) ∈Mε ×M0 that verifies:

φ̂i+1,j − φ̂i,j
∆t

+
σ2

2

φ̂i,j+1 − 2φ̂i,j + φ̂i,j−1

(∆x)2
= − 1

σ2
f(xj , φ̂i,jψ̂i,j)φ̂i,j , i ∈ I − {I}, j ∈ J

φ̂I,j = exp

(
uT (xj)

σ2

)
,∀j ∈ J

ψ̂i+1,j − ψ̂i,j
∆t

−σ
2

2

ψ̂i+1,j+1 − 2ψ̂i+1,j + ψ̂i+1,j−1

(∆x)2
=

1

σ2
f(xj , φ̂i+1,jψ̂i+1,j)ψ̂i+1,j , i ∈ I−{I}, j ∈ J

ψ̂0,j =
m0(xj)

φ̂0,j

,∀j ∈ J

Proof:

Let us prove by induction that

∀n ∈ N, 0 ≤ ψ̂n ≤ ψ̂n+1 ≤ Ψ̂(ε), ε ≤ φ̂n+ 3
2 ≤ φ̂n+ 1

2

First, for n = 0 we have that:
ψ̂1 = Ψ̂(Φ̂(ψ̂0)) ≥ 0 = ψ̂0

Consequently,

φ̂
1
2 = Φ̂(ψ̂0) ≥ Φ̂(ψ̂1) = φ̂

3
2

and because of Proposition 7, we know that φ̂
1
2 ≥ φ̂

3
2 ≥ ε. Hence, ψ̂1 = Ψ̂(ψ̂

1
2 ) ≤ Ψ̂(ε).

Now, let’s suppose that the result is true for some n ∈ N, then:

ψ̂n ≤ ψ̂n+1 ⇒ φ̂n+ 1
2 = Φ̂(ψ̂n) ≥ Φ̂(ψ̂n+1) = φ̂n+ 3

2

⇒ ψ̂n+1 = Ψ̂(φ̂n+ 1
2 ) ≤ Ψ̂(φ̂n+ 3

2 ) = ψ̂n+2

Now, by Proposition 7, we know that φ̂n+ 3
2 ≥ ε and thus ψ̂n+2 = Ψ̂(ψ̂n+ 3

2 ) ≤ Ψ̂(ε) and with the

same discrete maximum principle as above, we have that Ψ̂(ε) is bounded by ‖m0‖∞
ε .

Consequently, ∀(i, j) ∈ I × J , (φ̂
n+ 1

2
i,j )n is a decreasing sequence bounded from below by ε that

thus converges towards a value denoted φ̂i,j . Similarly, ∀(i, j) ∈ I × J , (ψ̂ni,j)n is an increasing

sequence bounded from above that thus converges towards a value denoted ψ̂i,j .

The resulting couple (φ̂, ψ̂) ∈ Mε ×M0 straightforwardly verifies the equations of the proposi-
tion.

Now, to study convergence, let’s introduce a norm ‖ · ‖ on the sets M by:

∀m = (mi,j)i,j ∈M, ‖m‖2 = sup
0≤i≤I

1

J + 1

J∑
j=0

m2
i,j

Let us also define the consistency errors η̃n+ 1
2 and η̃n+1 associated to the equations that define

respectively φn+ 1
2 and ψn+1:

η̃
n+ 1

2
i,j =

φ̃
n+ 1

2
i+1,j − φ̃

n+ 1
2

i,j

∆t
+
σ2

2

φ̃
n+ 1

2
i,j+1 − 2φ̃

n+ 1
2

i,j + φ̃
n+ 1

2
i,j−1

(∆x)2
+

1

σ2
f(xj , φ̃

n+ 1
2

i,j ψ̃ni,j)φ̃
n+ 1

2
i,j

η̃n+1
i,j =

ψ̃n+1
i+1,j − ψ̃

n+1
i,j

∆t
− σ2

2

ψ̃n+1
i+1,j+1 − 2ψ̃n+1

i+1,j + ψ̃n+1
i+1,j−1

(∆x)2
− 1

σ2
f(xj , φ̃

n+ 1
2

i+1,jψ̃
n+1
i+1,j)ψ̃

n+1
i+1,j
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where φ̃
n+ 1

2
i,j = φn+ 1

2 (ti, xj) and ψ̃n+1
i,j = ψn+1(ti, xj).

We are now ready to enounce a theorem that gives recursive stability bounds for the scheme.

Theorem 2. Let us suppose, in addition to the hypotheses made above, that f is uniformly Lipschitz
with respect to its second variable, i.e.

∃K,∀x ∈ (0, 1), ∀ξ1, ξ2 ∈ R+, |f(x, ξ2)− f(x, ξ1)| ≤ K|ξ2 − ξ1|

Then, ∀ν > 0, ∃C > 0, ∀I, J ∈ N such that 1
∆t > 1 + K

σ2 max

(∥∥∥euTσ2

∥∥∥2

∞
, ‖m0‖2∞

ε2

)
+ ν, we have

∀n ∈ N:
‖φ̂n+ 1

2 − φ̃n+ 1
2 ‖2 ≤ C‖ψ̂n − ψ̃n‖2 + C‖η̃n+ 1

2 ‖2

‖ψ̂n+1 − ψ̃n+1‖2 ≤ C‖φ̂n+ 1
2 − φ̃n+ 1

2 ‖2 + C‖η̃n+1‖2

Proof:

Let us denote for n ∈ N, δ
n+ 1

2
i,j = φ̂

n+ 1
2

i,j − φ̃n+ 1
2

i,j and δni,j = ψ̂ni,j − ψ̃ni,j .

By definition we have for i ∈ I − {I}, j ∈ J :

δ
n+ 1

2
i+1,j − δ

n+ 1
2

i,j

∆t
+
σ2

2

δ
n+ 1

2
i,j+1 − 2δ

n+ 1
2

i,j + δ
n+ 1

2
i,j−1

(∆x)2
= − 1

σ2

(
f(xj , φ̂

n+ 1
2

i,j ψ̂ni,j)φ̂
n+ 1

2
i,j − f(xj , φ̃

n+ 1
2

i,j ψ̃ni,j)φ̃
n+ 1

2
i,j

)
−η̃n+ 1

2
i,j

Hence: (
δ
n+ 1

2
i,j

)2

= δ
n+ 1

2
i+1,jδ

n+ 1
2

i,j +
σ2∆t

2(∆x)2
δ
n+ 1

2
i,j

(
δ
n+ 1

2
i,j+1 − 2δ

n+ 1
2

i,j + δ
n+ 1

2
i,j−1

)
+

∆t

σ2
δ
n+ 1

2
i,j

(
f(xj , φ̂

n+ 1
2

i,j ψ̂ni,j)φ̂
n+ 1

2
i,j − f(xj , φ̃

n+ 1
2

i,j ψ̃ni,j)φ̃
n+ 1

2
i,j

)
+ δ

n+ 1
2

i,j η̃
n+ 1

2
i,j ∆t

⇒ 1

2

(
δ
n+ 1

2
i,j

)2

≤ 1

2

(
δ
n+ 1

2
i+1,j

)2

+
σ2∆t

2(∆x)2
δ
n+ 1

2
i,j

(
δ
n+ 1

2
i,j+1 − 2δ

n+ 1
2

i,j + δ
n+ 1

2
i,j−1

)

+
∆t

σ2
δ
n+ 1

2
i,j

(
f(xj , φ̂

n+ 1
2

i,j ψ̂ni,j)φ̂
n+ 1

2
i,j − f(xj , φ̃

n+ 1
2

i,j ψ̃ni,j)φ̃
n+ 1

2
i,j

)
+

∆t

2

(
δ
n+ 1

2
i,j

)2

+
∆t

2

(
η̃
n+ 1

2
i,j

)2

Now,

δ
n+ 1

2
i,j

(
f(xj , φ̂

n+ 1
2

i,j ψ̂ni,j)φ̂
n+ 1

2
i,j − f(xj , φ̃

n+ 1
2

i,j ψ̃ni,j)φ̃
n+ 1

2
i,j

)
= δ

n+ 1
2

i,j

(
f(xj , φ̂

n+ 1
2

i,j ψ̂ni,j)φ̂
n+ 1

2
i,j − f(xj , φ̂

n+ 1
2

i,j ψ̃ni,j)φ̂
n+ 1

2
i,j

)
+

(
φ̂
n+ 1

2
i,j − φ̃n+ 1

2
i,j

)(
f(xj , φ̂

n+ 1
2

i,j ψ̃ni,j)φ̂
n+ 1

2
i,j − f(xj , φ̃

n+ 1
2

i,j ψ̃ni,j)φ̃
n+ 1

2
i,j

)
≤ δ

n+ 1
2

i,j

(
f(xj , φ̂

n+ 1
2

i,j ψ̂ni,j)φ̂
n+ 1

2
i,j − f(xj , φ̂

n+ 1
2

i,j ψ̃ni,j)φ̂
n+ 1

2
i,j

)
≤ K

∣∣∣∣δn+ 1
2

i,j

∣∣∣∣ ∣∣∣∣φ̂n+ 1
2

i,j

∣∣∣∣ ∣∣∣∣φ̂n+ 1
2

i,j ψ̂ni,j − φ̂
n+ 1

2
i,j ψ̃ni,j

∣∣∣∣
≤ K

∣∣∣∣δn+ 1
2

i,j

∣∣∣∣ ∣∣∣∣φ̂n+ 1
2

i,j

∣∣∣∣2 ∣∣δni,j∣∣
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≤ K

2

∥∥∥φ̂n+ 1
2

∥∥∥2

∞

[(
δ
n+ 1

2
i,j

)2

+
(
δni,j
)2]

≤ K

2

∥∥∥φ̂ 1
2

∥∥∥2

∞

[(
δ
n+ 1

2
i,j

)2

+
(
δni,j
)2]

Thus:

J∑
j=0

(
δ
n+ 1

2
i,j

)2(
1−∆t− ∆t

σ2
K
∥∥∥φ̂ 1

2

∥∥∥2

∞

)

≤
J∑
j=0

(
δ
n+ 1

2
i+1,j

)2

+
σ2∆t

(∆x)2

J∑
j=0

δ
n+ 1

2
i,j

(
δ
n+ 1

2
i,j+1 − 2δ

n+ 1
2

i,j + δ
n+ 1

2
i,j−1

)

+
∆t

σ2
K
∥∥∥φ̂ 1

2

∥∥∥2

∞

J∑
j=0

(
δni,j
)2

+ ∆t

J∑
j=0

(
η̃
n+ 1

2
i,j

)2

≤
J∑
j=0

(
δ
n+ 1

2
i+1,j

)2

− σ2∆t

(∆x)2

J−1∑
j=0

(
δ
n+ 1

2
i,j+1 − δ

n+ 1
2

i,j

)2

+
∆t

σ2
K
∥∥∥φ̂ 1

2

∥∥∥2

∞
(J + 1) ‖δn‖2 + ∆t(J + 1)

∥∥∥η̃n+ 1
2

∥∥∥2

≤
J∑
j=0

(
δ
n+ 1

2
i+1,j

)2

+
∆t

σ2
K
∥∥∥φ̂ 1

2

∥∥∥2

∞
(J + 1) ‖δn‖2 + ∆t(J + 1)

∥∥∥η̃n+ 1
2

∥∥∥2

We know that
∥∥∥φ̂ 1

2

∥∥∥
∞
≤
∥∥∥euTσ2

∥∥∥
∞

. Hence, α(∆t) = 1 − ∆t − ∆t
σ2K

∥∥∥φ̂ 1
2

∥∥∥2

∞
lies in (0, 1) by hy-

pothesis.

This gives:

J∑
j=0

(
δ
n+ 1

2
i,j

)2

≤ 1

α(∆t)

J∑
j=0

(
δ
n+ 1

2
i+1,j

)2

+
∆t

α(∆t)
(J + 1)

[
1

σ2
K
∥∥∥φ̂ 1

2

∥∥∥2

∞
‖δn‖2 +

∥∥∥η̃n+ 1
2

∥∥∥2
]

By immediate induction we have:

J∑
j=0

(
δ
n+ 1

2
i,j

)2

≤
(

1

α(∆t)

)I−i J∑
j=0

δn+ 1
2

I,j︸ ︷︷ ︸
=0


2

+ ∆t
I−1∑
l=i

(
1

α(∆t)

)l−i
(J + 1)

[
1

σ2
K
∥∥∥φ̂ 1

2

∥∥∥2

∞
‖δn‖2 +

∥∥∥η̃n+ 1
2

∥∥∥2
]

≤
(

1

α(∆t)

)I
T (J + 1)

[
1

σ2
K
∥∥∥φ̂ 1

2

∥∥∥2

∞
‖δn‖2 +

∥∥∥η̃n+ 1
2

∥∥∥2
]

≤
(

1

α(∆t)

) T
∆t

T (J + 1)

[
1

σ2
K
∥∥∥φ̂ 1

2

∥∥∥2

∞
‖δn‖2 +

∥∥∥η̃n+ 1
2

∥∥∥2
]

Thus:
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∥∥∥δn+ 1
2

∥∥∥2
≤
(

1

α(∆t)

) T
∆t

T

[
1

σ2
K
∥∥∥φ̂ 1

2

∥∥∥2

∞
‖δn‖2 +

∥∥∥η̃n+ 1
2

∥∥∥2
]

Now, lim∆t→0

(
1

α(∆t)

) T
∆t

= exp

((
1 + 1

σ2K
∥∥∥φ̂ 1

2

∥∥∥2

∞

)
T

)
and hence there exists a constant C1

such that: ∥∥∥δn+ 1
2

∥∥∥2
≤ C1 ‖δn‖2 + C1

∥∥∥η̃n+ 1
2

∥∥∥2

This is the first part of the Theorem. For the second part, we need to control the difference
arising from the initial condition.

By definition we have for i ∈ I − {I}, j ∈ J :

δn+1
i+1,j − δ

n+1
i,j

∆t
− σ2

2

δn+1
i+1,j+1 − 2δn+1

i+1,j + δn+1
i+1,j−1

(∆x)2

=
1

σ2

(
f(xj , φ̂

n+ 1
2

i+1,jψ̂
n+1
i+1,j)ψ̂

n+1
i+1,j − f(xj , φ̃

n+ 1
2

i+1,jψ̃
n+1
i+1,j)ψ̃

n+1
i+1,j

)
− η̃n+1

i+1,j

Hence: (
δn+1
i+1,j

)2
= δn+1

i+1,jδ
n+1
i,j +

σ2∆t

2(∆x)2
δn+1
i+1,j

(
δn+1
i+1,j+1 − 2δn+1

i+1,j + δn+1
i+1,j−1

)
+

∆t

σ2
δn+1
i+1,j

(
f(xj , φ̂

n+ 1
2

i+1,jψ̂
n+1
i+1,j)ψ̂

n+1
i+1,j − f(xj , φ̃

n+ 1
2

i+1,jψ̃
n+1
i+1,j)ψ̃

n+1
i+1,j

)
− δn+1

i+1,j η̃
n+1
i+1,j∆t

⇒ 1

2

(
δn+1
i+1,j

)2
≤ 1

2

(
δn+1
i+1,j

)2
+

σ2∆t

2(∆x)2
δn+1
i+1,j

(
δn+1
i+1,j+1 − 2δn+1

i+1,j + δn+1
i+1,j−1

)
+

∆t

σ2
δn+1
i+1,j

(
f(xj , φ̂

n+ 1
2

i+1,jψ̂
n+1
i+1,j)ψ̂

n+1
i+1,j − f(xj , φ̃

n+ 1
2

i+1,jψ̃
n+1
i+1,j)ψ̃

n+1
i+1,j

)
+

∆t

2

(
δn+1
i+1,j

)2
+

∆t

2

(
η̃n+1
i+1,j

)2

Now,

δn+1
i+1,j

(
f(xj , φ̂

n+ 1
2

i+1,jψ̂
n+1
i+1,j)ψ̂

n+1
i+1,j − f(xj , φ̃

n+ 1
2

i+1,jψ̃
n+1
i+1,j)ψ̃

n+1
i+1,j

)
= δn+1

i+1,j

(
f(xj , φ̂

n+ 1
2

i+1,jψ̂
n+1
i+1,j)ψ̂

n+1
i+1,j − f(xj , φ̃

n+ 1
2

i+1,jψ̂
n+1
i+1,j)ψ̂

n+1
i+1,j

)
+

(
ψ̂n+1
i,j − ψ̃

n+1
i,j

)(
f(xj , φ̃

n+ 1
2

i+1,jψ̂
n+1
i+1,j)ψ̂

n+1
i+1,j − f(xj , φ̃

n+ 1
2

i+1,jψ̃
n+1
i+1,j)ψ̃

n+1
i+1,j

)
≤ δn+1

i+1,j

(
f(xj , φ̂

n+ 1
2

i+1,jψ̂
n+1
i+1,j)ψ̂

n+1
i+1,j − f(xj , φ̃

n+ 1
2

i+1,jψ̂
n+1
i+1,j)ψ̂

n+1
i+1,j

)
≤ K

∣∣∣δn+1
i+1,j

∣∣∣ ∣∣∣ψ̂n+1
i+1,j

∣∣∣ ∣∣∣∣φ̂n+ 1
2

i+1,jψ̂
n+1
i+1,j − φ̃

n+ 1
2

i+1,jψ̂
n+1
i+1,j

∣∣∣∣
≤ K

∣∣∣δn+1
i+1,j

∣∣∣ ∣∣∣ψ̂n+1
i+1,j

∣∣∣2 ∣∣∣∣δn+ 1
2

i+1,j

∣∣∣∣
≤ K

2

∥∥∥ψ̂n+1
∥∥∥2

∞

[(
δ
n+ 1

2
i+1,j

)2

+
(
δn+1
i+1,j

)2
]

≤ K

2

∥∥∥ψ̂∥∥∥2

∞

[(
δ
n+ 1

2
i+1,j

)2

+
(
δn+1
i+1,j

)2
]

Thus:
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J∑
j=0

(
δn+1
i+1,j

)2
(

1−∆t− ∆t

σ2
K
∥∥∥ψ̂∥∥∥2

∞

)

≤
J∑
j=0

(
δn+1
i,j

)2
+
σ2∆t

(∆x)2

J∑
j=0

δn+1
i+1,j

(
δn+1
i+1,j+1 − 2δn+1

i+1,j + δn+1
i+1,j−1

)

+
∆t

σ2
K
∥∥∥ψ̂∥∥∥2

∞

J∑
j=0

(
δ
n+ 1

2
i+1,j

)2

+ ∆t
J∑
j=0

(
η̃n+1
i+1,j

)2

≤
J∑
j=0

(
δn+1
i,j

)2
− σ2∆t

(∆x)2

J−1∑
j=0

(
δn+1
i+1,j+1 − δ

n+1
i+1,j

)2

+
∆t

σ2
K
∥∥∥ψ̂∥∥∥2

∞
(J + 1)

∥∥∥δn+ 1
2

∥∥∥2
+ ∆t(J + 1)

∥∥η̃n+1
∥∥2

≤
J∑
j=0

(
δn+1
i,j

)2
+

∆t

σ2
K
∥∥∥ψ̂∥∥∥2

∞
(J + 1)

∥∥∥δn+ 1
2

∥∥∥2
+ ∆t(J + 1)

∥∥η̃n+1
∥∥2

Let us introduce β(∆t) = 1−∆t− ∆t
σ2K

∥∥∥ψ̂∥∥∥2

∞
. By hypothesis, β lies in (0, 1).

This gives:

β(∆t)
J∑
j=0

(
δn+1
i+1,j

)2
≤

J∑
j=0

(
δn+1
i,j

)2
+ ∆t(J + 1)

[
1

σ2
K
∥∥∥ψ̂∥∥∥2

∞

∥∥∥δn+ 1
2

∥∥∥2
+
∥∥η̃n+1

∥∥2
]

By immediate induction we have:

(β(∆t))i+1
J∑
j=0

(
δn+1
i+1,j

)2
≤

J∑
j=0

(
δn+1

0,j

)2
+ ∆t

i∑
l=0

(β(∆t))l (J + 1)

[
1

σ2
K
∥∥∥ψ̂∥∥∥2

∞

∥∥∥δn+ 1
2

∥∥∥2
+
∥∥η̃n+1

∥∥2
]

Hence:

J∑
j=0

(
δn+1
i+1,j

)2
≤
(

1

β(∆t)

)I J∑
j=0

(
δn+1

0,j

)2

+

(
1

β(∆t)

)I
T (J + 1)

[
1

σ2
K
∥∥∥ψ̂∥∥∥2

∞

∥∥∥δn+ 1
2

∥∥∥2
+
∥∥η̃n+1

∥∥2
]

Now,

δn+1
0,j =

m0(xj)

φ̂
n+ 1

2
0,j

− m0(xj)

φ̃
n+ 1

2
0,j

Consequently:

|δn+1
0,j | ≤ ‖m0‖∞

∣∣∣∣∣∣ 1

φ̂
n+ 1

2
0,j

− 1

φ̃
n+ 1

2
0,j

∣∣∣∣∣∣ ≤ ‖m0‖∞
ε2

∣∣∣∣δn+ 1
2

0,j

∣∣∣∣
We end up with:

J∑
j=0

(
δn+1
i+1,j

)2
≤
(

1

β(∆t)

)I (‖m0‖∞
ε2

)2

(J + 1)
∥∥∥δn+ 1

2

∥∥∥2
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+

(
1

β(∆t)

)I
T (J + 1)

[
1

σ2
K
∥∥∥ψ̂∥∥∥2

∞

∥∥∥δn+ 1
2

∥∥∥2
+
∥∥η̃n+1

∥∥2
]

⇒
∥∥δn+1

∥∥2 ≤
(

1

β(∆t)

)I (‖m0‖∞
ε2

)2

(J + 1)
∥∥∥δn+ 1

2

∥∥∥2

+

(
1

β(∆t)

)I
T (J + 1)

[
1

σ2
K
∥∥∥ψ̂∥∥∥2

∞

∥∥∥δn+ 1
2

∥∥∥2
+
∥∥η̃n+1

∥∥2
]

Now, as above, lim∆t→0

(
1

β(∆t)

) T
∆t

= exp

((
1 + 1

σ2K
∥∥∥ψ̂∥∥∥2

∞

)
T

)
and hence there exists a con-

stant C2 such that: ∥∥δn+1
∥∥2 ≤ C2

∥∥∥δn+ 1
2

∥∥∥2
+ C2

∥∥η̃n+1
∥∥2

Eventually, C = max(C1, C2) provides the bounds given in the theorem

These bounds allow to prove, under regularity assumptions, that the scheme is convergent. Let
us start with the convergence of the schemes defining respectively φ̂n+ 1

2 and ψ̂n.

Theorem 3. Let us suppose, in addition to the hypotheses of Theorem 2 that uT , m0 and f are so
that ∀n ∈ N, φn+ 1

2 , ψn ∈ C1,2([0, T ]× [0, 1]).
Then ∀n ∈ N:

lim
∆t,∆x→0

‖φ̂n+ 1
2 − φ̃n+ 1

2 ‖ = 0

lim
∆t,∆x→0

‖ψ̂n+1 − ψ̃n+1‖ = 0

Proof:

Let us fix n ≥ 0. We have by immediate induction from Theorem 2 that, as soon as ∆t is small
enough, that there exists a constant C independent of ∆t and ∆x so that:

‖φ̂n+ 1
2 − φ̃n+ 1

2 ‖2 ≤
n∑
k=0

C2k+1‖η̃n+ 1
2
−k‖2 + C2k+2‖η̃n−k‖2

and

‖ψ̂n+1 − ψ̃n+1‖2 ≤
n∑
k=0

C2k+1‖η̃n+1−k‖2 + C2k+2‖η̃n+ 1
2
−k‖2

Hence, because our assumptions imply that the consistency errors tend to 0 as ∆t and ∆x tend
to 0, we have that:

lim
∆t,∆x→0

‖φ̂n+ 1
2 − φ̃n+ 1

2 ‖ = 0

and
lim

∆t,∆x→0
‖ψ̂n+1 − φ̃n+1‖ = 0

For the global convergence of the numerical scheme we have the following theorem:

Theorem 4. Let us suppose, in addition to the hypotheses made in Theorem 2 that uT , m0 and f
are so that ∀n ∈ N, φn+ 1

2 , ψn ∈ C1,2([0, T ]× [0, 1]) and φ, ψ ∈ C1,2([0, T ]× [0, 1])
Then:

lim
n→∞

lim sup
∆t,∆x→0

‖φ̂n+ 1
2 − φ̃‖ = 0

lim
n→∞

lim sup
∆t,∆x→0

‖ψ̂n+1 − ψ̃‖ = 0
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Proof:

We have seen that (φn+ 1
2 )n converges monotonically towards φ. Hence, we know from Dini’s

theorem that the convergence is in fact uniform. Consequently:

∀ε > 0, ∃n0, ∀n ≥ n0, ∀∆t,∆x > 0, ‖φ̃n+ 1
2 − φ̃‖ ≤ ‖φ̃n+ 1

2 − φ̃‖∞ ≤ ε

Hence, ∀n ≥ n0, we know from the preceding result that:

lim sup
∆t,∆x→0

‖φ̂n+ 1
2 − φ̃‖ ≤ lim sup

∆t,∆x→0
‖φ̂n+ 1

2 − φ̃n+ 1
2 ‖+ ‖φ̃n+ 1

2 − φ̃‖ ≤ ε

Thus, we get that:

lim
n→∞

lim sup
∆t,∆x→0

‖φ̂n+ 1
2 − φ̃‖ = 0

The same proof holds regarding ψ̃.

We have proved that the scheme was convergent and we provided a bound on ∆t that guarantees
stability of the scheme. Although this bound is certainly not the best one, a remark must be done
regarding how it depends on parameters and especially on σ.
It’s indeed important to notice that the bound in Theorem 2 is

1 +
K

σ2
max

(∥∥∥euTσ2

∥∥∥2

∞
,
‖m0‖2∞
ε2

)
= 1 +

K

σ2
max

(∥∥∥euTσ2

∥∥∥2

∞
, ‖m0‖2∞ exp

(
2

σ2
(‖uT ‖∞ + ‖f‖∞T )

))
and this bound tends very rapidly to +∞ as σ tends to 0. As a consequence, the numerical scheme
may not be useful for small values of σ.

We will empirically tackle the question of the influence of σ in the next section but before turning
to the numerical experiments, let’s highlight another important property of this numerical scheme.
In most cases in which a probability distribution function is involved, the numerical scheme is built
so that mass is preserved along the trajectory. Here, as we have seen above, since m is only recon-
structed at the end from ψ and φ, there is nothing like mass conservation. However, a difference
arises with Proposition 6 since there is theoretically no systematic loss of mass for a fixed n as t
goes from 0 to T . The evolution of total mass is given by the following proposition:

Proposition 12. Let us introduce m̂n+1 = φ̂n+ 1
2 ψ̂n+1.

The difference in total mass between two successive times at step n+ 1 is:

1

J + 1

J∑
j=0

m̂n+1
i+1,j −

1

J + 1

J∑
j=0

m̂n+1
i,j =

∆t

σ2

1

J + 1

J∑
j=0

ψ̂n+1
i+1,jφ̂

n+ 1
2

i,j

(
f

(
ψ̂n+1
i+1,jφ̂

n+ 1
2

i+1,j

)
− f

(
ψ̂ni,jφ̂

n+ 1
2

i,j

))
Then, under the hypotheses of Theorem 4, we have that:

∀i ∈ I, lim
n→∞

lim sup
∆t,∆x→0

1

J + 1

J∑
j=0

m̂n+1
i,j =

∫
Ω
m0(x)dx

Proof:

1

J + 1

J∑
j=0

m̂n+1
i+1,j −

1

J + 1

J∑
j=0

m̂n+1
i,j

=
1

J + 1

J∑
j=0

ψ̂n+1
i+1,jφ̂

n+ 1
2

i+1,j −
1

J + 1

J∑
j=0

ψ̂n+1
i,j φ̂

n+ 1
2

i,j
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=
1

J + 1

J∑
j=0

ψ̂n+1
i+1,j

(
φ̂
n+ 1

2
i+1,j − φ̂

n+ 1
2

i,j

)
+

1

J + 1

J∑
j=0

(
ψ̂n+1
i+1,j − ψ̂

n+1
i,j

)
φ̂
n+ 1

2
i,j

= − ∆t

J + 1

 σ2

2(∆x)2

J∑
j=0

ψ̂n+1
i+1,j

(
φ̂
n+ 1

2
i,j+1 − 2φ̂

n+ 1
2

i,j + φ̂
n+ 1

2
i,j−1

)
+

1

σ2

J∑
j=0

ψ̂n+1
i+1,jφ̂

n+ 1
2

i,j f

(
φ̂
n+ 1

2
i,j ψ̂ni,j

)
+

∆t

J + 1

 σ2

2(∆x)2

J∑
j=0

φ̂
n+ 1

2
i,j

(
ψ̂n+1
i+1,j+1 − 2ψ̂n+1

i+1,j + ψ̂n+1
i+1,j−1

)
+

1

σ2

J∑
j=0

ψ̂n+1
i+1,jφ̂

n+ 1
2

i,j f

(
φ̂
n+ 1

2
i+1,jψ̂

n+1
i+1,j

)
= − ∆t

J + 1

− σ2

2(∆x)2

J−1∑
j=0

(
ψ̂n+1
i+1,j+1 − ψ̂

n+1
i+1,j

)(
φ̂
n+ 1

2
i,j+1 − φ̂

n+ 1
2

i,j

)
+

1

σ2

J∑
j=0

ψ̂n+1
i+1,jφ̂

n+ 1
2

i,j f

(
φ̂
n+ 1

2
i,j ψ̂ni,j

)
+

∆t

J + 1

− σ2

2(∆x)2

J−1∑
j=0

(
ψ̂n+1
i+1,j+1 − ψ̂

n+1
i+1,j

)(
φ̂
n+ 1

2
i,j+1 − φ̂

n+ 1
2

i,j

)
+

1

σ2

J∑
j=0

ψ̂n+1
i+1,jφ̂

n+ 1
2

i,j f

(
φ̂
n+ 1

2
i+1,jψ̂

n+1
i+1,j

)
=

∆t

σ2

1

J + 1

J∑
j=0

ψ̂n+1
i+1,jφ̂

n+ 1
2

i,j

(
f

(
ψ̂n+1
i+1,jφ̂

n+ 1
2

i+1,j

)
− f

(
ψ̂ni,jφ̂

n+ 1
2

i,j

))
Hence, if the assumptions are the same as in Theorem 4, we have that:

∣∣∣∣∣∣ 1

J + 1

J∑
j=0

m̂n+1
i+1,j −

1

J + 1

J∑
j=0

m̂n+1
i,j

∣∣∣∣∣∣
≤ ∆t

σ2

1

J + 1
K
∥∥∥ψ̂n+1

∥∥∥
∞

∥∥∥φ̂n+ 1
2

∥∥∥
∞

J∑
j=0

∣∣∣∣ψ̂n+1
i+1,jφ̂

n+ 1
2

i+1,j − ψ̂
n
i,jφ̂

n+ 1
2

i,j

∣∣∣∣
≤ ∆t

σ2

1

J + 1
K
∥∥∥euTσ2

∥∥∥
∞

‖m0‖∞
ε

J∑
j=0

∣∣∣ψ̂n+1
i+1,j

∣∣∣ ∣∣∣∣φ̂n+ 1
2

i+1,j − φ̂
n+ 1

2
i,j

∣∣∣∣+

∣∣∣∣φ̂n+ 1
2

i,j

∣∣∣∣ ∣∣∣ψ̂n+1
i+1,j − ψ̂

n
i,j

∣∣∣
≤ ∆t

σ2

1

J + 1
K
∥∥∥euTσ2

∥∥∥
∞

‖m0‖∞
ε

max

(∥∥∥euTσ2

∥∥∥
∞
,
‖m0‖∞

ε

) J∑
j=0

∣∣∣∣φ̂n+ 1
2

i+1,j − φ̂
n+ 1

2
i,j

∣∣∣∣+
∣∣∣ψ̂n+1
i+1,j − ψ̂

n
i,j

∣∣∣
Now,

1

J + 1

J∑
j=0

∣∣∣∣φ̂n+ 1
2

i+1,j − φ̂
n+ 1

2
i,j

∣∣∣∣
≤ 1

J + 1

J∑
j=0

∣∣∣∣φ̂n+ 1
2

i+1,j − φ̃
n+ 1

2
i+1,j

∣∣∣∣+

∣∣∣∣φ̃n+ 1
2

i+1,j − φ̃
n+ 1

2
i,j

∣∣∣∣+

∣∣∣∣φ̃n+ 1
2

i,j − φ̂n+ 1
2

i,j

∣∣∣∣
≤ 2

∥∥∥φ̂n+ 1
2 − φ̃n+ 1

2

∥∥∥+
1

J + 1

J∑
j=0

∣∣∣∣φ̃n+ 1
2

i+1,j − φ̃
n+ 1

2
i,j

∣∣∣∣
and

1

J + 1

J∑
j=0

∣∣∣ψ̂n+1
i+1,j − ψ̂

n
i,j

∣∣∣
≤

∥∥∥ψ̂n+1 − ψ̃n+1
∥∥∥+

1

J + 1

J∑
j=0

∣∣∣ψ̃n+1
i+1,j − ψ̃

n
i,j

∣∣∣+
∥∥∥ψ̂n − ψ̃n∥∥∥
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As a consequence, ∀i ∈ I :

∣∣∣∣∣∣ 1

J + 1

J∑
j=0

m̂n+1
i,j −

1

J + 1

J∑
j=0

m̂n+1
0,j

∣∣∣∣∣∣
≤ T

σ2
K
∥∥∥euTσ2

∥∥∥
∞

‖m0‖∞
ε

max

(∥∥∥euTσ2

∥∥∥
∞
,
‖m0‖∞

ε

)

×

2
∥∥∥φ̂n+ 1

2 − φ̃n+ 1
2

∥∥∥+
∥∥∥ψ̂n+1 − ψ̃n+1

∥∥∥+
∥∥∥ψ̂n − ψ̃n∥∥∥+

1

J + 1
sup
l∈I

J∑
j=0

∣∣∣∣φ̃n+ 1
2

l+1,j − φ̃
n+ 1

2
l,j

∣∣∣∣+
∣∣∣ψ̃n+1
l+1,j − ψ̃

n
l,j

∣∣∣


Using Theorem 4, we obtain that

lim
n→∞

lim sup
∆t,∆x→0

1

J + 1

J∑
j=0

m̂n+1
i,j −

1

J + 1

J∑
j=0

m̂n+1
0,j = 0

But, 1
J+1

∑J
j=0 m̂

n+1
0,j = 1

J+1

∑J
j=0m0(xj) and this expression tends to

∫
Ωm0(x)dx when ∆x

tends to 0 since m0 is continuous from the hypotheses of Theorem 4.

5 Numerical examples

Let us consider, as an example, the following problem on Ω = (0, 1). Agents want to live near
the center of the domain but prefer to live far from the others. This is modeled by the following2

function f :
f(x, ξ) = −16(x− 1/2)2 − 0.1 max(0,min(5, ξ))

At the end of the period, when t = T = 0.5, we suppose that agents do not have any incentive,
namely uT (x) = 0.
We suppose that volatility is σ = 1.

We assume that the population is initially distributed as:

m0(x) =
µ(x)∫ 1

0 µ(x′)dx′
where µ(x) = 1 + 0.2 cos

(
π

(
2x− 3

2

))2

In this case, we solved the numerical scheme with a Newton method for ∆t = 0.01 and ∆x = 0.02
and we obtained the following results for3 (φ, ψ, u,m,∇u). The iterations in n were stopped once

the difference
∥∥∥φ̂n+ 1

2 ψ̂n+1 − φ̂n−
1
2 ψ̂n

∥∥∥
∞

was below 10−7 (here 5 steps).

We see that quite rapidly the population as a whole gets close to what would be the stationary
equilibrium. Then, just before the time horizon, the agents have no more incentive to be around 0
and do not pay the cost associated to the stationary equilibrium. Hence the distribution spreads
just before the end.

2The bounds on ξ guarantee that f is bounded. In practice, these bounds are not binding.
3α = ∇u is the optimal control in this context.
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Figure 1: Solution for φ

Figure 2: Solution for ψ
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Figure 3: Solution for u

Figure 4: Solution for m
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Figure 5: Solution for α = ∇u

Now, we can study, using the preceding choice of uT and f , the complexity of the scheme and
its convergence speed.

We first consider the time spent by the algorithm for
∥∥∥φ̂n+ 1

2 ψ̂n+1 − φ̂n−
1
2 ψ̂n

∥∥∥
∞

to be below 10−7

for the same parameters as above except ∆t and ∆x that vary:
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Figure 6: Left: Computing time for ∆t = 0.005 and different values of ∆x. Right: Computing time for
∆x = 0.01 and different values of ∆t.
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We see that the computing time is linear in the number of points in space if the number of
points in time is fixed and similarly that the computing time is linear in the number of points in
time if the number of points in space is fixed.

Now, if ∆t and ∆x are proportional, we obtain that the computing time is quadratic:

 1

 1.5

 2

 2.5

 3

 3.5

 4

 3  3.5  4  4.5  5  5.5

log(cpu time)

log(number of points in space)

Figure 7: Computing time for ∆x = 2∆t for different values of ∆t.

Empirically, we therefore have that the computing time is of order O
(
(∆x∆t)−1

)
.

Then, we can also consider a reference solution calculated on a grid with 301 points in both space
and time and find the convergence speed with respect to this reference solution. We consider first

the computation of a solution – the algorithm being stopped as soon as
∥∥∥φ̂n+ 1

2 ψ̂n+1 − φ̂n−
1
2 ψ̂n

∥∥∥
∞

is below 10−7 – for ∆x = 1
150 and different values of ∆t and calculate the error in discrete uniform

norm:
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Figure 8: Error in discrete uniform norm for φ (left) and ψ (right) with ∆x = 1
150

and different values
of ∆t. The reference solution has been calculated with ∆x = 2∆t = 1

300
.

We consider then the computation of a solution for ∆t = 1
300 and different values of ∆x and

calculate the error in discrete uniform norm4:

4The fact that the convergence speeds up for small ∆x in the second set of graphs may be due to the fact that we did
not consider a closed-form reference solution but, rather, an approximation of the solution calculated on a grid.
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Figure 9: Error in discrete uniform norm for φ (left) and ψ (right) with ∆t = 1
300

and different values of
∆x. The reference solution has been calculated with ∆x = 2∆t = 1

300
.

We see that the scheme seems to be of order 1 in both time and space.

Now, we can look at the evolution of the total mass of m̂n+1, as n grows. Because of Proposition
6 and Proposition 12 we overall expect to have a loss of mass as t grows, although this may not be
true when ψ̂n and ψ̂n+1 are really close, namely for large n. This is what we observe empirically:
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Figure 10: Evolution of the total mass of m̂n+1. Top left: n = 0, Top right; n = 1, Bottom left: n = 2,
Bottom right: n = 3.
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Finally, to come back to the question raised about σ, we show the computing time of the scheme
for different values of σ:
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Figure 11: Computing time for ∆x = 0.02 and ∆t = 0.005 for different values of σ.

We see that the smaller the σ, the slower the algorithm. This is due to the increasing number

of steps in n to obtain
∥∥∥φ̂n+ 1

2 ψ̂n+1 − φ̂n−
1
2 ψ̂n

∥∥∥
∞
< 10−7 and is also due to the increasing number

of steps in the Newton scheme inside each step. The rationale behind this is that a small change in
σ does not change u nor m by a lot. However, φ = e

u
σ2 and ψ = me−

u
σ2 are largely influenced by

σ: decreasing σ increases φ and decreases ψ by a lot.
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[8] O. Guéant. Mean field games with quadratic hamiltonian: a constructive scheme. submitted,
2011.
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